Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / helper.c
blob0a731a38e8f4a3404d454863cd5b4d895aa217e2
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* for crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
37 static void switch_mode(CPUARMState *env, int mode);
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
41 assert(ri->fieldoffset);
42 if (cpreg_field_is_64bit(ri)) {
43 return CPREG_FIELD64(env, ri);
44 } else {
45 return CPREG_FIELD32(env, ri);
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
51 assert(ri->fieldoffset);
52 if (cpreg_field_is_64bit(ri)) {
53 CPREG_FIELD64(env, ri) = value;
54 } else {
55 CPREG_FIELD32(env, ri) = value;
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
61 return (char *)env + ri->fieldoffset;
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
66 /* Raw read of a coprocessor register (as needed for migration, etc). */
67 if (ri->type & ARM_CP_CONST) {
68 return ri->resetvalue;
69 } else if (ri->raw_readfn) {
70 return ri->raw_readfn(env, ri);
71 } else if (ri->readfn) {
72 return ri->readfn(env, ri);
73 } else {
74 return raw_read(env, ri);
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79 uint64_t v)
82 * Raw write of a coprocessor register (as needed for migration, etc).
83 * Note that constant registers are treated as write-ignored; the
84 * caller should check for success by whether a readback gives the
85 * value written.
87 if (ri->type & ARM_CP_CONST) {
88 return;
89 } else if (ri->raw_writefn) {
90 ri->raw_writefn(env, ri, v);
91 } else if (ri->writefn) {
92 ri->writefn(env, ri, v);
93 } else {
94 raw_write(env, ri, v);
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
101 * Return true if the regdef would cause an assertion if you called
102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103 * program bug for it not to have the NO_RAW flag).
104 * NB that returning false here doesn't necessarily mean that calling
105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106 * read/write access functions which are safe for raw use" from "has
107 * read/write access functions which have side effects but has forgotten
108 * to provide raw access functions".
109 * The tests here line up with the conditions in read/write_raw_cp_reg()
110 * and assertions in raw_read()/raw_write().
112 if ((ri->type & ARM_CP_CONST) ||
113 ri->fieldoffset ||
114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115 return false;
117 return true;
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
122 /* Write the coprocessor state from cpu->env to the (index,value) list. */
123 int i;
124 bool ok = true;
126 for (i = 0; i < cpu->cpreg_array_len; i++) {
127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128 const ARMCPRegInfo *ri;
129 uint64_t newval;
131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132 if (!ri) {
133 ok = false;
134 continue;
136 if (ri->type & ARM_CP_NO_RAW) {
137 continue;
140 newval = read_raw_cp_reg(&cpu->env, ri);
141 if (kvm_sync) {
143 * Only sync if the previous list->cpustate sync succeeded.
144 * Rather than tracking the success/failure state for every
145 * item in the list, we just recheck "does the raw write we must
146 * have made in write_list_to_cpustate() read back OK" here.
148 uint64_t oldval = cpu->cpreg_values[i];
150 if (oldval == newval) {
151 continue;
154 write_raw_cp_reg(&cpu->env, ri, oldval);
155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156 continue;
159 write_raw_cp_reg(&cpu->env, ri, newval);
161 cpu->cpreg_values[i] = newval;
163 return ok;
166 bool write_list_to_cpustate(ARMCPU *cpu)
168 int i;
169 bool ok = true;
171 for (i = 0; i < cpu->cpreg_array_len; i++) {
172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173 uint64_t v = cpu->cpreg_values[i];
174 const ARMCPRegInfo *ri;
176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (!ri) {
178 ok = false;
179 continue;
181 if (ri->type & ARM_CP_NO_RAW) {
182 continue;
185 * Write value and confirm it reads back as written
186 * (to catch read-only registers and partially read-only
187 * registers where the incoming migration value doesn't match)
189 write_raw_cp_reg(&cpu->env, ri, v);
190 if (read_raw_cp_reg(&cpu->env, ri) != v) {
191 ok = false;
194 return ok;
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
199 ARMCPU *cpu = opaque;
200 uint32_t regidx = (uintptr_t)key;
201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205 /* The value array need not be initialized at this point */
206 cpu->cpreg_array_len++;
210 static void count_cpreg(gpointer key, gpointer opaque)
212 ARMCPU *cpu = opaque;
213 const ARMCPRegInfo *ri;
215 ri = g_hash_table_lookup(cpu->cp_regs, key);
217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218 cpu->cpreg_array_len++;
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
227 if (aidx > bidx) {
228 return 1;
230 if (aidx < bidx) {
231 return -1;
233 return 0;
236 void init_cpreg_list(ARMCPU *cpu)
239 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240 * Note that we require cpreg_tuples[] to be sorted by key ID.
242 GList *keys;
243 int arraylen;
245 keys = g_hash_table_get_keys(cpu->cp_regs);
246 keys = g_list_sort(keys, cpreg_key_compare);
248 cpu->cpreg_array_len = 0;
250 g_list_foreach(keys, count_cpreg, cpu);
252 arraylen = cpu->cpreg_array_len;
253 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258 cpu->cpreg_array_len = 0;
260 g_list_foreach(keys, add_cpreg_to_list, cpu);
262 assert(cpu->cpreg_array_len == arraylen);
264 g_list_free(keys);
267 static bool arm_pan_enabled(CPUARMState *env)
269 if (is_a64(env)) {
270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271 return false;
273 return env->pstate & PSTATE_PAN;
274 } else {
275 return env->uncached_cpsr & CPSR_PAN;
280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283 const ARMCPRegInfo *ri,
284 bool isread)
286 if (!is_a64(env) && arm_current_el(env) == 3 &&
287 arm_is_secure_below_el3(env)) {
288 return CP_ACCESS_TRAP_UNCATEGORIZED;
290 return CP_ACCESS_OK;
294 * Some secure-only AArch32 registers trap to EL3 if used from
295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297 * We assume that the .access field is set to PL1_RW.
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300 const ARMCPRegInfo *ri,
301 bool isread)
303 if (arm_current_el(env) == 3) {
304 return CP_ACCESS_OK;
306 if (arm_is_secure_below_el3(env)) {
307 if (env->cp15.scr_el3 & SCR_EEL2) {
308 return CP_ACCESS_TRAP_EL2;
310 return CP_ACCESS_TRAP_EL3;
312 /* This will be EL1 NS and EL2 NS, which just UNDEF */
313 return CP_ACCESS_TRAP_UNCATEGORIZED;
317 * Check for traps to performance monitor registers, which are controlled
318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321 bool isread)
323 int el = arm_current_el(env);
324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327 return CP_ACCESS_TRAP_EL2;
329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330 return CP_ACCESS_TRAP_EL3;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1) {
340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341 if (arm_hcr_el2_eff(env) & trap) {
342 return CP_ACCESS_TRAP_EL2;
345 return CP_ACCESS_OK;
348 /* Check for traps from EL1 due to HCR_EL2.TSW. */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350 bool isread)
352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353 return CP_ACCESS_TRAP_EL2;
355 return CP_ACCESS_OK;
358 /* Check for traps from EL1 due to HCR_EL2.TACR. */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360 bool isread)
362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363 return CP_ACCESS_TRAP_EL2;
365 return CP_ACCESS_OK;
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370 bool isread)
372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373 return CP_ACCESS_TRAP_EL2;
375 return CP_ACCESS_OK;
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380 bool isread)
382 if (arm_current_el(env) == 1 &&
383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384 return CP_ACCESS_TRAP_EL2;
386 return CP_ACCESS_OK;
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
394 if (arm_current_el(env) == 1 &&
395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396 return CP_ACCESS_TRAP_EL2;
398 return CP_ACCESS_OK;
400 #endif
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
404 ARMCPU *cpu = env_archcpu(env);
406 raw_write(env, ri, value);
407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
412 ARMCPU *cpu = env_archcpu(env);
414 if (raw_read(env, ri) != value) {
416 * Unlike real hardware the qemu TLB uses virtual addresses,
417 * not modified virtual addresses, so this causes a TLB flush.
419 tlb_flush(CPU(cpu));
420 raw_write(env, ri, value);
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
427 ARMCPU *cpu = env_archcpu(env);
429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430 && !extended_addresses_enabled(env)) {
432 * For VMSA (when not using the LPAE long descriptor page table
433 * format) this register includes the ASID, so do a TLB flush.
434 * For PMSA it is purely a process ID and no action is needed.
436 tlb_flush(CPU(cpu));
438 raw_write(env, ri, value);
441 static int alle1_tlbmask(CPUARMState *env)
444 * Note that the 'ALL' scope must invalidate both stage 1 and
445 * stage 2 translations, whereas most other scopes only invalidate
446 * stage 1 translations.
448 return (ARMMMUIdxBit_E10_1 |
449 ARMMMUIdxBit_E10_1_PAN |
450 ARMMMUIdxBit_E10_0 |
451 ARMMMUIdxBit_Stage2 |
452 ARMMMUIdxBit_Stage2_S);
456 /* IS variants of TLB operations must affect all cores */
457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
460 CPUState *cs = env_cpu(env);
462 tlb_flush_all_cpus_synced(cs);
465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
468 CPUState *cs = env_cpu(env);
470 tlb_flush_all_cpus_synced(cs);
473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474 uint64_t value)
476 CPUState *cs = env_cpu(env);
478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
484 CPUState *cs = env_cpu(env);
486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
490 * Non-IS variants of TLB operations are upgraded to
491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492 * force broadcast of these operations.
494 static bool tlb_force_broadcast(CPUARMState *env)
496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 CPUState *cs = env_cpu(env);
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_all_cpus_synced(cs);
507 } else {
508 tlb_flush(cs);
512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516 CPUState *cs = env_cpu(env);
518 value &= TARGET_PAGE_MASK;
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_page_all_cpus_synced(cs, value);
521 } else {
522 tlb_flush_page(cs, value);
526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate by ASID (TLBIASID) */
530 CPUState *cs = env_cpu(env);
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_all_cpus_synced(cs);
534 } else {
535 tlb_flush(cs);
539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543 CPUState *cs = env_cpu(env);
545 value &= TARGET_PAGE_MASK;
546 if (tlb_force_broadcast(env)) {
547 tlb_flush_page_all_cpus_synced(cs, value);
548 } else {
549 tlb_flush_page(cs, value);
553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 CPUState *cs = env_cpu(env);
558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 CPUState *cs = env_cpu(env);
566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = env_cpu(env);
575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 CPUState *cs = env_cpu(env);
590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
598 CPUState *cs = env_cpu(env);
599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602 ARMMMUIdxBit_E2);
605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
608 CPUState *cs = env_cpu(env);
609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 uint64_t value)
617 CPUState *cs = env_cpu(env);
618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
623 static const ARMCPRegInfo cp_reginfo[] = {
625 * Define the secure and non-secure FCSE identifier CP registers
626 * separately because there is no secure bank in V8 (no _EL3). This allows
627 * the secure register to be properly reset and migrated. There is also no
628 * v8 EL1 version of the register so the non-secure instance stands alone.
630 { .name = "FCSEIDR",
631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635 { .name = "FCSEIDR_S",
636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
641 * Define the secure and non-secure context identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. In the
644 * non-secure case, the 32-bit register will have reset and migration
645 * disabled during registration as it is handled by the 64-bit instance.
647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649 .access = PL1_RW, .accessfn = access_tvm_trvm,
650 .fgt = FGT_CONTEXTIDR_EL1,
651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652 .secure = ARM_CP_SECSTATE_NS,
653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657 .access = PL1_RW, .accessfn = access_tvm_trvm,
658 .secure = ARM_CP_SECSTATE_S,
659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
665 * NB: Some of these registers exist in v8 but with more precise
666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
668 /* MMU Domain access control / MPU write buffer control */
669 { .name = "DACR",
670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672 .writefn = dacr_write, .raw_writefn = raw_write,
673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677 * For v6 and v5, these mappings are overly broad.
679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687 /* Cache maintenance ops; some of this space may be overridden later. */
688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
695 * Not all pre-v6 cores implemented this WFI, so this is slightly
696 * over-broad.
698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699 .access = PL1_W, .type = ARM_CP_WFI },
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705 * is UNPREDICTABLE; we choose to NOP as most implementations do).
707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708 .access = PL1_W, .type = ARM_CP_WFI },
710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712 * OMAPCP will override this space.
714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716 .resetvalue = 0 },
717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719 .resetvalue = 0 },
720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723 .resetvalue = 0 },
725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726 * implementing it as RAZ means the "debug architecture version" bits
727 * will read as a reserved value, which should cause Linux to not try
728 * to use the debug hardware.
730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
733 * MMU TLB control. Note that the wildcarding means we cover not just
734 * the unified TLB ops but also the dside/iside/inner-shareable variants.
736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738 .type = ARM_CP_NO_RAW },
739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741 .type = ARM_CP_NO_RAW },
742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744 .type = ARM_CP_NO_RAW },
745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747 .type = ARM_CP_NO_RAW },
748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755 uint64_t value)
757 uint32_t mask = 0;
759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760 if (!arm_feature(env, ARM_FEATURE_V8)) {
762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767 /* VFP coprocessor: cp10 & cp11 [23:20] */
768 mask |= R_CPACR_ASEDIS_MASK |
769 R_CPACR_D32DIS_MASK |
770 R_CPACR_CP11_MASK |
771 R_CPACR_CP10_MASK;
773 if (!arm_feature(env, ARM_FEATURE_NEON)) {
774 /* ASEDIS [31] bit is RAO/WI */
775 value |= R_CPACR_ASEDIS_MASK;
779 * VFPv3 and upwards with NEON implement 32 double precision
780 * registers (D0-D31).
782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784 value |= R_CPACR_D32DIS_MASK;
787 value &= mask;
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
800 env->cp15.cpacr_el1 = value;
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
809 uint64_t value = env->cp15.cpacr_el1;
811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
815 return value;
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
822 * Call cpacr_write() so that we reset with the correct RAO bits set
823 * for our CPU features.
825 cpacr_write(env, ri, 0);
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 &&
851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852 return CP_ACCESS_TRAP_EL3;
855 return CP_ACCESS_OK;
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859 /* prefetch by MVA in v6, NOP in v7 */
860 { .name = "MVA_prefetch",
861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862 .access = PL1_W, .type = ARM_CP_NOP },
864 * We need to break the TB after ISB to execute self-modifying code
865 * correctly and also to take any pending interrupts immediately.
866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873 .access = PL0_W, .type = ARM_CP_NOP },
874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875 .access = PL1_RW, .accessfn = access_tvm_trvm,
876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877 offsetof(CPUARMState, cp15.ifar_ns) },
878 .resetvalue = 0, },
880 * Watchpoint Fault Address Register : should actually only be present
881 * for 1136, 1176, 11MPCore.
883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887 .fgt = FGT_CPACR_EL1,
888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
893 typedef struct pm_event {
894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896 bool (*supported)(CPUARMState *);
898 * Retrieve the current count of the underlying event. The programmed
899 * counters hold a difference from the return value from this function
901 uint64_t (*get_count)(CPUARMState *);
903 * Return how many nanoseconds it will take (at a minimum) for count events
904 * to occur. A negative value indicates the counter will never overflow, or
905 * that the counter has otherwise arranged for the overflow bit to be set
906 * and the PMU interrupt to be raised on overflow.
908 int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
911 static bool event_always_supported(CPUARMState *env)
913 return true;
916 static uint64_t swinc_get_count(CPUARMState *env)
919 * SW_INCR events are written directly to the pmevcntr's by writes to
920 * PMSWINC, so there is no underlying count maintained by the PMU itself
922 return 0;
925 static int64_t swinc_ns_per(uint64_t ignored)
927 return -1;
931 * Return the underlying cycle count for the PMU cycle counters. If we're in
932 * usermode, simply return 0.
934 static uint64_t cycles_get_count(CPUARMState *env)
936 #ifndef CONFIG_USER_ONLY
937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940 return cpu_get_host_ticks();
941 #endif
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
950 static bool instructions_supported(CPUARMState *env)
952 /* Precise instruction counting */
953 return icount_enabled() == ICOUNT_PRECISE;
956 static uint64_t instructions_get_count(CPUARMState *env)
958 assert(icount_enabled() == ICOUNT_PRECISE);
959 return (uint64_t)icount_get_raw();
962 static int64_t instructions_ns_per(uint64_t icount)
964 assert(icount_enabled() == ICOUNT_PRECISE);
965 return icount_to_ns((int64_t)icount);
967 #endif
969 static bool pmuv3p1_events_supported(CPUARMState *env)
971 /* For events which are supported in any v8.1 PMU */
972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
975 static bool pmuv3p4_events_supported(CPUARMState *env)
977 /* For events which are supported in any v8.1 PMU */
978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
981 static uint64_t zero_event_get_count(CPUARMState *env)
983 /* For events which on QEMU never fire, so their count is always zero */
984 return 0;
987 static int64_t zero_event_ns_per(uint64_t cycles)
989 /* An event which never fires can never overflow */
990 return -1;
993 static const pm_event pm_events[] = {
994 { .number = 0x000, /* SW_INCR */
995 .supported = event_always_supported,
996 .get_count = swinc_get_count,
997 .ns_per_count = swinc_ns_per,
999 #ifndef CONFIG_USER_ONLY
1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001 .supported = instructions_supported,
1002 .get_count = instructions_get_count,
1003 .ns_per_count = instructions_ns_per,
1005 { .number = 0x011, /* CPU_CYCLES, Cycle */
1006 .supported = event_always_supported,
1007 .get_count = cycles_get_count,
1008 .ns_per_count = cycles_ns_per,
1010 #endif
1011 { .number = 0x023, /* STALL_FRONTEND */
1012 .supported = pmuv3p1_events_supported,
1013 .get_count = zero_event_get_count,
1014 .ns_per_count = zero_event_ns_per,
1016 { .number = 0x024, /* STALL_BACKEND */
1017 .supported = pmuv3p1_events_supported,
1018 .get_count = zero_event_get_count,
1019 .ns_per_count = zero_event_ns_per,
1021 { .number = 0x03c, /* STALL */
1022 .supported = pmuv3p4_events_supported,
1023 .get_count = zero_event_get_count,
1024 .ns_per_count = zero_event_ns_per,
1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030 * events (i.e. the statistical profiling extension), this implementation
1031 * should first be updated to something sparse instead of the current
1032 * supported_event_map[] array.
