2 * ARM SSE (Subsystems for Embedded): IoTKit, SSE-200
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * This is a model of the Arm "Subsystems for Embedded" family of
14 * hardware, which include the IoT Kit and the SSE-050, SSE-100 and
15 * SSE-200. Currently we model:
16 * - the Arm IoT Kit which is documented in
17 * https://developer.arm.com/documentation/ecm0601256/latest
18 * - the SSE-200 which is documented in
19 * https://developer.arm.com/documentation/101104/latest/
21 * The IoTKit contains:
24 * some timers and watchdogs
25 * two peripheral protection controllers
26 * a memory protection controller
27 * a security controller
28 * a bus fabric which arranges that some parts of the address
29 * space are secure and non-secure aliases of each other
30 * The SSE-200 additionally contains:
32 * two Message Handling Units (MHUs)
33 * an optional CryptoCell (which we do not model)
34 * more SRAM banks with associated MPCs
35 * multiple Power Policy Units (PPUs)
36 * a control interface for an icache for each CPU
37 * per-CPU identity and control register blocks
40 * + Clock input "MAINCLK": clock for CPUs and most peripherals
41 * + Clock input "S32KCLK": slow 32KHz clock used for a few peripherals
42 * + QOM property "memory" is a MemoryRegion containing the devices provided
44 * + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts.
45 * (In hardware, the SSE-200 permits the number of expansion interrupts
46 * for the two CPUs to be configured separately, but we restrict it to
47 * being the same for both, to avoid having to have separate Property
48 * lists for different variants. This restriction can be relaxed later
50 * + QOM property "SRAM_ADDR_WIDTH" sets the number of bits used for the
51 * address of each SRAM bank (and thus the total amount of internal SRAM)
52 * + QOM property "init-svtor" sets the initial value of the CPU SVTOR register
53 * (where it expects to load the PC and SP from the vector table on reset)
54 * + QOM properties "CPU0_FPU", "CPU0_DSP", "CPU1_FPU" and "CPU1_DSP" which
55 * set whether the CPUs have the FPU and DSP features present. The default
56 * (matching the hardware) is that for CPU0 in an IoTKit and CPU1 in an
57 * SSE-200 both are present; CPU0 in an SSE-200 has neither.
58 * Since the IoTKit has only one CPU, it does not have the CPU1_* properties.
59 * + QOM properties "CPU0_MPU_NS", "CPU0_MPU_S", "CPU1_MPU_NS" and "CPU1_MPU_S"
60 * which set the number of MPU regions on the CPUs. If there is only one
61 * CPU the CPU1 properties are not present.
62 * + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0,
63 * which are wired to its NVIC lines 32 .. n+32
64 * + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for
65 * CPU 1, which are wired to its NVIC lines 32 .. n+32
66 * + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows
67 * bus master devices in the board model to make transactions into
68 * all the devices and memory areas in the IoTKit
69 * Controlling up to 4 AHB expansion PPBs which a system using the IoTKit
71 * + named GPIO outputs apb_ppcexp{0,1,2,3}_nonsec[0..15]
72 * + named GPIO outputs apb_ppcexp{0,1,2,3}_ap[0..15]
73 * + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_enable
74 * + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_clear
75 * + named GPIO inputs apb_ppcexp{0,1,2,3}_irq_status
76 * Controlling each of the 4 expansion AHB PPCs which a system using the IoTKit
78 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_nonsec[0..15]
79 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_ap[0..15]
80 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable
81 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear
82 * + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status
83 * Controlling each of the 16 expansion MPCs which a system using the IoTKit
85 * + named GPIO inputs mpcexp_status[0..15]
86 * Controlling each of the 16 expansion MSCs which a system using the IoTKit
88 * + named GPIO inputs mscexp_status[0..15]
89 * + named GPIO outputs mscexp_clear[0..15]
90 * + named GPIO outputs mscexp_ns[0..15]
96 #include "hw/sysbus.h"
97 #include "hw/arm/armv7m.h"
98 #include "hw/misc/iotkit-secctl.h"
99 #include "hw/misc/tz-ppc.h"
100 #include "hw/misc/tz-mpc.h"
101 #include "hw/timer/cmsdk-apb-timer.h"
102 #include "hw/timer/cmsdk-apb-dualtimer.h"
103 #include "hw/timer/sse-counter.h"
104 #include "hw/timer/sse-timer.h"
105 #include "hw/watchdog/cmsdk-apb-watchdog.h"
106 #include "hw/misc/iotkit-sysctl.h"
107 #include "hw/misc/iotkit-sysinfo.h"
108 #include "hw/misc/armsse-cpuid.h"
109 #include "hw/misc/armsse-mhu.h"
110 #include "hw/misc/armsse-cpu-pwrctrl.h"
111 #include "hw/misc/unimp.h"
112 #include "hw/or-irq.h"
113 #include "hw/clock.h"
114 #include "hw/core/split-irq.h"
115 #include "hw/cpu/cluster.h"
116 #include "qom/object.h"
118 #define TYPE_ARM_SSE "arm-sse"
119 OBJECT_DECLARE_TYPE(ARMSSE
, ARMSSEClass
,
123 * These type names are for specific IoTKit subsystems; other than
124 * instantiating them, code using these devices should always handle
125 * them via the ARMSSE base class, so they have no IOTKIT() etc macros.
