Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / rtc / mc146818rtc.c
blob8ccee9a385de7eca246597c94d43e6e44bf62b16
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/module.h"
28 #include "qemu/bcd.h"
29 #include "hw/acpi/acpi_aml_interface.h"
30 #include "hw/intc/kvm_irqcount.h"
31 #include "hw/irq.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "sysemu/rtc.h"
40 #include "hw/rtc/mc146818rtc.h"
41 #include "hw/rtc/mc146818rtc_regs.h"
42 #include "migration/vmstate.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-events-misc.h"
45 #include "qapi/visitor.h"
47 //#define DEBUG_CMOS
48 //#define DEBUG_COALESCED
50 #ifdef DEBUG_CMOS
51 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
52 #else
53 # define CMOS_DPRINTF(format, ...) do { } while (0)
54 #endif
56 #ifdef DEBUG_COALESCED
57 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
58 #else
59 # define DPRINTF_C(format, ...) do { } while (0)
60 #endif
62 #define SEC_PER_MIN 60
63 #define MIN_PER_HOUR 60
64 #define SEC_PER_HOUR 3600
65 #define HOUR_PER_DAY 24
66 #define SEC_PER_DAY 86400
68 #define RTC_REINJECT_ON_ACK_COUNT 20
69 #define RTC_CLOCK_RATE 32768
70 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
72 #define RTC_ISA_BASE 0x70
74 static void rtc_set_time(MC146818RtcState *s);
75 static void rtc_update_time(MC146818RtcState *s);
76 static void rtc_set_cmos(MC146818RtcState *s, const struct tm *tm);
77 static inline int rtc_from_bcd(MC146818RtcState *s, int a);
78 static uint64_t get_next_alarm(MC146818RtcState *s);
80 static inline bool rtc_running(MC146818RtcState *s)
82 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
83 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
86 static uint64_t get_guest_rtc_ns(MC146818RtcState *s)
88 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
90 return s->base_rtc * NANOSECONDS_PER_SECOND +
91 guest_clock - s->last_update + s->offset;
94 static void rtc_coalesced_timer_update(MC146818RtcState *s)
96 if (s->irq_coalesced == 0) {
97 timer_del(s->coalesced_timer);
98 } else {
99 /* divide each RTC interval to 2 - 8 smaller intervals */
100 int c = MIN(s->irq_coalesced, 7) + 1;
101 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
102 periodic_clock_to_ns(s->period / c);
103 timer_mod(s->coalesced_timer, next_clock);
107 void rtc_reset_reinjection(MC146818RtcState *rtc)
109 rtc->irq_coalesced = 0;
112 static bool rtc_policy_slew_deliver_irq(MC146818RtcState *s)
114 kvm_reset_irq_delivered();
115 qemu_irq_raise(s->irq);
116 return kvm_get_irq_delivered();
119 static void rtc_coalesced_timer(void *opaque)
121 MC146818RtcState *s = opaque;
123 if (s->irq_coalesced != 0) {
124 s->cmos_data[RTC_REG_C] |= 0xc0;
125 DPRINTF_C("cmos: injecting from timer\n");
126 if (rtc_policy_slew_deliver_irq(s)) {
127 s->irq_coalesced--;
128 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
129 s->irq_coalesced);
133 rtc_coalesced_timer_update(s);
136 static uint32_t rtc_periodic_clock_ticks(MC146818RtcState *s)
138 int period_code;
140 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
141 return 0;
144 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
146 return periodic_period_to_clock(period_code);
150 * handle periodic timer. @old_period indicates the periodic timer update
151 * is just due to period adjustment.
153 static void periodic_timer_update(MC146818RtcState *s, int64_t current_time,
154 uint32_t old_period, bool period_change)
156 uint32_t period;
157 int64_t cur_clock, next_irq_clock, lost_clock = 0;
159 period = rtc_periodic_clock_ticks(s);
160 s->period = period;
162 if (!period) {
163 s->irq_coalesced = 0;
164 timer_del(s->periodic_timer);
165 return;
168 /* compute 32 khz clock */
169 cur_clock =
170 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
173 * if the periodic timer's update is due to period re-configuration,
174 * we should count the clock since last interrupt.
