4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
51 #include "target/arm/cpu-qom.h"
52 #include "target/arm/gtimer.h"
54 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
56 ARMCPU
*cpu
= ARM_CPU(cs
);
57 CPUARMState
*env
= &cpu
->env
;
63 env
->regs
[15] = value
& ~1;
64 env
->thumb
= value
& 1;
68 static vaddr
arm_cpu_get_pc(CPUState
*cs
)
70 ARMCPU
*cpu
= ARM_CPU(cs
);
71 CPUARMState
*env
= &cpu
->env
;
81 void arm_cpu_synchronize_from_tb(CPUState
*cs
,
82 const TranslationBlock
*tb
)
84 /* The program counter is always up to date with CF_PCREL. */
85 if (!(tb_cflags(tb
) & CF_PCREL
)) {
86 CPUARMState
*env
= cpu_env(cs
);
88 * It's OK to look at env for the current mode here, because it's
89 * never possible for an AArch64 TB to chain to an AArch32 TB.
94 env
->regs
[15] = tb
->pc
;
99 void arm_restore_state_to_opc(CPUState
*cs
,
100 const TranslationBlock
*tb
,
101 const uint64_t *data
)
103 CPUARMState
*env
= cpu_env(cs
);
106 if (tb_cflags(tb
) & CF_PCREL
) {
107 env
->pc
= (env
->pc
& TARGET_PAGE_MASK
) | data
[0];
111 env
->condexec_bits
= 0;
112 env
->exception
.syndrome
= data
[2] << ARM_INSN_START_WORD2_SHIFT
;
114 if (tb_cflags(tb
) & CF_PCREL
) {
115 env
->regs
[15] = (env
->regs
[15] & TARGET_PAGE_MASK
) | data
[0];
117 env
->regs
[15] = data
[0];
119 env
->condexec_bits
= data
[1];
120 env
->exception
.syndrome
= data
[2] << ARM_INSN_START_WORD2_SHIFT
;
123 #endif /* CONFIG_TCG */
126 * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
127 * IRQ without Superpriority. Moreover, if the GIC is configured so that
128 * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
129 * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
132 static bool arm_cpu_has_work(CPUState
*cs
)
134 ARMCPU
*cpu
= ARM_CPU(cs
);
136 return (cpu
->power_state
!= PSCI_OFF
)
137 && cs
->interrupt_request
&
138 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
139 | CPU_INTERRUPT_NMI
| CPU_INTERRUPT_VINMI
| CPU_INTERRUPT_VFNMI
140 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_VSERR
141 | CPU_INTERRUPT_EXITTB
);
144 static int arm_cpu_mmu_index(CPUState
*cs
, bool ifetch
)
146 return arm_env_mmu_index(cpu_env(cs
));
149 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
152 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
155 entry
->opaque
= opaque
;
157 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
160 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
163 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
166 entry
->opaque
= opaque
;
168 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
171 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
173 /* Reset a single ARMCPRegInfo register */
174 ARMCPRegInfo
*ri
= value
;
175 ARMCPU
*cpu
= opaque
;
177 if (ri
->type
& (ARM_CP_SPECIAL_MASK
| ARM_CP_ALIAS
)) {
182 ri
->resetfn(&cpu
->env
, ri
);
186 /* A zero offset is never possible as it would be regs[0]
187 * so we use it to indicate that reset is being handled elsewhere.
188 * This is basically only used for fields in non-core coprocessors
189 * (like the pxa2xx ones).
191 if (!ri
->fieldoffset
) {
195 if (cpreg_field_is_64bit(ri
)) {
196 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
198 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
202 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
204 /* Purely an assertion check: we've already done reset once,
205 * so now check that running the reset for the cpreg doesn't
206 * change its value. This traps bugs where two different cpregs
207 * both try to reset the same state field but to different values.
209 ARMCPRegInfo
*ri
= value
;
210 ARMCPU
*cpu
= opaque
;
211 uint64_t oldvalue
, newvalue
;
213 if (ri
->type
& (ARM_CP_SPECIAL_MASK
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
217 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
218 cp_reg_reset(key
, value
, opaque
);
219 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
220 assert(oldvalue
== newvalue
);
223 static void arm_cpu_reset_hold(Object
*obj
, ResetType type
)
225 CPUState
*cs
= CPU(obj
);
226 ARMCPU
*cpu
= ARM_CPU(cs
);
227 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
228 CPUARMState
*env
= &cpu
->env
;
230 if (acc
->parent_phases
.hold
) {
231 acc
->parent_phases
.hold(obj
, type
);
234 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
236 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
237 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
239 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
240 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
241 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
242 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
244 cpu
->power_state
= cs
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
246 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
247 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
250 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
251 /* 64 bit CPUs always start in 64 bit mode */
253 #if defined(CONFIG_USER_ONLY)
254 env
->pstate
= PSTATE_MODE_EL0t
;
255 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
256 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
257 /* Enable all PAC keys. */
258 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
259 SCTLR_EnDA
| SCTLR_EnDB
);
260 /* Trap on btype=3 for PACIxSP. */
261 env
->cp15
.sctlr_el
[1] |= SCTLR_BT0
;
262 /* Trap on implementation defined registers. */
263 if (cpu_isar_feature(aa64_tidcp1
, cpu
)) {
264 env
->cp15
.sctlr_el
[1] |= SCTLR_TIDCP
;
266 /* and to the FP/Neon instructions */
267 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
269 /* and to the SVE instructions, with default vector length */
270 if (cpu_isar_feature(aa64_sve
, cpu
)) {
271 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
273 env
->vfp
.zcr_el
[1] = cpu
->sve_default_vq
- 1;
275 /* and for SME instructions, with default vector length, and TPIDR2 */
276 if (cpu_isar_feature(aa64_sme
, cpu
)) {
277 env
->cp15
.sctlr_el
[1] |= SCTLR_EnTP2
;
278 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
280 env
->vfp
.smcr_el
[1] = cpu
->sme_default_vq
- 1;
281 if (cpu_isar_feature(aa64_sme_fa64
, cpu
)) {
282 env
->vfp
.smcr_el
[1] = FIELD_DP64(env
->vfp
.smcr_el
[1],
287 * Enable 48-bit address space (TODO: take reserved_va into account).
288 * Enable TBI0 but not TBI1.
289 * Note that this must match useronly_clean_ptr.
291 env
->cp15
.tcr_el
[1] = 5 | (1ULL << 37);
294 if (cpu_isar_feature(aa64_mte
, cpu
)) {
295 /* Enable tag access, but leave TCF0 as No Effect (0). */
296 env
->cp15
.sctlr_el
[1] |= SCTLR_ATA0
;
298 * Exclude all tags, so that tag 0 is always used.
299 * This corresponds to Linux current->thread.gcr_incl = 0.
301 * Set RRND, so that helper_irg() will generate a seed later.
302 * Here in cpu_reset(), the crypto subsystem has not yet been
305 env
->cp15
.gcr_el1
= 0x1ffff;
308 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
309 * This is not yet exposed from the Linux kernel in any way.
311 env
->cp15
.sctlr_el
[1] |= SCTLR_TSCXT
;
312 /* Disable access to Debug Communication Channel (DCC). */
313 env
->cp15
.mdscr_el1
|= 1 << 12;
314 /* Enable FEAT_MOPS */
315 env
->cp15
.sctlr_el
[1] |= SCTLR_MSCEN
;
317 /* Reset into the highest available EL */
318 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
319 env
->pstate
= PSTATE_MODE_EL3h
;
320 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
321 env
->pstate
= PSTATE_MODE_EL2h
;
323 env
->pstate
= PSTATE_MODE_EL1h
;
326 /* Sample rvbar at reset. */
327 env
->cp15
.rvbar
= cpu
->rvbar_prop
;
328 env
->pc
= env
->cp15
.rvbar
;
331 #if defined(CONFIG_USER_ONLY)
332 /* Userspace expects access to cp10 and cp11 for FP/Neon */
333 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
335 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
338 if (arm_feature(env
, ARM_FEATURE_V8
)) {
339 env
->cp15
.rvbar
= cpu
->rvbar_prop
;
340 env
->regs
[15] = cpu
->rvbar_prop
;
344 #if defined(CONFIG_USER_ONLY)
345 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
346 /* For user mode we must enable access to coprocessors */
347 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
348 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
349 env
->cp15
.c15_cpar
= 3;
350 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
351 env
->cp15
.c15_cpar
= 1;
356 * If the highest available EL is EL2, AArch32 will start in Hyp
357 * mode; otherwise it starts in SVC. Note that if we start in
358 * AArch64 then these values in the uncached_cpsr will be ignored.
360 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
361 !arm_feature(env
, ARM_FEATURE_EL3
)) {
362 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
364 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
366 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
368 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
369 * executing as AArch32 then check if highvecs are enabled and
370 * adjust the PC accordingly.
372 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
373 env
->regs
[15] = 0xFFFF0000;
376 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
379 if (arm_feature(env
, ARM_FEATURE_M
)) {
380 #ifndef CONFIG_USER_ONLY
381 uint32_t initial_msp
; /* Loaded from 0x0 */
382 uint32_t initial_pc
; /* Loaded from 0x4 */
387 if (cpu_isar_feature(aa32_lob
, cpu
)) {
389 * LTPSIZE is constant 4 if MVE not implemented, and resets
390 * to an UNKNOWN value if MVE is implemented. We choose to
393 env
->v7m
.ltpsize
= 4;
394 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
395 env
->v7m
.fpdscr
[M_REG_NS
] = 4 << FPCR_LTPSIZE_SHIFT
;
396 env
->v7m
.fpdscr
[M_REG_S
] = 4 << FPCR_LTPSIZE_SHIFT
;
399 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
400 env
->v7m
.secure
= true;
402 /* This bit resets to 0 if security is supported, but 1 if
403 * it is not. The bit is not present in v7M, but we set it
404 * here so we can avoid having to make checks on it conditional
405 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
407 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
409 * Set NSACR to indicate "NS access permitted to everything";
410 * this avoids having to have all the tests of it being
411 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
412 * v8.1M the guest-visible value of NSACR in a CPU without the
413 * Security Extension is 0xcff.
