Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / ppc / pnv_lpc.c
blobf8aad955b5b67fce9df6692e7d07471ffd3ccdc8
1 /*
2 * QEMU PowerPC PowerNV LPC controller
4 * Copyright (c) 2016, IBM Corporation.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "target/ppc/cpu.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "hw/irq.h"
26 #include "hw/isa/isa.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ppc/pnv.h"
29 #include "hw/ppc/pnv_chip.h"
30 #include "hw/ppc/pnv_lpc.h"
31 #include "hw/ppc/pnv_xscom.h"
32 #include "hw/ppc/fdt.h"
34 #include <libfdt.h>
36 enum {
37 ECCB_CTL = 0,
38 ECCB_RESET = 1,
39 ECCB_STAT = 2,
40 ECCB_DATA = 3,
43 /* OPB Master LS registers */
44 #define OPB_MASTER_LS_ROUTE0 0x8
45 #define OPB_MASTER_LS_ROUTE1 0xC
46 #define OPB_MASTER_LS_IRQ_STAT 0x50
47 #define OPB_MASTER_IRQ_LPC 0x00000800
48 #define OPB_MASTER_LS_IRQ_MASK 0x54
49 #define OPB_MASTER_LS_IRQ_POL 0x58
50 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
52 /* LPC HC registers */
53 #define LPC_HC_FW_SEG_IDSEL 0x24
54 #define LPC_HC_FW_RD_ACC_SIZE 0x28
55 #define LPC_HC_FW_RD_1B 0x00000000
56 #define LPC_HC_FW_RD_2B 0x01000000
57 #define LPC_HC_FW_RD_4B 0x02000000
58 #define LPC_HC_FW_RD_16B 0x04000000
59 #define LPC_HC_FW_RD_128B 0x07000000
60 #define LPC_HC_IRQSER_CTRL 0x30
61 #define LPC_HC_IRQSER_EN 0x80000000
62 #define LPC_HC_IRQSER_QMODE 0x40000000
63 #define LPC_HC_IRQSER_START_MASK 0x03000000
64 #define LPC_HC_IRQSER_START_4CLK 0x00000000
65 #define LPC_HC_IRQSER_START_6CLK 0x01000000
66 #define LPC_HC_IRQSER_START_8CLK 0x02000000
67 #define LPC_HC_IRQSER_AUTO_CLEAR 0x00800000
68 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */
69 #define LPC_HC_IRQSTAT 0x38
70 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */
71 #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
72 #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000
73 #define LPC_HC_IRQ_LRESET 0x00000400
74 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080
75 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040
76 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020
77 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010
78 #define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008
79 #define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004
80 #define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002
81 #define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001
82 #define LPC_HC_ERROR_ADDRESS 0x40
84 #define LPC_OPB_SIZE 0x100000000ull
86 #define ISA_IO_SIZE 0x00010000
87 #define ISA_MEM_SIZE 0x10000000
88 #define ISA_FW_SIZE 0x10000000
89 #define LPC_IO_OPB_ADDR 0xd0010000
90 #define LPC_IO_OPB_SIZE 0x00010000
91 #define LPC_MEM_OPB_ADDR 0xe0000000
92 #define LPC_MEM_OPB_SIZE 0x10000000
93 #define LPC_FW_OPB_ADDR 0xf0000000
94 #define LPC_FW_OPB_SIZE 0x10000000
96 #define LPC_OPB_REGS_OPB_ADDR 0xc0010000
97 #define LPC_OPB_REGS_OPB_SIZE 0x00000060
98 #define LPC_OPB_REGS_OPBA_ADDR 0xc0011000
99 #define LPC_OPB_REGS_OPBA_SIZE 0x00000008
100 #define LPC_HC_REGS_OPB_ADDR 0xc0012000
101 #define LPC_HC_REGS_OPB_SIZE 0x00000100
103 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
105 const char compat[] = "ibm,power8-lpc\0ibm,lpc";
106 char *name;
107 int offset;
108 uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
109 uint32_t reg[] = {
110 cpu_to_be32(lpc_pcba),
111 cpu_to_be32(PNV_XSCOM_LPC_SIZE)
114 name = g_strdup_printf("isa@%x", lpc_pcba);
115 offset = fdt_add_subnode(fdt, xscom_offset, name);
116 _FDT(offset);
117 g_free(name);
119 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
120 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
121 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