176 if (old_period && period_change) {
177 int64_t last_periodic_clock, next_periodic_clock;
179 next_periodic_clock = muldiv64(s->next_periodic_time,
180 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
181 last_periodic_clock = next_periodic_clock - old_period;
182 lost_clock = cur_clock - last_periodic_clock;
183 assert(lost_clock >= 0);
187 * s->irq_coalesced can change for two reasons:
189 * a) if one or more periodic timer interrupts have been lost,
190 * lost_clock will be more that a period.
192 * b) when the period may be reconfigured, we expect the OS to
193 * treat delayed tick as the new period. So, when switching
194 * from a shorter to a longer period, scale down the missing,
195 * because the OS will treat past delayed ticks as longer
196 * (leftovers are put back into lost_clock). When switching
197 * to a shorter period, scale up the missing ticks since the
198 * OS handler will treat past delayed ticks as shorter.
200 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
201 uint32_t old_irq_coalesced = s->irq_coalesced;
203 lost_clock += old_irq_coalesced * old_period;
204 s->irq_coalesced = lost_clock / s->period;
205 lost_clock %= s->period;
206 if (old_irq_coalesced != s->irq_coalesced ||
207 old_period != s->period) {
208 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
209 "period scaled from %d to %d\n", old_irq_coalesced,
210 s->irq_coalesced, old_period, s->period);
211 rtc_coalesced_timer_update(s);
213 } else {
215 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
216 * is not used, we should make the time progress anyway.
218 lost_clock = MIN(lost_clock, period);
221 assert(lost_clock >= 0 && lost_clock <= period);
223 next_irq_clock = cur_clock + period - lost_clock;
224 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
225 timer_mod(s->periodic_timer, s->next_periodic_time);
228 static void rtc_periodic_timer(void *opaque)
230 MC146818RtcState *s = opaque;
232 periodic_timer_update(s, s->next_periodic_time, s->period, false);
233 s->cmos_data[RTC_REG_C] |= REG_C_PF;
234 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
235 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
236 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
237 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
238 s->irq_reinject_on_ack_count = 0;
239 if (!rtc_policy_slew_deliver_irq(s)) {
240 s->irq_coalesced++;
241 rtc_coalesced_timer_update(s);
242 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
243 s->irq_coalesced);
245 } else
246 qemu_irq_raise(s->irq);
250 /* handle update-ended timer */
251 static void check_update_timer(MC146818RtcState *s)
253 uint64_t next_update_time;
254 uint64_t guest_nsec;
255 int next_alarm_sec;
257 /* From the data sheet: "Holding the dividers in reset prevents
258 * interrupts from operating, while setting the SET bit allows"
259 * them to occur.
261 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
262 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
263 timer_del(s->update_timer);
264 return;
267 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
268 next_update_time = qemu_clock_get_ns(rtc_clock)
269 + NANOSECONDS_PER_SECOND - guest_nsec;
271 /* Compute time of next alarm. One second is already accounted
272 * for in next_update_time.
274 next_alarm_sec = get_next_alarm(s);
275 s->next_alarm_time = next_update_time +
276 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
278 /* If update_in_progress latched the UIP bit, we must keep the timer
279 * programmed to the next second, so that UIP is cleared. Otherwise,
280 * if UF is already set, we might be able to optimize.
282 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
283 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
284 /* If AF cannot change (i.e. either it is set already, or
285 * SET=1 and then the time is not updated), nothing to do.