415 env
->v7m
.nsacr
= 0xcff;
418 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
419 * that it resets to 1, so QEMU always does that rather than making
420 * it dependent on CPU model. In v8M it is RES1.
422 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
423 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
424 if (arm_feature(env
, ARM_FEATURE_V8
)) {
425 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
426 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
427 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
429 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
430 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
431 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
434 if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
435 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
436 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
437 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
440 #ifndef CONFIG_USER_ONLY
441 /* Unlike A/R profile, M profile defines the reset LR value */
442 env
->regs
[14] = 0xffffffff;
444 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
445 env
->v7m
.vecbase
[M_REG_NS
] = cpu
->init_nsvtor
& 0xffffff80;
447 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
448 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
449 rom
= rom_ptr_for_as(cs
->as
, vecbase
, 8);
451 /* Address zero is covered by ROM which hasn't yet been
452 * copied into physical memory.
454 initial_msp
= ldl_p(rom
);
455 initial_pc
= ldl_p(rom
+ 4);
457 /* Address zero not covered by a ROM blob, or the ROM blob
458 * is in non-modifiable memory and this is a second reset after
459 * it got copied into memory. In the latter case, rom_ptr
460 * will return a NULL pointer and we should use ldl_phys instead.
462 initial_msp
= ldl_phys(cs
->as
, vecbase
);
463 initial_pc
= ldl_phys(cs
->as
, vecbase
+ 4);
466 qemu_log_mask(CPU_LOG_INT
,
467 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
468 initial_msp
, initial_pc
);
470 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
471 env
->regs
[15] = initial_pc
& ~1;
472 env
->thumb
= initial_pc
& 1;
475 * For user mode we run non-secure and with access to the FPU.
476 * The FPU context is active (ie does not need further setup)
477 * and is owned by non-secure.
479 env
->v7m
.secure
= false;
480 env
->v7m
.nsacr
= 0xcff;
481 env
->v7m
.cpacr
[M_REG_NS
] = 0xf0ffff;
482 env
->v7m
.fpccr
[M_REG_S
] &=
483 ~(R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
);
484 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_FPCA_MASK
;
488 /* M profile requires that reset clears the exclusive monitor;
489 * A profile does not, but clearing it makes more sense than having it
490 * set with an exclusive access on address zero.
492 arm_clear_exclusive(env
);
494 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
495 if (cpu
->pmsav7_dregion
> 0) {
496 if (arm_feature(env
, ARM_FEATURE_V8
)) {
497 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
498 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
499 * cpu
->pmsav7_dregion
);
500 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
501 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
502 * cpu
->pmsav7_dregion
);
503 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
504 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
505 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
506 * cpu
->pmsav7_dregion
);
507 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
508 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
509 * cpu
->pmsav7_dregion
);
511 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
512 memset(env
->pmsav7
.drbar
, 0,
513 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
514 memset(env
->pmsav7
.drsr
, 0,
515 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
516 memset(env
->pmsav7
.dracr
, 0,
517 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
521 if (cpu
->pmsav8r_hdregion
> 0) {
522 memset(env
->pmsav8
.hprbar
, 0,
523 sizeof(*env
->pmsav8
.hprbar
) * cpu
->pmsav8r_hdregion
);
524 memset(env
->pmsav8
.hprlar
, 0,
525 sizeof(*env
->pmsav8
.hprlar
) * cpu
->pmsav8r_hdregion
);
528 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
529 env
->pmsav7
.rnr
[M_REG_S
] = 0;
530 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
531 env
->pmsav8
.mair0
[M_REG_S
] = 0;
532 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
533 env
->pmsav8
.mair1
[M_REG_S
] = 0;
536 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
537 if (cpu
->sau_sregion
> 0) {
538 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
539 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
542 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
543 * the Cortex-M33 does.
548 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
549 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
550 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
551 set_default_nan_mode(1, &env
->vfp
.standard_fp_status_f16
);
552 set_float_detect_tininess(float_tininess_before_rounding
,
553 &env
->vfp
.fp_status
);
554 set_float_detect_tininess(float_tininess_before_rounding
,
555 &env
->vfp
.standard_fp_status
);
556 set_float_detect_tininess(float_tininess_before_rounding
,
557 &env
->vfp
.fp_status_f16
);
558 set_float_detect_tininess(float_tininess_before_rounding
,
559 &env
->vfp
.standard_fp_status_f16
);
560 #ifndef CONFIG_USER_ONLY
562 kvm_arm_reset_vcpu(cpu
);
567 hw_breakpoint_update_all(cpu
);
568 hw_watchpoint_update_all(cpu
);
570 arm_rebuild_hflags(env
);
574 void arm_emulate_firmware_reset(CPUState
*cpustate
, int target_el
)
576 ARMCPU
*cpu
= ARM_CPU(cpustate
);
577 CPUARMState
*env
= &cpu
->env
;
578 bool have_el3
= arm_feature(env
, ARM_FEATURE_EL3
);
579 bool have_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
582 * Check we have the EL we're aiming for. If that is the
583 * highest implemented EL, then cpu_reset has already done
597 if (!have_el3
&& !have_el2
) {
602 g_assert_not_reached();
607 * Set the EL3 state so code can run at EL2. This should match
608 * the requirements set by Linux in its booting spec.
611 env
->cp15
.scr_el3
|= SCR_RW
;
612 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
613 env
->cp15
.scr_el3
|= SCR_API
| SCR_APK
;
615 if (cpu_isar_feature(aa64_mte
, cpu
)) {
616 env
->cp15
.scr_el3
|= SCR_ATA
;
618 if (cpu_isar_feature(aa64_sve
, cpu
)) {
619 env
->cp15
.cptr_el
[3] |= R_CPTR_EL3_EZ_MASK
;
620 env
->vfp
.zcr_el
[3] = 0xf;
622 if (cpu_isar_feature(aa64_sme
, cpu
)) {
623 env
->cp15
.cptr_el
[3] |= R_CPTR_EL3_ESM_MASK
;
624 env
->cp15
.scr_el3
|= SCR_ENTP2
;
625 env
->vfp
.smcr_el
[3] = 0xf;
627 if (cpu_isar_feature(aa64_hcx
, cpu
)) {
628 env
->cp15
.scr_el3
|= SCR_HXEN
;
630 if (cpu_isar_feature(aa64_fgt
, cpu
)) {
631 env
->cp15
.scr_el3
|= SCR_FGTEN
;
635 if (target_el
== 2) {
636 /* If the guest is at EL2 then Linux expects the HVC insn to work */
637 env
->cp15
.scr_el3
|= SCR_HCE
;
640 /* Put CPU into non-secure state */
641 env
->cp15
.scr_el3
|= SCR_NS
;
642 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
643 env
->cp15
.nsacr
|= 3 << 10;
646 if (have_el2
&& target_el
< 2) {
647 /* Set EL2 state so code can run at EL1. */
649 env
->cp15
.hcr_el2
|= HCR_RW
;
653 /* Set the CPU to the desired state */
655 env
->pstate
= aarch64_pstate_mode(target_el
, true);
657 static const uint32_t mode_for_el
[] = {
664 cpsr_write(env
, mode_for_el
[target_el
], CPSR_M
, CPSRWriteRaw
);
669 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
671 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
,
672 unsigned int target_el
,
673 unsigned int cur_el
, bool secure
,
676 CPUARMState
*env
= cpu_env(cs
);
677 bool pstate_unmasked
;
678 bool unmasked
= false;
679 bool allIntMask
= false;
682 * Don't take exceptions if they target a lower EL.
683 * This check should catch any exceptions that would not be taken
686 if (cur_el
> target_el
) {
690 if (cpu_isar_feature(aa64_nmi
, env_archcpu(env
)) &&
691 env
->cp15
.sctlr_el
[target_el
] & SCTLR_NMI
&& cur_el
== target_el
) {
692 allIntMask
= env
->pstate
& PSTATE_ALLINT
||
693 ((env
->cp15
.sctlr_el
[target_el
] & SCTLR_SPINTMASK
) &&
694 (env
->pstate
& PSTATE_SP
));
699 pstate_unmasked
= !allIntMask
;
703 if (!(hcr_el2
& HCR_IMO
) || (hcr_el2
& HCR_TGE
)) {
704 /* VINMIs are only taken when hypervized. */
709 if (!(hcr_el2
& HCR_FMO
) || (hcr_el2
& HCR_TGE
)) {
710 /* VFNMIs are only taken when hypervized. */
715 pstate_unmasked
= (!(env
->daif
& PSTATE_F
)) && (!allIntMask
);
719 pstate_unmasked
= (!(env
->daif
& PSTATE_I
)) && (!allIntMask
);
723 if (!(hcr_el2
& HCR_FMO
) || (hcr_el2
& HCR_TGE
)) {
724 /* VFIQs are only taken when hypervized. */
727 return !(env
->daif
& PSTATE_F
) && (!allIntMask
);
729 if (!(hcr_el2
& HCR_IMO
) || (hcr_el2
& HCR_TGE
)) {
730 /* VIRQs are only taken when hypervized. */
733 return !(env
->daif
& PSTATE_I
) && (!allIntMask
);
735 if (!(hcr_el2
& HCR_AMO
) || (hcr_el2
& HCR_TGE
)) {
736 /* VIRQs are only taken when hypervized. */
739 return !(env
->daif
& PSTATE_A
);
741 g_assert_not_reached();
745 * Use the target EL, current execution state and SCR/HCR settings to
746 * determine whether the corresponding CPSR bit is used to mask the
749 if ((target_el
> cur_el
) && (target_el
!= 1)) {
750 /* Exceptions targeting a higher EL may not be maskable */
751 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
755 * According to ARM DDI 0487H.a, an interrupt can be masked
756 * when HCR_E2H and HCR_TGE are both set regardless of the
757 * current Security state. Note that we need to revisit this
758 * part again once we need to support NMI.
760 if ((hcr_el2
& (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
765 /* Interrupt cannot be masked when the target EL is 3 */
769 g_assert_not_reached();
773 * The old 32-bit-only environment has a more complicated
774 * masking setup. HCR and SCR bits not only affect interrupt
775 * routing but also change the behaviour of masking.