122 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
123 return 0;
126 /* POWER9 only */
127 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
128 uint64_t lpcm_size)
130 const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
131 const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
132 char *name;
133 int offset, lpcm_offset;
134 uint32_t opb_ranges[8] = { 0,
135 cpu_to_be32(lpcm_addr >> 32),
136 cpu_to_be32((uint32_t)lpcm_addr),
137 cpu_to_be32(lpcm_size / 2),
138 cpu_to_be32(lpcm_size / 2),
139 cpu_to_be32(lpcm_addr >> 32),
140 cpu_to_be32(lpcm_size / 2),
141 cpu_to_be32(lpcm_size / 2),
143 uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
144 cpu_to_be32((uint32_t)lpcm_addr),
145 cpu_to_be32(lpcm_size >> 32),
146 cpu_to_be32((uint32_t)lpcm_size),
148 uint32_t lpc_ranges[12] = { 0, 0,
149 cpu_to_be32(LPC_MEM_OPB_ADDR),
150 cpu_to_be32(LPC_MEM_OPB_SIZE),
151 cpu_to_be32(1), 0,
152 cpu_to_be32(LPC_IO_OPB_ADDR),
153 cpu_to_be32(LPC_IO_OPB_SIZE),
154 cpu_to_be32(3), 0,
155 cpu_to_be32(LPC_FW_OPB_ADDR),
156 cpu_to_be32(LPC_FW_OPB_SIZE),
158 uint32_t reg[2];
161 * OPB bus
163 name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
164 lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
165 _FDT(lpcm_offset);
166 g_free(name);
168 _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
169 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
170 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
171 _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
172 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
173 _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
174 sizeof(opb_ranges))));
177 * OPB Master registers
179 name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
180 offset = fdt_add_subnode(fdt, lpcm_offset, name);
181 _FDT(offset);
182 g_free(name);
184 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
185 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
186 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
187 _FDT((fdt_setprop_string(fdt, offset, "compatible",
188 "ibm,power9-lpcm-opb-master")));
191 * OPB arbitrer registers
193 name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
194 offset = fdt_add_subnode(fdt, lpcm_offset, name);
195 _FDT(offset);
196 g_free(name);
198 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
199 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
200 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
201 _FDT((fdt_setprop_string(fdt, offset, "compatible",
202 "ibm,power9-lpcm-opb-arbiter")));
205 * LPC Host Controller registers
207 name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
208 offset = fdt_add_subnode(fdt, lpcm_offset, name);
209 _FDT(offset);
210 g_free(name);
212 reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
213 reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
214 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
215 _FDT((fdt_setprop_string(fdt, offset, "compatible",
216 "ibm,power9-lpc-controller")));
218 name = g_strdup_printf("lpc@0");
219 offset = fdt_add_subnode(fdt, lpcm_offset, name);
220 _FDT(offset);
221 g_free(name);
222 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
223 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
224 _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
225 sizeof(lpc_compat))));
226 _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
227 sizeof(lpc_ranges))));
229 return 0;
233 * These read/write handlers of the OPB address space should be common
234 * with the P9 LPC Controller which uses direct MMIOs.
236 * TODO: rework to use address_space_stq() and address_space_ldq()
237 * instead.
