Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / nvram / fw_cfg.c
blobb644577734cbe9f118639996f48a424bfb3d0333
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/datadir.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/qdev-properties.h"
34 #include "hw/sysbus.h"
35 #include "migration/qemu-file-types.h"
36 #include "migration/vmstate.h"
37 #include "trace.h"
38 #include "qemu/error-report.h"
39 #include "qemu/option.h"
40 #include "qemu/config-file.h"
41 #include "qemu/cutils.h"
42 #include "qapi/error.h"
43 #include "hw/acpi/aml-build.h"
44 #include "hw/pci/pci_bus.h"
45 #include "hw/loader.h"
47 #define FW_CFG_FILE_SLOTS_DFLT 0x20
49 /* FW_CFG_VERSION bits */
50 #define FW_CFG_VERSION 0x01
51 #define FW_CFG_VERSION_DMA 0x02
53 /* FW_CFG_DMA_CONTROL bits */
54 #define FW_CFG_DMA_CTL_ERROR 0x01
55 #define FW_CFG_DMA_CTL_READ 0x02
56 #define FW_CFG_DMA_CTL_SKIP 0x04
57 #define FW_CFG_DMA_CTL_SELECT 0x08
58 #define FW_CFG_DMA_CTL_WRITE 0x10
60 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
62 struct FWCfgEntry {
63 uint32_t len;
64 bool allow_write;
65 uint8_t *data;
66 void *callback_opaque;
67 FWCfgCallback select_cb;
68 FWCfgWriteCallback write_cb;
71 /**
72 * key_name:
74 * @key: The uint16 selector key.
76 * Returns: The stringified name if the selector refers to a well-known
77 * numerically defined item, or NULL on key lookup failure.
79 static const char *key_name(uint16_t key)
81 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
82 [FW_CFG_SIGNATURE] = "signature",
83 [FW_CFG_ID] = "id",
84 [FW_CFG_UUID] = "uuid",
85 [FW_CFG_RAM_SIZE] = "ram_size",
86 [FW_CFG_NOGRAPHIC] = "nographic",
87 [FW_CFG_NB_CPUS] = "nb_cpus",
88 [FW_CFG_MACHINE_ID] = "machine_id",
89 [FW_CFG_KERNEL_ADDR] = "kernel_addr",
90 [FW_CFG_KERNEL_SIZE] = "kernel_size",
91 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
92 [FW_CFG_INITRD_ADDR] = "initrd_addr",
93 [FW_CFG_INITRD_SIZE] = "initdr_size",
94 [FW_CFG_BOOT_DEVICE] = "boot_device",
95 [FW_CFG_NUMA] = "numa",
96 [FW_CFG_BOOT_MENU] = "boot_menu",
97 [FW_CFG_MAX_CPUS] = "max_cpus",
98 [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
99 [FW_CFG_KERNEL_DATA] = "kernel_data",
100 [FW_CFG_INITRD_DATA] = "initrd_data",
101 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
102 [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
103 [FW_CFG_CMDLINE_DATA] = "cmdline_data",
104 [FW_CFG_SETUP_ADDR] = "setup_addr",
105 [FW_CFG_SETUP_SIZE] = "setup_size",
106 [FW_CFG_SETUP_DATA] = "setup_data",
107 [FW_CFG_FILE_DIR] = "file_dir",
110 if (key & FW_CFG_ARCH_LOCAL) {
111 return fw_cfg_arch_key_name(key);
113 if (key < FW_CFG_FILE_FIRST) {
114 return fw_cfg_wellknown_keys[key];
117 return NULL;
120 static inline const char *trace_key_name(uint16_t key)
122 const char *name = key_name(key);
124 return name ? name : "unknown";
127 #define JPG_FILE 0
128 #define BMP_FILE 1
130 static char *read_splashfile(char *filename, gsize *file_sizep,
131 int *file_typep)
133 GError *err = NULL;
134 gchar *content;
135 int file_type;
136 unsigned int filehead;
137 int bmp_bpp;
139 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
140 error_report("failed to read splash file '%s': %s",
141 filename, err->message);
142 g_error_free(err);
143 return NULL;
146 /* check file size */
147 if (*file_sizep < 30) {
148 goto error;
151 /* check magic ID */
152 filehead = lduw_le_p(content);
153 if (filehead == 0xd8ff) {
154 file_type = JPG_FILE;
155 } else if (filehead == 0x4d42) {
156 file_type = BMP_FILE;
157 } else {
158 goto error;
161 /* check BMP bpp */
162 if (file_type == BMP_FILE) {
163 bmp_bpp = lduw_le_p(&content[28]);
164 if (bmp_bpp != 24) {
165 goto error;
169 /* return values */
170 *file_typep = file_type;
172 return content;
174 error:
175 error_report("splash file '%s' format not recognized; must be JPEG "
176 "or 24 bit BMP", filename);
177 g_free(content);
178 return NULL;