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040 * of ARM event numbers to indices in our pm_events array.
1042 * Note: Events in the 0x40XX range are not currently supported.
1044 void pmu_init(ARMCPU *cpu)
1046 unsigned int i;
1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050 * events to them
1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053 supported_event_map[i] = UNSUPPORTED_EVENT;
1055 cpu->pmceid0 = 0;
1056 cpu->pmceid1 = 0;
1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059 const pm_event *cnt = &pm_events[i];
1060 assert(cnt->number <= MAX_EVENT_ID);
1061 /* We do not currently support events in the 0x40xx range */
1062 assert(cnt->number <= 0x3f);
1064 if (cnt->supported(&cpu->env)) {
1065 supported_event_map[cnt->number] = i;
1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067 if (cnt->number & 0x20) {
1068 cpu->pmceid1 |= event_mask;
1069 } else {
1070 cpu->pmceid0 |= event_mask;
1077 * Check at runtime whether a PMU event is supported for the current machine
1079 static bool event_supported(uint16_t number)
1081 if (number > MAX_EVENT_ID) {
1082 return false;
1084 return supported_event_map[number] != UNSUPPORTED_EVENT;
1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088 bool isread)
1091 * Performance monitor registers user accessibility is controlled
1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093 * trapping to EL2 or EL3 for other accesses.
1095 int el = arm_current_el(env);
1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099 return CP_ACCESS_TRAP;
1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102 return CP_ACCESS_TRAP_EL2;
1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105 return CP_ACCESS_TRAP_EL3;
1108 return CP_ACCESS_OK;
1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112 const ARMCPRegInfo *ri,
1113 bool isread)
1115 /* ER: event counter read trap control */
1116 if (arm_feature(env, ARM_FEATURE_V8)
1117 && arm_current_el(env) == 0
1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119 && isread) {
1120 return CP_ACCESS_OK;
1123 return pmreg_access(env, ri, isread);
1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127 const ARMCPRegInfo *ri,
1128 bool isread)
1130 /* SW: software increment write trap control */
1131 if (arm_feature(env, ARM_FEATURE_V8)
1132 && arm_current_el(env) == 0
1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134 && !isread) {
1135 return CP_ACCESS_OK;
1138 return pmreg_access(env, ri, isread);
1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142 const ARMCPRegInfo *ri,
1143 bool isread)
1145 /* ER: event counter read trap control */
1146 if (arm_feature(env, ARM_FEATURE_V8)
1147 && arm_current_el(env) == 0
1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149 return CP_ACCESS_OK;
1152 return pmreg_access(env, ri, isread);
1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156 const ARMCPRegInfo *ri,
1157 bool isread)
1159 /* CR: cycle counter read trap control */
1160 if (arm_feature(env, ARM_FEATURE_V8)
1161 && arm_current_el(env) == 0
1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163 && isread) {
1164 return CP_ACCESS_OK;
1167 return pmreg_access(env, ri, isread);
1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172 * We use these to decide whether we need to wrap a write to MDCR_EL2
1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181 * the current EL, security state, and register configuration.
1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1185 uint64_t filter;
1186 bool e, p, u, nsk, nsu, nsh, m;
1187 bool enabled, prohibited = false, filtered;
1188 bool secure = arm_is_secure(env);
1189 int el = arm_current_el(env);
1190 uint64_t mdcr_el2;
1191 uint8_t hpmn;
1194 * We might be called for M-profile cores where MDCR_EL2 doesn't
1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1196 * must be before we read that value.
1198 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1199 return false;
1202 mdcr_el2 = arm_mdcr_el2_eff(env);
1203 hpmn = mdcr_el2 & MDCR_HPMN;
1205 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1206 (counter < hpmn || counter == 31)) {
1207 e = env->cp15.c9_pmcr & PMCRE;
1208 } else {
1209 e = mdcr_el2 & MDCR_HPME;
1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1213 /* Is event counting prohibited? */
1214 if (el == 2 && (counter < hpmn || counter == 31)) {
1215 prohibited = mdcr_el2 & MDCR_HPMD;
1217 if (secure) {
1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1221 if (counter == 31) {
1223 * The cycle counter defaults to running. PMCR.DP says "disable
1224 * the cycle counter when event counting is prohibited".
1225 * Some MDCR bits disable the cycle counter specifically.
1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1229 if (secure) {
1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1232 if (el == 2) {
1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1238 if (counter == 31) {
1239 filter = env->cp15.pmccfiltr_el0;
1240 } else {
1241 filter = env->cp15.c14_pmevtyper[counter];
1244 p = filter & PMXEVTYPER_P;
1245 u = filter & PMXEVTYPER_U;
1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1249 m = arm_el_is_aa64(env, 1) &&
1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1252 if (el == 0) {
1253 filtered = secure ? u : u != nsu;
1254 } else if (el == 1) {
1255 filtered = secure ? p : p != nsk;
1256 } else if (el == 2) {
1257 filtered = !nsh;
1258 } else { /* EL3 */
1259 filtered = m != p;
1262 if (counter != 31) {
1264 * If not checking PMCCNTR, ensure the counter is setup to an event we
1265 * support
1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1268 if (!event_supported(event)) {
1269 return false;
1273 return enabled && !prohibited && !filtered;
1276 static void pmu_update_irq(CPUARMState *env)
1278 ARMCPU *cpu = env_archcpu(env);
1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1286 * Return true if the clock divider is enabled and the cycle counter
1287 * is supposed to tick only once every 64 clock cycles. This is
1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1289 * (64-bit) cycle counter PMCR.D has no effect.
1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1296 /* Return true if the specified event counter is configured to be 64 bit */
1298 /* This isn't intended to be used with the cycle counter */
1299 assert(counter < 31);
1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1302 return false;
1305 if (arm_feature(env, ARM_FEATURE_EL2)) {
1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1308 * current security state, so we don't use arm_mdcr_el2_eff() here.
1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1313 if (counter >= hpmn) {
1314 return hlp;
1317 return env->cp15.c9_pmcr & PMCRLP;
1321 * Ensure c15_ccnt is the guest-visible count so that operations such as
1322 * enabling/disabling the counter or filtering, modifying the count itself,
1323 * etc. can be done logically. This is essentially a no-op if the counter is
1324 * not enabled at the time of the call.
1326 static void pmccntr_op_start(CPUARMState *env)
1328 uint64_t cycles = cycles_get_count(env);
1330 if (pmu_counter_enabled(env, 31)) {
1331 uint64_t eff_cycles = cycles;
1332 if (pmccntr_clockdiv_enabled(env)) {
1333 eff_cycles /= 64;
1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1339 1ull << 63 : 1ull << 31;
1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1341 env->cp15.c9_pmovsr |= (1ULL << 31);
1342 pmu_update_irq(env);
1345 env->cp15.c15_ccnt = new_pmccntr;
1347 env->cp15.c15_ccnt_delta = cycles;
1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1353 * pmccntr_op_start.
1355 static void pmccntr_op_finish(CPUARMState *env)
1357 if (pmu_counter_enabled(env, 31)) {
1358 #ifndef CONFIG_USER_ONLY
1359 /* Calculate when the counter will next overflow */
1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1361 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1362 remaining_cycles = (uint32_t)remaining_cycles;
1364 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1366 if (overflow_in > 0) {
1367 int64_t overflow_at;
1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1370 overflow_in, &overflow_at)) {
1371 ARMCPU *cpu = env_archcpu(env);
1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1375 #endif
1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1378 if (pmccntr_clockdiv_enabled(env)) {
1379 prev_cycles /= 64;
1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1389 uint64_t count = 0;
1390 if (event_supported(event)) {
1391 uint16_t event_idx = supported_event_map[event];
1392 count = pm_events[event_idx].get_count(env);
1395 if (pmu_counter_enabled(env, counter)) {
1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1398 1ULL << 63 : 1ULL << 31;
1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1401 env->cp15.c9_pmovsr |= (1 << counter);
1402 pmu_update_irq(env);
1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1406 env->cp15.c14_pmevcntr_delta[counter] = count;
1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1411 if (pmu_counter_enabled(env, counter)) {
1412 #ifndef CONFIG_USER_ONLY
1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1414 uint16_t event_idx = supported_event_map[event];
1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1416 int64_t overflow_in;
1418 if (!pmevcntr_is_64_bit(env, counter)) {
1419 delta = (uint32_t)delta;
1421 overflow_in = pm_events[event_idx].ns_per_count(delta);
1423 if (overflow_in > 0) {
1424 int64_t overflow_at;
1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1427 overflow_in, &overflow_at)) {
1428 ARMCPU *cpu = env_archcpu(env);
1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1432 #endif
1434 env->cp15.c14_pmevcntr_delta[counter] -=
1435 env->cp15.c14_pmevcntr[counter];
1439 void pmu_op_start(CPUARMState *env)
1441 unsigned int i;
1442 pmccntr_op_start(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_start(env, i);
1448 void pmu_op_finish(CPUARMState *env)
1450 unsigned int i;
1451 pmccntr_op_finish(env);
1452 for (i = 0; i < pmu_num_counters(env); i++) {
1453 pmevcntr_op_finish(env, i);
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1459 pmu_op_start(&cpu->env);
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1464 pmu_op_finish(&cpu->env);
1467 void arm_pmu_timer_cb(void *opaque)
1469 ARMCPU *cpu = opaque;
1472 * Update all the counter values based on the current underlying counts,
1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475 * counter may expire.
1477 pmu_op_start(&cpu->env);
1478 pmu_op_finish(&cpu->env);
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482 uint64_t value)
1484 pmu_op_start(env);
1486 if (value & PMCRC) {
1487 /* The counter has been reset */
1488 env->cp15.c15_ccnt = 0;
1491 if (value & PMCRP) {
1492 unsigned int i;
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 env->cp15.c14_pmevcntr[i] = 0;
1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1501 pmu_op_finish(env);
1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1506 uint64_t pmcr = env->cp15.c9_pmcr;
1509 * If EL2 is implemented and enabled for the current security state, reads
1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1513 pmcr &= ~PMCRN_MASK;
1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1517 return pmcr;
1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1523 unsigned int i;
1524 uint64_t overflow_mask, new_pmswinc;
1526 for (i = 0; i < pmu_num_counters(env); i++) {
1527 /* Increment a counter's count iff: */
1528 if ((value & (1 << i)) && /* counter's bit is set */
1529 /* counter is enabled and not filtered */
1530 pmu_counter_enabled(env, i) &&
1531 /* counter is SW_INCR */
1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1533 pmevcntr_op_start(env, i);
1536 * Detect if this write causes an overflow since we can't predict
1537 * PMSWINC overflows like we can for other events
1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1541 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1542 1ULL << 63 : 1ULL << 31;
1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1545 env->cp15.c9_pmovsr |= (1 << i);
1546 pmu_update_irq(env);
1549 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1551 pmevcntr_op_finish(env, i);
1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1558 uint64_t ret;
1559 pmccntr_op_start(env);
1560 ret = env->cp15.c15_ccnt;
1561 pmccntr_op_finish(env);
1562 return ret;
1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1572 * accessed.
1574 env->cp15.c9_pmselr = value & 0x1f;
1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1580 pmccntr_op_start(env);
1581 env->cp15.c15_ccnt = value;
1582 pmccntr_op_finish(env);
1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1588 uint64_t cur_val = pmccntr_read(env, NULL);
1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 pmccntr_op_start(env);
1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1598 pmccntr_op_finish(env);
1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1604 pmccntr_op_start(env);
1605 /* M is not accessible from AArch32 */
1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1607 (value & PMCCFILTR);
1608 pmccntr_op_finish(env);
1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1613 /* M is not visible in AArch32 */
1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1620 pmu_op_start(env);
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmcnten |= value;
1623 pmu_op_finish(env);
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value)
1629 pmu_op_start(env);
1630 value &= pmu_counter_mask(env);
1631 env->cp15.c9_pmcnten &= ~value;
1632 pmu_op_finish(env);
1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmovsr &= ~value;
1640 pmu_update_irq(env);
1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644 uint64_t value)
1646 value &= pmu_counter_mask(env);
1647 env->cp15.c9_pmovsr |= value;
1648 pmu_update_irq(env);
1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value, const uint8_t counter)
1654 if (counter == 31) {
1655 pmccfiltr_write(env, ri, value);
1656 } else if (counter < pmu_num_counters(env)) {
1657 pmevcntr_op_start(env, counter);
1660 * If this counter's event type is changing, store the current
1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1662 * pmevcntr_op_finish has the correct baseline when it converts back to
1663 * a delta.
1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1666 PMXEVTYPER_EVTCOUNT;
1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1668 if (old_event != new_event) {
1669 uint64_t count = 0;
1670 if (event_supported(new_event)) {
1671 uint16_t event_idx = supported_event_map[new_event];
1672 count = pm_events[event_idx].get_count(env);
1674 env->cp15.c14_pmevcntr_delta[counter] = count;
1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1678 pmevcntr_op_finish(env, counter);
1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1682 * PMSELR value is equal to or greater than the number of implemented
1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1688 const uint8_t counter)
1690 if (counter == 31) {
1691 return env->cp15.pmccfiltr_el0;
1692 } else if (counter < pmu_num_counters(env)) {
1693 return env->cp15.c14_pmevtyper[counter];
1694 } else {
1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1699 return 0;
1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1704 uint64_t value)
1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1707 pmevtyper_write(env, ri, value, counter);
1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1711 uint64_t value)
1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1714 env->cp15.c14_pmevtyper[counter] = value;
1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1718 * pmu_op_finish calls when loading saved state for a migration. Because
1719 * we're potentially updating the type of event here, the value written to
1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1721 * different counter type. Therefore, we need to set this value to the
1722 * current count for the counter type we're writing so that pmu_op_finish
1723 * has the correct count for its calculation.
1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1726 if (event_supported(event)) {
1727 uint16_t event_idx = supported_event_map[event];
1728 env->cp15.c14_pmevcntr_delta[counter] =
1729 pm_events[event_idx].get_count(env);
1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1736 return pmevtyper_read(env, ri, counter);
1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value, uint8_t counter)
1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1755 value &= MAKE_64BIT_MASK(0, 32);
1757 if (counter < pmu_num_counters(env)) {
1758 pmevcntr_op_start(env, counter);
1759 env->cp15.c14_pmevcntr[counter] = value;
1760 pmevcntr_op_finish(env, counter);
1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1764 * are CONSTRAINED UNPREDICTABLE.
1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint8_t counter)
1771 if (counter < pmu_num_counters(env)) {
1772 uint64_t ret;
1773 pmevcntr_op_start(env, counter);
1774 ret = env->cp15.c14_pmevcntr[counter];
1775 pmevcntr_op_finish(env, counter);
1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1778 ret &= MAKE_64BIT_MASK(0, 32);
1780 return ret;
1781 } else {
1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1784 * are CONSTRAINED UNPREDICTABLE.
1786 return 0;
1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794 pmevcntr_write(env, ri, value, counter);
1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800 return pmevcntr_read(env, ri, counter);
1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1804 uint64_t value)
1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807 assert(counter < pmu_num_counters(env));
1808 env->cp15.c14_pmevcntr[counter] = value;
1809 pmevcntr_write(env, ri, value, counter);
1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1815 assert(counter < pmu_num_counters(env));
1816 return env->cp15.c14_pmevcntr[counter];
1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820 uint64_t value)
1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831 uint64_t value)
1833 if (arm_feature(env, ARM_FEATURE_V8)) {
1834 env->cp15.c9_pmuserenr = value & 0xf;
1835 } else {
1836 env->cp15.c9_pmuserenr = value & 1;
1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 /* We have no event counters so only the C bit can be changed */
1844 value &= pmu_counter_mask(env);
1845 env->cp15.c9_pminten |= value;
1846 pmu_update_irq(env);
1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1852 value &= pmu_counter_mask(env);
1853 env->cp15.c9_pminten &= ~value;
1854 pmu_update_irq(env);
1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1861 * Note that even though the AArch64 view of this register has bits
1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863 * architectural requirements for bits which are RES0 only in some
1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1867 raw_write(env, ri, value & ~0x1FULL);
1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1872 /* Begin with base v8.0 state. */
1873 uint64_t valid_mask = 0x3fff;
1874 ARMCPU *cpu = env_archcpu(env);
1875 uint64_t changed;
1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1880 * Instead, choose the format based on the mode of EL3.
1882 if (arm_el_is_aa64(env, 3)) {
1883 value |= SCR_FW | SCR_AW; /* RES1 */
1884 valid_mask &= ~SCR_NET; /* RES0 */
1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1888 value |= SCR_RW; /* RAO/WI */
1890 if (cpu_isar_feature(aa64_ras, cpu)) {
1891 valid_mask |= SCR_TERR;
1893 if (cpu_isar_feature(aa64_lor, cpu)) {
1894 valid_mask |= SCR_TLOR;
1896 if (cpu_isar_feature(aa64_pauth, cpu)) {
1897 valid_mask |= SCR_API | SCR_APK;
1899 if (cpu_isar_feature(aa64_sel2, cpu)) {
1900 valid_mask |= SCR_EEL2;
1901 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1903 value |= SCR_NS;
1905 if (cpu_isar_feature(aa64_mte, cpu)) {
1906 valid_mask |= SCR_ATA;
1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1909 valid_mask |= SCR_ENSCXT;
1911 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1912 valid_mask |= SCR_EASE | SCR_NMEA;
1914 if (cpu_isar_feature(aa64_sme, cpu)) {
1915 valid_mask |= SCR_ENTP2;
1917 if (cpu_isar_feature(aa64_hcx, cpu)) {
1918 valid_mask |= SCR_HXEN;
1920 if (cpu_isar_feature(aa64_fgt, cpu)) {
1921 valid_mask |= SCR_FGTEN;
1923 if (cpu_isar_feature(aa64_rme, cpu)) {
1924 valid_mask |= SCR_NSE | SCR_GPF;
1926 if (cpu_isar_feature(aa64_ecv, cpu)) {
1927 valid_mask |= SCR_ECVEN;
1929 } else {
1930 valid_mask &= ~(SCR_RW | SCR_ST);
1931 if (cpu_isar_feature(aa32_ras, cpu)) {
1932 valid_mask |= SCR_TERR;
1936 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1937 valid_mask &= ~SCR_HCE;
1940 * On ARMv7, SMD (or SCD as it is called in v7) is only
1941 * supported if EL2 exists. The bit is UNK/SBZP when
1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1943 * when EL2 is unavailable.