239 bool pnv_lpc_opb_read(PnvLpcController *lpc, uint32_t addr,
240 uint8_t *data, int sz)
242 /* XXX Handle access size limits and FW read caching here */
243 return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
244 data, sz);
247 bool pnv_lpc_opb_write(PnvLpcController *lpc, uint32_t addr,
248 uint8_t *data, int sz)
250 /* XXX Handle access size limits here */
251 return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
252 data, sz);
255 #define ECCB_CTL_READ PPC_BIT(15)
256 #define ECCB_CTL_SZ_LSH (63 - 7)
257 #define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7)
258 #define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63)
260 #define ECCB_STAT_OP_DONE PPC_BIT(52)
261 #define ECCB_STAT_OP_ERR PPC_BIT(52)
262 #define ECCB_STAT_RD_DATA_LSH (63 - 37)
263 #define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH)
265 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
267 /* XXX Check for magic bits at the top, addr size etc... */
268 unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
269 uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
270 uint8_t data[8];
271 bool success;
273 if (sz > sizeof(data)) {
274 qemu_log_mask(LOG_GUEST_ERROR,
275 "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
276 return;
279 if (cmd & ECCB_CTL_READ) {
280 success = pnv_lpc_opb_read(lpc, opb_addr, data, sz);
281 if (success) {
282 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
283 (((uint64_t)data[0]) << 24 |
284 ((uint64_t)data[1]) << 16 |
285 ((uint64_t)data[2]) << 8 |
286 ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
287 } else {
288 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
289 (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
291 } else {
292 data[0] = lpc->eccb_data_reg >> 24;
293 data[1] = lpc->eccb_data_reg >> 16;
294 data[2] = lpc->eccb_data_reg >> 8;
295 data[3] = lpc->eccb_data_reg;
297 success = pnv_lpc_opb_write(lpc, opb_addr, data, sz);
298 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
300 /* XXX Which error bit (if any) to signal OPB error ? */
303 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
305 PnvLpcController *lpc = PNV_LPC(opaque);
306 uint32_t offset = addr >> 3;
307 uint64_t val = 0;
309 switch (offset & 3) {
310 case ECCB_CTL:
311 case ECCB_RESET:
312 val = 0;
313 break;
314 case ECCB_STAT:
315 val = lpc->eccb_stat_reg;
316 lpc->eccb_stat_reg = 0;
317 break;
318 case ECCB_DATA:
319 val = ((uint64_t)lpc->eccb_data_reg) << 32;
320 break;
322 return val;
325 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
326 uint64_t val, unsigned size)
328 PnvLpcController *lpc = PNV_LPC(opaque);
329 uint32_t offset = addr >> 3;
331 switch (offset & 3) {
332 case ECCB_CTL:
333 pnv_lpc_do_eccb(lpc, val);
334 break;
335 case ECCB_RESET:
336 /* XXXX */
337 break;
338 case ECCB_STAT:
339 break;
340 case ECCB_DATA:
341 lpc->eccb_data_reg = val >> 32;
342 break;
346 static const MemoryRegionOps pnv_lpc_xscom_ops = {
347 .read = pnv_lpc_xscom_read,
348 .write = pnv_lpc_xscom_write,
349 .valid.min_access_size = 8,
350 .valid.max_access_size = 8,
351 .impl.min_access_size = 8,
352 .impl.max_access_size = 8,
353 .endianness = DEVICE_BIG_ENDIAN,
356 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
358 PnvLpcController *lpc = PNV_LPC(opaque);
359 uint64_t val = 0;
360 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
361 MemTxResult result;
363 switch (size) {
364 case 4:
365 val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
366 &result);
367 break;
368 case 1:
369 val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
370 &result);
371 break;
372 default:
373 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
374 HWADDR_PRIx " invalid size %d\n", addr, size);
375 return 0;
378 if (result != MEMTX_OK) {
379 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
380 HWADDR_PRIx "\n", addr);
383 return val;
386 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
387 uint64_t val, unsigned size)
389 PnvLpcController *lpc = PNV_LPC(opaque);
390 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
391 MemTxResult result;
393 switch (size) {
394 case 4:
395 address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
396 &result);
397 break;
398 case 1:
399 address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
400 &result);
401 break;
402 default:
403 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
404 HWADDR_PRIx " invalid size %d\n", addr, size);
405 return;
408 if (result != MEMTX_OK) {
409 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
