2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "hw/sysbus.h"
22 #include "migration/vmstate.h"
23 #include "qemu/module.h"
24 #include "qemu/timer.h"
25 #include "qom/object.h"
27 #include "hw/timer/cadence_ttc.h"
29 #ifdef CADENCE_TTC_ERR_DEBUG
30 #define DB_PRINT(...) do { \
31 fprintf(stderr, ": %s: ", __func__); \
32 fprintf(stderr, ## __VA_ARGS__); \
38 #define COUNTER_INTR_IV 0x00000001
39 #define COUNTER_INTR_M1 0x00000002
40 #define COUNTER_INTR_M2 0x00000004
41 #define COUNTER_INTR_M3 0x00000008
42 #define COUNTER_INTR_OV 0x00000010
43 #define COUNTER_INTR_EV 0x00000020
45 #define COUNTER_CTRL_DIS 0x00000001
46 #define COUNTER_CTRL_INT 0x00000002
47 #define COUNTER_CTRL_DEC 0x00000004
48 #define COUNTER_CTRL_MATCH 0x00000008
49 #define COUNTER_CTRL_RST 0x00000010
51 #define CLOCK_CTRL_PS_EN 0x00000001
52 #define CLOCK_CTRL_PS_V 0x0000001e
54 static void cadence_timer_update(CadenceTimerState
*s
)
56 qemu_set_irq(s
->irq
, !!(s
->reg_intr
& s
->reg_intr_en
));
59 static CadenceTimerState
*cadence_timer_from_addr(void *opaque
,
63 CadenceTTCState
*s
= (CadenceTTCState
*)opaque
;
65 index
= (offset
>> 2) % 3;
67 return &s
->timer
[index
];
70 static uint64_t cadence_timer_get_ns(CadenceTimerState
*s
, uint64_t timer_steps
)
72 /* timer_steps has max value of 0x100000000. double check it
73 * (or overflow can happen below) */
74 assert(timer_steps
<= 1ULL << 32);
76 uint64_t r
= timer_steps
* 1000000000ULL;
77 if (s
->reg_clock
& CLOCK_CTRL_PS_EN
) {
78 r
>>= 16 - (((s
->reg_clock
& CLOCK_CTRL_PS_V
) >> 1) + 1);
82 r
/= (uint64_t)s
->freq
;
86 static uint64_t cadence_timer_get_steps(CadenceTimerState
*s
, uint64_t ns
)
88 uint64_t to_divide
= 1000000000ULL;
91 /* for very large intervals (> 8s) do some division first to stop
92 * overflow (costs some prescision) */
93 while (r
>= 8ULL << 30 && to_divide
> 1) {
98 /* keep early-dividing as needed */
99 while (r
>= 8ULL << 30 && to_divide
> 1) {
103 r
*= (uint64_t)s
->freq
;
104 if (s
->reg_clock
& CLOCK_CTRL_PS_EN
) {
105 r
/= 1 << (((s
->reg_clock
& CLOCK_CTRL_PS_V
) >> 1) + 1);
112 /* determine if x is in between a and b, exclusive of a, inclusive of b */
114 static inline int64_t is_between(int64_t x
, int64_t a
, int64_t b
)
117 return x
> a
&& x
<= b
;
119 return x
< a
&& x
>= b
;
122 static void cadence_timer_run(CadenceTimerState
*s
)
125 int64_t event_interval
, next_value
;
127 assert(s
->cpu_time_valid
); /* cadence_timer_sync must be called first */
129 if (s
->reg_count
& COUNTER_CTRL_DIS
) {
130 s
->cpu_time_valid
= 0;
134 { /* figure out what's going to happen next (rollover or match) */
135 int64_t interval
= (uint64_t)((s
->reg_count
& COUNTER_CTRL_INT
) ?
136 (int64_t)s
->reg_interval
+ 1 : 0x10000ULL
) << 16;
137 next_value
= (s
->reg_count
& COUNTER_CTRL_DEC
) ? -1ULL : interval
;
138 for (i
= 0; i
< 3; ++i
) {
139 int64_t cand
= (uint64_t)s
->reg_match
[i
] << 16;
140 if (is_between(cand
, (uint64_t)s
->reg_value
, next_value
)) {
145 DB_PRINT("next timer event value: %09llx\n",
146 (unsigned long long)next_value
);
148 event_interval
= next_value
- (int64_t)s
->reg_value
;
149 event_interval
= (event_interval
< 0) ? -event_interval
: event_interval
;
151 timer_mod(s
->timer
, s
->cpu_time
+
152 cadence_timer_get_ns(s
, event_interval
));
155 static void cadence_timer_sync(CadenceTimerState
*s
)
159 int64_t interval
= ((s
->reg_count
& COUNTER_CTRL_INT
) ?