287 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
288 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
289 timer_del(s->update_timer);
290 return;
293 /* UF is set, but AF is clear. Program the timer to target
294 * the alarm time. */
295 next_update_time = s->next_alarm_time;
297 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
298 timer_mod(s->update_timer, next_update_time);
302 static inline uint8_t convert_hour(MC146818RtcState *s, uint8_t hour)
304 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
305 hour %= 12;
306 if (s->cmos_data[RTC_HOURS] & 0x80) {
307 hour += 12;
310 return hour;
313 static uint64_t get_next_alarm(MC146818RtcState *s)
315 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
316 int32_t hour, min, sec;
318 rtc_update_time(s);
320 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
321 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
322 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
323 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
325 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
326 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
327 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
328 cur_hour = convert_hour(s, cur_hour);
330 if (alarm_hour == -1) {
331 alarm_hour = cur_hour;
332 if (alarm_min == -1) {
333 alarm_min = cur_min;
334 if (alarm_sec == -1) {
335 alarm_sec = cur_sec + 1;
336 } else if (cur_sec > alarm_sec) {
337 alarm_min++;
339 } else if (cur_min == alarm_min) {
340 if (alarm_sec == -1) {
341 alarm_sec = cur_sec + 1;
342 } else {
343 if (cur_sec > alarm_sec) {
344 alarm_hour++;
347 if (alarm_sec == SEC_PER_MIN) {
348 /* wrap to next hour, minutes is not in don't care mode */
349 alarm_sec = 0;
350 alarm_hour++;
352 } else if (cur_min > alarm_min) {
353 alarm_hour++;
355 } else if (cur_hour == alarm_hour) {
356 if (alarm_min == -1) {
357 alarm_min = cur_min;
358 if (alarm_sec == -1) {
359 alarm_sec = cur_sec + 1;
360 } else if (cur_sec > alarm_sec) {
361 alarm_min++;
364 if (alarm_sec == SEC_PER_MIN) {
365 alarm_sec = 0;
366 alarm_min++;
368 /* wrap to next day, hour is not in don't care mode */
369 alarm_min %= MIN_PER_HOUR;
370 } else if (cur_min == alarm_min) {
371 if (alarm_sec == -1) {
372 alarm_sec = cur_sec + 1;
374 /* wrap to next day, hours+minutes not in don't care mode */
375 alarm_sec %= SEC_PER_MIN;
379 /* values that are still don't care fire at the next min/sec */
380 if (alarm_min == -1) {
381 alarm_min = 0;
383 if (alarm_sec == -1) {
384 alarm_sec = 0;
387 /* keep values in range */
388 if (alarm_sec == SEC_PER_MIN) {
389 alarm_sec = 0;
390 alarm_min++;
392 if (alarm_min == MIN_PER_HOUR) {
393 alarm_min = 0;
394 alarm_hour++;
396 alarm_hour %= HOUR_PER_DAY;
398 hour = alarm_hour - cur_hour;
399 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
400 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
401 return sec <= 0 ? sec + SEC_PER_DAY : sec;
404 static void rtc_update_timer(void *opaque)
406 MC146818RtcState *s = opaque;
407 int32_t irqs = REG_C_UF;
408 int32_t new_irqs;
410 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
412 /* UIP might have been latched, update time and clear it. */
413 rtc_update_time(s);
414 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
416 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
417 irqs |= REG_C_AF;
418 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
419 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
423 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
424 s->cmos_data[RTC_REG_C] |= irqs;
425 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
426 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
427 qemu_irq_raise(s->irq);
429 check_update_timer(s);
432 static void cmos_ioport_write(void *opaque, hwaddr addr,
433 uint64_t data, unsigned size)
435 MC146818RtcState *s = opaque;
436 uint32_t old_period;
437 bool update_periodic_timer;
439 if ((addr & 1) == 0) {
440 s->cmos_index = data & 0x7f;
441 } else {
442 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
443 s->cmos_index, data);
444 switch(s->cmos_index) {
445 case RTC_SECONDS_ALARM:
446 case RTC_MINUTES_ALARM:
447 case RTC_HOURS_ALARM:
448 s->cmos_data[s->cmos_index] = data;
449 check_update_timer(s);
450 break;
451 case RTC_IBM_PS2_CENTURY_BYTE:
452 s->cmos_index = RTC_CENTURY;
453 /* fall through */
454 case RTC_CENTURY:
455 case RTC_SECONDS:
456 case RTC_MINUTES:
457 case RTC_HOURS:
458 case RTC_DAY_OF_WEEK:
459 case RTC_DAY_OF_MONTH:
460 case RTC_MONTH:
461 case RTC_YEAR:
462 s->cmos_data[s->cmos_index] = data;
463 /* if in set mode, do not update the time */
464 if (rtc_running(s)) {
465 rtc_set_time(s);
466 check_update_timer(s);
468 break;
469 case RTC_REG_A:
470 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
471 old_period = rtc_periodic_clock_ticks(s);
473 if ((data & 0x60) == 0x60) {
474 if (rtc_running(s)) {
475 rtc_update_time(s);
477 /* What happens to UIP when divider reset is enabled is
478 * unclear from the datasheet. Shouldn't matter much
479 * though.