410 HWADDR_PRIx "\n", addr);
414 static const MemoryRegionOps pnv_lpc_mmio_ops = {
415 .read = pnv_lpc_mmio_read,
416 .write = pnv_lpc_mmio_write,
417 .impl = {
418 .min_access_size = 1,
419 .max_access_size = 4,
421 .endianness = DEVICE_BIG_ENDIAN,
424 /* Program the POWER9 LPC irq to PSI serirq routing table */
425 static void pnv_lpc_eval_serirq_routes(PnvLpcController *lpc)
427 int irq;
429 if (!lpc->psi_has_serirq) {
430 if ((lpc->opb_irq_route0 & PPC_BITMASK(8, 13)) ||
431 (lpc->opb_irq_route1 & PPC_BITMASK(4, 31))) {
432 qemu_log_mask(LOG_GUEST_ERROR,
433 "OPB: setting serirq routing on POWER8 system, ignoring.\n");
435 return;
438 for (irq = 0; irq <= 13; irq++) {
439 int serirq = (lpc->opb_irq_route1 >> (31 - 5 - (irq * 2))) & 0x3;
440 lpc->irq_to_serirq_route[irq] = serirq;
443 for (irq = 14; irq < ISA_NUM_IRQS; irq++) {
444 int serirq = (lpc->opb_irq_route0 >> (31 - 9 - (irq * 2))) & 0x3;
445 lpc->irq_to_serirq_route[irq] = serirq;
449 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
451 uint32_t active_irqs = 0;
453 if (lpc->lpc_hc_irqstat & PPC_BITMASK32(16, 31)) {
454 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented irqs in IRQSTAT: "
455 "0x%08"PRIx32"\n", lpc->lpc_hc_irqstat);
458 if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
459 active_irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
462 /* Reflect the interrupt */
463 if (!lpc->psi_has_serirq) {
465 * POWER8 ORs all irqs together (also with LPCHC internal interrupt
466 * sources) and outputs a single line that raises the PSI LPCHC irq
467 * which then latches an OPB IRQ status register that sends the irq
468 * to PSI.
470 * We don't honor the polarity register, it's pointless and unused
471 * anyway
473 if (active_irqs) {
474 lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
475 } else {
476 lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
479 /* Update OPB internal latch */
480 lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
482 qemu_set_irq(lpc->psi_irq_lpchc, lpc->opb_irq_stat != 0);
483 } else {
485 * POWER9 and POWER10 have routing fields in OPB master registers that
486 * send LPC irqs to 4 output lines that raise the PSI SERIRQ irqs.
487 * These don't appear to get latched into an OPB register like the
488 * LPCHC irqs.
490 * POWER9 LPC controller internal irqs still go via the OPB
491 * and LPCHC PSI irqs like P8, but we have no such internal sources
492 * modelled yet.
494 bool serirq_out[4] = { false, false, false, false };
495 int irq;
497 for (irq = 0; irq < ISA_NUM_IRQS; irq++) {
498 if (active_irqs & (LPC_HC_IRQ_SERIRQ0 >> irq)) {
499 serirq_out[lpc->irq_to_serirq_route[irq]] = true;
503 qemu_set_irq(lpc->psi_irq_serirq[0], serirq_out[0]);
504 qemu_set_irq(lpc->psi_irq_serirq[1], serirq_out[1]);
505 qemu_set_irq(lpc->psi_irq_serirq[2], serirq_out[2]);
506 qemu_set_irq(lpc->psi_irq_serirq[3], serirq_out[3]);
510 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
512 PnvLpcController *lpc = opaque;
513 uint64_t val = 0xfffffffffffffffful;
515 switch (addr) {
516 case LPC_HC_FW_SEG_IDSEL:
517 val = lpc->lpc_hc_fw_seg_idsel;
518 break;
519 case LPC_HC_FW_RD_ACC_SIZE:
520 val = lpc->lpc_hc_fw_rd_acc_size;
521 break;
522 case LPC_HC_IRQSER_CTRL:
523 val = lpc->lpc_hc_irqser_ctrl;
524 break;
525 case LPC_HC_IRQMASK:
526 val = lpc->lpc_hc_irqmask;
527 break;
528 case LPC_HC_IRQSTAT:
529 val = lpc->lpc_hc_irqstat;
530 break;
531 case LPC_HC_ERROR_ADDRESS:
532 val = lpc->lpc_hc_error_addr;
533 break;
534 default:
535 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
536 HWADDR_PRIx "\n", addr);
538 return val;
541 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
542 unsigned size)
544 PnvLpcController *lpc = opaque;
546 /* XXX Filter out reserved bits */
548 switch (addr) {
549 case LPC_HC_FW_SEG_IDSEL:
550 /* XXX Actually figure out how that works as this impact
551 * memory regions/aliases
553 lpc->lpc_hc_fw_seg_idsel = val;
554 break;
555 case LPC_HC_FW_RD_ACC_SIZE:
556 lpc->lpc_hc_fw_rd_acc_size = val;
557 break;
558 case LPC_HC_IRQSER_CTRL:
559 lpc->lpc_hc_irqser_ctrl = val;
560 pnv_lpc_eval_irqs(lpc);
561 break;
562 case LPC_HC_IRQMASK:
563 lpc->lpc_hc_irqmask = val;
564 pnv_lpc_eval_irqs(lpc);
565 break;
566 case LPC_HC_IRQSTAT:
568 * This register is write-to-clear for the IRQSER (LPC device IRQ)
569 * status. However if the device has not de-asserted its interrupt
570 * that will just raise this IRQ status bit again. Model this by
571 * keeping track of the inputs and only clearing if the inputs are
572 * deasserted.