160 (int64_t)s
->reg_interval
+ 1 : 0x10000ULL
) << 16;
161 uint64_t old_time
= s
->cpu_time
;
163 s
->cpu_time
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
164 DB_PRINT("cpu time: %lld ns\n", (long long)old_time
);
166 if (!s
->cpu_time_valid
|| old_time
== s
->cpu_time
) {
167 s
->cpu_time_valid
= 1;
171 r
= (int64_t)cadence_timer_get_steps(s
, s
->cpu_time
- old_time
);
172 x
= (int64_t)s
->reg_value
+ ((s
->reg_count
& COUNTER_CTRL_DEC
) ? -r
: r
);
174 for (i
= 0; i
< 3; ++i
) {
175 int64_t m
= (int64_t)s
->reg_match
[i
] << 16;
179 /* check to see if match event has occurred. check m +/- interval
180 * to account for match events in wrap around cases */
181 if (is_between(m
, s
->reg_value
, x
) ||
182 is_between(m
+ interval
, s
->reg_value
, x
) ||
183 is_between(m
- interval
, s
->reg_value
, x
)) {
184 s
->reg_intr
|= (2 << i
);
187 if ((x
< 0) || (x
>= interval
)) {
188 s
->reg_intr
|= (s
->reg_count
& COUNTER_CTRL_INT
) ?
189 COUNTER_INTR_IV
: COUNTER_INTR_OV
;
194 s
->reg_value
= (uint32_t)(x
% interval
);
195 cadence_timer_update(s
);
198 static void cadence_timer_tick(void *opaque
)
200 CadenceTimerState
*s
= opaque
;
203 cadence_timer_sync(s
);
204 cadence_timer_run(s
);
207 static uint32_t cadence_ttc_read_imp(void *opaque
, hwaddr offset
)
209 CadenceTimerState
*s
= cadence_timer_from_addr(opaque
, offset
);
212 cadence_timer_sync(s
);
213 cadence_timer_run(s
);
216 case 0x00: /* clock control */
221 case 0x0c: /* counter control */
226 case 0x18: /* counter value */
229 return (uint16_t)(s
->reg_value
>> 16);
231 case 0x24: /* reg_interval counter */
234 return s
->reg_interval
;
236 case 0x30: /* match 1 counter */
239 return s
->reg_match
[0];
241 case 0x3c: /* match 2 counter */
244 return s
->reg_match
[1];
246 case 0x48: /* match 3 counter */
249 return s
->reg_match
[2];
251 case 0x54: /* interrupt register */
254 /* cleared after read */
257 cadence_timer_update(s
);
260 case 0x60: /* interrupt enable */
263 return s
->reg_intr_en
;
268 return s
->reg_event_ctrl
;
280 static uint64_t cadence_ttc_read(void *opaque
, hwaddr offset
,
283 uint32_t ret
= cadence_ttc_read_imp(opaque
, offset
);
285 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset
, (unsigned)ret
);
289 static void cadence_ttc_write(void *opaque
, hwaddr offset
,
290 uint64_t value
, unsigned size
)
292 CadenceTimerState
*s
= cadence_timer_from_addr(opaque
, offset
);
294 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset
, (unsigned)value
);
296 cadence_timer_sync(s
);
299 case 0x00: /* clock control */
302 s
->reg_clock
= value
& 0x3F;
305 case 0x0c: /* counter control */
308 if (value
& COUNTER_CTRL_RST
) {
311 s
->reg_count
= value
& 0x3f & ~COUNTER_CTRL_RST
;
314 case 0x24: /* interval register */
317 s
->reg_interval
= value
& 0xffff;
320 case 0x30: /* match register */
323 s
->reg_match
[0] = value
& 0xffff;
326 case 0x3c: /* match register */
329 s
->reg_match
[1] = value
& 0xffff;
332 case 0x48: /* match register */
335 s
->reg_match
[2] = value
& 0xffff;
338 case 0x54: /* interrupt register */