782 * If FIQs are routed to EL3 or EL2 then there are cases where
783 * we override the CPSR.F in determining if the exception is
784 * masked or not. If neither of these are set then we fall back
785 * to the CPSR.F setting otherwise we further assess the state
788 hcr
= hcr_el2
& HCR_FMO
;
789 scr
= (env
->cp15
.scr_el3
& SCR_FIQ
);
792 * When EL3 is 32-bit, the SCR.FW bit controls whether the
793 * CPSR.F bit masks FIQ interrupts when taken in non-secure
794 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
795 * when non-secure but only when FIQs are only routed to EL3.
797 scr
= scr
&& !((env
->cp15
.scr_el3
& SCR_FW
) && !hcr
);
801 * When EL3 execution state is 32-bit, if HCR.IMO is set then
802 * we may override the CPSR.I masking when in non-secure state.
803 * The SCR.IRQ setting has already been taken into consideration
804 * when setting the target EL, so it does not have a further
807 hcr
= hcr_el2
& HCR_IMO
;
811 g_assert_not_reached();
814 if ((scr
|| hcr
) && !secure
) {
821 * The PSTATE bits only mask the interrupt if we have not overridden the
824 return unmasked
|| pstate_unmasked
;
827 static bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
829 CPUClass
*cc
= CPU_GET_CLASS(cs
);
830 CPUARMState
*env
= cpu_env(cs
);
831 uint32_t cur_el
= arm_current_el(env
);
832 bool secure
= arm_is_secure(env
);
833 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
837 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
839 if (cpu_isar_feature(aa64_nmi
, env_archcpu(env
)) &&
840 (arm_sctlr(env
, cur_el
) & SCTLR_NMI
)) {
841 if (interrupt_request
& CPU_INTERRUPT_NMI
) {
843 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
844 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
845 cur_el
, secure
, hcr_el2
)) {
849 if (interrupt_request
& CPU_INTERRUPT_VINMI
) {
850 excp_idx
= EXCP_VINMI
;
852 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
853 cur_el
, secure
, hcr_el2
)) {
857 if (interrupt_request
& CPU_INTERRUPT_VFNMI
) {
858 excp_idx
= EXCP_VFNMI
;
860 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
861 cur_el
, secure
, hcr_el2
)) {
867 * NMI disabled: interrupts with superpriority are handled
868 * as if they didn't have it
870 if (interrupt_request
& CPU_INTERRUPT_NMI
) {
871 interrupt_request
|= CPU_INTERRUPT_HARD
;
873 if (interrupt_request
& CPU_INTERRUPT_VINMI
) {
874 interrupt_request
|= CPU_INTERRUPT_VIRQ
;
876 if (interrupt_request
& CPU_INTERRUPT_VFNMI
) {
877 interrupt_request
|= CPU_INTERRUPT_VFIQ
;
881 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
883 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
884 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
885 cur_el
, secure
, hcr_el2
)) {
889 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
891 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
892 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
893 cur_el
, secure
, hcr_el2
)) {
897 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
898 excp_idx
= EXCP_VIRQ
;
900 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
901 cur_el
, secure
, hcr_el2
)) {
905 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
906 excp_idx
= EXCP_VFIQ
;
908 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
909 cur_el
, secure
, hcr_el2
)) {
913 if (interrupt_request
& CPU_INTERRUPT_VSERR
) {
914 excp_idx
= EXCP_VSERR
;
916 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
917 cur_el
, secure
, hcr_el2
)) {
918 /* Taking a virtual abort clears HCR_EL2.VSE */
919 env
->cp15
.hcr_el2
&= ~HCR_VSE
;
920 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VSERR
);
927 cs
->exception_index
= excp_idx
;
928 env
->exception
.target_el
= target_el
;
929 cc
->tcg_ops
->do_interrupt(cs
);
933 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
935 void arm_cpu_update_virq(ARMCPU
*cpu
)
938 * Update the interrupt level for VIRQ, which is the logical OR of
939 * the HCR_EL2.VI bit and the input line level from the GIC.
941 CPUARMState
*env
= &cpu
->env
;
942 CPUState
*cs
= CPU(cpu
);
944 bool new_state
= ((arm_hcr_el2_eff(env
) & HCR_VI
) &&
945 !(arm_hcrx_el2_eff(env
) & HCRX_VINMI
)) ||
946 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
948 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
950 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
952 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
957 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
960 * Update the interrupt level for VFIQ, which is the logical OR of
961 * the HCR_EL2.VF bit and the input line level from the GIC.
963 CPUARMState
*env
= &cpu
->env
;
964 CPUState
*cs
= CPU(cpu
);
966 bool new_state
= ((arm_hcr_el2_eff(env
) & HCR_VF
) &&
967 !(arm_hcrx_el2_eff(env
) & HCRX_VFNMI
)) ||
968 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
970 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
972 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
974 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
979 void arm_cpu_update_vinmi(ARMCPU
*cpu
)
982 * Update the interrupt level for VINMI, which is the logical OR of
983 * the HCRX_EL2.VINMI bit and the input line level from the GIC.
985 CPUARMState
*env
= &cpu
->env
;
986 CPUState
*cs
= CPU(cpu
);
988 bool new_state
= ((arm_hcr_el2_eff(env
) & HCR_VI
) &&
989 (arm_hcrx_el2_eff(env
) & HCRX_VINMI
)) ||
990 (env
->irq_line_state
& CPU_INTERRUPT_VINMI
);
992 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VINMI
) != 0)) {
994 cpu_interrupt(cs
, CPU_INTERRUPT_VINMI
);
996 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VINMI
);
1001 void arm_cpu_update_vfnmi(ARMCPU
*cpu
)
1004 * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1006 CPUARMState
*env
= &cpu
->env
;
1007 CPUState
*cs
= CPU(cpu
);
1009 bool new_state
= (arm_hcr_el2_eff(env
) & HCR_VF
) &&
1010 (arm_hcrx_el2_eff(env
) & HCRX_VFNMI
);
1012 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFNMI
) != 0)) {
1014 cpu_interrupt(cs
, CPU_INTERRUPT_VFNMI
);
1016 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFNMI
);
1021 void arm_cpu_update_vserr(ARMCPU
*cpu
)
1024 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1026 CPUARMState
*env
= &cpu
->env
;
1027 CPUState
*cs
= CPU(cpu
);
1029 bool new_state
= env
->cp15
.hcr_el2
& HCR_VSE
;
1031 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VSERR
) != 0)) {
1033 cpu_interrupt(cs
, CPU_INTERRUPT_VSERR
);
1035 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VSERR
);
1040 #ifndef CONFIG_USER_ONLY
1041 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
1043 ARMCPU
*cpu
= opaque
;
1044 CPUARMState
*env
= &cpu
->env
;
1045 CPUState
*cs
= CPU(cpu
);
1046 static const int mask
[] = {
1047 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
1048 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
1049 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
1050 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
,
1051 [ARM_CPU_NMI
] = CPU_INTERRUPT_NMI
,
1052 [ARM_CPU_VINMI
] = CPU_INTERRUPT_VINMI
,
1055 if (!arm_feature(env
, ARM_FEATURE_EL2
) &&
1056 (irq
== ARM_CPU_VIRQ
|| irq
== ARM_CPU_VFIQ
)) {
1058 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1059 * have EL2 support we don't care. (Unless the guest is doing something
1060 * silly this will only be calls saying "level is still 0".)