1944 * On ARMv8, this bit is always available.
1946 if (arm_feature(env, ARM_FEATURE_V7) &&
1947 !arm_feature(env, ARM_FEATURE_V8)) {
1948 valid_mask &= ~SCR_SMD;
1952 /* Clear all-context RES0 bits. */
1953 value &= valid_mask;
1954 changed = env->cp15.scr_el3 ^ value;
1955 env->cp15.scr_el3 = value;
1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1959 * we must invalidate all TLBs below EL3.
1961 if (changed & (SCR_NS | SCR_NSE)) {
1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1963 ARMMMUIdxBit_E20_0 |
1964 ARMMMUIdxBit_E10_1 |
1965 ARMMMUIdxBit_E20_2 |
1966 ARMMMUIdxBit_E10_1_PAN |
1967 ARMMMUIdxBit_E20_2_PAN |
1968 ARMMMUIdxBit_E2));
1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1975 * scr_write will set the RES1 bits on an AArch64-only CPU.
1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1978 scr_write(env, ri, 0);
1981 static CPAccessResult access_tid4(CPUARMState *env,
1982 const ARMCPRegInfo *ri,
1983 bool isread)
1985 if (arm_current_el(env) == 1 &&
1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1987 return CP_ACCESS_TRAP_EL2;
1990 return CP_ACCESS_OK;
1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1995 ARMCPU *cpu = env_archcpu(env);
1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1999 * bank
2001 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2002 ri->secure & ARM_CP_SECSTATE_S);
2004 return cpu->ccsidr[index];
2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2008 uint64_t value)
2010 raw_write(env, ri, value & 0xf);
2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2015 CPUState *cs = env_cpu(env);
2016 bool el1 = arm_current_el(env) == 1;
2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2018 uint64_t ret = 0;
2020 if (hcr_el2 & HCR_IMO) {
2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2022 ret |= CPSR_I;
2024 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
2025 ret |= ISR_IS;
2026 ret |= CPSR_I;
2028 } else {
2029 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2030 ret |= CPSR_I;
2033 if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
2034 ret |= ISR_IS;
2035 ret |= CPSR_I;
2039 if (hcr_el2 & HCR_FMO) {
2040 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2041 ret |= CPSR_F;
2043 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
2044 ret |= ISR_FS;
2045 ret |= CPSR_F;
2047 } else {
2048 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2049 ret |= CPSR_F;
2053 if (hcr_el2 & HCR_AMO) {
2054 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2055 ret |= CPSR_A;
2059 return ret;
2062 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2063 bool isread)
2065 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2066 return CP_ACCESS_TRAP_EL2;
2069 return CP_ACCESS_OK;
2072 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2073 bool isread)
2075 if (arm_feature(env, ARM_FEATURE_V8)) {
2076 return access_aa64_tid1(env, ri, isread);
2079 return CP_ACCESS_OK;
2082 static const ARMCPRegInfo v7_cp_reginfo[] = {
2083 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2084 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2085 .access = PL1_W, .type = ARM_CP_NOP },
2087 * Performance monitors are implementation defined in v7,
2088 * but with an ARM recommended set of registers, which we
2089 * follow.
2091 * Performance registers fall into three categories:
2092 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2093 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2094 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2095 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2096 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2098 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2099 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2101 .writefn = pmcntenset_write,
2102 .accessfn = pmreg_access,
2103 .fgt = FGT_PMCNTEN,
2104 .raw_writefn = raw_write },
2105 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2107 .access = PL0_RW, .accessfn = pmreg_access,
2108 .fgt = FGT_PMCNTEN,
2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2110 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2111 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2112 .access = PL0_RW,
2113 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2114 .accessfn = pmreg_access,
2115 .fgt = FGT_PMCNTEN,
2116 .writefn = pmcntenclr_write,
2117 .type = ARM_CP_ALIAS | ARM_CP_IO },
2118 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2119 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2120 .access = PL0_RW, .accessfn = pmreg_access,
2121 .fgt = FGT_PMCNTEN,
2122 .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2124 .writefn = pmcntenclr_write },
2125 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2126 .access = PL0_RW, .type = ARM_CP_IO,
2127 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2128 .accessfn = pmreg_access,
2129 .fgt = FGT_PMOVS,
2130 .writefn = pmovsr_write,
2131 .raw_writefn = raw_write },
2132 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2134 .access = PL0_RW, .accessfn = pmreg_access,
2135 .fgt = FGT_PMOVS,
2136 .type = ARM_CP_ALIAS | ARM_CP_IO,
2137 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2138 .writefn = pmovsr_write,
2139 .raw_writefn = raw_write },
2140 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2141 .access = PL0_W, .accessfn = pmreg_access_swinc,
2142 .fgt = FGT_PMSWINC_EL0,
2143 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144 .writefn = pmswinc_write },
2145 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2146 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2147 .access = PL0_W, .accessfn = pmreg_access_swinc,
2148 .fgt = FGT_PMSWINC_EL0,
2149 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150 .writefn = pmswinc_write },
2151 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2152 .access = PL0_RW, .type = ARM_CP_ALIAS,
2153 .fgt = FGT_PMSELR_EL0,
2154 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2155 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2156 .raw_writefn = raw_write},
2157 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2159 .access = PL0_RW, .accessfn = pmreg_access_selr,
2160 .fgt = FGT_PMSELR_EL0,
2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2162 .writefn = pmselr_write, .raw_writefn = raw_write, },
2163 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2164 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2165 .fgt = FGT_PMCCNTR_EL0,
2166 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2167 .accessfn = pmreg_access_ccntr },
2168 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2170 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2171 .fgt = FGT_PMCCNTR_EL0,
2172 .type = ARM_CP_IO,
2173 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2174 .readfn = pmccntr_read, .writefn = pmccntr_write,
2175 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2176 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2177 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2178 .access = PL0_RW, .accessfn = pmreg_access,
2179 .fgt = FGT_PMCCFILTR_EL0,
2180 .type = ARM_CP_ALIAS | ARM_CP_IO,
2181 .resetvalue = 0, },
2182 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2184 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2185 .access = PL0_RW, .accessfn = pmreg_access,
2186 .fgt = FGT_PMCCFILTR_EL0,
2187 .type = ARM_CP_IO,
2188 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2189 .resetvalue = 0, },
2190 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2191 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2192 .accessfn = pmreg_access,
2193 .fgt = FGT_PMEVTYPERN_EL0,
2194 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2195 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2197 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2198 .accessfn = pmreg_access,
2199 .fgt = FGT_PMEVTYPERN_EL0,
2200 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2201 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2202 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2203 .accessfn = pmreg_access_xevcntr,
2204 .fgt = FGT_PMEVCNTRN_EL0,
2205 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2206 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2208 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2209 .accessfn = pmreg_access_xevcntr,
2210 .fgt = FGT_PMEVCNTRN_EL0,
2211 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2212 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2213 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2215 .resetvalue = 0,
2216 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2217 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2218 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2219 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2221 .resetvalue = 0,
2222 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2223 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2224 .access = PL1_RW, .accessfn = access_tpm,
2225 .fgt = FGT_PMINTEN,
2226 .type = ARM_CP_ALIAS | ARM_CP_IO,
2227 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2228 .resetvalue = 0,
2229 .writefn = pmintenset_write, .raw_writefn = raw_write },
2230 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2231 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2232 .access = PL1_RW, .accessfn = access_tpm,
2233 .fgt = FGT_PMINTEN,
2234 .type = ARM_CP_IO,
2235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2236 .writefn = pmintenset_write, .raw_writefn = raw_write,
2237 .resetvalue = 0x0 },
2238 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2239 .access = PL1_RW, .accessfn = access_tpm,
2240 .fgt = FGT_PMINTEN,
2241 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2242 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2243 .writefn = pmintenclr_write, },
2244 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2245 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2246 .access = PL1_RW, .accessfn = access_tpm,
2247 .fgt = FGT_PMINTEN,
2248 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2249 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2250 .writefn = pmintenclr_write },
2251 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2252 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2253 .access = PL1_R,
2254 .accessfn = access_tid4,
2255 .fgt = FGT_CCSIDR_EL1,
2256 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2257 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2258 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2259 .access = PL1_RW,
2260 .accessfn = access_tid4,
2261 .fgt = FGT_CSSELR_EL1,
2262 .writefn = csselr_write, .resetvalue = 0,
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2264 offsetof(CPUARMState, cp15.csselr_ns) } },
2266 * Auxiliary ID register: this actually has an IMPDEF value but for now
2267 * just RAZ for all cores:
2269 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2271 .access = PL1_R, .type = ARM_CP_CONST,
2272 .accessfn = access_aa64_tid1,
2273 .fgt = FGT_AIDR_EL1,
2274 .resetvalue = 0 },
2276 * Auxiliary fault status registers: these also are IMPDEF, and we
2277 * choose to RAZ/WI for all cores.
2279 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2280 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2281 .access = PL1_RW, .accessfn = access_tvm_trvm,
2282 .fgt = FGT_AFSR0_EL1,
2283 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2284 .type = ARM_CP_CONST, .resetvalue = 0 },
2285 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2286 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2287 .access = PL1_RW, .accessfn = access_tvm_trvm,
2288 .fgt = FGT_AFSR1_EL1,
2289 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2290 .type = ARM_CP_CONST, .resetvalue = 0 },
2292 * MAIR can just read-as-written because we don't implement caches
2293 * and so don't need to care about memory attributes.
2295 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2296 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2297 .access = PL1_RW, .accessfn = access_tvm_trvm,
2298 .fgt = FGT_MAIR_EL1,
2299 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2300 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2301 .resetvalue = 0 },
2302 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2303 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2304 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2305 .resetvalue = 0 },
2307 * For non-long-descriptor page tables these are PRRR and NMRR;
2308 * regardless they still act as reads-as-written for QEMU.
2311 * MAIR0/1 are defined separately from their 64-bit counterpart which
2312 * allows them to assign the correct fieldoffset based on the endianness
2313 * handled in the field definitions.
2315 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2316 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2317 .access = PL1_RW, .accessfn = access_tvm_trvm,
2318 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2319 offsetof(CPUARMState, cp15.mair0_ns) },
2320 .resetfn = arm_cp_reset_ignore },
2321 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2322 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2323 .access = PL1_RW, .accessfn = access_tvm_trvm,
2324 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2325 offsetof(CPUARMState, cp15.mair1_ns) },
2326 .resetfn = arm_cp_reset_ignore },
2327 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2328 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2329 .fgt = FGT_ISR_EL1,
2330 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2331 /* 32 bit ITLB invalidates */
2332 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2334 .writefn = tlbiall_write },
2335 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337 .writefn = tlbimva_write },
2338 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2340 .writefn = tlbiasid_write },
2341 /* 32 bit DTLB invalidates */
2342 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344 .writefn = tlbiall_write },
2345 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347 .writefn = tlbimva_write },
2348 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350 .writefn = tlbiasid_write },
2351 /* 32 bit TLB invalidates */
2352 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354 .writefn = tlbiall_write },
2355 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357 .writefn = tlbimva_write },
2358 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360 .writefn = tlbiasid_write },
2361 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363 .writefn = tlbimvaa_write },
2366 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2367 /* 32 bit TLB invalidates, Inner Shareable */
2368 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2370 .writefn = tlbiall_is_write },
2371 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2373 .writefn = tlbimva_is_write },
2374 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2376 .writefn = tlbiasid_is_write },
2377 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2379 .writefn = tlbimvaa_is_write },
2382 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2383 /* PMOVSSET is not implemented in v7 before v7ve */
2384 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2385 .access = PL0_RW, .accessfn = pmreg_access,
2386 .fgt = FGT_PMOVS,
2387 .type = ARM_CP_ALIAS | ARM_CP_IO,
2388 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2389 .writefn = pmovsset_write,
2390 .raw_writefn = raw_write },
2391 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2393 .access = PL0_RW, .accessfn = pmreg_access,
2394 .fgt = FGT_PMOVS,
2395 .type = ARM_CP_ALIAS | ARM_CP_IO,
2396 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2397 .writefn = pmovsset_write,
2398 .raw_writefn = raw_write },
2401 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2402 uint64_t value)
2404 value &= 1;
2405 env->teecr = value;
2408 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2409 bool isread)
2412 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2413 * at all, so we don't need to check whether we're v8A.
2415 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2416 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2417 return CP_ACCESS_TRAP_EL2;
2419 return CP_ACCESS_OK;
2422 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2423 bool isread)
2425 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2426 return CP_ACCESS_TRAP;
2428 return teecr_access(env, ri, isread);
2431 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2432 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2433 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2434 .resetvalue = 0,
2435 .writefn = teecr_write, .accessfn = teecr_access },
2436 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2437 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2438 .accessfn = teehbr_access, .resetvalue = 0 },
2441 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2442 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2443 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2444 .access = PL0_RW,
2445 .fgt = FGT_TPIDR_EL0,
2446 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2447 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2448 .access = PL0_RW,
2449 .fgt = FGT_TPIDR_EL0,
2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2451 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2452 .resetfn = arm_cp_reset_ignore },
2453 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2454 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2455 .access = PL0_R | PL1_W,
2456 .fgt = FGT_TPIDRRO_EL0,
2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2458 .resetvalue = 0},
2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2460 .access = PL0_R | PL1_W,
2461 .fgt = FGT_TPIDRRO_EL0,
2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2464 .resetfn = arm_cp_reset_ignore },
2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2467 .access = PL1_RW,
2468 .fgt = FGT_TPIDR_EL1,
2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2470 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2471 .access = PL1_RW,
2472 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2473 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2474 .resetvalue = 0 },
2477 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2479 ARMCPU *cpu = env_archcpu(env);
2481 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2484 #ifndef CONFIG_USER_ONLY
2486 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2487 bool isread)
2490 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2491 * Writable only at the highest implemented exception level.
2493 int el = arm_current_el(env);
2494 uint64_t hcr;
2495 uint32_t cntkctl;
2497 switch (el) {
2498 case 0:
2499 hcr = arm_hcr_el2_eff(env);
2500 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2501 cntkctl = env->cp15.cnthctl_el2;
2502 } else {
2503 cntkctl = env->cp15.c14_cntkctl;
2505 if (!extract32(cntkctl, 0, 2)) {
2506 return CP_ACCESS_TRAP;
2508 break;
2509 case 1:
2510 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2511 arm_is_secure_below_el3(env)) {
2512 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2513 return CP_ACCESS_TRAP_UNCATEGORIZED;
2515 break;
2516 case 2:
2517 case 3:
2518 break;
2521 if (!isread && el < arm_highest_el(env)) {
2522 return CP_ACCESS_TRAP_UNCATEGORIZED;
2525 return CP_ACCESS_OK;
2528 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2529 bool isread)
2531 unsigned int cur_el = arm_current_el(env);
2532 bool has_el2 = arm_is_el2_enabled(env);
2533 uint64_t hcr = arm_hcr_el2_eff(env);
2535 switch (cur_el) {
2536 case 0:
2537 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2538 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2539 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2540 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2543 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2544 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2545 return CP_ACCESS_TRAP;
2547 /* fall through */
2548 case 1:
2549 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2550 if (has_el2 && timeridx == GTIMER_PHYS &&
2551 (hcr & HCR_E2H
2552 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2553 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2554 return CP_ACCESS_TRAP_EL2;
2556 if (has_el2 && timeridx == GTIMER_VIRT) {
2557 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2558 return CP_ACCESS_TRAP_EL2;
2561 break;
2563 return CP_ACCESS_OK;
2566 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2567 bool isread)
2569 unsigned int cur_el = arm_current_el(env);
2570 bool has_el2 = arm_is_el2_enabled(env);
2571 uint64_t hcr = arm_hcr_el2_eff(env);
2573 switch (cur_el) {
2574 case 0:
2575 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2576 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2577 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2578 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2582 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2583 * EL0 if EL0[PV]TEN is zero.
2585 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2586 return CP_ACCESS_TRAP;
2588 /* fall through */
2590 case 1:
2591 if (has_el2 && timeridx == GTIMER_PHYS) {
2592 if (hcr & HCR_E2H) {
2593 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2594 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2595 return CP_ACCESS_TRAP_EL2;
2597 } else {
2598 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2599 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2600 return CP_ACCESS_TRAP_EL2;
2604 if (has_el2 && timeridx == GTIMER_VIRT) {
2605 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2606 return CP_ACCESS_TRAP_EL2;
2609 break;
2611 return CP_ACCESS_OK;
2614 static CPAccessResult gt_pct_access(CPUARMState *env,
2615 const ARMCPRegInfo *ri,
2616 bool isread)
2618 return gt_counter_access(env, GTIMER_PHYS, isread);
2621 static CPAccessResult gt_vct_access(CPUARMState *env,
2622 const ARMCPRegInfo *ri,
2623 bool isread)
2625 return gt_counter_access(env, GTIMER_VIRT, isread);
2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2629 bool isread)
2631 return gt_timer_access(env, GTIMER_PHYS, isread);
2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2635 bool isread)
2637 return gt_timer_access(env, GTIMER_VIRT, isread);
2640 static CPAccessResult gt_stimer_access(CPUARMState *env,
2641 const ARMCPRegInfo *ri,
2642 bool isread)
2645 * The AArch64 register view of the secure physical timer is
2646 * always accessible from EL3, and configurably accessible from
2647 * Secure EL1.
2649 switch (arm_current_el(env)) {
2650 case 1:
2651 if (!arm_is_secure(env)) {
2652 return CP_ACCESS_TRAP;
2654 if (!(env->cp15.scr_el3 & SCR_ST)) {
2655 return CP_ACCESS_TRAP_EL3;
2657 return CP_ACCESS_OK;
2658 case 0:
2659 case 2:
2660 return CP_ACCESS_TRAP;
2661 case 3:
2662 return CP_ACCESS_OK;
2663 default:
2664 g_assert_not_reached();
2668 uint64_t gt_get_countervalue(CPUARMState *env)
2670 ARMCPU *cpu = env_archcpu(env);
2672 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2675 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2677 CPUARMState *env = &cpu->env;
2678 uint64_t cnthctl = env->cp15.cnthctl_el2;
2679 ARMSecuritySpace ss = arm_security_space(env);
2680 /* ISTATUS && !IMASK */
2681 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2684 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2685 * It is RES0 in Secure and NonSecure state.