181 static void fw_cfg_bootsplash(FWCfgState *s)
183 char *filename, *file_data;
184 gsize file_size;
185 int file_type;
187 /* insert splash time if user configurated */
188 if (current_machine->boot_config.has_splash_time) {
189 int64_t bst_val = current_machine->boot_config.splash_time;
190 uint16_t bst_le16;
192 /* validate the input */
193 if (bst_val < 0 || bst_val > 0xffff) {
194 error_report("splash-time is invalid,"
195 "it should be a value between 0 and 65535");
196 exit(1);
198 /* use little endian format */
199 bst_le16 = cpu_to_le16(bst_val);
200 fw_cfg_add_file(s, "etc/boot-menu-wait",
201 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
204 /* insert splash file if user configurated */
205 if (current_machine->boot_config.splash) {
206 const char *boot_splash_filename = current_machine->boot_config.splash;
207 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
208 if (filename == NULL) {
209 error_report("failed to find file '%s'", boot_splash_filename);
210 return;
213 /* loading file data */
214 file_data = read_splashfile(filename, &file_size, &file_type);
215 if (file_data == NULL) {
216 g_free(filename);
217 return;
219 g_free(boot_splash_filedata);
220 boot_splash_filedata = (uint8_t *)file_data;
222 /* insert data */
223 if (file_type == JPG_FILE) {
224 fw_cfg_add_file(s, "bootsplash.jpg",
225 boot_splash_filedata, file_size);
226 } else {
227 fw_cfg_add_file(s, "bootsplash.bmp",
228 boot_splash_filedata, file_size);
230 g_free(filename);
234 static void fw_cfg_reboot(FWCfgState *s)
236 uint64_t rt_val = -1;
237 uint32_t rt_le32;
239 if (current_machine->boot_config.has_reboot_timeout) {
240 rt_val = current_machine->boot_config.reboot_timeout;
242 /* validate the input */
243 if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
244 error_report("reboot timeout is invalid,"
245 "it should be a value between -1 and 65535");
246 exit(1);
250 rt_le32 = cpu_to_le32(rt_val);
251 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
254 static void fw_cfg_write(FWCfgState *s, uint8_t value)
256 /* nothing, write support removed in QEMU v2.4+ */
259 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
261 return s->file_slots;
264 /* Note: this function returns an exclusive limit. */
265 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
267 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
270 static int fw_cfg_select(FWCfgState *s, uint16_t key)
272 int arch, ret;
273 FWCfgEntry *e;
275 s->cur_offset = 0;
276 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
277 s->cur_entry = FW_CFG_INVALID;
278 ret = 0;
279 } else {
280 s->cur_entry = key;
281 ret = 1;
282 /* entry successfully selected, now run callback if present */
283 arch = !!(key & FW_CFG_ARCH_LOCAL);
284 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
285 if (e->select_cb) {
286 e->select_cb(e->callback_opaque);
290 trace_fw_cfg_select(s, key, trace_key_name(key), ret);
291 return ret;
294 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
296 FWCfgState *s = opaque;
297 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
298 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
299 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
300 uint64_t value = 0;
302 assert(size > 0 && size <= sizeof(value));
303 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
304 /* The least significant 'size' bytes of the return value are
305 * expected to contain a string preserving portion of the item
306 * data, padded with zeros on the right in case we run out early.
307 * In technical terms, we're composing the host-endian representation
308 * of the big endian interpretation of the fw_cfg string.
310 do {
311 value = (value << 8) | e->data[s->cur_offset++];
312 } while (--size && s->cur_offset < e->len);
313 /* If size is still not zero, we *did* run out early, so continue
314 * left-shifting, to add the appropriate number of padding zeros
315 * on the right.