1066 env
->irq_line_state
|= mask
[irq
];
1068 env
->irq_line_state
&= ~mask
[irq
];
1073 arm_cpu_update_virq(cpu
);
1076 arm_cpu_update_vfiq(cpu
);
1079 arm_cpu_update_vinmi(cpu
);
1085 cpu_interrupt(cs
, mask
[irq
]);
1087 cpu_reset_interrupt(cs
, mask
[irq
]);
1091 g_assert_not_reached();
1095 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
1098 ARMCPU
*cpu
= opaque
;
1099 CPUARMState
*env
= &cpu
->env
;
1100 CPUState
*cs
= CPU(cpu
);
1101 uint32_t linestate_bit
;
1106 irq_id
= KVM_ARM_IRQ_CPU_IRQ
;
1107 linestate_bit
= CPU_INTERRUPT_HARD
;
1110 irq_id
= KVM_ARM_IRQ_CPU_FIQ
;
1111 linestate_bit
= CPU_INTERRUPT_FIQ
;
1114 g_assert_not_reached();
1118 env
->irq_line_state
|= linestate_bit
;
1120 env
->irq_line_state
&= ~linestate_bit
;
1122 kvm_arm_set_irq(cs
->cpu_index
, KVM_ARM_IRQ_TYPE_CPU
, irq_id
, !!level
);
1126 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
1128 ARMCPU
*cpu
= ARM_CPU(cs
);
1129 CPUARMState
*env
= &cpu
->env
;
1131 cpu_synchronize_state(cs
);
1132 return arm_cpu_data_is_big_endian(env
);
1136 bool arm_cpu_exec_halt(CPUState
*cs
)
1138 bool leave_halt
= cpu_has_work(cs
);
1141 /* We're about to come out of WFI/WFE: disable the WFxT timer */
1142 ARMCPU
*cpu
= ARM_CPU(cs
);
1143 if (cpu
->wfxt_timer
) {
1144 timer_del(cpu
->wfxt_timer
);
1151 static void arm_wfxt_timer_cb(void *opaque
)
1153 ARMCPU
*cpu
= opaque
;
1154 CPUState
*cs
= CPU(cpu
);
1157 * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1158 * to return true (so we will come out of halt even with no other
1159 * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1160 * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1162 cpu_interrupt(cs
, CPU_INTERRUPT_EXITTB
);
1166 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
1168 ARMCPU
*ac
= ARM_CPU(cpu
);
1169 CPUARMState
*env
= &ac
->env
;
1173 info
->cap_arch
= CS_ARCH_ARM64
;
1174 info
->cap_insn_unit
= 4;
1175 info
->cap_insn_split
= 4;
1179 info
->cap_insn_unit
= 2;
1180 info
->cap_insn_split
= 4;
1181 cap_mode
= CS_MODE_THUMB
;
1183 info
->cap_insn_unit
= 4;
1184 info
->cap_insn_split
= 4;
1185 cap_mode
= CS_MODE_ARM
;
1187 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1188 cap_mode
|= CS_MODE_V8
;
1190 if (arm_feature(env
, ARM_FEATURE_M
)) {
1191 cap_mode
|= CS_MODE_MCLASS
;
1193 info
->cap_arch
= CS_ARCH_ARM
;
1194 info
->cap_mode
= cap_mode
;
1197 sctlr_b
= arm_sctlr_b(env
);
1198 if (bswap_code(sctlr_b
)) {
1199 #if TARGET_BIG_ENDIAN
1200 info
->endian
= BFD_ENDIAN_LITTLE
;
1202 info
->endian
= BFD_ENDIAN_BIG
;
1205 info
->flags
&= ~INSN_ARM_BE32
;
1206 #ifndef CONFIG_USER_ONLY
1208 info
->flags
|= INSN_ARM_BE32
;
1213 #ifdef TARGET_AARCH64
1215 static void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
1217 ARMCPU
*cpu
= ARM_CPU(cs
);
1218 CPUARMState
*env
= &cpu
->env
;
1219 uint32_t psr
= pstate_read(env
);
1221 int el
= arm_current_el(env
);
1222 uint64_t hcr
= arm_hcr_el2_eff(env
);
1223 const char *ns_status
;
1226 qemu_fprintf(f
, " PC=%016" PRIx64
" ", env
->pc
);
1227 for (i
= 0; i
< 32; i
++) {
1229 qemu_fprintf(f
, " SP=%016" PRIx64
"\n", env
->xregs
[i
]);
1231 qemu_fprintf(f
, "X%02d=%016" PRIx64
"%s", i
, env
->xregs
[i
],
1232 (i
+ 2) % 3 ? " " : "\n");
1236 if (arm_feature(env
, ARM_FEATURE_EL3
) && el
!= 3) {
1237 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
1241 qemu_fprintf(f
, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1243 psr
& PSTATE_N
? 'N' : '-',
1244 psr
& PSTATE_Z
? 'Z' : '-',
1245 psr
& PSTATE_C
? 'C' : '-',
1246 psr
& PSTATE_V
? 'V' : '-',
1249 psr
& PSTATE_SP
? 'h' : 't');
1251 if (cpu_isar_feature(aa64_sme
, cpu
)) {
1252 qemu_fprintf(f
, " SVCR=%08" PRIx64
" %c%c",
1254 (FIELD_EX64(env
->svcr
, SVCR
, ZA
) ? 'Z' : '-'),
1255 (FIELD_EX64(env
->svcr
, SVCR
, SM
) ? 'S' : '-'));
1257 if (cpu_isar_feature(aa64_bti
, cpu
)) {
1258 qemu_fprintf(f
, " BTYPE=%d", (psr
& PSTATE_BTYPE
) >> 10);
1260 qemu_fprintf(f
, "%s%s%s",
1261 (hcr
& HCR_NV
) ? " NV" : "",
1262 (hcr
& HCR_NV1
) ? " NV1" : "",
1263 (hcr
& HCR_NV2
) ? " NV2" : "");
1264 if (!(flags
& CPU_DUMP_FPU
)) {
1265 qemu_fprintf(f
, "\n");
1268 if (fp_exception_el(env
, el
) != 0) {
1269 qemu_fprintf(f
, " FPU disabled\n");
1272 qemu_fprintf(f
, " FPCR=%08x FPSR=%08x\n",
1273 vfp_get_fpcr(env
), vfp_get_fpsr(env
));
1275 if (cpu_isar_feature(aa64_sme
, cpu
) && FIELD_EX64(env
->svcr
, SVCR
, SM
)) {
1276 sve
= sme_exception_el(env
, el
) == 0;
1277 } else if (cpu_isar_feature(aa64_sve
, cpu
)) {
1278 sve
= sve_exception_el(env
, el
) == 0;
1284 int zcr_len
= sve_vqm1_for_el(env
, el
);
1286 for (i
= 0; i
<= FFR_PRED_NUM
; i
++) {
1288 if (i
== FFR_PRED_NUM
) {
1289 qemu_fprintf(f
, "FFR=");
1290 /* It's last, so end the line. */
1293 qemu_fprintf(f
, "P%02d=", i
);
1306 /* More than one quadword per predicate. */
1311 for (j
= zcr_len
/ 4; j
>= 0; j
--) {
1313 if (j
* 4 + 4 <= zcr_len
+ 1) {
1316 digits
= (zcr_len
% 4 + 1) * 4;
1318 qemu_fprintf(f
, "%0*" PRIx64
"%s", digits
,
1319 env
->vfp
.pregs
[i
].p
[j
],
1320 j
? ":" : eol
? "\n" : " ");
1326 * With vl=16, there are only 37 columns per register,
1327 * so output two registers per line.
1329 for (i
= 0; i
< 32; i
++) {
1330 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
"%s",
1331 i
, env
->vfp
.zregs
[i
].d
[1],
1332 env
->vfp
.zregs
[i
].d
[0], i
& 1 ? "\n" : " ");
1335 for (i
= 0; i
< 32; i
++) {
1336 qemu_fprintf(f
, "Z%02d=", i
);
1337 for (j
= zcr_len
; j
>= 0; j
--) {
1338 qemu_fprintf(f
, "%016" PRIx64
":%016" PRIx64
"%s",
1339 env
->vfp
.zregs
[i
].d
[j
* 2 + 1],
1340 env
->vfp
.zregs
[i
].d
[j
* 2 + 0],
1346 for (i
= 0; i
< 32; i
++) {
1347 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1348 qemu_fprintf(f
, "Q%02d=%016" PRIx64
":%016" PRIx64
"%s",
1349 i
, q
[1], q
[0], (i
& 1 ? "\n" : " "));
1353 if (cpu_isar_feature(aa64_sme
, cpu
) &&
1354 FIELD_EX64(env
->svcr
, SVCR
, ZA
) &&
1355 sme_exception_el(env
, el
) == 0) {
1356 int zcr_len
= sve_vqm1_for_el_sm(env
, el
, true);
1357 int svl
= (zcr_len
+ 1) * 16;
1358 int svl_lg10
= svl
< 100 ? 2 : 3;
1360 for (i
= 0; i
< svl
; i
++) {
1361 qemu_fprintf(f
, "ZA[%0*d]=", svl_lg10
, i
);
1362 for (j
= zcr_len
; j
>= 0; --j
) {
1363 qemu_fprintf(f
, "%016" PRIx64
":%016" PRIx64
"%c",
1364 env
->zarray
[i
].d
[2 * j
+ 1],
1365 env
->zarray
[i
].d
[2 * j
],
1374 static inline void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
1376 g_assert_not_reached();
1381 static void arm_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
1383 ARMCPU
*cpu
= ARM_CPU(cs
);
1384 CPUARMState
*env
= &cpu
->env
;
1388 aarch64_cpu_dump_state(cs
, f
, flags
);
1392 for (i
= 0; i
< 16; i
++) {
1393 qemu_fprintf(f
, "R%02d=%08x", i
, env
->regs
[i
]);
1395 qemu_fprintf(f
, "\n");
1397 qemu_fprintf(f
, " ");
1401 if (arm_feature(env
, ARM_FEATURE_M
)) {
1402 uint32_t xpsr
= xpsr_read(env
);
1404 const char *ns_status
= "";
1406 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1407 ns_status
= env
->v7m
.secure
? "S " : "NS ";
1410 if (xpsr
& XPSR_EXCP
) {
1413 if (env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_NPRIV_MASK
) {
1414 mode
= "unpriv-thread";
1416 mode
= "priv-thread";
1420 qemu_fprintf(f
, "XPSR=%08x %c%c%c%c %c %s%s\n",
1422 xpsr
& XPSR_N
? 'N' : '-',
1423 xpsr
& XPSR_Z
? 'Z' : '-',
1424 xpsr
& XPSR_C
? 'C' : '-',
1425 xpsr
& XPSR_V
? 'V' : '-',
1426 xpsr
& XPSR_T
? 'T' : 'A',
1430 uint32_t psr
= cpsr_read(env
);
1431 const char *ns_status
= "";
1433 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1434 (psr
& CPSR_M
) != ARM_CPU_MODE_MON
) {
1435 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
1438 qemu_fprintf(f
, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1440 psr
& CPSR_N
? 'N' : '-',
1441 psr
& CPSR_Z
? 'Z' : '-',
1442 psr
& CPSR_C
? 'C' : '-',
1443 psr
& CPSR_V
? 'V' : '-',
1444 psr
& CPSR_T
? 'T' : 'A',
1446 aarch32_mode_name(psr
), (psr
& 0x10) ? 32 : 26);
1449 if (flags
& CPU_DUMP_FPU
) {
1451 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
1453 } else if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
1456 for (i
= 0; i
< numvfpregs
; i
++) {
1457 uint64_t v
= *aa32_vfp_dreg(env
, i
);
1458 qemu_fprintf(f
, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64
"\n",
1460 i
* 2 + 1, (uint32_t)(v
>> 32),
1463 qemu_fprintf(f
, "FPSCR: %08x\n", vfp_get_fpscr(env
));
1464 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1465 qemu_fprintf(f
, "VPR: %08x\n", env
->v7m
.vpr
);
1470 uint64_t arm_build_mp_affinity(int idx
, uint8_t clustersz
)
1472 uint32_t Aff1
= idx
/ clustersz
;
1473 uint32_t Aff0
= idx
% clustersz
;
1474 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
1477 uint64_t arm_cpu_mp_affinity(ARMCPU
*cpu
)
1479 return cpu
->mp_affinity
;
1482 static void arm_cpu_initfn(Object
*obj
)
1484 ARMCPU
*cpu
= ARM_CPU(obj
);
1486 cpu
->cp_regs
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
,
1489 QLIST_INIT(&cpu
->pre_el_change_hooks
);
1490 QLIST_INIT(&cpu
->el_change_hooks
);
1492 #ifdef CONFIG_USER_ONLY
1493 # ifdef TARGET_AARCH64
1495 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1496 * These values were chosen to fit within the default signal frame.
1497 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1498 * and our corresponding cpu property.