127 #define TYPE_IOTKIT "iotkit"
128 #define TYPE_SSE200 "sse-200"
129 #define TYPE_SSE300 "sse-300"
131 /* We have an IRQ splitter and an OR gate input for each external PPC
132 * and the 2 internal PPCs
134 #define NUM_INTERNAL_PPCS 2
135 #define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC)
136 #define NUM_PPCS (NUM_EXTERNAL_PPCS + NUM_INTERNAL_PPCS)
138 #define MAX_SRAM_BANKS 4
139 #if MAX_SRAM_BANKS > IOTS_NUM_MPC
140 #error Too many SRAM banks
143 #define SSE_MAX_CPUS 2
147 /* Number of CPU IRQs used by the SSE itself */
148 #define NUM_SSE_IRQS 32
152 SysBusDevice parent_obj
;
155 ARMv7MState armv7m
[SSE_MAX_CPUS
];
156 CPUClusterState cluster
[SSE_MAX_CPUS
];
158 TZPPC apb_ppc
[NUM_INTERNAL_PPCS
];
159 TZMPC mpc
[IOTS_NUM_MPC
];
160 CMSDKAPBTimer timer
[3];
161 OrIRQState ppc_irq_orgate
;
162 SplitIRQ sec_resp_splitter
;
163 SplitIRQ ppc_irq_splitter
[NUM_PPCS
];
164 SplitIRQ mpc_irq_splitter
[IOTS_NUM_EXP_MPC
+ IOTS_NUM_MPC
];
165 OrIRQState mpc_irq_orgate
;
166 OrIRQState nmi_orgate
;
168 SplitIRQ cpu_irq_splitter
[NUM_SSE_IRQS
];
170 CMSDKAPBDualTimer dualtimer
;
172 CMSDKAPBWatchdog cmsdk_watchdog
[3];
174 SSECounter sse_counter
;
175 SSETimer sse_timer
[4];
178 IoTKitSysCtl sysinfo
;
181 UnimplementedDeviceState unimp
[NUM_PPUS
];
182 UnimplementedDeviceState cachectrl
[SSE_MAX_CPUS
];
183 UnimplementedDeviceState cpusecctrl
[SSE_MAX_CPUS
];
185 ARMSSECPUID cpuid
[SSE_MAX_CPUS
];
187 ARMSSECPUPwrCtrl cpu_pwrctrl
[SSE_MAX_CPUS
];
190 * 'container' holds all devices seen by all CPUs.
191 * 'cpu_container[i]' is the view that CPU i has: this has the
192 * per-CPU devices of that CPU, plus as the background 'container'
193 * (or an alias of it, since we can only use it directly once).
194 * container_alias[i] is the alias of 'container' used by CPU i+1;
195 * CPU 0 can use 'container' directly.
197 MemoryRegion container
;
198 MemoryRegion container_alias
[SSE_MAX_CPUS
- 1];
199 MemoryRegion cpu_container
[SSE_MAX_CPUS
];
202 MemoryRegion alias3
[SSE_MAX_CPUS
];
203 MemoryRegion sram
[MAX_SRAM_BANKS
];
207 qemu_irq
*exp_irqs
[SSE_MAX_CPUS
];
210 qemu_irq sec_resp_cfg
;
211 qemu_irq sec_resp_cfg_in
;
214 qemu_irq irq_status_in
[NUM_EXTERNAL_PPCS
];
215 qemu_irq mpcexp_status_in
[IOTS_NUM_EXP_MPC
];
223 MemoryRegion
*board_memory
;
225 uint32_t sram_addr_width
;
227 uint32_t cpu_mpu_ns
[SSE_MAX_CPUS
];
228 uint32_t cpu_mpu_s
[SSE_MAX_CPUS
];
229 bool cpu_fpu
[SSE_MAX_CPUS
];
230 bool cpu_dsp
[SSE_MAX_CPUS
];
233 typedef struct ARMSSEInfo ARMSSEInfo
;
236 SysBusDeviceClass parent_class
;
237 const ARMSSEInfo
*info
;