317 value <<= 8 * size;
320 trace_fw_cfg_read(s, value);
321 return value;
324 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
325 uint64_t value, unsigned size)
327 FWCfgState *s = opaque;
328 unsigned i = size;
330 do {
331 fw_cfg_write(s, value >> (8 * --i));
332 } while (i);
335 static void fw_cfg_dma_transfer(FWCfgState *s)
337 dma_addr_t len;
338 FWCfgDmaAccess dma;
339 int arch;
340 FWCfgEntry *e;
341 int read = 0, write = 0;
342 dma_addr_t dma_addr;
344 /* Reset the address before the next access */
345 dma_addr = s->dma_addr;
346 s->dma_addr = 0;
348 if (dma_memory_read(s->dma_as, dma_addr,
349 &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
350 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
351 FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
352 return;
355 dma.address = be64_to_cpu(dma.address);
356 dma.length = be32_to_cpu(dma.length);
357 dma.control = be32_to_cpu(dma.control);
359 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
360 fw_cfg_select(s, dma.control >> 16);
363 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
364 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
365 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
367 if (dma.control & FW_CFG_DMA_CTL_READ) {
368 read = 1;
369 write = 0;
370 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
371 read = 0;
372 write = 1;
373 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
374 read = 0;
375 write = 0;
376 } else {
377 dma.length = 0;
380 dma.control = 0;
382 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
383 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
384 s->cur_offset >= e->len) {
385 len = dma.length;
387 /* If the access is not a read access, it will be a skip access,
388 * tested before.
390 if (read) {
391 if (dma_memory_set(s->dma_as, dma.address, 0, len,
392 MEMTXATTRS_UNSPECIFIED)) {
393 dma.control |= FW_CFG_DMA_CTL_ERROR;
396 if (write) {
397 dma.control |= FW_CFG_DMA_CTL_ERROR;
399 } else {
400 if (dma.length <= (e->len - s->cur_offset)) {
401 len = dma.length;
402 } else {
403 len = (e->len - s->cur_offset);
406 /* If the access is not a read access, it will be a skip access,
407 * tested before.
409 if (read) {
410 if (dma_memory_write(s->dma_as, dma.address,
411 &e->data[s->cur_offset], len,
412 MEMTXATTRS_UNSPECIFIED)) {
413 dma.control |= FW_CFG_DMA_CTL_ERROR;
416 if (write) {
417 if (!e->allow_write ||
418 len != dma.length ||
419 dma_memory_read(s->dma_as, dma.address,
420 &e->data[s->cur_offset], len,
421 MEMTXATTRS_UNSPECIFIED)) {
422 dma.control |= FW_CFG_DMA_CTL_ERROR;
423 } else if (e->write_cb) {
424 e->write_cb(e->callback_opaque, s->cur_offset, len);
428 s->cur_offset += len;
431 dma.address += len;
432 dma.length -= len;
436 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
437 dma.control, MEMTXATTRS_UNSPECIFIED);
439 trace_fw_cfg_read(s, 0);
442 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
443 unsigned size)
445 /* Return a signature value (and handle various read sizes) */
446 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
449 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
450 uint64_t value, unsigned size)
452 FWCfgState *s = opaque;
454 if (size == 4) {
455 if (addr == 0) {
456 /* FWCfgDmaAccess high address */
457 s->dma_addr = value << 32;
458 } else if (addr == 4) {
459 /* FWCfgDmaAccess low address */
460 s->dma_addr |= value;
461 fw_cfg_dma_transfer(s);
463 } else if (size == 8 && addr == 0) {
464 s->dma_addr = value;
465 fw_cfg_dma_transfer(s);
469 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
470 unsigned size, bool is_write,
471 MemTxAttrs attrs)
473 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
474 (size == 8 && addr == 0));
477 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
478 unsigned size, bool is_write,
479 MemTxAttrs attrs)
481 return addr == 0;
484 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
486 return 0;
489 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
490 uint64_t value, unsigned size)
492 fw_cfg_select(opaque, (uint16_t)value);
495 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
496 unsigned size, bool is_write,
497 MemTxAttrs attrs)
499 return is_write && size == 2;
502 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
503 uint64_t value, unsigned size)
505 switch (size) {
506 case 1:
507 fw_cfg_write(opaque, (uint8_t)value);
508 break;
509 case 2:
510 fw_cfg_select(opaque, (uint16_t)value);
511 break;
515 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
516 unsigned size, bool is_write,
517 MemTxAttrs attrs)
519 return (size == 1) || (is_write && size == 2);
522 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
523 .read = fw_cfg_ctl_mem_read,
524 .write = fw_cfg_ctl_mem_write,
525 .endianness = DEVICE_BIG_ENDIAN,
526 .valid.accepts = fw_cfg_ctl_mem_valid,
529 static const MemoryRegionOps fw_cfg_data_mem_ops = {
530 .read = fw_cfg_data_read,
531 .write = fw_cfg_data_mem_write,
532 .endianness = DEVICE_BIG_ENDIAN,
533 .valid = {
534 .min_access_size = 1,
535 .max_access_size = 1,
536 .accepts = fw_cfg_data_mem_valid,
540 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
541 .read = fw_cfg_data_read,
542 .write = fw_cfg_comb_write,
543 .endianness = DEVICE_LITTLE_ENDIAN,
544 .valid.accepts = fw_cfg_comb_valid,
547 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
548 .read = fw_cfg_dma_mem_read,
549 .write = fw_cfg_dma_mem_write,
550 .endianness = DEVICE_BIG_ENDIAN,
551 .valid.accepts = fw_cfg_dma_mem_valid,
552 .valid.max_access_size = 8,
553 .impl.max_access_size = 8,
556 static void fw_cfg_reset(DeviceState *d)
558 FWCfgState *s = FW_CFG(d);
560 /* we never register a read callback for FW_CFG_SIGNATURE */
561 fw_cfg_select(s, FW_CFG_SIGNATURE);