481 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
482 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
483 (data & 0x70) <= 0x20) {
484 /* when the divider reset is removed, the first update cycle
485 * begins one-half second later*/
486 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
487 s->offset = 500000000;
488 rtc_set_time(s);
490 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
492 /* UIP bit is read only */
493 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
494 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
496 if (update_periodic_timer) {
497 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
498 old_period, true);
501 check_update_timer(s);
502 break;
503 case RTC_REG_B:
504 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
505 & REG_B_PIE;
506 old_period = rtc_periodic_clock_ticks(s);
508 if (data & REG_B_SET) {
509 /* update cmos to when the rtc was stopping */
510 if (rtc_running(s)) {
511 rtc_update_time(s);
513 /* set mode: reset UIP mode */
514 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
515 data &= ~REG_B_UIE;
516 } else {
517 /* if disabling set mode, update the time */
518 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
519 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
520 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
521 rtc_set_time(s);
524 /* if an interrupt flag is already set when the interrupt
525 * becomes enabled, raise an interrupt immediately. */
526 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
527 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
528 qemu_irq_raise(s->irq);
529 } else {
530 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
531 qemu_irq_lower(s->irq);
533 s->cmos_data[RTC_REG_B] = data;
535 if (update_periodic_timer) {
536 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
537 old_period, true);
540 check_update_timer(s);
541 break;
542 case RTC_REG_C:
543 case RTC_REG_D:
544 /* cannot write to them */
545 break;
546 default:
547 s->cmos_data[s->cmos_index] = data;
548 break;
553 static inline int rtc_to_bcd(MC146818RtcState *s, int a)
555 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
556 return a;
557 } else {
558 return ((a / 10) << 4) | (a % 10);
562 static inline int rtc_from_bcd(MC146818RtcState *s, int a)
564 if ((a & 0xc0) == 0xc0) {
565 return -1;
567 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
568 return a;
569 } else {
570 return ((a >> 4) * 10) + (a & 0x0f);
574 static void rtc_get_time(MC146818RtcState *s, struct tm *tm)
576 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
577 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
578 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
579 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
580 tm->tm_hour %= 12;
581 if (s->cmos_data[RTC_HOURS] & 0x80) {
582 tm->tm_hour += 12;
585 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
586 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
587 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
588 tm->tm_year =
589 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
590 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
593 static void rtc_set_time(MC146818RtcState *s)
595 struct tm tm = {};
596 g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s));
598 rtc_get_time(s, &tm);
599 s->base_rtc = mktimegm(&tm);
600 s->last_update = qemu_clock_get_ns(rtc_clock);
602 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path);
605 static void rtc_set_cmos(MC146818RtcState *s, const struct tm *tm)
607 int year;
609 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
610 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
611 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
612 /* 24 hour format */
613 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
614 } else {
615 /* 12 hour format */
616 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
617 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
618 if (tm->tm_hour >= 12)
619 s->cmos_data[RTC_HOURS] |= 0x80;