2687 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2688 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2689 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2690 irqstate = 0;
2693 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2694 trace_arm_gt_update_irq(timeridx, irqstate);
2697 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2700 * Changing security state between Root and Secure/NonSecure, which may
2701 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2702 * mask bits. Update the IRQ state accordingly.
2704 gt_update_irq(cpu, GTIMER_VIRT);
2705 gt_update_irq(cpu, GTIMER_PHYS);
2708 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2710 if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2711 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2712 arm_is_el2_enabled(env) &&
2713 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2714 return env->cp15.cntpoff_el2;
2716 return 0;
2719 static uint64_t gt_phys_cnt_offset(CPUARMState *env)
2721 if (arm_current_el(env) >= 2) {
2722 return 0;
2724 return gt_phys_raw_cnt_offset(env);
2727 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2729 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2731 if (gt->ctl & 1) {
2733 * Timer enabled: calculate and set current ISTATUS, irq, and
2734 * reset timer to when ISTATUS next has to change
2736 uint64_t offset = timeridx == GTIMER_VIRT ?
2737 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
2738 uint64_t count = gt_get_countervalue(&cpu->env);
2739 /* Note that this must be unsigned 64 bit arithmetic: */
2740 int istatus = count - offset >= gt->cval;
2741 uint64_t nexttick;
2743 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2745 if (istatus) {
2747 * Next transition is when (count - offset) rolls back over to 0.
2748 * If offset > count then this is when count == offset;
2749 * if offset <= count then this is when count == offset + 2^64
2750 * For the latter case we set nexttick to an "as far in future
2751 * as possible" value and let the code below handle it.
2753 if (offset > count) {
2754 nexttick = offset;
2755 } else {
2756 nexttick = UINT64_MAX;
2758 } else {
2760 * Next transition is when (count - offset) == cval, i.e.
2761 * when count == (cval + offset).
2762 * If that would overflow, then again we set up the next interrupt
2763 * for "as far in the future as possible" for the code below.
2765 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2766 nexttick = UINT64_MAX;
2770 * Note that the desired next expiry time might be beyond the
2771 * signed-64-bit range of a QEMUTimer -- in this case we just
2772 * set the timer for as far in the future as possible. When the
2773 * timer expires we will reset the timer for any remaining period.
2775 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2776 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2777 } else {
2778 timer_mod(cpu->gt_timer[timeridx], nexttick);
2780 trace_arm_gt_recalc(timeridx, nexttick);
2781 } else {
2782 /* Timer disabled: ISTATUS and timer output always clear */
2783 gt->ctl &= ~4;
2784 timer_del(cpu->gt_timer[timeridx]);
2785 trace_arm_gt_recalc_disabled(timeridx);
2787 gt_update_irq(cpu, timeridx);
2790 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2791 int timeridx)
2793 ARMCPU *cpu = env_archcpu(env);
2795 timer_del(cpu->gt_timer[timeridx]);
2798 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2800 return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
2803 uint64_t gt_virt_cnt_offset(CPUARMState *env)
2805 uint64_t hcr;
2807 switch (arm_current_el(env)) {
2808 case 2:
2809 hcr = arm_hcr_el2_eff(env);
2810 if (hcr & HCR_E2H) {
2811 return 0;
2813 break;
2814 case 0:
2815 hcr = arm_hcr_el2_eff(env);
2816 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2817 return 0;
2819 break;
2822 return env->cp15.cntvoff_el2;
2825 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2827 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2830 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2831 int timeridx,
2832 uint64_t value)
2834 trace_arm_gt_cval_write(timeridx, value);
2835 env->cp15.c14_timer[timeridx].cval = value;
2836 gt_recalc_timer(env_archcpu(env), timeridx);
2839 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2840 int timeridx)
2842 uint64_t offset = 0;
2844 switch (timeridx) {
2845 case GTIMER_VIRT:
2846 case GTIMER_HYPVIRT:
2847 offset = gt_virt_cnt_offset(env);
2848 break;
2849 case GTIMER_PHYS:
2850 offset = gt_phys_cnt_offset(env);
2851 break;
2854 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2855 (gt_get_countervalue(env) - offset));
2858 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 int timeridx,
2860 uint64_t value)
2862 uint64_t offset = 0;
2864 switch (timeridx) {
2865 case GTIMER_VIRT:
2866 case GTIMER_HYPVIRT:
2867 offset = gt_virt_cnt_offset(env);
2868 break;
2869 case GTIMER_PHYS:
2870 offset = gt_phys_cnt_offset(env);
2871 break;
2874 trace_arm_gt_tval_write(timeridx, value);
2875 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2876 sextract64(value, 0, 32);
2877 gt_recalc_timer(env_archcpu(env), timeridx);
2880 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881 int timeridx,
2882 uint64_t value)
2884 ARMCPU *cpu = env_archcpu(env);
2885 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2887 trace_arm_gt_ctl_write(timeridx, value);
2888 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2889 if ((oldval ^ value) & 1) {
2890 /* Enable toggled */
2891 gt_recalc_timer(cpu, timeridx);
2892 } else if ((oldval ^ value) & 2) {
2894 * IMASK toggled: don't need to recalculate,
2895 * just set the interrupt line based on ISTATUS
2897 trace_arm_gt_imask_toggle(timeridx);
2898 gt_update_irq(cpu, timeridx);
2902 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2904 gt_timer_reset(env, ri, GTIMER_PHYS);
2907 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2908 uint64_t value)
2910 gt_cval_write(env, ri, GTIMER_PHYS, value);
2913 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2915 return gt_tval_read(env, ri, GTIMER_PHYS);
2918 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919 uint64_t value)
2921 gt_tval_write(env, ri, GTIMER_PHYS, value);
2924 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2925 uint64_t value)
2927 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2930 static int gt_phys_redir_timeridx(CPUARMState *env)
2932 switch (arm_mmu_idx(env)) {
2933 case ARMMMUIdx_E20_0:
2934 case ARMMMUIdx_E20_2:
2935 case ARMMMUIdx_E20_2_PAN:
2936 return GTIMER_HYP;
2937 default:
2938 return GTIMER_PHYS;
2942 static int gt_virt_redir_timeridx(CPUARMState *env)
2944 switch (arm_mmu_idx(env)) {
2945 case ARMMMUIdx_E20_0:
2946 case ARMMMUIdx_E20_2:
2947 case ARMMMUIdx_E20_2_PAN:
2948 return GTIMER_HYPVIRT;
2949 default:
2950 return GTIMER_VIRT;
2954 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2955 const ARMCPRegInfo *ri)
2957 int timeridx = gt_phys_redir_timeridx(env);
2958 return env->cp15.c14_timer[timeridx].cval;
2961 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962 uint64_t value)
2964 int timeridx = gt_phys_redir_timeridx(env);
2965 gt_cval_write(env, ri, timeridx, value);
2968 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2969 const ARMCPRegInfo *ri)
2971 int timeridx = gt_phys_redir_timeridx(env);
2972 return gt_tval_read(env, ri, timeridx);
2975 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976 uint64_t value)
2978 int timeridx = gt_phys_redir_timeridx(env);
2979 gt_tval_write(env, ri, timeridx, value);
2982 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2983 const ARMCPRegInfo *ri)
2985 int timeridx = gt_phys_redir_timeridx(env);
2986 return env->cp15.c14_timer[timeridx].ctl;
2989 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2990 uint64_t value)
2992 int timeridx = gt_phys_redir_timeridx(env);
2993 gt_ctl_write(env, ri, timeridx, value);
2996 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2998 gt_timer_reset(env, ri, GTIMER_VIRT);
3001 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3002 uint64_t value)
3004 gt_cval_write(env, ri, GTIMER_VIRT, value);
3007 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3009 return gt_tval_read(env, ri, GTIMER_VIRT);
3012 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3013 uint64_t value)
3015 gt_tval_write(env, ri, GTIMER_VIRT, value);
3018 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019 uint64_t value)
3021 gt_ctl_write(env, ri, GTIMER_VIRT, value);
3024 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3025 uint64_t value)
3027 ARMCPU *cpu = env_archcpu(env);
3028 uint32_t oldval = env->cp15.cnthctl_el2;
3029 uint32_t valid_mask =
3030 R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3031 R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3032 R_CNTHCTL_EVNTEN_MASK |
3033 R_CNTHCTL_EVNTDIR_MASK |
3034 R_CNTHCTL_EVNTI_MASK |
3035 R_CNTHCTL_EL0VTEN_MASK |
3036 R_CNTHCTL_EL0PTEN_MASK |
3037 R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3038 R_CNTHCTL_EL1PTEN_MASK;
3040 if (cpu_isar_feature(aa64_rme, cpu)) {
3041 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3043 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3044 valid_mask |=
3045 R_CNTHCTL_EL1TVT_MASK |
3046 R_CNTHCTL_EL1TVCT_MASK |
3047 R_CNTHCTL_EL1NVPCT_MASK |
3048 R_CNTHCTL_EL1NVVCT_MASK |
3049 R_CNTHCTL_EVNTIS_MASK;
3051 if (cpu_isar_feature(aa64_ecv, cpu)) {
3052 valid_mask |= R_CNTHCTL_ECV_MASK;
3055 /* Clear RES0 bits */
3056 value &= valid_mask;
3058 raw_write(env, ri, value);
3060 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3061 gt_update_irq(cpu, GTIMER_VIRT);
3062 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3063 gt_update_irq(cpu, GTIMER_PHYS);
3067 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068 uint64_t value)
3070 ARMCPU *cpu = env_archcpu(env);
3072 trace_arm_gt_cntvoff_write(value);
3073 raw_write(env, ri, value);
3074 gt_recalc_timer(cpu, GTIMER_VIRT);
3077 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3078 const ARMCPRegInfo *ri)
3080 int timeridx = gt_virt_redir_timeridx(env);
3081 return env->cp15.c14_timer[timeridx].cval;
3084 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3085 uint64_t value)
3087 int timeridx = gt_virt_redir_timeridx(env);
3088 gt_cval_write(env, ri, timeridx, value);
3091 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3092 const ARMCPRegInfo *ri)
3094 int timeridx = gt_virt_redir_timeridx(env);
3095 return gt_tval_read(env, ri, timeridx);
3098 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3099 uint64_t value)
3101 int timeridx = gt_virt_redir_timeridx(env);
3102 gt_tval_write(env, ri, timeridx, value);
3105 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3106 const ARMCPRegInfo *ri)
3108 int timeridx = gt_virt_redir_timeridx(env);
3109 return env->cp15.c14_timer[timeridx].ctl;
3112 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113 uint64_t value)
3115 int timeridx = gt_virt_redir_timeridx(env);
3116 gt_ctl_write(env, ri, timeridx, value);
3119 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3121 gt_timer_reset(env, ri, GTIMER_HYP);
3124 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3125 uint64_t value)
3127 gt_cval_write(env, ri, GTIMER_HYP, value);
3130 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3132 return gt_tval_read(env, ri, GTIMER_HYP);
3135 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3136 uint64_t value)
3138 gt_tval_write(env, ri, GTIMER_HYP, value);
3141 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142 uint64_t value)
3144 gt_ctl_write(env, ri, GTIMER_HYP, value);
3147 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3149 gt_timer_reset(env, ri, GTIMER_SEC);
3152 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153 uint64_t value)
3155 gt_cval_write(env, ri, GTIMER_SEC, value);
3158 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3160 return gt_tval_read(env, ri, GTIMER_SEC);
3163 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164 uint64_t value)
3166 gt_tval_write(env, ri, GTIMER_SEC, value);
3169 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3170 uint64_t value)
3172 gt_ctl_write(env, ri, GTIMER_SEC, value);
3175 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3177 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3180 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181 uint64_t value)
3183 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3186 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3188 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3191 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3192 uint64_t value)
3194 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3197 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198 uint64_t value)
3200 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3203 void arm_gt_ptimer_cb(void *opaque)
3205 ARMCPU *cpu = opaque;
3207 gt_recalc_timer(cpu, GTIMER_PHYS);
3210 void arm_gt_vtimer_cb(void *opaque)
3212 ARMCPU *cpu = opaque;
3214 gt_recalc_timer(cpu, GTIMER_VIRT);
3217 void arm_gt_htimer_cb(void *opaque)
3219 ARMCPU *cpu = opaque;
3221 gt_recalc_timer(cpu, GTIMER_HYP);
3224 void arm_gt_stimer_cb(void *opaque)
3226 ARMCPU *cpu = opaque;
3228 gt_recalc_timer(cpu, GTIMER_SEC);
3231 void arm_gt_hvtimer_cb(void *opaque)
3233 ARMCPU *cpu = opaque;
3235 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3238 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3240 * Note that CNTFRQ is purely reads-as-written for the benefit
3241 * of software; writing it doesn't actually change the timer frequency.
3242 * Our reset value matches the fixed frequency we implement the timer at.
3244 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3245 .type = ARM_CP_ALIAS,
3246 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3247 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3249 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3251 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3253 .resetfn = arm_gt_cntfrq_reset,
3255 /* overall control: mostly access permissions */
3256 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3257 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3258 .access = PL1_RW,
3259 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3260 .resetvalue = 0,
3262 /* per-timer control */
3263 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3264 .secure = ARM_CP_SECSTATE_NS,
3265 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3266 .accessfn = gt_ptimer_access,
3267 .fieldoffset = offsetoflow32(CPUARMState,
3268 cp15.c14_timer[GTIMER_PHYS].ctl),
3269 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3270 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3272 { .name = "CNTP_CTL_S",
3273 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3274 .secure = ARM_CP_SECSTATE_S,
3275 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3276 .accessfn = gt_ptimer_access,
3277 .fieldoffset = offsetoflow32(CPUARMState,
3278 cp15.c14_timer[GTIMER_SEC].ctl),
3279 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3281 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3283 .type = ARM_CP_IO, .access = PL0_RW,
3284 .accessfn = gt_ptimer_access,
3285 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3287 .resetvalue = 0,
3288 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3289 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3291 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3292 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3293 .accessfn = gt_vtimer_access,
3294 .fieldoffset = offsetoflow32(CPUARMState,
3295 cp15.c14_timer[GTIMER_VIRT].ctl),
3296 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3297 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3299 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3301 .type = ARM_CP_IO, .access = PL0_RW,
3302 .accessfn = gt_vtimer_access,
3303 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3305 .resetvalue = 0,
3306 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3307 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3309 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3310 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3311 .secure = ARM_CP_SECSTATE_NS,
3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3313 .accessfn = gt_ptimer_access,
3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3316 { .name = "CNTP_TVAL_S",
3317 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3318 .secure = ARM_CP_SECSTATE_S,
3319 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3320 .accessfn = gt_ptimer_access,
3321 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3323 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3326 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3327 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3329 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3330 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3331 .accessfn = gt_vtimer_access,
3332 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3334 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3336 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3337 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3338 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3340 /* The counter itself */
3341 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3342 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3343 .accessfn = gt_pct_access,
3344 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3346 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3347 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3348 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3349 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3351 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3352 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3353 .accessfn = gt_vct_access,
3354 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3356 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3358 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3359 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3361 /* Comparison value, indicating when the timer goes off */
3362 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3363 .secure = ARM_CP_SECSTATE_NS,
3364 .access = PL0_RW,
3365 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3367 .accessfn = gt_ptimer_access,
3368 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3369 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3371 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3372 .secure = ARM_CP_SECSTATE_S,
3373 .access = PL0_RW,
3374 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3375 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3376 .accessfn = gt_ptimer_access,
3377 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3379 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3380 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3381 .access = PL0_RW,
3382 .type = ARM_CP_IO,
3383 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3384 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3385 .resetvalue = 0, .accessfn = gt_ptimer_access,
3386 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3387 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3389 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3390 .access = PL0_RW,
3391 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3392 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3393 .accessfn = gt_vtimer_access,
3394 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3395 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3397 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3398 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3399 .access = PL0_RW,
3400 .type = ARM_CP_IO,
3401 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3402 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3403 .resetvalue = 0, .accessfn = gt_vtimer_access,
3404 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3405 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3408 * Secure timer -- this is actually restricted to only EL3
3409 * and configurably Secure-EL1 via the accessfn.
3411 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3412 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3413 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3414 .accessfn = gt_stimer_access,
3415 .readfn = gt_sec_tval_read,
3416 .writefn = gt_sec_tval_write,
3417 .resetfn = gt_sec_timer_reset,
3419 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3420 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3421 .type = ARM_CP_IO, .access = PL1_RW,
3422 .accessfn = gt_stimer_access,
3423 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3424 .resetvalue = 0,
3425 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3427 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3429 .type = ARM_CP_IO, .access = PL1_RW,
3430 .accessfn = gt_stimer_access,
3431 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3432 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3437 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3438 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3439 * so our implementations here are identical to the normal registers.
3441 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3442 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3443 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3444 .accessfn = gt_vct_access,
3445 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3447 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3449 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3450 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3452 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3453 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3454 .accessfn = gt_pct_access,
3455 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3457 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3459 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3460 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3464 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3465 const ARMCPRegInfo *ri,
3466 bool isread)
3468 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3469 !(env->cp15.scr_el3 & SCR_ECVEN)) {
3470 return CP_ACCESS_TRAP_EL3;
3472 return CP_ACCESS_OK;
3475 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3476 uint64_t value)
3478 ARMCPU *cpu = env_archcpu(env);
3480 trace_arm_gt_cntpoff_write(value);
3481 raw_write(env, ri, value);
3482 gt_recalc_timer(cpu, GTIMER_PHYS);
3485 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3486 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3487 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3488 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3489 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3490 .nv2_redirect_offset = 0x1a8,
3491 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3493 #else
3496 * In user-mode most of the generic timer registers are inaccessible
3497 * however modern kernels (4.12+) allow access to cntvct_el0
3500 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3502 ARMCPU *cpu = env_archcpu(env);
3505 * Currently we have no support for QEMUTimer in linux-user so we
3506 * can't call gt_get_countervalue(env), instead we directly
3507 * call the lower level functions.