574 lpc->lpc_hc_irqstat &= ~(val & ~lpc->lpc_hc_irq_inputs);
575 pnv_lpc_eval_irqs(lpc);
576 break;
577 case LPC_HC_ERROR_ADDRESS:
578 break;
579 default:
580 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
581 HWADDR_PRIx "\n", addr);
585 static const MemoryRegionOps lpc_hc_ops = {
586 .read = lpc_hc_read,
587 .write = lpc_hc_write,
588 .endianness = DEVICE_BIG_ENDIAN,
589 .valid = {
590 .min_access_size = 4,
591 .max_access_size = 4,
593 .impl = {
594 .min_access_size = 4,
595 .max_access_size = 4,
599 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
601 PnvLpcController *lpc = opaque;
602 uint64_t val = 0xfffffffffffffffful;
604 switch (addr) {
605 case OPB_MASTER_LS_ROUTE0:
606 val = lpc->opb_irq_route0;
607 break;
608 case OPB_MASTER_LS_ROUTE1:
609 val = lpc->opb_irq_route1;
610 break;
611 case OPB_MASTER_LS_IRQ_STAT:
612 val = lpc->opb_irq_stat;
613 break;
614 case OPB_MASTER_LS_IRQ_MASK:
615 val = lpc->opb_irq_mask;
616 break;
617 case OPB_MASTER_LS_IRQ_POL:
618 val = lpc->opb_irq_pol;
619 break;
620 case OPB_MASTER_LS_IRQ_INPUT:
621 val = lpc->opb_irq_input;
622 break;
623 default:
624 qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
625 HWADDR_PRIx "\n", addr);
628 return val;
631 static void opb_master_write(void *opaque, hwaddr addr,
632 uint64_t val, unsigned size)
634 PnvLpcController *lpc = opaque;
636 switch (addr) {
637 case OPB_MASTER_LS_ROUTE0:
638 lpc->opb_irq_route0 = val;
639 pnv_lpc_eval_serirq_routes(lpc);
640 pnv_lpc_eval_irqs(lpc);
641 break;
642 case OPB_MASTER_LS_ROUTE1:
643 lpc->opb_irq_route1 = val;
644 pnv_lpc_eval_serirq_routes(lpc);
645 pnv_lpc_eval_irqs(lpc);
646 break;
647 case OPB_MASTER_LS_IRQ_STAT:
648 lpc->opb_irq_stat &= ~val;
649 pnv_lpc_eval_irqs(lpc);
650 break;
651 case OPB_MASTER_LS_IRQ_MASK:
652 lpc->opb_irq_mask = val;
653 pnv_lpc_eval_irqs(lpc);
654 break;
655 case OPB_MASTER_LS_IRQ_POL:
656 lpc->opb_irq_pol = val;
657 pnv_lpc_eval_irqs(lpc);
658 break;
659 case OPB_MASTER_LS_IRQ_INPUT:
660 /* Read only */
661 break;
662 default:
663 qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
664 HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
668 static const MemoryRegionOps opb_master_ops = {
669 .read = opb_master_read,
670 .write = opb_master_write,
671 .endianness = DEVICE_BIG_ENDIAN,
672 .valid = {
673 .min_access_size = 4,
674 .max_access_size = 4,
676 .impl = {
677 .min_access_size = 4,
678 .max_access_size = 4,
682 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
684 PnvLpcController *lpc = PNV_LPC(dev);
685 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
686 Error *local_err = NULL;
688 plc->parent_realize(dev, &local_err);
689 if (local_err) {
690 error_propagate(errp, local_err);