621 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
622 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
623 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
624 year = tm->tm_year + 1900 - s->base_year;
625 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
626 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
629 static void rtc_update_time(MC146818RtcState *s)
631 struct tm ret;
632 time_t guest_sec;
633 int64_t guest_nsec;
635 guest_nsec = get_guest_rtc_ns(s);
636 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
637 gmtime_r(&guest_sec, &ret);
639 /* Is SET flag of Register B disabled? */
640 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
641 rtc_set_cmos(s, &ret);
645 static int update_in_progress(MC146818RtcState *s)
647 int64_t guest_nsec;
649 if (!rtc_running(s)) {
650 return 0;
652 if (timer_pending(s->update_timer)) {
653 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
654 /* Latch UIP until the timer expires. */
655 if (qemu_clock_get_ns(rtc_clock) >=
656 (next_update_time - UIP_HOLD_LENGTH)) {
657 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
658 return 1;
662 guest_nsec = get_guest_rtc_ns(s);
663 /* UIP bit will be set at last 244us of every second. */
664 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
665 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
666 return 1;
668 return 0;
671 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
672 unsigned size)
674 MC146818RtcState *s = opaque;
675 int ret;
676 if ((addr & 1) == 0) {
677 return 0xff;
678 } else {
679 switch(s->cmos_index) {
680 case RTC_IBM_PS2_CENTURY_BYTE:
681 s->cmos_index = RTC_CENTURY;
682 /* fall through */
683 case RTC_CENTURY:
684 case RTC_SECONDS:
685 case RTC_MINUTES:
686 case RTC_HOURS:
687 case RTC_DAY_OF_WEEK:
688 case RTC_DAY_OF_MONTH:
689 case RTC_MONTH:
690 case RTC_YEAR:
691 /* if not in set mode, calibrate cmos before
692 * reading*/
693 if (rtc_running(s)) {
694 rtc_update_time(s);
696 ret = s->cmos_data[s->cmos_index];
697 break;
698 case RTC_REG_A:
699 ret = s->cmos_data[s->cmos_index];
700 if (update_in_progress(s)) {
701 ret |= REG_A_UIP;
703 break;
704 case RTC_REG_C:
705 ret = s->cmos_data[s->cmos_index];
706 qemu_irq_lower(s->irq);
707 s->cmos_data[RTC_REG_C] = 0x00;
708 if (ret & (REG_C_UF | REG_C_AF)) {
709 check_update_timer(s);
712 if(s->irq_coalesced &&
713 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
714 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
715 s->irq_reinject_on_ack_count++;
716 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
717 DPRINTF_C("cmos: injecting on ack\n");
718 if (rtc_policy_slew_deliver_irq(s)) {
719 s->irq_coalesced--;
720 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
721 s->irq_coalesced);
724 break;
725 default:
726 ret = s->cmos_data[s->cmos_index];
727 break;
729 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
730 s->cmos_index, ret);
731 return ret;
735 void mc146818rtc_set_cmos_data(MC146818RtcState *s, int addr, int val)
737 if (addr >= 0 && addr <= 127)
738 s->cmos_data[addr] = val;
741 int mc146818rtc_get_cmos_data(MC146818RtcState *s, int addr)
743 assert(addr >= 0 && addr <= 127);
744 return s->cmos_data[addr];
747 static void rtc_set_date_from_host(ISADevice *dev)
749 MC146818RtcState *s = MC146818_RTC(dev);
750 struct tm tm;
752 qemu_get_timedate(&tm, 0);
754 s->base_rtc = mktimegm(&tm);
755 s->last_update = qemu_clock_get_ns(rtc_clock);
756 s->offset = 0;
758 /* set the CMOS date */
759 rtc_set_cmos(s, &tm);
762 static int rtc_pre_save(void *opaque)
764 MC146818RtcState *s = opaque;
766 rtc_update_time(s);
768 return 0;
771 static int rtc_post_load(void *opaque, int version_id)
773 MC146818RtcState *s = opaque;
775 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
776 rtc_set_time(s);
777 s->offset = 0;
778 check_update_timer(s);
780 s->period = rtc_periodic_clock_ticks(s);
782 /* The periodic timer is deterministic in record/replay mode,
783 * so there is no need to update it after loading the vmstate.
784 * Reading RTC here would misalign record and replay.