3509 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3512 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3513 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3514 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3515 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3516 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3517 .resetfn = arm_gt_cntfrq_reset,
3519 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3521 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3522 .readfn = gt_virt_cnt_read,
3527 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3528 * is exposed to userspace by Linux.
3530 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3531 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3532 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3533 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3534 .readfn = gt_virt_cnt_read,
3538 #endif
3540 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3542 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3543 raw_write(env, ri, value);
3544 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3545 raw_write(env, ri, value & 0xfffff6ff);
3546 } else {
3547 raw_write(env, ri, value & 0xfffff1ff);
3551 #ifndef CONFIG_USER_ONLY
3552 /* get_phys_addr() isn't present for user-mode-only targets */
3554 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3555 bool isread)
3557 if (ri->opc2 & 4) {
3559 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3560 * Secure EL1 (which can only happen if EL3 is AArch64).
3561 * They are simply UNDEF if executed from NS EL1.
3562 * They function normally from EL2 or EL3.
3564 if (arm_current_el(env) == 1) {
3565 if (arm_is_secure_below_el3(env)) {
3566 if (env->cp15.scr_el3 & SCR_EEL2) {
3567 return CP_ACCESS_TRAP_EL2;
3569 return CP_ACCESS_TRAP_EL3;
3571 return CP_ACCESS_TRAP_UNCATEGORIZED;
3574 return CP_ACCESS_OK;
3577 #ifdef CONFIG_TCG
3578 static int par_el1_shareability(GetPhysAddrResult *res)
3581 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3582 * memory -- see pseudocode PAREncodeShareability().
3584 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3585 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3586 return 2;
3588 return res->cacheattrs.shareability;
3591 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3592 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3593 ARMSecuritySpace ss)
3595 bool ret;
3596 uint64_t par64;
3597 bool format64 = false;
3598 ARMMMUFaultInfo fi = {};
3599 GetPhysAddrResult res = {};
3602 * I_MXTJT: Granule protection checks are not performed on the final
3603 * address of a successful translation. This is a translation not a
3604 * memory reference, so "memop = none = 0".
3606 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0,
3607 mmu_idx, ss, &res, &fi);
3610 * ATS operations only do S1 or S1+S2 translations, so we never
3611 * have to deal with the ARMCacheAttrs format for S2 only.
3613 assert(!res.cacheattrs.is_s2_format);
3615 if (ret) {
3617 * Some kinds of translation fault must cause exceptions rather
3618 * than being reported in the PAR.
3620 int current_el = arm_current_el(env);
3621 int target_el;
3622 uint32_t syn, fsr, fsc;
3623 bool take_exc = false;
3625 if (fi.s1ptw && current_el == 1
3626 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3628 * Synchronous stage 2 fault on an access made as part of the
3629 * translation table walk for AT S1E0* or AT S1E1* insn
3630 * executed from NS EL1. If this is a synchronous external abort
3631 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3632 * to EL3. Otherwise the fault is taken as an exception to EL2,
3633 * and HPFAR_EL2 holds the faulting IPA.
3635 if (fi.type == ARMFault_SyncExternalOnWalk &&
3636 (env->cp15.scr_el3 & SCR_EA)) {
3637 target_el = 3;
3638 } else {
3639 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3640 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3641 env->cp15.hpfar_el2 |= HPFAR_NS;
3643 target_el = 2;
3645 take_exc = true;
3646 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3648 * Synchronous external aborts during a translation table walk
3649 * are taken as Data Abort exceptions.
3651 if (fi.stage2) {
3652 if (current_el == 3) {
3653 target_el = 3;
3654 } else {
3655 target_el = 2;
3657 } else {
3658 target_el = exception_target_el(env);
3660 take_exc = true;
3663 if (take_exc) {
3664 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3665 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3666 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3667 fsr = arm_fi_to_lfsc(&fi);
3668 fsc = extract32(fsr, 0, 6);
3669 } else {
3670 fsr = arm_fi_to_sfsc(&fi);
3671 fsc = 0x3f;
3674 * Report exception with ESR indicating a fault due to a
3675 * translation table walk for a cache maintenance instruction.
3677 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3678 fi.ea, 1, fi.s1ptw, 1, fsc);
3679 env->exception.vaddress = value;
3680 env->exception.fsr = fsr;
3681 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3685 if (is_a64(env)) {
3686 format64 = true;
3687 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3689 * ATS1Cxx:
3690 * * TTBCR.EAE determines whether the result is returned using the
3691 * 32-bit or the 64-bit PAR format
3692 * * Instructions executed in Hyp mode always use the 64bit format
3694 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3695 * * The Non-secure TTBCR.EAE bit is set to 1
3696 * * The implementation includes EL2, and the value of HCR.VM is 1
3698 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3700 * ATS1Hx always uses the 64bit format.
3702 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3704 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_aa32_secure_pl1_0(env)) {
3705 if (mmu_idx == ARMMMUIdx_E10_0 ||
3706 mmu_idx == ARMMMUIdx_E10_1 ||
3707 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3708 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3709 } else {
3710 format64 |= arm_current_el(env) == 2;
3715 if (format64) {
3716 /* Create a 64-bit PAR */
3717 par64 = (1 << 11); /* LPAE bit always set */
3718 if (!ret) {
3719 par64 |= res.f.phys_addr & ~0xfffULL;
3720 if (!res.f.attrs.secure) {
3721 par64 |= (1 << 9); /* NS */
3723 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3724 par64 |= par_el1_shareability(&res) << 7; /* SH */
3725 } else {
3726 uint32_t fsr = arm_fi_to_lfsc(&fi);
3728 par64 |= 1; /* F */
3729 par64 |= (fsr & 0x3f) << 1; /* FS */
3730 if (fi.stage2) {
3731 par64 |= (1 << 9); /* S */
3733 if (fi.s1ptw) {
3734 par64 |= (1 << 8); /* PTW */
3737 } else {
3739 * fsr is a DFSR/IFSR value for the short descriptor
3740 * translation table format (with WnR always clear).
3741 * Convert it to a 32-bit PAR.
3743 if (!ret) {
3744 /* We do not set any attribute bits in the PAR */
3745 if (res.f.lg_page_size == 24
3746 && arm_feature(env, ARM_FEATURE_V7)) {
3747 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3748 } else {
3749 par64 = res.f.phys_addr & 0xfffff000;
3751 if (!res.f.attrs.secure) {
3752 par64 |= (1 << 9); /* NS */
3754 } else {
3755 uint32_t fsr = arm_fi_to_sfsc(&fi);
3757 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3758 ((fsr & 0xf) << 1) | 1;
3761 return par64;
3763 #endif /* CONFIG_TCG */
3765 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3767 #ifdef CONFIG_TCG
3768 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3769 uint64_t par64;
3770 ARMMMUIdx mmu_idx;
3771 int el = arm_current_el(env);
3772 ARMSecuritySpace ss = arm_security_space(env);
3774 switch (ri->opc2 & 6) {
3775 case 0:
3776 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3777 switch (el) {
3778 case 2:
3779 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3780 /* fall through */
3781 case 1:
3782 case 3:
3783 if (ri->crm == 9 && arm_pan_enabled(env)) {
3784 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3785 } else {
3786 mmu_idx = ARMMMUIdx_Stage1_E1;
3788 break;
3789 default:
3790 g_assert_not_reached();
3792 break;
3793 case 2:
3794 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3795 switch (el) {
3796 case 3:
3797 mmu_idx = ARMMMUIdx_E10_0;
3798 break;
3799 case 2:
3800 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3801 mmu_idx = ARMMMUIdx_Stage1_E0;
3802 break;
3803 case 1:
3804 mmu_idx = ARMMMUIdx_Stage1_E0;
3805 break;
3806 default:
3807 g_assert_not_reached();
3809 break;
3810 case 4:
3811 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3812 mmu_idx = ARMMMUIdx_E10_1;
3813 ss = ARMSS_NonSecure;
3814 break;
3815 case 6:
3816 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3817 mmu_idx = ARMMMUIdx_E10_0;
3818 ss = ARMSS_NonSecure;
3819 break;
3820 default:
3821 g_assert_not_reached();
3824 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3826 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3827 #else
3828 /* Handled by hardware accelerator. */
3829 g_assert_not_reached();
3830 #endif /* CONFIG_TCG */
3833 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834 uint64_t value)
3836 #ifdef CONFIG_TCG
3837 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3838 uint64_t par64;
3840 /* There is no SecureEL2 for AArch32. */
3841 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3842 ARMSS_NonSecure);
3844 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3845 #else
3846 /* Handled by hardware accelerator. */
3847 g_assert_not_reached();
3848 #endif /* CONFIG_TCG */
3851 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3852 bool isread)
3855 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3856 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3857 * only happen when executing at EL3 because that combination also causes an
3858 * illegal exception return. We don't need to check FEAT_RME either, because
3859 * scr_write() ensures that the NSE bit is not set otherwise.
3861 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3862 return CP_ACCESS_TRAP;
3864 return CP_ACCESS_OK;
3867 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3868 bool isread)
3870 if (arm_current_el(env) == 3 &&
3871 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3872 return CP_ACCESS_TRAP;
3874 return at_e012_access(env, ri, isread);
3877 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3878 bool isread)
3880 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3881 return CP_ACCESS_TRAP_EL2;
3883 return at_e012_access(env, ri, isread);
3886 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3887 uint64_t value)
3889 #ifdef CONFIG_TCG
3890 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3891 ARMMMUIdx mmu_idx;
3892 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3893 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3894 bool for_el3 = false;
3895 ARMSecuritySpace ss;
3897 switch (ri->opc2 & 6) {
3898 case 0:
3899 switch (ri->opc1) {
3900 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3901 if (ri->crm == 9 && arm_pan_enabled(env)) {
3902 mmu_idx = regime_e20 ?
3903 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3904 } else {
3905 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3907 break;
3908 case 4: /* AT S1E2R, AT S1E2W */
3909 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3910 break;
3911 case 6: /* AT S1E3R, AT S1E3W */
3912 mmu_idx = ARMMMUIdx_E3;
3913 for_el3 = true;
3914 break;
3915 default:
3916 g_assert_not_reached();
3918 break;
3919 case 2: /* AT S1E0R, AT S1E0W */
3920 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3921 break;
3922 case 4: /* AT S12E1R, AT S12E1W */
3923 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3924 break;
3925 case 6: /* AT S12E0R, AT S12E0W */
3926 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3927 break;
3928 default:
3929 g_assert_not_reached();
3932 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
3933 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
3934 #else
3935 /* Handled by hardware accelerator. */
3936 g_assert_not_reached();
3937 #endif /* CONFIG_TCG */
3939 #endif
3941 /* Return basic MPU access permission bits. */
3942 static uint32_t simple_mpu_ap_bits(uint32_t val)
3944 uint32_t ret;
3945 uint32_t mask;
3946 int i;
3947 ret = 0;
3948 mask = 3;
3949 for (i = 0; i < 16; i += 2) {
3950 ret |= (val >> i) & mask;
3951 mask <<= 2;
3953 return ret;
3956 /* Pad basic MPU access permission bits to extended format. */
3957 static uint32_t extended_mpu_ap_bits(uint32_t val)
3959 uint32_t ret;
3960 uint32_t mask;
3961 int i;
3962 ret = 0;
3963 mask = 3;
3964 for (i = 0; i < 16; i += 2) {
3965 ret |= (val & mask) << i;
3966 mask <<= 2;
3968 return ret;
3971 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3972 uint64_t value)
3974 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3977 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3979 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3982 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3983 uint64_t value)
3985 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3988 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3990 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3993 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3995 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3997 if (!u32p) {
3998 return 0;
4001 u32p += env->pmsav7.rnr[M_REG_NS];
4002 return *u32p;
4005 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
4006 uint64_t value)
4008 ARMCPU *cpu = env_archcpu(env);
4009 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4011 if (!u32p) {
4012 return;
4015 u32p += env->pmsav7.rnr[M_REG_NS];
4016 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4017 *u32p = value;
4020 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4021 uint64_t value)
4023 ARMCPU *cpu = env_archcpu(env);
4024 uint32_t nrgs = cpu->pmsav7_dregion;
4026 if (value >= nrgs) {
4027 qemu_log_mask(LOG_GUEST_ERROR,
4028 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4029 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4030 return;
4033 raw_write(env, ri, value);
4036 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4037 uint64_t value)
4039 ARMCPU *cpu = env_archcpu(env);
4041 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4042 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4045 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4047 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4050 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4051 uint64_t value)
4053 ARMCPU *cpu = env_archcpu(env);
4055 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4056 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4059 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4061 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4064 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065 uint64_t value)
4067 ARMCPU *cpu = env_archcpu(env);
4070 * Ignore writes that would select not implemented region.
4071 * This is architecturally UNPREDICTABLE.
4073 if (value >= cpu->pmsav7_dregion) {
4074 return;
4077 env->pmsav7.rnr[M_REG_NS] = value;
4080 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4081 uint64_t value)
4083 ARMCPU *cpu = env_archcpu(env);
4085 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4086 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4089 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4091 return env->pmsav8.hprbar[env->pmsav8.hprselr];
4094 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095 uint64_t value)
4097 ARMCPU *cpu = env_archcpu(env);
4099 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4100 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4103 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4105 return env->pmsav8.hprlar[env->pmsav8.hprselr];
4108 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109 uint64_t value)
4111 uint32_t n;
4112 uint32_t bit;
4113 ARMCPU *cpu = env_archcpu(env);
4115 /* Ignore writes to unimplemented regions */
4116 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4117 value &= MAKE_64BIT_MASK(0, rmax);
4119 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4121 /* Register alias is only valid for first 32 indexes */
4122 for (n = 0; n < rmax; ++n) {
4123 bit = extract32(value, n, 1);
4124 env->pmsav8.hprlar[n] = deposit32(
4125 env->pmsav8.hprlar[n], 0, 1, bit);
4129 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4131 uint32_t n;
4132 uint32_t result = 0x0;
4133 ARMCPU *cpu = env_archcpu(env);
4135 /* Register alias is only valid for first 32 indexes */
4136 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4137 if (env->pmsav8.hprlar[n] & 0x1) {
4138 result |= (0x1 << n);
4141 return result;
4144 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145 uint64_t value)
4147 ARMCPU *cpu = env_archcpu(env);
4150 * Ignore writes that would select not implemented region.
4151 * This is architecturally UNPREDICTABLE.
4153 if (value >= cpu->pmsav8r_hdregion) {
4154 return;
4157 env->pmsav8.hprselr = value;
4160 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4161 uint64_t value)
4163 ARMCPU *cpu = env_archcpu(env);
4164 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4165 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4167 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4169 if (ri->opc1 & 4) {
4170 if (index >= cpu->pmsav8r_hdregion) {
4171 return;
4173 if (ri->opc2 & 0x1) {
4174 env->pmsav8.hprlar[index] = value;
4175 } else {
4176 env->pmsav8.hprbar[index] = value;
4178 } else {
4179 if (index >= cpu->pmsav7_dregion) {
4180 return;
4182 if (ri->opc2 & 0x1) {
4183 env->pmsav8.rlar[M_REG_NS][index] = value;
4184 } else {
4185 env->pmsav8.rbar[M_REG_NS][index] = value;
4190 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4192 ARMCPU *cpu = env_archcpu(env);
4193 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4194 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4196 if (ri->opc1 & 4) {
4197 if (index >= cpu->pmsav8r_hdregion) {
4198 return 0x0;
4200 if (ri->opc2 & 0x1) {
4201 return env->pmsav8.hprlar[index];
4202 } else {
4203 return env->pmsav8.hprbar[index];
4205 } else {
4206 if (index >= cpu->pmsav7_dregion) {
4207 return 0x0;
4209 if (ri->opc2 & 0x1) {
4210 return env->pmsav8.rlar[M_REG_NS][index];
4211 } else {
4212 return env->pmsav8.rbar[M_REG_NS][index];
4217 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4218 { .name = "PRBAR",
4219 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4220 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4221 .accessfn = access_tvm_trvm,
4222 .readfn = prbar_read, .writefn = prbar_write },
4223 { .name = "PRLAR",
4224 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4225 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4226 .accessfn = access_tvm_trvm,
4227 .readfn = prlar_read, .writefn = prlar_write },
4228 { .name = "PRSELR", .resetvalue = 0,
4229 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4230 .access = PL1_RW, .accessfn = access_tvm_trvm,
4231 .writefn = prselr_write,
4232 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4233 { .name = "HPRBAR", .resetvalue = 0,
4234 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4235 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4236 .readfn = hprbar_read, .writefn = hprbar_write },
4237 { .name = "HPRLAR",
4238 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4239 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4240 .readfn = hprlar_read, .writefn = hprlar_write },
4241 { .name = "HPRSELR", .resetvalue = 0,
4242 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4243 .access = PL2_RW,
4244 .writefn = hprselr_write,
4245 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4246 { .name = "HPRENR",
4247 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4248 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4249 .readfn = hprenr_read, .writefn = hprenr_write },
4252 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4254 * Reset for all these registers is handled in arm_cpu_reset(),
4255 * because the PMSAv7 is also used by M-profile CPUs, which do
4256 * not register cpregs but still need the state to be reset.
4258 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4259 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4260 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4261 .readfn = pmsav7_read, .writefn = pmsav7_write,
4262 .resetfn = arm_cp_reset_ignore },
4263 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4264 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4265 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4266 .readfn = pmsav7_read, .writefn = pmsav7_write,
4267 .resetfn = arm_cp_reset_ignore },
4268 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4269 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4270 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4271 .readfn = pmsav7_read, .writefn = pmsav7_write,
4272 .resetfn = arm_cp_reset_ignore },
4273 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4274 .access = PL1_RW,
4275 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4276 .writefn = pmsav7_rgnr_write,
4277 .resetfn = arm_cp_reset_ignore },
4280 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4281 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4282 .access = PL1_RW, .type = ARM_CP_ALIAS,
4283 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4284 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4285 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4286 .access = PL1_RW, .type = ARM_CP_ALIAS,
4287 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4288 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4289 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4290 .access = PL1_RW,
4291 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4292 .resetvalue = 0, },
4293 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4294 .access = PL1_RW,
4295 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4296 .resetvalue = 0, },
4297 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4298 .access = PL1_RW,
4299 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4300 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4301 .access = PL1_RW,
4302 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4303 /* Protection region base and size registers */
4304 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4307 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4310 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4313 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4316 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4319 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4320 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4321 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4322 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4325 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4326 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4327 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4330 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4331 uint64_t value)
4333 ARMCPU *cpu = env_archcpu(env);
4335 if (!arm_feature(env, ARM_FEATURE_V8)) {
4336 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4338 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4339 * using Long-descriptor translation table format
4341 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4342 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4344 * In an implementation that includes the Security Extensions
4345 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4346 * Short-descriptor translation table format.