564 /* Save restore 32 bit int as uint16_t
565 This is a Big hack, but it is how the old state did it.
566 Or we broke compatibility in the state, or we can't use struct tm
569 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
570 const VMStateField *field)
572 uint32_t *v = pv;
573 *v = qemu_get_be16(f);
574 return 0;
577 static int put_unused(QEMUFile *f, void *pv, size_t size,
578 const VMStateField *field, JSONWriter *vmdesc)
580 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
581 fprintf(stderr, "This functions shouldn't be called.\n");
583 return 0;
586 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
587 .name = "int32_as_uint16",
588 .get = get_uint32_as_uint16,
589 .put = put_unused,
592 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
593 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
596 static bool is_version_1(void *opaque, int version_id)
598 return version_id == 1;
601 bool fw_cfg_dma_enabled(void *opaque)
603 FWCfgState *s = opaque;
605 return s->dma_enabled;
608 static bool fw_cfg_acpi_mr_restore(void *opaque)
610 FWCfgState *s = opaque;
611 bool mr_aligned;
613 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
614 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
615 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
616 return s->acpi_mr_restore && !mr_aligned;
619 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
621 MemoryRegion *mr;
622 ram_addr_t offset;
623 int arch = !!(key & FW_CFG_ARCH_LOCAL);
624 void *ptr;
626 key &= FW_CFG_ENTRY_MASK;
627 assert(key < fw_cfg_max_entry(s));
629 ptr = s->entries[arch][key].data;
630 mr = memory_region_from_host(ptr, &offset);
632 memory_region_ram_resize(mr, size, &error_abort);
635 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
637 FWCfgState *s = opaque;
638 int i, index;
640 assert(s->files);
642 index = be32_to_cpu(s->files->count);
644 for (i = 0; i < index; i++) {
645 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
646 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
647 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
648 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
649 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
650 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
654 return 0;
657 static const VMStateDescription vmstate_fw_cfg_dma = {
658 .name = "fw_cfg/dma",
659 .needed = fw_cfg_dma_enabled,
660 .fields = (const VMStateField[]) {
661 VMSTATE_UINT64(dma_addr, FWCfgState),
662 VMSTATE_END_OF_LIST()
666 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
667 .name = "fw_cfg/acpi_mr",
668 .version_id = 1,
669 .minimum_version_id = 1,
670 .needed = fw_cfg_acpi_mr_restore,
671 .post_load = fw_cfg_acpi_mr_restore_post_load,
672 .fields = (const VMStateField[]) {
673 VMSTATE_UINT64(table_mr_size, FWCfgState),
674 VMSTATE_UINT64(linker_mr_size, FWCfgState),
675 VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
676 VMSTATE_END_OF_LIST()
680 static const VMStateDescription vmstate_fw_cfg = {
681 .name = "fw_cfg",
682 .version_id = 2,
683 .minimum_version_id = 1,
684 .fields = (const VMStateField[]) {
685 VMSTATE_UINT16(cur_entry, FWCfgState),
686 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
687 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
688 VMSTATE_END_OF_LIST()
690 .subsections = (const VMStateDescription * const []) {
691 &vmstate_fw_cfg_dma,
692 &vmstate_fw_cfg_acpi_mr,
693 NULL,
697 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
698 FWCfgCallback select_cb,
699 FWCfgWriteCallback write_cb,
700 void *callback_opaque,
701 void *data, size_t len,
702 bool read_only)
704 int arch = !!(key & FW_CFG_ARCH_LOCAL);
706 key &= FW_CFG_ENTRY_MASK;
708 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
709 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
711 s->entries[arch][key].data = data;
712 s->entries[arch][key].len = (uint32_t)len;
713 s->entries[arch][key].select_cb = select_cb;
714 s->entries[arch][key].write_cb = write_cb;
715 s->entries[arch][key].callback_opaque = callback_opaque;
716 s->entries[arch][key].allow_write = !read_only;
719 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
720 void *data, size_t len)
722 void *ptr;
723 int arch = !!(key & FW_CFG_ARCH_LOCAL);
725 key &= FW_CFG_ENTRY_MASK;
727 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