1500 cpu
->sve_default_vq
= 4;
1501 cpu
->sme_default_vq
= 2;
1504 /* Our inbound IRQ and FIQ lines */
1505 if (kvm_enabled()) {
1507 * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1508 * them to maintain the same interface as non-KVM CPUs.
1510 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 6);
1512 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 6);
1515 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
1516 ARRAY_SIZE(cpu
->gt_timer_outputs
));
1518 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
1519 "gicv3-maintenance-interrupt", 1);
1520 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
1521 "pmu-interrupt", 1);
1524 /* DTB consumers generally don't in fact care what the 'compatible'
1525 * string is, so always provide some string and trust that a hypothetical
1526 * picky DTB consumer will also provide a helpful error message.
1528 cpu
->dtb_compatible
= "qemu,unknown";
1529 cpu
->psci_version
= QEMU_PSCI_VERSION_0_1
; /* By default assume PSCI v0.1 */
1530 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
1532 if (tcg_enabled() || hvf_enabled()) {
1533 /* TCG and HVF implement PSCI 1.1 */
1534 cpu
->psci_version
= QEMU_PSCI_VERSION_1_1
;
1539 * 0 means "unset, use the default value". That default might vary depending
1540 * on the CPU type, and is set in the realize fn.
1542 static Property arm_cpu_gt_cntfrq_property
=
1543 DEFINE_PROP_UINT64("cntfrq", ARMCPU
, gt_cntfrq_hz
, 0);
1545 static Property arm_cpu_reset_cbar_property
=
1546 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
1548 static Property arm_cpu_reset_hivecs_property
=
1549 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
1551 #ifndef CONFIG_USER_ONLY
1552 static Property arm_cpu_has_el2_property
=
1553 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
1555 static Property arm_cpu_has_el3_property
=
1556 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
1559 static Property arm_cpu_cfgend_property
=
1560 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
1562 static Property arm_cpu_has_vfp_property
=
1563 DEFINE_PROP_BOOL("vfp", ARMCPU
, has_vfp
, true);
1565 static Property arm_cpu_has_vfp_d32_property
=
1566 DEFINE_PROP_BOOL("vfp-d32", ARMCPU
, has_vfp_d32
, true);
1568 static Property arm_cpu_has_neon_property
=
1569 DEFINE_PROP_BOOL("neon", ARMCPU
, has_neon
, true);
1571 static Property arm_cpu_has_dsp_property
=
1572 DEFINE_PROP_BOOL("dsp", ARMCPU
, has_dsp
, true);
1574 static Property arm_cpu_has_mpu_property
=
1575 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
1577 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1578 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1579 * the right value for that particular CPU type, and we don't want
1580 * to override that with an incorrect constant value.
1582 static Property arm_cpu_pmsav7_dregion_property
=
1583 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
1585 qdev_prop_uint32
, uint32_t);
1587 static bool arm_get_pmu(Object
*obj
, Error
**errp
)
1589 ARMCPU
*cpu
= ARM_CPU(obj
);
1591 return cpu
->has_pmu
;
1594 static void arm_set_pmu(Object
*obj
, bool value
, Error
**errp
)
1596 ARMCPU
*cpu
= ARM_CPU(obj
);
1599 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1600 error_setg(errp
, "'pmu' feature not supported by KVM on this host");
1603 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1605 unset_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1607 cpu
->has_pmu
= value
;
1610 unsigned int gt_cntfrq_period_ns(ARMCPU
*cpu
)
1613 * The exact approach to calculating guest ticks is:
1615 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1616 * NANOSECONDS_PER_SECOND);
1618 * We don't do that. Rather we intentionally use integer division
1619 * truncation below and in the caller for the conversion of host monotonic
1620 * time to guest ticks to provide the exact inverse for the semantics of
1621 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1622 * it loses precision when representing frequencies where
1623 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1624 * provide an exact inverse leads to scheduling timers with negative
1625 * periods, which in turn leads to sticky behaviour in the guest.
1627 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1628 * cannot become zero.
1630 return NANOSECONDS_PER_SECOND
> cpu
->gt_cntfrq_hz
?
1631 NANOSECONDS_PER_SECOND
/ cpu
->gt_cntfrq_hz
: 1;
1634 static void arm_cpu_propagate_feature_implications(ARMCPU
*cpu
)
1636 CPUARMState
*env
= &cpu
->env
;
1637 bool no_aa32
= false;
1640 * Some features automatically imply others: set the feature
1641 * bits explicitly for these cases.
1644 if (arm_feature(env
, ARM_FEATURE_M
)) {
1645 set_feature(env
, ARM_FEATURE_PMSA
);
1648 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1649 if (arm_feature(env
, ARM_FEATURE_M
)) {
1650 set_feature(env
, ARM_FEATURE_V7
);
1652 set_feature(env
, ARM_FEATURE_V7VE
);
1657 * There exist AArch64 cpus without AArch32 support. When KVM
1658 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1659 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1660 * As a general principle, we also do not make ID register
1661 * consistency checks anywhere unless using TCG, because only
1662 * for TCG would a consistency-check failure be a QEMU bug.
1664 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1665 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
1668 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
1670 * v7 Virtualization Extensions. In real hardware this implies
1671 * EL2 and also the presence of the Security Extensions.
1672 * For QEMU, for backwards-compatibility we implement some
1673 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1674 * include the various other features that V7VE implies.
1675 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1676 * Security Extensions is ARM_FEATURE_EL3.
1678 assert(!tcg_enabled() || no_aa32
||
1679 cpu_isar_feature(aa32_arm_div
, cpu
));
1680 set_feature(env
, ARM_FEATURE_LPAE
);
1681 set_feature(env
, ARM_FEATURE_V7
);
1683 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1684 set_feature(env
, ARM_FEATURE_VAPA
);
1685 set_feature(env
, ARM_FEATURE_THUMB2
);
1686 set_feature(env
, ARM_FEATURE_MPIDR
);
1687 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1688 set_feature(env
, ARM_FEATURE_V6K
);
1690 set_feature(env
, ARM_FEATURE_V6
);
1694 * Always define VBAR for V7 CPUs even if it doesn't exist in
1695 * non-EL3 configs. This is needed by some legacy boards.
1697 set_feature(env
, ARM_FEATURE_VBAR
);
1699 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1700 set_feature(env
, ARM_FEATURE_V6
);
1701 set_feature(env
, ARM_FEATURE_MVFR
);
1703 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1704 set_feature(env
, ARM_FEATURE_V5
);
1705 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1706 assert(!tcg_enabled() || no_aa32
||
1707 cpu_isar_feature(aa32_jazelle
, cpu
));
1708 set_feature(env
, ARM_FEATURE_AUXCR
);
1711 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1712 set_feature(env
, ARM_FEATURE_V4T
);
1714 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1715 set_feature(env
, ARM_FEATURE_V7MP
);
1717 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1718 set_feature(env
, ARM_FEATURE_CBAR
);
1720 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1721 !arm_feature(env
, ARM_FEATURE_M
)) {
1722 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1726 void arm_cpu_post_init(Object
*obj
)
1728 ARMCPU
*cpu
= ARM_CPU(obj
);
1731 * Some features imply others. Figure this out now, because we
1732 * are going to look at the feature bits in deciding which
1733 * properties to add.
1735 arm_cpu_propagate_feature_implications(cpu
);
1737 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
1738 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
1739 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
);
1742 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1743 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
);
1746 if (arm_feature(&cpu
->env
, ARM_FEATURE_V8
)) {
1747 object_property_add_uint64_ptr(obj
, "rvbar",
1749 OBJ_PROP_FLAG_READWRITE
);
1752 #ifndef CONFIG_USER_ONLY
1753 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1754 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1755 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1757 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
);
1759 object_property_add_link(obj
, "secure-memory",
1761 (Object
**)&cpu
->secure_memory
,
1762 qdev_prop_allow_set_link_before_realize
,
1763 OBJ_PROP_LINK_STRONG
);
1766 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
1767 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
);
1771 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
1772 cpu
->has_pmu
= true;
1773 object_property_add_bool(obj
, "pmu", arm_get_pmu
, arm_set_pmu
);
1777 * Allow user to turn off VFP and Neon support, but only for TCG --
1778 * KVM does not currently allow us to lie to the guest about its
1779 * ID/feature registers, so the guest always sees what the host has.
1781 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1782 if (cpu_isar_feature(aa64_fp_simd
, cpu
)) {
1783 cpu
->has_vfp
= true;
1784 cpu
->has_vfp_d32
= true;
1785 if (tcg_enabled() || qtest_enabled()) {
1786 qdev_property_add_static(DEVICE(obj
),
1787 &arm_cpu_has_vfp_property
);
1790 } else if (cpu_isar_feature(aa32_vfp
, cpu
)) {
1791 cpu
->has_vfp
= true;
1792 if (tcg_enabled() || qtest_enabled()) {
1793 qdev_property_add_static(DEVICE(obj
),
1794 &arm_cpu_has_vfp_property
);
1796 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
1797 cpu
->has_vfp_d32
= true;
1799 * The permitted values of the SIMDReg bits [3:0] on
1800 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1801 * make sure that has_vfp_d32 can not be set to false.
1803 if ((tcg_enabled() || qtest_enabled())
1804 && !(arm_feature(&cpu
->env
, ARM_FEATURE_V8
)
1805 && !arm_feature(&cpu
->env
, ARM_FEATURE_M
))) {
1806 qdev_property_add_static(DEVICE(obj
),
1807 &arm_cpu_has_vfp_d32_property
);
1812 if (arm_feature(&cpu
->env
, ARM_FEATURE_NEON
)) {
1813 cpu
->has_neon
= true;
1814 if (!kvm_enabled()) {
1815 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_neon_property
);
1819 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
) &&
1820 arm_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
)) {
1821 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_dsp_property
);
1824 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
1825 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
);
1826 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1827 qdev_property_add_static(DEVICE(obj
),
1828 &arm_cpu_pmsav7_dregion_property
);
1832 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
1833 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
1834 qdev_prop_allow_set_link_before_realize
,
1835 OBJ_PROP_LINK_STRONG
);
1837 * M profile: initial value of the Secure VTOR. We can't just use
1838 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1839 * the property to be set after realize.