4348 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4349 } else {
4350 value &= TTBCR_N;
4354 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4356 * With LPAE the TTBCR could result in a change of ASID
4357 * via the TTBCR.A1 bit, so do a TLB flush.
4359 tlb_flush(CPU(cpu));
4361 raw_write(env, ri, value);
4364 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4365 uint64_t value)
4367 ARMCPU *cpu = env_archcpu(env);
4369 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4370 tlb_flush(CPU(cpu));
4371 raw_write(env, ri, value);
4374 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4375 uint64_t value)
4377 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4378 if (cpreg_field_is_64bit(ri) &&
4379 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4380 ARMCPU *cpu = env_archcpu(env);
4381 tlb_flush(CPU(cpu));
4383 raw_write(env, ri, value);
4386 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4387 uint64_t value)
4390 * If we are running with E2&0 regime, then an ASID is active.
4391 * Flush if that might be changing. Note we're not checking
4392 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4393 * holds the active ASID, only checking the field that might.
4395 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4396 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4397 uint16_t mask = ARMMMUIdxBit_E20_2 |
4398 ARMMMUIdxBit_E20_2_PAN |
4399 ARMMMUIdxBit_E20_0;
4400 tlb_flush_by_mmuidx(env_cpu(env), mask);
4402 raw_write(env, ri, value);
4405 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4406 uint64_t value)
4408 ARMCPU *cpu = env_archcpu(env);
4409 CPUState *cs = CPU(cpu);
4412 * A change in VMID to the stage2 page table (Stage2) invalidates
4413 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4415 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4416 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4418 raw_write(env, ri, value);
4421 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4422 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4423 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4424 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4425 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4426 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4427 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4428 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4429 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4430 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4431 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4432 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4433 offsetof(CPUARMState, cp15.dfar_ns) } },
4434 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4435 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4436 .access = PL1_RW, .accessfn = access_tvm_trvm,
4437 .fgt = FGT_FAR_EL1,
4438 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4439 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4440 .resetvalue = 0, },
4443 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4444 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4445 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4446 .access = PL1_RW, .accessfn = access_tvm_trvm,
4447 .fgt = FGT_ESR_EL1,
4448 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4449 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4450 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4451 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4452 .access = PL1_RW, .accessfn = access_tvm_trvm,
4453 .fgt = FGT_TTBR0_EL1,
4454 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4455 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4456 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4457 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4458 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4459 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4460 .access = PL1_RW, .accessfn = access_tvm_trvm,
4461 .fgt = FGT_TTBR1_EL1,
4462 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4463 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4464 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4465 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4466 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4467 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4468 .access = PL1_RW, .accessfn = access_tvm_trvm,
4469 .fgt = FGT_TCR_EL1,
4470 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4471 .writefn = vmsa_tcr_el12_write,
4472 .raw_writefn = raw_write,
4473 .resetvalue = 0,
4474 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4475 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4476 .access = PL1_RW, .accessfn = access_tvm_trvm,
4477 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4478 .raw_writefn = raw_write,
4479 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4480 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4484 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4485 * qemu tlbs nor adjusting cached masks.
4487 static const ARMCPRegInfo ttbcr2_reginfo = {
4488 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4489 .access = PL1_RW, .accessfn = access_tvm_trvm,
4490 .type = ARM_CP_ALIAS,
4491 .bank_fieldoffsets = {
4492 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4493 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4497 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4498 uint64_t value)
4500 env->cp15.c15_ticonfig = value & 0xe7;
4501 /* The OS_TYPE bit in this register changes the reported CPUID! */
4502 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4503 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4506 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4507 uint64_t value)
4509 env->cp15.c15_threadid = value & 0xffff;
4512 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4513 uint64_t value)
4515 /* Wait-for-interrupt (deprecated) */
4516 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4519 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4520 uint64_t value)
4523 * On OMAP there are registers indicating the max/min index of dcache lines
4524 * containing a dirty line; cache flush operations have to reset these.
4526 env->cp15.c15_i_max = 0x000;
4527 env->cp15.c15_i_min = 0xff0;
4530 static const ARMCPRegInfo omap_cp_reginfo[] = {
4531 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4532 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4533 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4534 .resetvalue = 0, },
4535 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4536 .access = PL1_RW, .type = ARM_CP_NOP },
4537 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4538 .access = PL1_RW,
4539 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4540 .writefn = omap_ticonfig_write },
4541 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4542 .access = PL1_RW,
4543 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4544 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4545 .access = PL1_RW, .resetvalue = 0xff0,
4546 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4547 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4548 .access = PL1_RW,
4549 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4550 .writefn = omap_threadid_write },
4551 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4552 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4553 .type = ARM_CP_NO_RAW,
4554 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4556 * TODO: Peripheral port remap register:
4557 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4558 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4559 * when MMU is off.
4561 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4562 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4563 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4564 .writefn = omap_cachemaint_write },
4565 { .name = "C9", .cp = 15, .crn = 9,
4566 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4567 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4570 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4571 uint64_t value)
4573 env->cp15.c15_cpar = value & 0x3fff;
4576 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4577 { .name = "XSCALE_CPAR",
4578 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4579 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4580 .writefn = xscale_cpar_write, },
4581 { .name = "XSCALE_AUXCR",
4582 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4583 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4584 .resetvalue = 0, },
4586 * XScale specific cache-lockdown: since we have no cache we NOP these
4587 * and hope the guest does not really rely on cache behaviour.
4589 { .name = "XSCALE_LOCK_ICACHE_LINE",
4590 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4591 .access = PL1_W, .type = ARM_CP_NOP },
4592 { .name = "XSCALE_UNLOCK_ICACHE",
4593 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4594 .access = PL1_W, .type = ARM_CP_NOP },
4595 { .name = "XSCALE_DCACHE_LOCK",
4596 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4597 .access = PL1_RW, .type = ARM_CP_NOP },
4598 { .name = "XSCALE_UNLOCK_DCACHE",
4599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4600 .access = PL1_W, .type = ARM_CP_NOP },
4603 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4605 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4606 * implementation of this implementation-defined space.
4607 * Ideally this should eventually disappear in favour of actually
4608 * implementing the correct behaviour for all cores.
4610 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4611 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4612 .access = PL1_RW,
4613 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4614 .resetvalue = 0 },
4617 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4618 /* Cache status: RAZ because we have no cache so it's always clean */
4619 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4620 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4621 .resetvalue = 0 },
4624 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4625 /* We never have a block transfer operation in progress */
4626 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4627 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4628 .resetvalue = 0 },
4629 /* The cache ops themselves: these all NOP for QEMU */
4630 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4631 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4632 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4633 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4634 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4635 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4636 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4637 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4638 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4639 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4640 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4641 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4644 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4646 * The cache test-and-clean instructions always return (1 << 30)
4647 * to indicate that there are no dirty cache lines.
4649 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4650 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4651 .resetvalue = (1 << 30) },
4652 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4653 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4654 .resetvalue = (1 << 30) },
4657 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4658 /* Ignore ReadBuffer accesses */
4659 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4660 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4661 .access = PL1_RW, .resetvalue = 0,
4662 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4665 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4667 unsigned int cur_el = arm_current_el(env);
4669 if (arm_is_el2_enabled(env) && cur_el == 1) {
4670 return env->cp15.vpidr_el2;
4672 return raw_read(env, ri);
4675 static uint64_t mpidr_read_val(CPUARMState *env)
4677 ARMCPU *cpu = env_archcpu(env);
4678 uint64_t mpidr = cpu->mp_affinity;
4680 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4681 mpidr |= (1U << 31);
4683 * Cores which are uniprocessor (non-coherent)
4684 * but still implement the MP extensions set
4685 * bit 30. (For instance, Cortex-R5).
4687 if (cpu->mp_is_up) {
4688 mpidr |= (1u << 30);
4691 return mpidr;
4694 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4696 unsigned int cur_el = arm_current_el(env);
4698 if (arm_is_el2_enabled(env) && cur_el == 1) {
4699 return env->cp15.vmpidr_el2;
4701 return mpidr_read_val(env);
4704 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4705 /* NOP AMAIR0/1 */
4706 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4707 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4708 .access = PL1_RW, .accessfn = access_tvm_trvm,
4709 .fgt = FGT_AMAIR_EL1,
4710 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4711 .type = ARM_CP_CONST, .resetvalue = 0 },
4712 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4713 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4714 .access = PL1_RW, .accessfn = access_tvm_trvm,
4715 .type = ARM_CP_CONST, .resetvalue = 0 },
4716 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4717 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4718 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4719 offsetof(CPUARMState, cp15.par_ns)} },
4720 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4721 .access = PL1_RW, .accessfn = access_tvm_trvm,
4722 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4723 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4724 offsetof(CPUARMState, cp15.ttbr0_ns) },
4725 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4726 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4727 .access = PL1_RW, .accessfn = access_tvm_trvm,
4728 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4729 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4730 offsetof(CPUARMState, cp15.ttbr1_ns) },
4731 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4734 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4736 return vfp_get_fpcr(env);
4739 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740 uint64_t value)
4742 vfp_set_fpcr(env, value);
4745 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4747 return vfp_get_fpsr(env);
4750 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4751 uint64_t value)
4753 vfp_set_fpsr(env, value);
4756 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4757 bool isread)
4759 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4760 return CP_ACCESS_TRAP;
4762 return CP_ACCESS_OK;
4765 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4766 uint64_t value)
4768 env->daif = value & PSTATE_DAIF;
4771 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4773 return env->pstate & PSTATE_PAN;
4776 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4777 uint64_t value)
4779 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4782 static const ARMCPRegInfo pan_reginfo = {
4783 .name = "PAN", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4785 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4786 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4789 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4791 return env->pstate & PSTATE_UAO;
4794 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4795 uint64_t value)
4797 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4800 static const ARMCPRegInfo uao_reginfo = {
4801 .name = "UAO", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4803 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4804 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4807 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4809 return env->pstate & PSTATE_DIT;
4812 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4813 uint64_t value)
4815 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4818 static const ARMCPRegInfo dit_reginfo = {
4819 .name = "DIT", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4821 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4822 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4825 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4827 return env->pstate & PSTATE_SSBS;
4830 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4831 uint64_t value)
4833 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4836 static const ARMCPRegInfo ssbs_reginfo = {
4837 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4839 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4840 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4843 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4844 const ARMCPRegInfo *ri,
4845 bool isread)
4847 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4848 switch (arm_current_el(env)) {
4849 case 0:
4850 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4851 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4852 return CP_ACCESS_TRAP;
4854 /* fall through */
4855 case 1:
4856 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4857 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4858 return CP_ACCESS_TRAP_EL2;
4860 break;
4862 return CP_ACCESS_OK;
4865 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4867 /* Cache invalidate/clean to Point of Unification... */
4868 switch (arm_current_el(env)) {
4869 case 0:
4870 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4871 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4872 return CP_ACCESS_TRAP;
4874 /* fall through */
4875 case 1:
4876 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4877 if (arm_hcr_el2_eff(env) & hcrflags) {
4878 return CP_ACCESS_TRAP_EL2;
4880 break;
4882 return CP_ACCESS_OK;
4885 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4886 bool isread)
4888 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4891 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4892 bool isread)
4894 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4898 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4899 * Page D4-1736 (DDI0487A.b)
4902 static int vae1_tlbmask(CPUARMState *env)
4904 uint64_t hcr = arm_hcr_el2_eff(env);
4905 uint16_t mask;
4907 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4908 mask = ARMMMUIdxBit_E20_2 |
4909 ARMMMUIdxBit_E20_2_PAN |
4910 ARMMMUIdxBit_E20_0;
4911 } else {
4912 mask = ARMMMUIdxBit_E10_1 |
4913 ARMMMUIdxBit_E10_1_PAN |
4914 ARMMMUIdxBit_E10_0;
4916 return mask;
4919 static int vae2_tlbmask(CPUARMState *env)
4921 uint64_t hcr = arm_hcr_el2_eff(env);
4922 uint16_t mask;
4924 if (hcr & HCR_E2H) {
4925 mask = ARMMMUIdxBit_E20_2 |
4926 ARMMMUIdxBit_E20_2_PAN |
4927 ARMMMUIdxBit_E20_0;
4928 } else {
4929 mask = ARMMMUIdxBit_E2;
4931 return mask;
4934 /* Return 56 if TBI is enabled, 64 otherwise. */
4935 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4936 uint64_t addr)
4938 uint64_t tcr = regime_tcr(env, mmu_idx);
4939 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4940 int select = extract64(addr, 55, 1);
4942 return (tbi >> select) & 1 ? 56 : 64;
4945 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4947 uint64_t hcr = arm_hcr_el2_eff(env);
4948 ARMMMUIdx mmu_idx;
4950 /* Only the regime of the mmu_idx below is significant. */
4951 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4952 mmu_idx = ARMMMUIdx_E20_0;
4953 } else {
4954 mmu_idx = ARMMMUIdx_E10_0;
4957 return tlbbits_for_regime(env, mmu_idx, addr);
4960 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4962 uint64_t hcr = arm_hcr_el2_eff(env);
4963 ARMMMUIdx mmu_idx;
4966 * Only the regime of the mmu_idx below is significant.
4967 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4968 * only has one.
4970 if (hcr & HCR_E2H) {
4971 mmu_idx = ARMMMUIdx_E20_2;
4972 } else {
4973 mmu_idx = ARMMMUIdx_E2;
4976 return tlbbits_for_regime(env, mmu_idx, addr);
4979 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4980 uint64_t value)
4982 CPUState *cs = env_cpu(env);
4983 int mask = vae1_tlbmask(env);
4985 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4988 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4989 uint64_t value)
4991 CPUState *cs = env_cpu(env);
4992 int mask = vae1_tlbmask(env);
4994 if (tlb_force_broadcast(env)) {
4995 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4996 } else {
4997 tlb_flush_by_mmuidx(cs, mask);
5001 static int e2_tlbmask(CPUARMState *env)
5003 return (ARMMMUIdxBit_E20_0 |
5004 ARMMMUIdxBit_E20_2 |
5005 ARMMMUIdxBit_E20_2_PAN |
5006 ARMMMUIdxBit_E2);
5009 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5010 uint64_t value)
5012 CPUState *cs = env_cpu(env);
5013 int mask = alle1_tlbmask(env);
5015 tlb_flush_by_mmuidx(cs, mask);
5018 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5019 uint64_t value)
5021 CPUState *cs = env_cpu(env);
5022 int mask = e2_tlbmask(env);
5024 tlb_flush_by_mmuidx(cs, mask);
5027 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5028 uint64_t value)
5030 ARMCPU *cpu = env_archcpu(env);
5031 CPUState *cs = CPU(cpu);
5033 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5036 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5037 uint64_t value)
5039 CPUState *cs = env_cpu(env);
5040 int mask = alle1_tlbmask(env);
5042 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5045 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5046 uint64_t value)
5048 CPUState *cs = env_cpu(env);
5049 int mask = e2_tlbmask(env);
5051 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5054 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5055 uint64_t value)
5057 CPUState *cs = env_cpu(env);
5059 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5062 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5063 uint64_t value)
5066 * Invalidate by VA, EL2
5067 * Currently handles both VAE2 and VALE2, since we don't support
5068 * flush-last-level-only.
5070 CPUState *cs = env_cpu(env);
5071 int mask = vae2_tlbmask(env);
5072 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5073 int bits = vae2_tlbbits(env, pageaddr);
5075 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5078 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5079 uint64_t value)
5082 * Invalidate by VA, EL3
5083 * Currently handles both VAE3 and VALE3, since we don't support
5084 * flush-last-level-only.
5086 ARMCPU *cpu = env_archcpu(env);
5087 CPUState *cs = CPU(cpu);
5088 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5090 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5093 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5094 uint64_t value)
5096 CPUState *cs = env_cpu(env);
5097 int mask = vae1_tlbmask(env);
5098 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5099 int bits = vae1_tlbbits(env, pageaddr);
5101 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5104 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5105 uint64_t value)
5108 * Invalidate by VA, EL1&0 (AArch64 version).
5109 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5110 * since we don't support flush-for-specific-ASID-only or
5111 * flush-last-level-only.
5113 CPUState *cs = env_cpu(env);
5114 int mask = vae1_tlbmask(env);
5115 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5116 int bits = vae1_tlbbits(env, pageaddr);
5118 if (tlb_force_broadcast(env)) {
5119 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5120 } else {
5121 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5125 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5126 uint64_t value)
5128 CPUState *cs = env_cpu(env);
5129 int mask = vae2_tlbmask(env);
5130 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5131 int bits = vae2_tlbbits(env, pageaddr);
5133 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5136 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5137 uint64_t value)
5139 CPUState *cs = env_cpu(env);
5140 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5141 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5143 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5144 ARMMMUIdxBit_E3, bits);
5147 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5150 * The MSB of value is the NS field, which only applies if SEL2
5151 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5153 return (value >= 0
5154 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5155 && arm_is_secure_below_el3(env)
5156 ? ARMMMUIdxBit_Stage2_S
5157 : ARMMMUIdxBit_Stage2);
5160 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5161 uint64_t value)
5163 CPUState *cs = env_cpu(env);
5164 int mask = ipas2e1_tlbmask(env, value);
5165 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5167 if (tlb_force_broadcast(env)) {
5168 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5169 } else {
5170 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5174 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5175 uint64_t value)
5177 CPUState *cs = env_cpu(env);
5178 int mask = ipas2e1_tlbmask(env, value);
5179 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5181 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5184 #ifdef TARGET_AARCH64
5185 typedef struct {
5186 uint64_t base;
5187 uint64_t length;
5188 } TLBIRange;
5190 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5193 * Note that the TLBI range TG field encoding differs from both
5194 * TG0 and TG1 encodings.