729 /* return the old data to the function caller, avoid memory leak */
730 ptr = s->entries[arch][key].data;
731 s->entries[arch][key].data = data;
732 s->entries[arch][key].len = len;
733 s->entries[arch][key].callback_opaque = NULL;
734 s->entries[arch][key].allow_write = false;
736 return ptr;
739 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
741 trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
742 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
745 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
747 size_t sz = strlen(value) + 1;
749 trace_fw_cfg_add_string(key, trace_key_name(key), value);
750 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
753 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
755 size_t sz = strlen(value) + 1;
756 char *old;
758 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
759 g_free(old);
762 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
764 uint16_t *copy;
766 copy = g_malloc(sizeof(value));
767 *copy = cpu_to_le16(value);
768 trace_fw_cfg_add_i16(key, trace_key_name(key), value);
769 fw_cfg_add_bytes(s, key, copy, sizeof(value));
772 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
774 uint16_t *copy, *old;
776 copy = g_malloc(sizeof(value));
777 *copy = cpu_to_le16(value);
778 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
779 g_free(old);
782 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
784 uint32_t *copy;
786 copy = g_malloc(sizeof(value));
787 *copy = cpu_to_le32(value);
788 trace_fw_cfg_add_i32(key, trace_key_name(key), value);
789 fw_cfg_add_bytes(s, key, copy, sizeof(value));
792 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
794 uint32_t *copy, *old;
796 copy = g_malloc(sizeof(value));
797 *copy = cpu_to_le32(value);
798 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
799 g_free(old);
802 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
804 uint64_t *copy;
806 copy = g_malloc(sizeof(value));
807 *copy = cpu_to_le64(value);
808 trace_fw_cfg_add_i64(key, trace_key_name(key), value);
809 fw_cfg_add_bytes(s, key, copy, sizeof(value));
812 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
814 uint64_t *copy, *old;
816 copy = g_malloc(sizeof(value));
817 *copy = cpu_to_le64(value);
818 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
819 g_free(old);
822 void fw_cfg_set_order_override(FWCfgState *s, int order)
824 assert(s->fw_cfg_order_override == 0);
825 s->fw_cfg_order_override = order;
828 void fw_cfg_reset_order_override(FWCfgState *s)
830 assert(s->fw_cfg_order_override != 0);
831 s->fw_cfg_order_override = 0;
835 * This is the legacy order list. For legacy systems, files are in
836 * the fw_cfg in the order defined below, by the "order" value. Note
837 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
838 * specific area, but there may be more than one and they occur in the
839 * order that the user specifies them on the command line. Those are
840 * handled in a special manner, using the order override above.
842 * For non-legacy, the files are sorted by filename to avoid this kind
843 * of complexity in the future.
845 * This is only for x86, other arches don't implement versioning so
846 * they won't set legacy mode.
848 static struct {
849 const char *name;
850 int order;
851 } fw_cfg_order[] = {
852 { "etc/boot-menu-wait", 10 },
853 { "bootsplash.jpg", 11 },
854 { "bootsplash.bmp", 12 },
855 { "etc/boot-fail-wait", 15 },
856 { "etc/smbios/smbios-tables", 20 },
857 { "etc/smbios/smbios-anchor", 30 },
858 { "etc/e820", 40 },
859 { "etc/reserved-memory-end", 50 },
860 { "genroms/kvmvapic.bin", 55 },
861 { "genroms/linuxboot.bin", 60 },
862 { }, /* VGA ROMs from pc_vga_init come here, 70. */
863 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
864 { "etc/system-states", 90 },
865 { }, /* User ROMs come here, 100. */
866 { }, /* Device FW comes here, 110. */
867 { "etc/extra-pci-roots", 120 },
868 { "etc/acpi/tables", 130 },
869 { "etc/table-loader", 140 },
870 { "etc/tpm/log", 150 },
871 { "etc/acpi/rsdp", 160 },
872 { "bootorder", 170 },
873 { "etc/msr_feature_control", 180 },
875 #define FW_CFG_ORDER_OVERRIDE_LAST 200
879 * Any sub-page size update to these table MRs will be lost during migration,
880 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
881 * In order to avoid the inconsistency in sizes save them separately and
882 * migrate over in vmstate post_load().