786 if (replay_mode == REPLAY_MODE_NONE) {
787 uint64_t now = qemu_clock_get_ns(rtc_clock);
788 if (now < s->next_periodic_time ||
789 now > (s->next_periodic_time + get_max_clock_jump())) {
790 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
794 if (version_id >= 2) {
795 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
796 rtc_coalesced_timer_update(s);
799 return 0;
802 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
804 MC146818RtcState *s = (MC146818RtcState *)opaque;
805 return s->irq_reinject_on_ack_count != 0;
808 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
809 .name = "mc146818rtc/irq_reinject_on_ack_count",
810 .version_id = 1,
811 .minimum_version_id = 1,
812 .needed = rtc_irq_reinject_on_ack_count_needed,
813 .fields = (const VMStateField[]) {
814 VMSTATE_UINT16(irq_reinject_on_ack_count, MC146818RtcState),
815 VMSTATE_END_OF_LIST()
819 static const VMStateDescription vmstate_rtc = {
820 .name = "mc146818rtc",
821 .version_id = 3,
822 .minimum_version_id = 1,
823 .pre_save = rtc_pre_save,
824 .post_load = rtc_post_load,
825 .fields = (const VMStateField[]) {
826 VMSTATE_BUFFER(cmos_data, MC146818RtcState),
827 VMSTATE_UINT8(cmos_index, MC146818RtcState),
828 VMSTATE_UNUSED(7*4),
829 VMSTATE_TIMER_PTR(periodic_timer, MC146818RtcState),
830 VMSTATE_INT64(next_periodic_time, MC146818RtcState),
831 VMSTATE_UNUSED(3*8),
832 VMSTATE_UINT32_V(irq_coalesced, MC146818RtcState, 2),
833 VMSTATE_UINT32_V(period, MC146818RtcState, 2),
834 VMSTATE_UINT64_V(base_rtc, MC146818RtcState, 3),
835 VMSTATE_UINT64_V(last_update, MC146818RtcState, 3),
836 VMSTATE_INT64_V(offset, MC146818RtcState, 3),
837 VMSTATE_TIMER_PTR_V(update_timer, MC146818RtcState, 3),
838 VMSTATE_UINT64_V(next_alarm_time, MC146818RtcState, 3),
839 VMSTATE_END_OF_LIST()
841 .subsections = (const VMStateDescription * const []) {
842 &vmstate_rtc_irq_reinject_on_ack_count,
843 NULL
847 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
848 BIOS will read it and start S3 resume at POST Entry */
849 static void rtc_notify_suspend(Notifier *notifier, void *data)
851 MC146818RtcState *s = container_of(notifier, MC146818RtcState,
852 suspend_notifier);
853 mc146818rtc_set_cmos_data(s, 0xF, 0xFE);
856 static const MemoryRegionOps cmos_ops = {
857 .read = cmos_ioport_read,
858 .write = cmos_ioport_write,
859 .impl = {
860 .min_access_size = 1,
861 .max_access_size = 1,
863 .endianness = DEVICE_LITTLE_ENDIAN,
866 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
868 MC146818RtcState *s = MC146818_RTC(obj);
870 rtc_update_time(s);
871 rtc_get_time(s, current_tm);
874 static void rtc_realizefn(DeviceState *dev, Error **errp)
876 ISADevice *isadev = ISA_DEVICE(dev);
877 MC146818RtcState *s = MC146818_RTC(dev);
879 s->cmos_data[RTC_REG_A] = 0x26;
880 s->cmos_data[RTC_REG_B] = 0x02;
881 s->cmos_data[RTC_REG_C] = 0x00;
882 s->cmos_data[RTC_REG_D] = 0x80;
884 /* This is for historical reasons. The default base year qdev property
885 * was set to 2000 for most machine types before the century byte was
886 * implemented.
888 * This if statement means that the century byte will be always 0
889 * (at least until 2079...) for base_year = 1980, but will be set
890 * correctly for base_year = 2000.