5196 switch (tg) {
5197 case 1:
5198 return Gran4K;
5199 case 2:
5200 return Gran16K;
5201 case 3:
5202 return Gran64K;
5203 default:
5204 return GranInvalid;
5208 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5209 uint64_t value)
5211 unsigned int page_size_granule, page_shift, num, scale, exponent;
5212 /* Extract one bit to represent the va selector in use. */
5213 uint64_t select = sextract64(value, 36, 1);
5214 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5215 TLBIRange ret = { };
5216 ARMGranuleSize gran;
5218 page_size_granule = extract64(value, 46, 2);
5219 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5221 /* The granule encoded in value must match the granule in use. */
5222 if (gran != param.gran) {
5223 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5224 page_size_granule);
5225 return ret;
5228 page_shift = arm_granule_bits(gran);
5229 num = extract64(value, 39, 5);
5230 scale = extract64(value, 44, 2);
5231 exponent = (5 * scale) + 1;
5233 ret.length = (num + 1) << (exponent + page_shift);
5235 if (param.select) {
5236 ret.base = sextract64(value, 0, 37);
5237 } else {
5238 ret.base = extract64(value, 0, 37);
5240 if (param.ds) {
5242 * With DS=1, BaseADDR is always shifted 16 so that it is able
5243 * to address all 52 va bits. The input address is perforce
5244 * aligned on a 64k boundary regardless of translation granule.
5246 page_shift = 16;
5248 ret.base <<= page_shift;
5250 return ret;
5253 static void do_rvae_write(CPUARMState *env, uint64_t value,
5254 int idxmap, bool synced)
5256 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5257 TLBIRange range;
5258 int bits;
5260 range = tlbi_aa64_get_range(env, one_idx, value);
5261 bits = tlbbits_for_regime(env, one_idx, range.base);
5263 if (synced) {
5264 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5265 range.base,
5266 range.length,
5267 idxmap,
5268 bits);
5269 } else {
5270 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5271 range.length, idxmap, bits);
5275 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5276 const ARMCPRegInfo *ri,
5277 uint64_t value)
5280 * Invalidate by VA range, EL1&0.
5281 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5282 * since we don't support flush-for-specific-ASID-only or
5283 * flush-last-level-only.
5286 do_rvae_write(env, value, vae1_tlbmask(env),
5287 tlb_force_broadcast(env));
5290 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5291 const ARMCPRegInfo *ri,
5292 uint64_t value)
5295 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5296 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5297 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5298 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5299 * shareable specific flushes.
5302 do_rvae_write(env, value, vae1_tlbmask(env), true);
5305 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5306 const ARMCPRegInfo *ri,
5307 uint64_t value)
5310 * Invalidate by VA range, EL2.
5311 * Currently handles all of RVAE2 and RVALE2,
5312 * since we don't support flush-for-specific-ASID-only or
5313 * flush-last-level-only.
5316 do_rvae_write(env, value, vae2_tlbmask(env),
5317 tlb_force_broadcast(env));
5322 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5323 const ARMCPRegInfo *ri,
5324 uint64_t value)
5327 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5328 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5329 * since we don't support flush-for-specific-ASID-only,
5330 * flush-last-level-only or inner/outer shareable specific flushes.
5333 do_rvae_write(env, value, vae2_tlbmask(env), true);
5337 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5338 const ARMCPRegInfo *ri,
5339 uint64_t value)
5342 * Invalidate by VA range, EL3.
5343 * Currently handles all of RVAE3 and RVALE3,
5344 * since we don't support flush-for-specific-ASID-only or
5345 * flush-last-level-only.
5348 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5351 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5352 const ARMCPRegInfo *ri,
5353 uint64_t value)
5356 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5357 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5358 * since we don't support flush-for-specific-ASID-only,
5359 * flush-last-level-only or inner/outer specific flushes.
5362 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5365 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5366 uint64_t value)
5368 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5369 tlb_force_broadcast(env));
5372 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5373 const ARMCPRegInfo *ri,
5374 uint64_t value)
5376 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5378 #endif
5380 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5381 bool isread)
5383 int cur_el = arm_current_el(env);
5385 if (cur_el < 2) {
5386 uint64_t hcr = arm_hcr_el2_eff(env);
5388 if (cur_el == 0) {
5389 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5390 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5391 return CP_ACCESS_TRAP_EL2;
5393 } else {
5394 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5395 return CP_ACCESS_TRAP;
5397 if (hcr & HCR_TDZ) {
5398 return CP_ACCESS_TRAP_EL2;
5401 } else if (hcr & HCR_TDZ) {
5402 return CP_ACCESS_TRAP_EL2;
5405 return CP_ACCESS_OK;
5408 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5410 ARMCPU *cpu = env_archcpu(env);
5411 int dzp_bit = 1 << 4;
5413 /* DZP indicates whether DC ZVA access is allowed */
5414 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5415 dzp_bit = 0;
5417 return cpu->dcz_blocksize | dzp_bit;
5420 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5421 bool isread)
5423 if (!(env->pstate & PSTATE_SP)) {
5425 * Access to SP_EL0 is undefined if it's being used as
5426 * the stack pointer.
5428 return CP_ACCESS_TRAP_UNCATEGORIZED;
5430 return CP_ACCESS_OK;
5433 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5435 return env->pstate & PSTATE_SP;
5438 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5440 update_spsel(env, val);
5443 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5444 uint64_t value)
5446 ARMCPU *cpu = env_archcpu(env);
5448 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5449 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5450 value &= ~SCTLR_M;
5453 /* ??? Lots of these bits are not implemented. */
5455 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5456 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5457 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5458 } else {
5459 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5460 SCTLR_ATA0 | SCTLR_ATA);
5464 if (raw_read(env, ri) == value) {
5466 * Skip the TLB flush if nothing actually changed; Linux likes
5467 * to do a lot of pointless SCTLR writes.
5469 return;
5472 raw_write(env, ri, value);
5474 /* This may enable/disable the MMU, so do a TLB flush. */
5475 tlb_flush(CPU(cpu));
5477 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5479 * Normally we would always end the TB on an SCTLR write; see the
5480 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5481 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5482 * of hflags from the translator, so do it here.
5484 arm_rebuild_hflags(env);
5488 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5489 uint64_t value)
5492 * Some MDCR_EL3 bits affect whether PMU counters are running:
5493 * if we are trying to change any of those then we must
5494 * bracket this update with PMU start/finish calls.
5496 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5498 if (pmu_op) {
5499 pmu_op_start(env);
5501 env->cp15.mdcr_el3 = value;
5502 if (pmu_op) {
5503 pmu_op_finish(env);
5507 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5508 uint64_t value)
5510 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5511 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5514 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5515 uint64_t value)
5518 * Some MDCR_EL2 bits affect whether PMU counters are running:
5519 * if we are trying to change any of those then we must
5520 * bracket this update with PMU start/finish calls.
5522 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5524 if (pmu_op) {
5525 pmu_op_start(env);
5527 env->cp15.mdcr_el2 = value;
5528 if (pmu_op) {
5529 pmu_op_finish(env);
5533 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5534 bool isread)
5536 if (arm_current_el(env) == 1) {
5537 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5539 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5540 return CP_ACCESS_TRAP_EL2;
5543 return CP_ACCESS_OK;
5546 #ifdef CONFIG_USER_ONLY
5548 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5549 * code to get around W^X restrictions, where one region is writable and the
5550 * other is executable.
5552 * Since the executable region is never written to we cannot detect code
5553 * changes when running in user mode, and rely on the emulated JIT telling us
5554 * that the code has changed by executing this instruction.
5556 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5557 uint64_t value)
5559 uint64_t icache_line_mask, start_address, end_address;
5560 const ARMCPU *cpu;
5562 cpu = env_archcpu(env);
5564 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5565 start_address = value & ~icache_line_mask;
5566 end_address = value | icache_line_mask;
5568 mmap_lock();
5570 tb_invalidate_phys_range(start_address, end_address);
5572 mmap_unlock();
5574 #endif
5576 static const ARMCPRegInfo v8_cp_reginfo[] = {
5578 * Minimal set of EL0-visible registers. This will need to be expanded
5579 * significantly for system emulation of AArch64 CPUs.
5581 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5582 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5583 .access = PL0_RW, .type = ARM_CP_NZCV },
5584 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5585 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5586 .type = ARM_CP_NO_RAW,
5587 .access = PL0_RW, .accessfn = aa64_daif_access,
5588 .fieldoffset = offsetof(CPUARMState, daif),
5589 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5590 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5591 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5592 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5593 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5594 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5595 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5596 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5597 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5598 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5599 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5600 .access = PL0_R, .type = ARM_CP_NO_RAW,
5601 .fgt = FGT_DCZID_EL0,
5602 .readfn = aa64_dczid_read },
5603 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5604 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5605 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5606 #ifndef CONFIG_USER_ONLY
5607 /* Avoid overhead of an access check that always passes in user-mode */
5608 .accessfn = aa64_zva_access,
5609 .fgt = FGT_DCZVA,
5610 #endif
5612 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5613 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5614 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5616 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5617 * don't emulate caches.
5619 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5620 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5621 .access = PL1_W, .type = ARM_CP_NOP,
5622 .fgt = FGT_ICIALLUIS,
5623 .accessfn = access_ticab },
5624 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5625 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5626 .access = PL1_W, .type = ARM_CP_NOP,
5627 .fgt = FGT_ICIALLU,
5628 .accessfn = access_tocu },
5629 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5630 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5631 .access = PL0_W,
5632 .fgt = FGT_ICIVAU,
5633 .accessfn = access_tocu,
5634 #ifdef CONFIG_USER_ONLY
5635 .type = ARM_CP_NO_RAW,
5636 .writefn = ic_ivau_write
5637 #else
5638 .type = ARM_CP_NOP
5639 #endif
5641 /* Cache ops: all NOPs since we don't emulate caches */
5642 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5643 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5644 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5645 .fgt = FGT_DCIVAC,
5646 .type = ARM_CP_NOP },
5647 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5648 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5649 .fgt = FGT_DCISW,
5650 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5651 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5652 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5653 .access = PL0_W, .type = ARM_CP_NOP,
5654 .fgt = FGT_DCCVAC,
5655 .accessfn = aa64_cacheop_poc_access },
5656 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5657 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5658 .fgt = FGT_DCCSW,
5659 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5660 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5661 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5662 .access = PL0_W, .type = ARM_CP_NOP,
5663 .fgt = FGT_DCCVAU,
5664 .accessfn = access_tocu },
5665 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5666 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5667 .access = PL0_W, .type = ARM_CP_NOP,
5668 .fgt = FGT_DCCIVAC,
5669 .accessfn = aa64_cacheop_poc_access },
5670 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5671 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5672 .fgt = FGT_DCCISW,
5673 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5674 /* TLBI operations */
5675 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5676 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5677 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5678 .fgt = FGT_TLBIVMALLE1IS,
5679 .writefn = tlbi_aa64_vmalle1is_write },
5680 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5681 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5682 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5683 .fgt = FGT_TLBIVAE1IS,
5684 .writefn = tlbi_aa64_vae1is_write },
5685 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5686 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5687 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5688 .fgt = FGT_TLBIASIDE1IS,
5689 .writefn = tlbi_aa64_vmalle1is_write },
5690 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5691 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5692 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5693 .fgt = FGT_TLBIVAAE1IS,
5694 .writefn = tlbi_aa64_vae1is_write },
5695 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5696 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5697 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5698 .fgt = FGT_TLBIVALE1IS,
5699 .writefn = tlbi_aa64_vae1is_write },
5700 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5701 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5702 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5703 .fgt = FGT_TLBIVAALE1IS,
5704 .writefn = tlbi_aa64_vae1is_write },
5705 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5706 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5707 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5708 .fgt = FGT_TLBIVMALLE1,
5709 .writefn = tlbi_aa64_vmalle1_write },
5710 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5711 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5712 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5713 .fgt = FGT_TLBIVAE1,
5714 .writefn = tlbi_aa64_vae1_write },
5715 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5716 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5717 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5718 .fgt = FGT_TLBIASIDE1,
5719 .writefn = tlbi_aa64_vmalle1_write },
5720 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5721 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5722 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5723 .fgt = FGT_TLBIVAAE1,
5724 .writefn = tlbi_aa64_vae1_write },
5725 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5726 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5727 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5728 .fgt = FGT_TLBIVALE1,
5729 .writefn = tlbi_aa64_vae1_write },
5730 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5731 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5732 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5733 .fgt = FGT_TLBIVAALE1,
5734 .writefn = tlbi_aa64_vae1_write },
5735 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5736 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5737 .access = PL2_W, .type = ARM_CP_NO_RAW,
5738 .writefn = tlbi_aa64_ipas2e1is_write },
5739 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5740 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5741 .access = PL2_W, .type = ARM_CP_NO_RAW,
5742 .writefn = tlbi_aa64_ipas2e1is_write },
5743 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5744 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5745 .access = PL2_W, .type = ARM_CP_NO_RAW,
5746 .writefn = tlbi_aa64_alle1is_write },
5747 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5748 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5749 .access = PL2_W, .type = ARM_CP_NO_RAW,
5750 .writefn = tlbi_aa64_alle1is_write },
5751 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5752 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5753 .access = PL2_W, .type = ARM_CP_NO_RAW,
5754 .writefn = tlbi_aa64_ipas2e1_write },
5755 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5756 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5757 .access = PL2_W, .type = ARM_CP_NO_RAW,
5758 .writefn = tlbi_aa64_ipas2e1_write },
5759 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5761 .access = PL2_W, .type = ARM_CP_NO_RAW,
5762 .writefn = tlbi_aa64_alle1_write },
5763 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5765 .access = PL2_W, .type = ARM_CP_NO_RAW,
5766 .writefn = tlbi_aa64_alle1is_write },
5767 #ifndef CONFIG_USER_ONLY
5768 /* 64 bit address translation operations */
5769 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5770 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5771 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5772 .fgt = FGT_ATS1E1R,
5773 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5774 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5775 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5776 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5777 .fgt = FGT_ATS1E1W,
5778 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5779 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5780 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5781 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5782 .fgt = FGT_ATS1E0R,
5783 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5784 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5785 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5786 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5787 .fgt = FGT_ATS1E0W,
5788 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5789 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5790 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5791 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5792 .accessfn = at_e012_access, .writefn = ats_write64 },
5793 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5794 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5795 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5796 .accessfn = at_e012_access, .writefn = ats_write64 },
5797 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5798 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5799 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5800 .accessfn = at_e012_access, .writefn = ats_write64 },
5801 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5802 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5803 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5804 .accessfn = at_e012_access, .writefn = ats_write64 },
5805 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5806 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5807 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5808 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5809 .writefn = ats_write64 },
5810 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5811 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5812 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5813 .writefn = ats_write64 },
5814 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5815 .type = ARM_CP_ALIAS,
5816 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5817 .access = PL1_RW, .resetvalue = 0,
5818 .fgt = FGT_PAR_EL1,
5819 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5820 .writefn = par_write },
5821 #endif
5822 /* TLB invalidate last level of translation table walk */
5823 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5824 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5825 .writefn = tlbimva_is_write },
5826 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5827 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5828 .writefn = tlbimvaa_is_write },
5829 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5830 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5831 .writefn = tlbimva_write },
5832 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5833 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5834 .writefn = tlbimvaa_write },
5835 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5836 .type = ARM_CP_NO_RAW, .access = PL2_W,
5837 .writefn = tlbimva_hyp_write },
5838 { .name = "TLBIMVALHIS",
5839 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5840 .type = ARM_CP_NO_RAW, .access = PL2_W,
5841 .writefn = tlbimva_hyp_is_write },
5842 { .name = "TLBIIPAS2",
5843 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5844 .type = ARM_CP_NO_RAW, .access = PL2_W,
5845 .writefn = tlbiipas2_hyp_write },
5846 { .name = "TLBIIPAS2IS",
5847 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5848 .type = ARM_CP_NO_RAW, .access = PL2_W,
5849 .writefn = tlbiipas2is_hyp_write },
5850 { .name = "TLBIIPAS2L",
5851 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5852 .type = ARM_CP_NO_RAW, .access = PL2_W,
5853 .writefn = tlbiipas2_hyp_write },
5854 { .name = "TLBIIPAS2LIS",
5855 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5856 .type = ARM_CP_NO_RAW, .access = PL2_W,
5857 .writefn = tlbiipas2is_hyp_write },
5858 /* 32 bit cache operations */
5859 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5860 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5861 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5862 .type = ARM_CP_NOP, .access = PL1_W },
5863 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5864 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5865 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5866 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5867 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5868 .type = ARM_CP_NOP, .access = PL1_W },
5869 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5870 .type = ARM_CP_NOP, .access = PL1_W },
5871 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5872 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5873 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5874 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5875 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5876 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5877 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5878 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5879 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5880 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5881 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5882 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5883 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5884 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5885 /* MMU Domain access control / MPU write buffer control */
5886 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5887 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5888 .writefn = dacr_write, .raw_writefn = raw_write,
5889 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5890 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5891 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5892 .type = ARM_CP_ALIAS,
5893 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5894 .access = PL1_RW, .accessfn = access_nv1,
5895 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5896 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5897 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5898 .type = ARM_CP_ALIAS,
5899 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5900 .access = PL1_RW, .accessfn = access_nv1,
5901 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5902 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5904 * We rely on the access checks not allowing the guest to write to the
5905 * state field when SPSel indicates that it's being used as the stack
5906 * pointer.