884 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
886 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
887 s->table_mr_size = len;
888 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
889 s->linker_mr_size = len;
890 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
891 s->rsdp_mr_size = len;
895 static int get_fw_cfg_order(FWCfgState *s, const char *name)
897 int i;
899 if (s->fw_cfg_order_override > 0) {
900 return s->fw_cfg_order_override;
903 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
904 if (fw_cfg_order[i].name == NULL) {
905 continue;
908 if (strcmp(name, fw_cfg_order[i].name) == 0) {
909 return fw_cfg_order[i].order;
913 /* Stick unknown stuff at the end. */
914 warn_report("Unknown firmware file in legacy mode: %s", name);
915 return FW_CFG_ORDER_OVERRIDE_LAST;
918 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
919 FWCfgCallback select_cb,
920 FWCfgWriteCallback write_cb,
921 void *callback_opaque,
922 void *data, size_t len, bool read_only)
924 int i, index, count;
925 size_t dsize;
926 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
927 int order = 0;
929 if (!s->files) {
930 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
931 s->files = g_malloc0(dsize);
932 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
935 count = be32_to_cpu(s->files->count);
936 assert(count < fw_cfg_file_slots(s));
938 /* Find the insertion point. */
939 if (mc->legacy_fw_cfg_order) {
941 * Sort by order. For files with the same order, we keep them
942 * in the sequence in which they were added.
944 order = get_fw_cfg_order(s, filename);
945 for (index = count;
946 index > 0 && order < s->entry_order[index - 1];
947 index--);
948 } else {
949 /* Sort by file name. */
950 for (index = count;
951 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
952 index--);
956 * Move all the entries from the index point and after down one
957 * to create a slot for the new entry. Because calculations are
958 * being done with the index, make it so that "i" is the current
959 * index and "i - 1" is the one being copied from, thus the
960 * unusual start and end in the for statement.
962 for (i = count; i > index; i--) {
963 s->files->f[i] = s->files->f[i - 1];
964 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
965 s->entries[0][FW_CFG_FILE_FIRST + i] =
966 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
967 s->entry_order[i] = s->entry_order[i - 1];
970 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
971 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
973 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
974 for (i = 0; i <= count; i++) {
975 if (i != index &&
976 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
977 error_report("duplicate fw_cfg file name: %s",
978 s->files->f[index].name);
979 exit(1);
983 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
984 select_cb, write_cb,
985 callback_opaque, data, len,
986 read_only);
988 s->files->f[index].size = cpu_to_be32(len);
989 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
990 s->entry_order[index] = order;
991 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
993 s->files->count = cpu_to_be32(count+1);
994 fw_cfg_acpi_mr_save(s, filename, len);
997 void fw_cfg_add_file(FWCfgState *s, const char *filename,
998 void *data, size_t len)
1000 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1003 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1004 void *data, size_t len)
1006 int i, index;
1007 void *ptr = NULL;
1009 assert(s->files);
1011 index = be32_to_cpu(s->files->count);
1013 for (i = 0; i < index; i++) {
1014 if (strcmp(filename, s->files->f[i].name) == 0) {
1015 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1016 data, len);
1017 s->files->f[i].size = cpu_to_be32(len);
1018 fw_cfg_acpi_mr_save(s, filename, len);
1019 return ptr;
1023 assert(index < fw_cfg_file_slots(s));
1025 /* add new one */
1026 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1027 return NULL;
1030 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1031 const char *gen_id, Error **errp)
1033 FWCfgDataGeneratorClass *klass;
1034 GByteArray *array;
1035 Object *obj;
1036 gsize size;
1038 obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1039 if (!obj) {
1040 error_setg(errp, "Cannot find object ID '%s'", gen_id);
1041 return false;
1043 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1044 error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1045 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1046 return false;
1048 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1049 array = klass->get_data(obj, errp);
1050 if (!array) {
1051 return false;
1053 size = array->len;