892 if (s->base_year == 2000) {
893 s->base_year = 0;
896 if (s->isairq >= ISA_NUM_IRQS) {
897 error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1);
898 return;
901 rtc_set_date_from_host(isadev);
903 switch (s->lost_tick_policy) {
904 case LOST_TICK_POLICY_SLEW:
905 s->coalesced_timer =
906 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
907 break;
908 case LOST_TICK_POLICY_DISCARD:
909 break;
910 default:
911 error_setg(errp, "Invalid lost tick policy.");
912 return;
915 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
916 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
917 check_update_timer(s);
919 s->suspend_notifier.notify = rtc_notify_suspend;
920 qemu_register_suspend_notifier(&s->suspend_notifier);
922 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
923 isa_register_ioport(isadev, &s->io, s->io_base);
925 /* register rtc 0x70 port for coalesced_pio */
926 memory_region_set_flush_coalesced(&s->io);
927 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
928 s, "rtc-index", 1);
929 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
930 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
932 qdev_set_legacy_instance_id(dev, s->io_base, 3);
934 object_property_add_tm(OBJECT(s), "date", rtc_get_date);
936 qdev_init_gpio_out(dev, &s->irq, 1);
939 MC146818RtcState *mc146818_rtc_init(ISABus *bus, int base_year,
940 qemu_irq intercept_irq)
942 DeviceState *dev;
943 ISADevice *isadev;
944 MC146818RtcState *s;
946 isadev = isa_new(TYPE_MC146818_RTC);
947 dev = DEVICE(isadev);
948 s = MC146818_RTC(isadev);
949 qdev_prop_set_int32(dev, "base_year", base_year);
950 isa_realize_and_unref(isadev, bus, &error_fatal);
951 if (intercept_irq) {
952 qdev_connect_gpio_out(dev, 0, intercept_irq);
953 } else {
954 isa_connect_gpio_out(isadev, 0, s->isairq);
957 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
958 "date");
960 return s;
963 static Property mc146818rtc_properties[] = {
964 DEFINE_PROP_INT32("base_year", MC146818RtcState, base_year, 1980),
965 DEFINE_PROP_UINT16("iobase", MC146818RtcState, io_base, RTC_ISA_BASE),
966 DEFINE_PROP_UINT8("irq", MC146818RtcState, isairq, RTC_ISA_IRQ),
967 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", MC146818RtcState,
968 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
969 DEFINE_PROP_END_OF_LIST(),
972 static void rtc_reset_enter(Object *obj, ResetType type)
974 MC146818RtcState *s = MC146818_RTC(obj);
976 /* Reason: VM do suspend self will set 0xfe
977 * Reset any values other than 0xfe(Guest suspend case) */
978 if (s->cmos_data[0x0f] != 0xfe) {
979 s->cmos_data[0x0f] = 0x00;
982 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
983 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
984 check_update_timer(s);
987 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
988 s->irq_coalesced = 0;
989 s->irq_reinject_on_ack_count = 0;
993 static void rtc_reset_hold(Object *obj, ResetType type)
995 MC146818RtcState *s = MC146818_RTC(obj);
997 qemu_irq_lower(s->irq);
1000 static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope)
1002 MC146818RtcState *s = MC146818_RTC(adev);
1003 Aml *dev;
1004 Aml *crs;
1007 * Reserving 8 io ports here, following what physical hardware
1008 * does, even though qemu only responds to the first two ports.
1010 crs = aml_resource_template();
1011 aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base,
1012 0x01, 0x08));
1013 aml_append(crs, aml_irq_no_flags(s->isairq));
1015 dev = aml_device("RTC");
1016 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1017 aml_append(dev, aml_name_decl("_CRS", crs));
1019 aml_append(scope, dev);
1022 static void rtc_class_initfn(ObjectClass *klass, void *data)
1024 DeviceClass *dc = DEVICE_CLASS(klass);
1025 ResettableClass *rc = RESETTABLE_CLASS(klass);
1026 AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass);
1028 dc->realize = rtc_realizefn;
1029 dc->vmsd = &vmstate_rtc;
1030 rc->phases.enter = rtc_reset_enter;
1031 rc->phases.hold = rtc_reset_hold;
1032 adevc->build_dev_aml = rtc_build_aml;
1033 device_class_set_props(dc, mc146818rtc_properties);
1034 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1037 static const TypeInfo mc146818rtc_info = {
1038 .name = TYPE_MC146818_RTC,
1039 .parent = TYPE_ISA_DEVICE,
1040 .instance_size = sizeof(MC146818RtcState),
1041 .class_init = rtc_class_initfn,
1042 .interfaces = (InterfaceInfo[]) {
1043 { TYPE_ACPI_DEV_AML_IF },
1044 { },
1048 static void mc146818rtc_register_types(void)
1050 type_register_static(&mc146818rtc_info);
1053 type_init(mc146818rtc_register_types)