691 return;
694 /* P8 uses a XSCOM region for LPC registers */
695 pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
696 &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
697 PNV_XSCOM_LPC_SIZE);
700 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
702 DeviceClass *dc = DEVICE_CLASS(klass);
703 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
704 PnvLpcClass *plc = PNV_LPC_CLASS(klass);
706 dc->desc = "PowerNV LPC Controller POWER8";
708 xdc->dt_xscom = pnv_lpc_dt_xscom;
710 device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
711 &plc->parent_realize);
714 static const TypeInfo pnv_lpc_power8_info = {
715 .name = TYPE_PNV8_LPC,
716 .parent = TYPE_PNV_LPC,
717 .class_init = pnv_lpc_power8_class_init,
718 .interfaces = (InterfaceInfo[]) {
719 { TYPE_PNV_XSCOM_INTERFACE },
724 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
726 PnvLpcController *lpc = PNV_LPC(dev);
727 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
728 Error *local_err = NULL;
730 object_property_set_bool(OBJECT(lpc), "psi-serirq", true, &error_abort);
732 plc->parent_realize(dev, &local_err);
733 if (local_err) {
734 error_propagate(errp, local_err);
735 return;
738 /* P9 uses a MMIO region */
739 memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
740 lpc, "lpcm", PNV9_LPCM_SIZE);
742 /* P9 LPC routes ISA irqs to 4 PSI SERIRQ lines */
743 qdev_init_gpio_out_named(dev, lpc->psi_irq_serirq, "SERIRQ", 4);
746 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
748 DeviceClass *dc = DEVICE_CLASS(klass);
749 PnvLpcClass *plc = PNV_LPC_CLASS(klass);
751 dc->desc = "PowerNV LPC Controller POWER9";
753 device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
754 &plc->parent_realize);
757 static const TypeInfo pnv_lpc_power9_info = {
758 .name = TYPE_PNV9_LPC,
759 .parent = TYPE_PNV_LPC,
760 .class_init = pnv_lpc_power9_class_init,
763 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
765 DeviceClass *dc = DEVICE_CLASS(klass);
767 dc->desc = "PowerNV LPC Controller POWER10";
770 static const TypeInfo pnv_lpc_power10_info = {
771 .name = TYPE_PNV10_LPC,
772 .parent = TYPE_PNV9_LPC,
773 .class_init = pnv_lpc_power10_class_init,
776 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
778 PnvLpcController *lpc = PNV_LPC(dev);
780 /* Reg inits */
781 lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
783 /* Create address space and backing MR for the OPB bus */
784 memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
785 address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
787 /* Create ISA IO and Mem space regions which are the root of
788 * the ISA bus (ie, ISA address spaces). We don't create a
789 * separate one for FW which we alias to memory.