1054 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1056 return true;
1059 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1061 int extra_hosts = 0;
1063 if (!bus) {
1064 return;
1067 QLIST_FOREACH(bus, &bus->child, sibling) {
1068 /* look for expander root buses */
1069 if (pci_bus_is_root(bus)) {
1070 extra_hosts++;
1074 if (extra_hosts && s) {
1075 uint64_t *val = g_malloc(sizeof(*val));
1076 *val = cpu_to_le64(extra_hosts);
1077 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1081 static void fw_cfg_machine_reset(void *opaque)
1083 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1084 FWCfgState *s = opaque;
1085 void *ptr;
1086 size_t len;
1087 char *buf;
1089 buf = get_boot_devices_list(&len);
1090 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1091 g_free(ptr);
1093 if (!mc->legacy_fw_cfg_order) {
1094 buf = get_boot_devices_lchs_list(&len);
1095 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1096 g_free(ptr);
1100 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1102 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1103 qemu_register_reset(fw_cfg_machine_reset, s);
1106 static Property fw_cfg_properties[] = {
1107 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1108 DEFINE_PROP_END_OF_LIST(),
1111 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1113 FWCfgState *s = FW_CFG(dev);
1114 MachineState *machine = MACHINE(qdev_get_machine());
1115 uint32_t version = FW_CFG_VERSION;
1117 if (!fw_cfg_find()) {
1118 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1119 return;
1122 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1123 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1124 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1125 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu));
1126 fw_cfg_bootsplash(s);
1127 fw_cfg_reboot(s);
1129 if (s->dma_enabled) {
1130 version |= FW_CFG_VERSION_DMA;
1133 fw_cfg_add_i32(s, FW_CFG_ID, version);
1135 s->machine_ready.notify = fw_cfg_machine_ready;
1136 qemu_add_machine_init_done_notifier(&s->machine_ready);
1139 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1140 AddressSpace *dma_as)
1142 DeviceState *dev;
1143 SysBusDevice *sbd;
1144 FWCfgIoState *ios;
1145 FWCfgState *s;
1146 MemoryRegion *iomem = get_system_io();
1147 bool dma_requested = dma_iobase && dma_as;
1149 dev = qdev_new(TYPE_FW_CFG_IO);
1150 if (!dma_requested) {
1151 qdev_prop_set_bit(dev, "dma_enabled", false);
1154 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1155 OBJECT(dev));
1157 sbd = SYS_BUS_DEVICE(dev);
1158 sysbus_realize_and_unref(sbd, &error_fatal);
1159 ios = FW_CFG_IO(dev);
1160 memory_region_add_subregion(iomem, iobase, &ios->comb_iomem);
1162 s = FW_CFG(dev);
1164 if (s->dma_enabled) {
1165 /* 64 bits for the address field */
1166 s->dma_as = dma_as;
1167 s->dma_addr = 0;
1168 memory_region_add_subregion(iomem, dma_iobase, &s->dma_iomem);
1171 return s;
1174 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1175 hwaddr data_addr, uint32_t data_width,
1176 hwaddr dma_addr, AddressSpace *dma_as)
1178 DeviceState *dev;
1179 SysBusDevice *sbd;
1180 FWCfgState *s;
1181 bool dma_requested = dma_addr && dma_as;
1183 dev = qdev_new(TYPE_FW_CFG_MEM);
1184 qdev_prop_set_uint32(dev, "data_width", data_width);
1185 if (!dma_requested) {
1186 qdev_prop_set_bit(dev, "dma_enabled", false);
1189 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1190 OBJECT(dev));
1192 sbd = SYS_BUS_DEVICE(dev);
1193 sysbus_realize_and_unref(sbd, &error_fatal);
1194 sysbus_mmio_map(sbd, 0, ctl_addr);
1195 sysbus_mmio_map(sbd, 1, data_addr);
1197 s = FW_CFG(dev);
1199 if (s->dma_enabled) {
1200 s->dma_as = dma_as;
1201 s->dma_addr = 0;
1202 sysbus_mmio_map(sbd, 2, dma_addr);
1205 return s;
1208 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1210 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1211 fw_cfg_data_mem_ops.valid.max_access_size,
1212 0, NULL);
1216 FWCfgState *fw_cfg_find(void)
1218 /* Returns NULL unless there is exactly one fw_cfg device */
1219 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1222 void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
1223 uint16_t data_key, const char *image_name,
1224 bool try_decompress)
1226 size_t size = -1;
1227 uint8_t *data;
1229 if (image_name == NULL) {
1230 return;
1233 if (try_decompress) {
1234 size = load_image_gzipped_buffer(image_name,
1235 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
1238 if (size == (size_t)-1) {
1239 gchar *contents;
1240 gsize length;
1242 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
1243 error_report("failed to load \"%s\"", image_name);
1244 exit(1);
1246 size = length;
1247 data = (uint8_t *)contents;
1250 fw_cfg_add_i32(fw_cfg, size_key, size);