1841 object_property_add_uint32_ptr(obj
, "init-svtor",
1843 OBJ_PROP_FLAG_READWRITE
);
1845 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1847 * Initial value of the NS VTOR (for cores without the Security
1848 * extension, this is the only VTOR)
1850 object_property_add_uint32_ptr(obj
, "init-nsvtor",
1852 OBJ_PROP_FLAG_READWRITE
);
1855 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1856 object_property_add_uint32_ptr(obj
, "psci-conduit",
1858 OBJ_PROP_FLAG_READWRITE
);
1860 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
);
1862 if (arm_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
)) {
1863 qdev_property_add_static(DEVICE(cpu
), &arm_cpu_gt_cntfrq_property
);
1866 if (kvm_enabled()) {
1867 kvm_arm_add_vcpu_properties(cpu
);
1870 #ifndef CONFIG_USER_ONLY
1871 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) &&
1872 cpu_isar_feature(aa64_mte
, cpu
)) {
1873 object_property_add_link(obj
, "tag-memory",
1875 (Object
**)&cpu
->tag_memory
,
1876 qdev_prop_allow_set_link_before_realize
,
1877 OBJ_PROP_LINK_STRONG
);
1879 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1880 object_property_add_link(obj
, "secure-tag-memory",
1882 (Object
**)&cpu
->secure_tag_memory
,
1883 qdev_prop_allow_set_link_before_realize
,
1884 OBJ_PROP_LINK_STRONG
);
1890 static void arm_cpu_finalizefn(Object
*obj
)
1892 ARMCPU
*cpu
= ARM_CPU(obj
);
1893 ARMELChangeHook
*hook
, *next
;
1895 g_hash_table_destroy(cpu
->cp_regs
);
1897 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
1898 QLIST_REMOVE(hook
, node
);
1901 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
1902 QLIST_REMOVE(hook
, node
);
1905 #ifndef CONFIG_USER_ONLY
1906 if (cpu
->pmu_timer
) {
1907 timer_free(cpu
->pmu_timer
);
1909 if (cpu
->wfxt_timer
) {
1910 timer_free(cpu
->wfxt_timer
);
1915 void arm_cpu_finalize_features(ARMCPU
*cpu
, Error
**errp
)
1917 Error
*local_err
= NULL
;
1919 #ifdef TARGET_AARCH64
1920 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1921 arm_cpu_sve_finalize(cpu
, &local_err
);
1922 if (local_err
!= NULL
) {
1923 error_propagate(errp
, local_err
);
1928 * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1929 * FEAT_SME_FA64 is present). However our implementation currently
1930 * assumes it, so if the user asked for sve=off then turn off SME also.
1931 * (KVM doesn't currently support SME at all.)
1933 if (cpu_isar_feature(aa64_sme
, cpu
) && !cpu_isar_feature(aa64_sve
, cpu
)) {
1934 object_property_set_bool(OBJECT(cpu
), "sme", false, &error_abort
);
1937 arm_cpu_sme_finalize(cpu
, &local_err
);
1938 if (local_err
!= NULL
) {
1939 error_propagate(errp
, local_err
);
1943 arm_cpu_pauth_finalize(cpu
, &local_err
);
1944 if (local_err
!= NULL
) {
1945 error_propagate(errp
, local_err
);
1949 arm_cpu_lpa2_finalize(cpu
, &local_err
);
1950 if (local_err
!= NULL
) {
1951 error_propagate(errp
, local_err
);
1957 if (kvm_enabled()) {
1958 kvm_arm_steal_time_finalize(cpu
, &local_err
);
1959 if (local_err
!= NULL
) {
1960 error_propagate(errp
, local_err
);
1966 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
1968 CPUState
*cs
= CPU(dev
);
1969 ARMCPU
*cpu
= ARM_CPU(dev
);
1970 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
1971 CPUARMState
*env
= &cpu
->env
;
1972 Error
*local_err
= NULL
;
1974 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1975 /* Use pc-relative instructions in system-mode */
1976 tcg_cflags_set(cs
, CF_PCREL
);
1979 /* If we needed to query the host kernel for the CPU features
1980 * then it's possible that might have failed in the initfn, but
1981 * this is the first point where we can report it.
1983 if (cpu
->host_cpu_probe_failed
) {
1984 if (!kvm_enabled() && !hvf_enabled()) {
1985 error_setg(errp
, "The 'host' CPU type can only be used with KVM or HVF");
1987 error_setg(errp
, "Failed to retrieve host CPU features");
1992 if (!cpu
->gt_cntfrq_hz
) {
1994 * 0 means "the board didn't set a value, use the default". (We also
1995 * get here for the CONFIG_USER_ONLY case.)
1996 * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
1997 * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
1998 * which gives a 16ns tick period.
2000 * We will use the back-compat value:
2001 * - for QEMU CPU types added before we standardized on 1GHz
2002 * - for versioned machine types with a version of 9.0 or earlier
2004 if (arm_feature(env
, ARM_FEATURE_BACKCOMPAT_CNTFRQ
) ||
2005 cpu
->backcompat_cntfrq
) {
2006 cpu
->gt_cntfrq_hz
= GTIMER_BACKCOMPAT_HZ
;
2008 cpu
->gt_cntfrq_hz
= GTIMER_DEFAULT_HZ
;
2012 #ifndef CONFIG_USER_ONLY
2013 /* The NVIC and M-profile CPU are two halves of a single piece of
2014 * hardware; trying to use one without the other is a command line
2015 * error and will result in segfaults if not caught here.
2017 if (arm_feature(env
, ARM_FEATURE_M
)) {
2019 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
2024 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
2029 if (!tcg_enabled() && !qtest_enabled()) {
2031 * We assume that no accelerator except TCG (and the "not really an
2032 * accelerator" qtest) can handle these features, because Arm hardware
2033 * virtualization can't virtualize them.
2035 * Catch all the cases which might cause us to create more than one
2036 * address space for the CPU (otherwise we will assert() later in
2037 * cpu_address_space_init()).
2039 if (arm_feature(env
, ARM_FEATURE_M
)) {
2041 "Cannot enable %s when using an M-profile guest CPU",
2042 current_accel_name());
2047 "Cannot enable %s when guest CPU has EL3 enabled",
2048 current_accel_name());
2051 if (cpu
->tag_memory
) {
2053 "Cannot enable %s when guest CPUs has MTE enabled",
2054 current_accel_name());
2060 uint64_t scale
= gt_cntfrq_period_ns(cpu
);
2062 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
2063 arm_gt_ptimer_cb
, cpu
);
2064 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
2065 arm_gt_vtimer_cb
, cpu
);
2066 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
2067 arm_gt_htimer_cb
, cpu
);
2068 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
2069 arm_gt_stimer_cb
, cpu
);
2070 cpu
->gt_timer
[GTIMER_HYPVIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
2071 arm_gt_hvtimer_cb
, cpu
);
2075 cpu_exec_realizefn(cs
, &local_err
);
2076 if (local_err
!= NULL
) {
2077 error_propagate(errp
, local_err
);
2081 arm_cpu_finalize_features(cpu
, &local_err
);
2082 if (local_err
!= NULL
) {
2083 error_propagate(errp
, local_err
);
2087 #ifdef CONFIG_USER_ONLY
2089 * User mode relies on IC IVAU instructions to catch modification of
2092 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2093 * IC IVAU even if the emulated processor does not normally require it.