791 memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
792 memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
793 memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE);
795 /* Create windows from the OPB space to the ISA space */
796 memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
797 &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
798 memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
799 &lpc->opb_isa_io);
800 memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
801 &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
802 memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
803 &lpc->opb_isa_mem);
804 memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
805 &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
806 memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
807 &lpc->opb_isa_fw);
809 /* Create MMIO regions for LPC HC and OPB registers */
810 memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
811 lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
812 lpc->opb_master_regs.disable_reentrancy_guard = true;
813 memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
814 &lpc->opb_master_regs);
815 memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
816 "lpc-hc", LPC_HC_REGS_OPB_SIZE);
817 /* xscom writes to lpc-hc. As such mark lpc-hc re-entrancy safe */
818 lpc->lpc_hc_regs.disable_reentrancy_guard = true;
819 memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
820 &lpc->lpc_hc_regs);
822 qdev_init_gpio_out_named(dev, &lpc->psi_irq_lpchc, "LPCHC", 1);
825 static Property pnv_lpc_properties[] = {
826 DEFINE_PROP_BOOL("psi-serirq", PnvLpcController, psi_has_serirq, false),
827 DEFINE_PROP_END_OF_LIST(),
830 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
832 DeviceClass *dc = DEVICE_CLASS(klass);
834 device_class_set_props(dc, pnv_lpc_properties);
835 dc->realize = pnv_lpc_realize;
836 dc->desc = "PowerNV LPC Controller";
837 dc->user_creatable = false;
840 static const TypeInfo pnv_lpc_info = {
841 .name = TYPE_PNV_LPC,
842 .parent = TYPE_DEVICE,
843 .instance_size = sizeof(PnvLpcController),
844 .class_init = pnv_lpc_class_init,
845 .class_size = sizeof(PnvLpcClass),
846 .abstract = true,
849 static void pnv_lpc_register_types(void)
851 type_register_static(&pnv_lpc_info);
852 type_register_static(&pnv_lpc_power8_info);
853 type_register_static(&pnv_lpc_power9_info);
854 type_register_static(&pnv_lpc_power10_info);
857 type_init(pnv_lpc_register_types)
859 /* If we don't use the built-in LPC interrupt deserializer, we need
860 * to provide a set of qirqs for the ISA bus or things will go bad.
862 * Most machines using pre-Naples chips (without said deserializer)
863 * have a CPLD that will collect the SerIRQ and shoot them as a
864 * single level interrupt to the P8 chip. So let's setup a hook
865 * for doing just that.
867 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
869 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
870 uint32_t old_state = pnv->cpld_irqstate;
871 PnvLpcController *lpc = PNV_LPC(opaque);
873 if (level) {
874 pnv->cpld_irqstate |= 1u << n;
875 } else {
876 pnv->cpld_irqstate &= ~(1u << n);
879 if (pnv->cpld_irqstate != old_state) {
880 qemu_set_irq(lpc->psi_irq_lpchc, pnv->cpld_irqstate != 0);
884 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
886 PnvLpcController *lpc = PNV_LPC(opaque);
887 uint32_t irq_bit = LPC_HC_IRQ_SERIRQ0 >> n;
889 if (level) {
890 lpc->lpc_hc_irq_inputs |= irq_bit;
893 * The LPC HC in Naples and later latches LPC IRQ into a bit field in
894 * the IRQSTAT register, and that drives the PSI IRQ to the IC.
895 * Software clears this bit manually (see LPC_HC_IRQSTAT handler).
897 lpc->lpc_hc_irqstat |= irq_bit;
898 pnv_lpc_eval_irqs(lpc);
899 } else {
900 lpc->lpc_hc_irq_inputs &= ~irq_bit;
902 /* POWER9 adds an auto-clear mode that clears IRQSTAT bits on EOI */
903 if (lpc->psi_has_serirq &&
904 (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_AUTO_CLEAR)) {
905 lpc->lpc_hc_irqstat &= ~irq_bit;
906 pnv_lpc_eval_irqs(lpc);
911 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
913 Error *local_err = NULL;
914 ISABus *isa_bus;
915 qemu_irq *irqs;
916 qemu_irq_handler handler;
918 /* let isa_bus_new() create its own bridge on SysBus otherwise
919 * devices specified on the command line won't find the bus and
920 * will fail to create.
922 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
923 if (local_err) {
924 error_propagate(errp, local_err);
925 return NULL;
928 /* Not all variants have a working serial irq decoder. If not,
929 * handling of LPC interrupts becomes a platform issue (some
930 * platforms have a CPLD to do it).
932 if (use_cpld) {
933 handler = pnv_lpc_isa_irq_handler_cpld;
934 } else {
935 handler = pnv_lpc_isa_irq_handler;
938 /* POWER has a 17th irq, QEMU only implements the 16 regular device irqs */
939 irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
941 isa_bus_register_input_irqs(isa_bus, irqs);
943 return isa_bus;