1251 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
1254 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1256 DeviceClass *dc = DEVICE_CLASS(klass);
1258 device_class_set_legacy_reset(dc, fw_cfg_reset);
1259 dc->vmsd = &vmstate_fw_cfg;
1261 device_class_set_props(dc, fw_cfg_properties);
1264 static const TypeInfo fw_cfg_info = {
1265 .name = TYPE_FW_CFG,
1266 .parent = TYPE_SYS_BUS_DEVICE,
1267 .abstract = true,
1268 .instance_size = sizeof(FWCfgState),
1269 .class_init = fw_cfg_class_init,
1272 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1274 uint16_t file_slots_max;
1276 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1277 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1278 FW_CFG_FILE_SLOTS_MIN);
1279 return;
1282 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1283 * that we permit. The actual (exclusive) value coming from the
1284 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1285 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1286 if (fw_cfg_file_slots(s) > file_slots_max) {
1287 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1288 file_slots_max);
1289 return;
1292 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1293 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1294 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1297 static Property fw_cfg_io_properties[] = {
1298 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1299 true),
1300 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1301 FW_CFG_FILE_SLOTS_DFLT),
1302 DEFINE_PROP_END_OF_LIST(),
1305 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1307 ERRP_GUARD();
1308 FWCfgIoState *s = FW_CFG_IO(dev);
1310 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1311 if (*errp) {
1312 return;
1315 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1316 * with half of the 16-bit control register. Hence, the total size
1317 * of the i/o region used is FW_CFG_CTL_SIZE */
1318 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1319 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1321 if (FW_CFG(s)->dma_enabled) {
1322 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1323 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1324 sizeof(dma_addr_t));
1327 fw_cfg_common_realize(dev, errp);
1330 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1332 DeviceClass *dc = DEVICE_CLASS(klass);
1334 dc->realize = fw_cfg_io_realize;
1335 device_class_set_props(dc, fw_cfg_io_properties);
1338 static const TypeInfo fw_cfg_io_info = {
1339 .name = TYPE_FW_CFG_IO,
1340 .parent = TYPE_FW_CFG,
1341 .instance_size = sizeof(FWCfgIoState),
1342 .class_init = fw_cfg_io_class_init,
1346 static Property fw_cfg_mem_properties[] = {
1347 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1348 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1349 true),
1350 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1351 FW_CFG_FILE_SLOTS_DFLT),
1352 DEFINE_PROP_END_OF_LIST(),
1355 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1357 ERRP_GUARD();
1358 FWCfgMemState *s = FW_CFG_MEM(dev);
1359 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1360 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1362 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1363 if (*errp) {
1364 return;
1367 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1368 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1369 sysbus_init_mmio(sbd, &s->ctl_iomem);
1371 if (s->data_width > data_ops->valid.max_access_size) {
1372 s->wide_data_ops = *data_ops;
1374 s->wide_data_ops.valid.max_access_size = s->data_width;
1375 s->wide_data_ops.impl.max_access_size = s->data_width;
1376 data_ops = &s->wide_data_ops;
1378 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1379 "fwcfg.data", data_ops->valid.max_access_size);
1380 sysbus_init_mmio(sbd, &s->data_iomem);
1382 if (FW_CFG(s)->dma_enabled) {
1383 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1384 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1385 sizeof(dma_addr_t));
1386 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1389 fw_cfg_common_realize(dev, errp);
1392 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1394 DeviceClass *dc = DEVICE_CLASS(klass);
1396 dc->realize = fw_cfg_mem_realize;
1397 device_class_set_props(dc, fw_cfg_mem_properties);
1400 static const TypeInfo fw_cfg_mem_info = {
1401 .name = TYPE_FW_CFG_MEM,
1402 .parent = TYPE_FW_CFG,
1403 .instance_size = sizeof(FWCfgMemState),
1404 .class_init = fw_cfg_mem_class_init,
1407 static void fw_cfg_register_types(void)
1409 type_register_static(&fw_cfg_info);
1410 type_register_static(&fw_cfg_io_info);
1411 type_register_static(&fw_cfg_mem_info);
1414 type_init(fw_cfg_register_types)