2095 cpu
->ctr
= FIELD_DP64(cpu
->ctr
, CTR_EL0
, DIC
, 0);
2098 if (arm_feature(env
, ARM_FEATURE_AARCH64
) &&
2099 cpu
->has_vfp
!= cpu
->has_neon
) {
2101 * This is an architectural requirement for AArch64; AArch32 is
2102 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2105 "AArch64 CPUs must have both VFP and Neon or neither");
2109 if (cpu
->has_vfp_d32
!= cpu
->has_neon
) {
2110 error_setg(errp
, "ARM CPUs must have both VFP-D32 and Neon or neither");
2114 if (!cpu
->has_vfp_d32
) {
2117 u
= cpu
->isar
.mvfr0
;
2118 u
= FIELD_DP32(u
, MVFR0
, SIMDREG
, 1); /* 16 registers */
2119 cpu
->isar
.mvfr0
= u
;
2122 if (!cpu
->has_vfp
) {
2126 t
= cpu
->isar
.id_aa64isar1
;
2127 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 0);
2128 cpu
->isar
.id_aa64isar1
= t
;
2130 t
= cpu
->isar
.id_aa64pfr0
;
2131 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 0xf);
2132 cpu
->isar
.id_aa64pfr0
= t
;
2134 u
= cpu
->isar
.id_isar6
;
2135 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 0);
2136 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
2137 cpu
->isar
.id_isar6
= u
;
2139 u
= cpu
->isar
.mvfr0
;
2140 u
= FIELD_DP32(u
, MVFR0
, FPSP
, 0);
2141 u
= FIELD_DP32(u
, MVFR0
, FPDP
, 0);
2142 u
= FIELD_DP32(u
, MVFR0
, FPDIVIDE
, 0);
2143 u
= FIELD_DP32(u
, MVFR0
, FPSQRT
, 0);
2144 u
= FIELD_DP32(u
, MVFR0
, FPROUND
, 0);
2145 if (!arm_feature(env
, ARM_FEATURE_M
)) {
2146 u
= FIELD_DP32(u
, MVFR0
, FPTRAP
, 0);
2147 u
= FIELD_DP32(u
, MVFR0
, FPSHVEC
, 0);
2149 cpu
->isar
.mvfr0
= u
;
2151 u
= cpu
->isar
.mvfr1
;
2152 u
= FIELD_DP32(u
, MVFR1
, FPFTZ
, 0);
2153 u
= FIELD_DP32(u
, MVFR1
, FPDNAN
, 0);
2154 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 0);
2155 if (arm_feature(env
, ARM_FEATURE_M
)) {
2156 u
= FIELD_DP32(u
, MVFR1
, FP16
, 0);
2158 cpu
->isar
.mvfr1
= u
;
2160 u
= cpu
->isar
.mvfr2
;
2161 u
= FIELD_DP32(u
, MVFR2
, FPMISC
, 0);
2162 cpu
->isar
.mvfr2
= u
;
2165 if (!cpu
->has_neon
) {
2169 unset_feature(env
, ARM_FEATURE_NEON
);
2171 t
= cpu
->isar
.id_aa64isar0
;
2172 t
= FIELD_DP64(t
, ID_AA64ISAR0
, AES
, 0);
2173 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA1
, 0);
2174 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA2
, 0);
2175 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA3
, 0);
2176 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM3
, 0);
2177 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM4
, 0);
2178 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 0);
2179 cpu
->isar
.id_aa64isar0
= t
;
2181 t
= cpu
->isar
.id_aa64isar1
;
2182 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 0);
2183 t
= FIELD_DP64(t
, ID_AA64ISAR1
, BF16
, 0);
2184 t
= FIELD_DP64(t
, ID_AA64ISAR1
, I8MM
, 0);
2185 cpu
->isar
.id_aa64isar1
= t
;
2187 t
= cpu
->isar
.id_aa64pfr0
;
2188 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 0xf);
2189 cpu
->isar
.id_aa64pfr0
= t
;
2191 u
= cpu
->isar
.id_isar5
;
2192 u
= FIELD_DP32(u
, ID_ISAR5
, AES
, 0);
2193 u
= FIELD_DP32(u
, ID_ISAR5
, SHA1
, 0);
2194 u
= FIELD_DP32(u
, ID_ISAR5
, SHA2
, 0);
2195 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 0);
2196 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 0);
2197 cpu
->isar
.id_isar5
= u
;
2199 u
= cpu
->isar
.id_isar6
;
2200 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 0);
2201 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 0);
2202 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
2203 u
= FIELD_DP32(u
, ID_ISAR6
, I8MM
, 0);
2204 cpu
->isar
.id_isar6
= u
;
2206 if (!arm_feature(env
, ARM_FEATURE_M
)) {
2207 u
= cpu
->isar
.mvfr1
;
2208 u
= FIELD_DP32(u
, MVFR1
, SIMDLS
, 0);
2209 u
= FIELD_DP32(u
, MVFR1
, SIMDINT
, 0);
2210 u
= FIELD_DP32(u
, MVFR1
, SIMDSP
, 0);
2211 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 0);
2212 cpu
->isar
.mvfr1
= u
;
2214 u
= cpu
->isar
.mvfr2
;
2215 u
= FIELD_DP32(u
, MVFR2
, SIMDMISC
, 0);
2216 cpu
->isar
.mvfr2
= u
;
2220 if (!cpu
->has_neon
&& !cpu
->has_vfp
) {
2224 t
= cpu
->isar
.id_aa64isar0
;
2225 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 0);
2226 cpu
->isar
.id_aa64isar0
= t
;
2228 t
= cpu
->isar
.id_aa64isar1
;
2229 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 0);
2230 cpu
->isar
.id_aa64isar1
= t
;
2232 u
= cpu
->isar
.mvfr0
;
2233 u
= FIELD_DP32(u
, MVFR0
, SIMDREG
, 0);
2234 cpu
->isar
.mvfr0
= u
;
2236 /* Despite the name, this field covers both VFP and Neon */
2237 u
= cpu
->isar
.mvfr1
;
2238 u
= FIELD_DP32(u
, MVFR1
, SIMDFMAC
, 0);
2239 cpu
->isar
.mvfr1
= u
;
2242 if (arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_dsp
) {
2245 unset_feature(env
, ARM_FEATURE_THUMB_DSP
);
2247 u
= cpu
->isar
.id_isar1
;
2248 u
= FIELD_DP32(u
, ID_ISAR1
, EXTEND
, 1);
2249 cpu
->isar
.id_isar1
= u
;
2251 u
= cpu
->isar
.id_isar2
;
2252 u
= FIELD_DP32(u
, ID_ISAR2
, MULTU
, 1);
2253 u
= FIELD_DP32(u
, ID_ISAR2
, MULTS
, 1);
2254 cpu
->isar
.id_isar2
= u
;
2256 u
= cpu
->isar
.id_isar3
;
2257 u
= FIELD_DP32(u
, ID_ISAR3
, SIMD
, 1);
2258 u
= FIELD_DP32(u
, ID_ISAR3
, SATURATE
, 0);
2259 cpu
->isar
.id_isar3
= u
;
2264 * We rely on no XScale CPU having VFP so we can use the same bits in the
2265 * TB flags field for VECSTRIDE and XSCALE_CPAR.
2267 assert(arm_feature(env
, ARM_FEATURE_AARCH64
) ||
2268 !cpu_isar_feature(aa32_vfp_simd
, cpu
) ||
2269 !arm_feature(env
, ARM_FEATURE_XSCALE
));
2271 #ifndef CONFIG_USER_ONLY
2274 if (arm_feature(env
, ARM_FEATURE_V7
) &&
2275 !arm_feature(env
, ARM_FEATURE_M
) &&
2276 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
2278 * v7VMSA drops support for the old ARMv5 tiny pages,
2279 * so we can use 4K pages.
2284 * For CPUs which might have tiny 1K pages, or which have an
2285 * MPU and might have small region sizes, stick with 1K pages.
2289 if (!set_preferred_target_page_bits(pagebits
)) {
2291 * This can only ever happen for hotplugging a CPU, or if
2292 * the board code incorrectly creates a CPU which it has
2293 * promised via minimum_page_size that it will not.
2295 error_setg(errp
, "This CPU requires a smaller page size "
2296 "than the system is using");
2302 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2303 * We don't support setting cluster ID ([16..23]) (known as Aff2
2304 * in later ARM ARM versions), or any of the higher affinity level fields,
2305 * so these bits always RAZ.
2307 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
2308 cpu
->mp_affinity
= arm_build_mp_affinity(cs
->cpu_index
,
2309 ARM_DEFAULT_CPUS_PER_CLUSTER
);
2312 if (cpu
->reset_hivecs
) {
2313 cpu
->reset_sctlr
|= (1 << 13);
2317 if (arm_feature(env
, ARM_FEATURE_V7
)) {
2318 cpu
->reset_sctlr
|= SCTLR_EE
;
2320 cpu
->reset_sctlr
|= SCTLR_B
;
2324 if (!arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_el3
) {
2325 /* If the has_el3 CPU property is disabled then we need to disable the
2328 unset_feature(env
, ARM_FEATURE_EL3
);
2331 * Disable the security extension feature bits in the processor
2332 * feature registers as well.
2334 cpu
->isar
.id_pfr1
= FIELD_DP32(cpu
->isar
.id_pfr1
, ID_PFR1
, SECURITY
, 0);
2335 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, COPSDBG
, 0);
2336 cpu
->isar
.id_aa64pfr0
= FIELD_DP64(cpu
->isar
.id_aa64pfr0
,
2337 ID_AA64PFR0
, EL3
, 0);
2339 /* Disable the realm management extension, which requires EL3. */
2340 cpu
->isar
.id_aa64pfr0
= FIELD_DP64(cpu
->isar
.id_aa64pfr0
,
2341 ID_AA64PFR0
, RME
, 0);
2344 if (!cpu
->has_el2
) {
2345 unset_feature(env
, ARM_FEATURE_EL2
);
2348 if (!cpu
->has_pmu
) {
2349 unset_feature(env
, ARM_FEATURE_PMU
);
2351 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
2354 if (!kvm_enabled()) {
2355 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
2356 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
2359 #ifndef CONFIG_USER_ONLY
2360 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
2364 cpu
->isar
.id_aa64dfr0
=
2365 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMUVER
, 0);
2366 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, PERFMON
, 0);
2371 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
2373 * Disable the hypervisor feature bits in the processor feature
2374 * registers if we don't have EL2.
2376 cpu
->isar
.id_aa64pfr0
= FIELD_DP64(cpu
->isar
.id_aa64pfr0
,
2377 ID_AA64PFR0
, EL2
, 0);
2378 cpu
->isar
.id_pfr1
= FIELD_DP32(cpu
->isar
.id_pfr1
,
2379 ID_PFR1
, VIRTUALIZATION
, 0);
2382 if (cpu_isar_feature(aa64_mte
, cpu
)) {
2384 * The architectural range of GM blocksize is 2-6, however qemu
2385 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2387 if (tcg_enabled()) {
2388 assert(cpu
->gm_blocksize
>= 3 && cpu
->gm_blocksize
<= 6);
2391 #ifndef CONFIG_USER_ONLY
2393 * If we do not have tag-memory provided by the machine,
2394 * reduce MTE support to instructions enabled at EL0.
2395 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2397 if (cpu
->tag_memory
== NULL
) {
2398 cpu
->isar
.id_aa64pfr1
=
2399 FIELD_DP64(cpu
->isar
.id_aa64pfr1
, ID_AA64PFR1
, MTE
, 1);
2404 #ifndef CONFIG_USER_ONLY
2405 if (tcg_enabled() && cpu_isar_feature(aa64_wfxt
, cpu
)) {
2406 cpu
->wfxt_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2407 arm_wfxt_timer_cb
, cpu
);
2411 if (tcg_enabled()) {
2413 * Don't report some architectural features in the ID registers
2414 * where TCG does not yet implement it (not even a minimal
2415 * stub version). This avoids guests falling over when they
2416 * try to access the non-existent system registers for them.
2418 /* FEAT_SPE (Statistical Profiling Extension) */
2419 cpu
->isar
.id_aa64dfr0
=
2420 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMSVER
, 0);
2421 /* FEAT_TRBE (Trace Buffer Extension) */
2422 cpu
->isar
.id_aa64dfr0
=
2423 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, TRACEBUFFER
, 0);
2424 /* FEAT_TRF (Self-hosted Trace Extension) */
2425 cpu
->isar
.id_aa64dfr0
=
2426 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, TRACEFILT
, 0);
2428 FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, TRACEFILT
, 0);
2429 /* Trace Macrocell system register access */
2430 cpu
->isar
.id_aa64dfr0
=
2431 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, TRACEVER
, 0);
2433 FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, COPTRC
, 0);
2434 /* Memory mapped trace */
2436 FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, MMAPTRC
, 0);
2437 /* FEAT_AMU (Activity Monitors Extension) */
2438 cpu
->isar
.id_aa64pfr0
=
2439 FIELD_DP64(cpu
->isar
.id_aa64pfr0
, ID_AA64PFR0
, AMU
, 0);
2441 FIELD_DP32(cpu
->isar
.id_pfr0
, ID_PFR0
, AMU
, 0);
2442 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2443 cpu
->isar
.id_aa64pfr0
=
2444 FIELD_DP64(cpu
->isar
.id_aa64pfr0
, ID_AA64PFR0
, MPAM
, 0);
2447 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2448 * to false or by setting pmsav7-dregion to 0.