343 case 0x60: /* interrupt enable */
346 s
->reg_intr_en
= value
& 0x3f;
349 case 0x6c: /* event control */
352 s
->reg_event_ctrl
= value
& 0x07;
359 cadence_timer_run(s
);
360 cadence_timer_update(s
);
363 static const MemoryRegionOps cadence_ttc_ops
= {
364 .read
= cadence_ttc_read
,
365 .write
= cadence_ttc_write
,
366 .endianness
= DEVICE_NATIVE_ENDIAN
,
369 static void cadence_timer_reset(CadenceTimerState
*s
)
374 static void cadence_timer_init(uint32_t freq
, CadenceTimerState
*s
)
376 memset(s
, 0, sizeof(CadenceTimerState
));
379 cadence_timer_reset(s
);
381 s
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, cadence_timer_tick
, s
);
384 static void cadence_ttc_init(Object
*obj
)
386 CadenceTTCState
*s
= CADENCE_TTC(obj
);
388 memory_region_init_io(&s
->iomem
, obj
, &cadence_ttc_ops
, s
,
390 sysbus_init_mmio(SYS_BUS_DEVICE(obj
), &s
->iomem
);
393 static void cadence_ttc_realize(DeviceState
*dev
, Error
**errp
)
395 CadenceTTCState
*s
= CADENCE_TTC(dev
);
398 for (i
= 0; i
< 3; ++i
) {
399 cadence_timer_init(133000000, &s
->timer
[i
]);
400 sysbus_init_irq(SYS_BUS_DEVICE(dev
), &s
->timer
[i
].irq
);
404 static int cadence_timer_pre_save(void *opaque
)
406 cadence_timer_sync((CadenceTimerState
*)opaque
);
411 static int cadence_timer_post_load(void *opaque
, int version_id
)
413 CadenceTimerState
*s
= opaque
;
415 s
->cpu_time_valid
= 0;
416 cadence_timer_sync(s
);
417 cadence_timer_run(s
);
418 cadence_timer_update(s
);
422 static const VMStateDescription vmstate_cadence_timer
= {
423 .name
= "cadence_timer",
425 .minimum_version_id
= 1,
426 .pre_save
= cadence_timer_pre_save
,
427 .post_load
= cadence_timer_post_load
,
428 .fields
= (const VMStateField
[]) {
429 VMSTATE_UINT32(reg_clock
, CadenceTimerState
),
430 VMSTATE_UINT32(reg_count
, CadenceTimerState
),
431 VMSTATE_UINT32(reg_value
, CadenceTimerState
),
432 VMSTATE_UINT16(reg_interval
, CadenceTimerState
),
433 VMSTATE_UINT16_ARRAY(reg_match
, CadenceTimerState
, 3),
434 VMSTATE_UINT32(reg_intr
, CadenceTimerState
),
435 VMSTATE_UINT32(reg_intr_en
, CadenceTimerState
),
436 VMSTATE_UINT32(reg_event_ctrl
, CadenceTimerState
),
437 VMSTATE_UINT32(reg_event
, CadenceTimerState
),
438 VMSTATE_END_OF_LIST()
442 static const VMStateDescription vmstate_cadence_ttc
= {
443 .name
= "cadence_TTC",
445 .minimum_version_id
= 1,
446 .fields
= (const VMStateField
[]) {
447 VMSTATE_STRUCT_ARRAY(timer
, CadenceTTCState
, 3, 0,
448 vmstate_cadence_timer
,
450 VMSTATE_END_OF_LIST()
454 static void cadence_ttc_class_init(ObjectClass
*klass
, void *data
)
456 DeviceClass
*dc
= DEVICE_CLASS(klass
);
458 dc
->vmsd
= &vmstate_cadence_ttc
;
459 dc
->realize
= cadence_ttc_realize
;
462 static const TypeInfo cadence_ttc_info
= {
463 .name
= TYPE_CADENCE_TTC
,
464 .parent
= TYPE_SYS_BUS_DEVICE
,
465 .instance_size
= sizeof(CadenceTTCState
),
466 .instance_init
= cadence_ttc_init
,
467 .class_init
= cadence_ttc_class_init
,
470 static void cadence_ttc_register_types(void)
472 type_register_static(&cadence_ttc_info
);
475 type_init(cadence_ttc_register_types
)