2450 if (!cpu
->has_mpu
|| cpu
->pmsav7_dregion
== 0) {
2451 cpu
->has_mpu
= false;
2452 cpu
->pmsav7_dregion
= 0;
2453 cpu
->pmsav8r_hdregion
= 0;
2456 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
2457 arm_feature(env
, ARM_FEATURE_V7
)) {
2458 uint32_t nr
= cpu
->pmsav7_dregion
;
2461 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
2466 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2468 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
2469 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
2470 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2471 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
2472 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
2475 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
2476 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
2477 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
2481 if (cpu
->pmsav8r_hdregion
> 0xff) {
2482 error_setg(errp
, "PMSAv8 MPU EL2 #regions invalid %" PRIu32
,
2483 cpu
->pmsav8r_hdregion
);
2487 if (cpu
->pmsav8r_hdregion
) {
2488 env
->pmsav8
.hprbar
= g_new0(uint32_t,
2489 cpu
->pmsav8r_hdregion
);
2490 env
->pmsav8
.hprlar
= g_new0(uint32_t,
2491 cpu
->pmsav8r_hdregion
);
2495 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2496 uint32_t nr
= cpu
->sau_sregion
;
2499 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
2504 env
->sau
.rbar
= g_new0(uint32_t, nr
);
2505 env
->sau
.rlar
= g_new0(uint32_t, nr
);
2509 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2510 set_feature(env
, ARM_FEATURE_VBAR
);
2513 #ifndef CONFIG_USER_ONLY
2514 if (tcg_enabled() && cpu_isar_feature(aa64_rme
, cpu
)) {
2515 arm_register_el_change_hook(cpu
, >_rme_post_el_change
, 0);
2519 register_cp_regs_for_features(cpu
);
2520 arm_cpu_register_gdb_regs_for_features(cpu
);
2521 arm_cpu_register_gdb_commands(cpu
);
2523 init_cpreg_list(cpu
);
2525 #ifndef CONFIG_USER_ONLY
2526 MachineState
*ms
= MACHINE(qdev_get_machine());
2527 unsigned int smp_cpus
= ms
->smp
.cpus
;
2528 bool has_secure
= cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
);
2531 * We must set cs->num_ases to the final value before
2532 * the first call to cpu_address_space_init.
2534 if (cpu
->tag_memory
!= NULL
) {
2535 cs
->num_ases
= 3 + has_secure
;
2537 cs
->num_ases
= 1 + has_secure
;
2541 if (!cpu
->secure_memory
) {
2542 cpu
->secure_memory
= cs
->memory
;
2544 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
2545 cpu
->secure_memory
);
2548 if (cpu
->tag_memory
!= NULL
) {
2549 cpu_address_space_init(cs
, ARMASIdx_TagNS
, "cpu-tag-memory",
2552 cpu_address_space_init(cs
, ARMASIdx_TagS
, "cpu-tag-memory",
2553 cpu
->secure_tag_memory
);
2557 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
2559 /* No core_count specified, default to smp_cpus. */
2560 if (cpu
->core_count
== -1) {
2561 cpu
->core_count
= smp_cpus
;
2565 if (tcg_enabled()) {
2566 int dcz_blocklen
= 4 << cpu
->dcz_blocksize
;
2569 * We only support DCZ blocklen that fits on one page.
2571 * Architectually this is always true. However TARGET_PAGE_SIZE
2572 * is variable and, for compatibility with -machine virt-2.7,
2573 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2574 * But even then, while the largest architectural DCZ blocklen
2575 * is 2KiB, no cpu actually uses such a large blocklen.
2577 assert(dcz_blocklen
<= TARGET_PAGE_SIZE
);
2580 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2581 * both nibbles of each byte storing tag data may be written at once.
2582 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2584 if (cpu_isar_feature(aa64_mte
, cpu
)) {
2585 assert(dcz_blocklen
>= 2 * TAG_GRANULE
);
2592 acc
->parent_realize(dev
, errp
);
2595 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
2600 const char *cpunamestr
;
2602 cpuname
= g_strsplit(cpu_model
, ",", 1);
2603 cpunamestr
= cpuname
[0];
2604 #ifdef CONFIG_USER_ONLY
2605 /* For backwards compatibility usermode emulation allows "-cpu any",
2606 * which has the same semantics as "-cpu max".
2608 if (!strcmp(cpunamestr
, "any")) {
2612 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
2613 oc
= object_class_by_name(typename
);
2614 g_strfreev(cpuname
);
2620 static Property arm_cpu_properties
[] = {
2621 DEFINE_PROP_UINT64("midr", ARMCPU
, midr
, 0),
2622 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2623 mp_affinity
, ARM64_AFFINITY_INVALID
),
2624 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2625 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2626 /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2627 DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU
, backcompat_cntfrq
, false),
2628 DEFINE_PROP_END_OF_LIST()
2631 static const gchar
*arm_gdb_arch_name(CPUState
*cs
)
2633 ARMCPU
*cpu
= ARM_CPU(cs
);
2634 CPUARMState
*env
= &cpu
->env
;
2636 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2642 #ifndef CONFIG_USER_ONLY
2643 #include "hw/core/sysemu-cpu-ops.h"
2645 static const struct SysemuCPUOps arm_sysemu_ops
= {
2646 .get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
,
2647 .asidx_from_attrs
= arm_asidx_from_attrs
,
2648 .write_elf32_note
= arm_cpu_write_elf32_note
,
2649 .write_elf64_note
= arm_cpu_write_elf64_note
,
2650 .virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
,
2651 .legacy_vmsd
= &vmstate_arm_cpu
,
2656 static const TCGCPUOps arm_tcg_ops
= {
2657 .initialize
= arm_translate_init
,
2658 .synchronize_from_tb
= arm_cpu_synchronize_from_tb
,
2659 .debug_excp_handler
= arm_debug_excp_handler
,
2660 .restore_state_to_opc
= arm_restore_state_to_opc
,
2662 #ifdef CONFIG_USER_ONLY
2663 .record_sigsegv
= arm_cpu_record_sigsegv
,
2664 .record_sigbus
= arm_cpu_record_sigbus
,
2666 .tlb_fill_align
= arm_cpu_tlb_fill_align
,
2667 .cpu_exec_interrupt
= arm_cpu_exec_interrupt
,
2668 .cpu_exec_halt
= arm_cpu_exec_halt
,
2669 .do_interrupt
= arm_cpu_do_interrupt
,
2670 .do_transaction_failed
= arm_cpu_do_transaction_failed
,
2671 .do_unaligned_access
= arm_cpu_do_unaligned_access
,
2672 .adjust_watchpoint_address
= arm_adjust_watchpoint_address
,
2673 .debug_check_watchpoint
= arm_debug_check_watchpoint
,
2674 .debug_check_breakpoint
= arm_debug_check_breakpoint
,
2675 #endif /* !CONFIG_USER_ONLY */
2677 #endif /* CONFIG_TCG */
2679 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2681 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2682 CPUClass
*cc
= CPU_CLASS(acc
);
2683 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2684 ResettableClass
*rc
= RESETTABLE_CLASS(oc
);
2686 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2687 &acc
->parent_realize
);
2689 device_class_set_props(dc
, arm_cpu_properties
);
2691 resettable_class_set_parent_phases(rc
, NULL
, arm_cpu_reset_hold
, NULL
,
2692 &acc
->parent_phases
);
2694 cc
->class_by_name
= arm_cpu_class_by_name
;
2695 cc
->has_work
= arm_cpu_has_work
;
2696 cc
->mmu_index
= arm_cpu_mmu_index
;
2697 cc
->dump_state
= arm_cpu_dump_state
;
2698 cc
->set_pc
= arm_cpu_set_pc
;
2699 cc
->get_pc
= arm_cpu_get_pc
;
2700 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2701 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2702 #ifndef CONFIG_USER_ONLY
2703 cc
->sysemu_ops
= &arm_sysemu_ops
;
2705 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2706 cc
->gdb_stop_before_watchpoint
= true;
2707 cc
->disas_set_info
= arm_disas_set_info
;
2710 cc
->tcg_ops
= &arm_tcg_ops
;
2711 #endif /* CONFIG_TCG */
2714 static void arm_cpu_instance_init(Object
*obj
)
2716 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2718 acc
->info
->initfn(obj
);
2719 arm_cpu_post_init(obj
);
2722 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2724 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2725 CPUClass
*cc
= CPU_CLASS(acc
);
2728 cc
->gdb_core_xml_file
= "arm-core.xml";
2731 void arm_cpu_register(const ARMCPUInfo
*info
)
2733 TypeInfo type_info
= {
2734 .parent
= TYPE_ARM_CPU
,
2735 .instance_init
= arm_cpu_instance_init
,
2736 .class_init
= info
->class_init
?: cpu_register_class_init
,
2737 .class_data
= (void *)info
,
2740 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2741 type_register(&type_info
);
2742 g_free((void *)type_info
.name
);
2745 static const TypeInfo arm_cpu_type_info
= {
2746 .name
= TYPE_ARM_CPU
,
2748 .instance_size
= sizeof(ARMCPU
),
2749 .instance_align
= __alignof__(ARMCPU
),
2750 .instance_init
= arm_cpu_initfn
,
2751 .instance_finalize
= arm_cpu_finalizefn
,
2753 .class_size
= sizeof(ARMCPUClass
),
2754 .class_init
= arm_cpu_class_init
,
2757 static void arm_cpu_register_types(void)
2759 type_register_static(&arm_cpu_type_info
);
2762 type_init(arm_cpu_register_types
)