5908 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5909 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5910 .access = PL1_RW, .accessfn = sp_el0_access,
5911 .type = ARM_CP_ALIAS,
5912 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5913 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5914 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5915 .nv2_redirect_offset = 0x240,
5916 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5917 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5918 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5919 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5920 .type = ARM_CP_NO_RAW,
5921 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5922 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5923 .type = ARM_CP_ALIAS,
5924 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5925 .access = PL2_RW,
5926 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5927 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5928 .type = ARM_CP_ALIAS,
5929 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5930 .access = PL2_RW,
5931 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5932 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5933 .type = ARM_CP_ALIAS,
5934 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5935 .access = PL2_RW,
5936 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5937 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5938 .type = ARM_CP_ALIAS,
5939 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5940 .access = PL2_RW,
5941 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5942 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5943 .type = ARM_CP_IO,
5944 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5945 .resetvalue = 0,
5946 .access = PL3_RW,
5947 .writefn = mdcr_el3_write,
5948 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5949 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5950 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5951 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5952 .writefn = sdcr_write,
5953 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5956 /* These are present only when EL1 supports AArch32 */
5957 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5958 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5959 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5960 .access = PL2_RW,
5961 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5962 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5963 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5964 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5965 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5966 .writefn = dacr_write, .raw_writefn = raw_write,
5967 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5968 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5969 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5970 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5971 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5974 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5976 ARMCPU *cpu = env_archcpu(env);
5978 if (arm_feature(env, ARM_FEATURE_V8)) {
5979 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5980 } else {
5981 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5984 if (arm_feature(env, ARM_FEATURE_EL3)) {
5985 valid_mask &= ~HCR_HCD;
5986 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5988 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5989 * However, if we're using the SMC PSCI conduit then QEMU is
5990 * effectively acting like EL3 firmware and so the guest at
5991 * EL2 should retain the ability to prevent EL1 from being
5992 * able to make SMC calls into the ersatz firmware, so in
5993 * that case HCR.TSC should be read/write.
5995 valid_mask &= ~HCR_TSC;
5998 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5999 if (cpu_isar_feature(aa64_vh, cpu)) {
6000 valid_mask |= HCR_E2H;
6002 if (cpu_isar_feature(aa64_ras, cpu)) {
6003 valid_mask |= HCR_TERR | HCR_TEA;
6005 if (cpu_isar_feature(aa64_lor, cpu)) {
6006 valid_mask |= HCR_TLOR;
6008 if (cpu_isar_feature(aa64_pauth, cpu)) {
6009 valid_mask |= HCR_API | HCR_APK;
6011 if (cpu_isar_feature(aa64_mte, cpu)) {
6012 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
6014 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
6015 valid_mask |= HCR_ENSCXT;
6017 if (cpu_isar_feature(aa64_fwb, cpu)) {
6018 valid_mask |= HCR_FWB;
6020 if (cpu_isar_feature(aa64_rme, cpu)) {
6021 valid_mask |= HCR_GPF;
6023 if (cpu_isar_feature(aa64_nv, cpu)) {
6024 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6026 if (cpu_isar_feature(aa64_nv2, cpu)) {
6027 valid_mask |= HCR_NV2;
6031 if (cpu_isar_feature(any_evt, cpu)) {
6032 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6033 } else if (cpu_isar_feature(any_half_evt, cpu)) {
6034 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6037 /* Clear RES0 bits. */
6038 value &= valid_mask;
6041 * These bits change the MMU setup:
6042 * HCR_VM enables stage 2 translation
6043 * HCR_PTW forbids certain page-table setups
6044 * HCR_DC disables stage1 and enables stage2 translation
6045 * HCR_DCT enables tagging on (disabled) stage1 translation
6046 * HCR_FWB changes the interpretation of stage2 descriptor bits
6047 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6049 if ((env->cp15.hcr_el2 ^ value) &
6050 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6051 tlb_flush(CPU(cpu));
6053 env->cp15.hcr_el2 = value;
6056 * Updates to VI and VF require us to update the status of
6057 * virtual interrupts, which are the logical OR of these bits
6058 * and the state of the input lines from the GIC. (This requires
6059 * that we have the BQL, which is done by marking the
6060 * reginfo structs as ARM_CP_IO.)
6061 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
6062 * VFNMI, it is never possible for it to be taken immediately
6063 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
6064 * at EL0 or EL1, and HCR can only be written at EL2.
6066 g_assert(bql_locked());
6067 arm_cpu_update_virq(cpu);
6068 arm_cpu_update_vfiq(cpu);
6069 arm_cpu_update_vserr(cpu);
6070 if (cpu_isar_feature(aa64_nmi, cpu)) {
6071 arm_cpu_update_vinmi(cpu);
6072 arm_cpu_update_vfnmi(cpu);
6076 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6078 do_hcr_write(env, value, 0);
6081 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6082 uint64_t value)
6084 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6085 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6086 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6089 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6090 uint64_t value)
6092 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6093 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6094 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6098 * Return the effective value of HCR_EL2, at the given security state.
6099 * Bits that are not included here:
6100 * RW (read from SCR_EL3.RW as needed)
6102 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6104 uint64_t ret = env->cp15.hcr_el2;
6106 assert(space != ARMSS_Root);
6108 if (!arm_is_el2_enabled_secstate(env, space)) {
6110 * "This register has no effect if EL2 is not enabled in the
6111 * current Security state". This is ARMv8.4-SecEL2 speak for
6112 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6114 * Prior to that, the language was "In an implementation that
6115 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6116 * as if this field is 0 for all purposes other than a direct
6117 * read or write access of HCR_EL2". With lots of enumeration
6118 * on a per-field basis. In current QEMU, this is condition
6119 * is arm_is_secure_below_el3.
6121 * Since the v8.4 language applies to the entire register, and
6122 * appears to be backward compatible, use that.
6124 return 0;
6128 * For a cpu that supports both aarch64 and aarch32, we can set bits
6129 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6130 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6132 if (!arm_el_is_aa64(env, 2)) {
6133 uint64_t aa32_valid;
6136 * These bits are up-to-date as of ARMv8.6.
6137 * For HCR, it's easiest to list just the 2 bits that are invalid.
6138 * For HCR2, list those that are valid.
6140 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6141 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6142 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6143 ret &= aa32_valid;
6146 if (ret & HCR_TGE) {
6147 /* These bits are up-to-date as of ARMv8.6. */
6148 if (ret & HCR_E2H) {
6149 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6150 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6151 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6152 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6153 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6154 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6155 } else {
6156 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6158 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6159 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6160 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6161 HCR_TLOR);
6164 return ret;
6167 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6169 if (arm_feature(env, ARM_FEATURE_M)) {
6170 return 0;
6172 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6176 * Corresponds to ARM pseudocode function ELIsInHost().
6178 bool el_is_in_host(CPUARMState *env, int el)
6180 uint64_t mask;
6183 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6184 * Perform the simplest bit tests first, and validate EL2 afterward.
6186 if (el & 1) {
6187 return false; /* EL1 or EL3 */
6191 * Note that hcr_write() checks isar_feature_aa64_vh(),
6192 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6194 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6195 if ((env->cp15.hcr_el2 & mask) != mask) {
6196 return false;
6199 /* TGE and/or E2H set: double check those bits are currently legal. */
6200 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6203 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6204 uint64_t value)
6206 ARMCPU *cpu = env_archcpu(env);
6207 uint64_t valid_mask = 0;
6209 /* FEAT_MOPS adds MSCEn and MCE2 */
6210 if (cpu_isar_feature(aa64_mops, cpu)) {
6211 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6214 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
6215 if (cpu_isar_feature(aa64_nmi, cpu)) {
6216 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
6219 /* Clear RES0 bits. */
6220 env->cp15.hcrx_el2 = value & valid_mask;
6223 * Updates to VINMI and VFNMI require us to update the status of
6224 * virtual NMI, which are the logical OR of these bits
6225 * and the state of the input lines from the GIC. (This requires
6226 * that we have the BQL, which is done by marking the
6227 * reginfo structs as ARM_CP_IO.)
6228 * Note that if a write to HCRX pends a VINMI or VFNMI it is never
6229 * possible for it to be taken immediately, because VINMI and
6230 * VFNMI are masked unless running at EL0 or EL1, and HCRX
6231 * can only be written at EL2.
6233 if (cpu_isar_feature(aa64_nmi, cpu)) {
6234 g_assert(bql_locked());
6235 arm_cpu_update_vinmi(cpu);
6236 arm_cpu_update_vfnmi(cpu);
6240 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6241 bool isread)
6243 if (arm_current_el(env) == 2
6244 && arm_feature(env, ARM_FEATURE_EL3)
6245 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6246 return CP_ACCESS_TRAP_EL3;
6248 return CP_ACCESS_OK;
6251 static const ARMCPRegInfo hcrx_el2_reginfo = {
6252 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6253 .type = ARM_CP_IO,
6254 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6255 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6256 .nv2_redirect_offset = 0xa0,
6257 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6260 /* Return the effective value of HCRX_EL2. */
6261 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6264 * The bits in this register behave as 0 for all purposes other than
6265 * direct reads of the register if SCR_EL3.HXEn is 0.
6266 * If EL2 is not enabled in the current security state, then the
6267 * bit may behave as if 0, or as if 1, depending on the bit.
6268 * For the moment, we treat the EL2-disabled case as taking
6269 * priority over the HXEn-disabled case. This is true for the only
6270 * bit for a feature which we implement where the answer is different
6271 * for the two cases (MSCEn for FEAT_MOPS).
6272 * This may need to be revisited for future bits.
6274 if (!arm_is_el2_enabled(env)) {
6275 uint64_t hcrx = 0;
6276 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6277 /* MSCEn behaves as 1 if EL2 is not enabled */
6278 hcrx |= HCRX_MSCEN;
6280 return hcrx;
6282 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6283 return 0;
6285 return env->cp15.hcrx_el2;
6288 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6289 uint64_t value)
6292 * For A-profile AArch32 EL3, if NSACR.CP10
6293 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6295 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6296 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6297 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6298 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6300 env->cp15.cptr_el[2] = value;
6303 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6306 * For A-profile AArch32 EL3, if NSACR.CP10
6307 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6309 uint64_t value = env->cp15.cptr_el[2];
6311 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6312 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6313 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6315 return value;
6318 static const ARMCPRegInfo el2_cp_reginfo[] = {
6319 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6320 .type = ARM_CP_IO,
6321 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6322 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6323 .nv2_redirect_offset = 0x78,
6324 .writefn = hcr_write, .raw_writefn = raw_write },
6325 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6326 .type = ARM_CP_ALIAS | ARM_CP_IO,
6327 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6328 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6329 .writefn = hcr_writelow },
6330 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6331 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6332 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6333 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6334 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6335 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6336 .access = PL2_RW,
6337 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6338 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6339 .type = ARM_CP_NV2_REDIRECT,
6340 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6341 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6342 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6343 .type = ARM_CP_NV2_REDIRECT,
6344 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6345 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6346 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6347 .type = ARM_CP_ALIAS,
6348 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6349 .access = PL2_RW,
6350 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6351 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6352 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6353 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6354 .access = PL2_RW,
6355 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6356 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6357 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6358 .access = PL2_RW, .writefn = vbar_write,
6359 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6360 .resetvalue = 0 },
6361 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6362 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6363 .access = PL3_RW, .type = ARM_CP_ALIAS,
6364 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6365 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6366 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6367 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6368 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6369 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6370 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6371 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6372 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6373 .resetvalue = 0 },
6374 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6375 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6376 .access = PL2_RW, .type = ARM_CP_ALIAS,
6377 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6378 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6379 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6380 .access = PL2_RW, .type = ARM_CP_CONST,
6381 .resetvalue = 0 },
6382 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6383 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6384 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6385 .access = PL2_RW, .type = ARM_CP_CONST,
6386 .resetvalue = 0 },
6387 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6388 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6389 .access = PL2_RW, .type = ARM_CP_CONST,
6390 .resetvalue = 0 },
6391 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6392 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6393 .access = PL2_RW, .type = ARM_CP_CONST,
6394 .resetvalue = 0 },
6395 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6396 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6397 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6398 .raw_writefn = raw_write,
6399 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6400 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6401 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6402 .type = ARM_CP_ALIAS,
6403 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6404 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6405 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6406 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6407 .access = PL2_RW,
6408 .nv2_redirect_offset = 0x40,
6409 /* no .writefn needed as this can't cause an ASID change */
6410 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6411 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6412 .cp = 15, .opc1 = 6, .crm = 2,
6413 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6414 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6415 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6416 .writefn = vttbr_write, .raw_writefn = raw_write },
6417 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6418 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6419 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6420 .nv2_redirect_offset = 0x20,
6421 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6422 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6423 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6424 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6425 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6426 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6427 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6428 .access = PL2_RW, .resetvalue = 0,
6429 .nv2_redirect_offset = 0x90,
6430 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6431 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6432 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6433 .access = PL2_RW, .resetvalue = 0,
6434 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6435 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6436 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6437 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6438 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6439 { .name = "TLBIALLNSNH",
6440 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6441 .type = ARM_CP_NO_RAW, .access = PL2_W,
6442 .writefn = tlbiall_nsnh_write },
6443 { .name = "TLBIALLNSNHIS",
6444 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6445 .type = ARM_CP_NO_RAW, .access = PL2_W,
6446 .writefn = tlbiall_nsnh_is_write },
6447 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6448 .type = ARM_CP_NO_RAW, .access = PL2_W,
6449 .writefn = tlbiall_hyp_write },
6450 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6451 .type = ARM_CP_NO_RAW, .access = PL2_W,
6452 .writefn = tlbiall_hyp_is_write },
6453 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6454 .type = ARM_CP_NO_RAW, .access = PL2_W,
6455 .writefn = tlbimva_hyp_write },
6456 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6457 .type = ARM_CP_NO_RAW, .access = PL2_W,
6458 .writefn = tlbimva_hyp_is_write },
6459 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6460 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6461 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6462 .writefn = tlbi_aa64_alle2_write },
6463 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6464 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6465 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6466 .writefn = tlbi_aa64_vae2_write },
6467 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6468 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6469 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6470 .writefn = tlbi_aa64_vae2_write },
6471 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6472 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6473 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6474 .writefn = tlbi_aa64_alle2is_write },
6475 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6476 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6477 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6478 .writefn = tlbi_aa64_vae2is_write },
6479 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6480 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6481 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6482 .writefn = tlbi_aa64_vae2is_write },
6483 #ifndef CONFIG_USER_ONLY
6485 * Unlike the other EL2-related AT operations, these must
6486 * UNDEF from EL3 if EL2 is not implemented, which is why we
6487 * define them here rather than with the rest of the AT ops.
6489 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6490 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6491 .access = PL2_W, .accessfn = at_s1e2_access,
6492 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6493 .writefn = ats_write64 },
6494 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6495 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6496 .access = PL2_W, .accessfn = at_s1e2_access,
6497 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6498 .writefn = ats_write64 },
6500 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6501 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6502 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6503 * to behave as if SCR.NS was 1.
6505 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6506 .access = PL2_W,
6507 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6508 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6509 .access = PL2_W,
6510 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6511 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6512 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6514 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6515 * reset values as IMPDEF. We choose to reset to 3 to comply with
6516 * both ARMv7 and ARMv8.
6518 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6519 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6520 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6521 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6523 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6524 .writefn = gt_cntvoff_write,
6525 .nv2_redirect_offset = 0x60,
6526 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6527 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6528 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6529 .writefn = gt_cntvoff_write,
6530 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6531 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6532 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6533 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6534 .type = ARM_CP_IO, .access = PL2_RW,
6535 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6536 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6537 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6538 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6539 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6540 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6541 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6542 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6543 .resetfn = gt_hyp_timer_reset,
6544 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6545 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6546 .type = ARM_CP_IO,
6547 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6548 .access = PL2_RW,
6549 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6550 .resetvalue = 0,
6551 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6552 #endif
6553 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6554 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6555 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6556 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6557 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6558 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6559 .access = PL2_RW,
6560 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6561 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6562 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6563 .access = PL2_RW,
6564 .nv2_redirect_offset = 0x80,
6565 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6568 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6569 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6570 .type = ARM_CP_ALIAS | ARM_CP_IO,
6571 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6572 .access = PL2_RW,
6573 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6574 .writefn = hcr_writehigh },
6577 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6578 bool isread)
6580 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6581 return CP_ACCESS_OK;
6583 return CP_ACCESS_TRAP_UNCATEGORIZED;
6586 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6587 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6588 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6589 .access = PL2_RW, .accessfn = sel2_access,
6590 .nv2_redirect_offset = 0x30,
6591 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6592 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6593 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6594 .access = PL2_RW, .accessfn = sel2_access,
6595 .nv2_redirect_offset = 0x48,
6596 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6599 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6600 bool isread)
6603 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6604 * At Secure EL1 it traps to EL3 or EL2.
6606 if (arm_current_el(env) == 3) {
6607 return CP_ACCESS_OK;
6609 if (arm_is_secure_below_el3(env)) {
6610 if (env->cp15.scr_el3 & SCR_EEL2) {
6611 return CP_ACCESS_TRAP_EL2;
6613 return CP_ACCESS_TRAP_EL3;
6615 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6616 if (isread) {
6617 return CP_ACCESS_OK;
6619 return CP_ACCESS_TRAP_UNCATEGORIZED;
6622 static const ARMCPRegInfo el3_cp_reginfo[] = {
6623 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6624 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6625 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6626 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6627 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6628 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6629 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6630 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6631 .writefn = scr_write, .raw_writefn = raw_write },
6632 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6633 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6634 .access = PL3_RW, .resetvalue = 0,
6635 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6636 { .name = "SDER",
6637 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6638 .access = PL3_RW, .resetvalue = 0,
6639 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6640 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6641 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6642 .writefn = vbar_write, .resetvalue = 0,
6643 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6644 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6645 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6646 .access = PL3_RW, .resetvalue = 0,
6647 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6648 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6649 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6650 .access = PL3_RW,
6651 /* no .writefn needed as this can't cause an ASID change */
6652 .resetvalue = 0,
6653 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6654 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6655 .type = ARM_CP_ALIAS,
6656 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6657 .access = PL3_RW,
6658 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6659 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6660 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6661 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6662 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6663 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6664 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6665 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6666 .type = ARM_CP_ALIAS,
6667 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6668 .access = PL3_RW,
6669 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6670 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6671 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6672 .access = PL3_RW, .writefn = vbar_write,
6673 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6674 .resetvalue = 0 },
6675 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6676 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6677 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6678 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6679 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6680 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6681 .access = PL3_RW, .resetvalue = 0,
6682 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6683 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6684 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6685 .access = PL3_RW, .type = ARM_CP_CONST,
6686 .resetvalue = 0 },
6687 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6688 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6689 .access = PL3_RW, .type = ARM_CP_CONST,
6690 .resetvalue = 0 },
6691 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6692 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6693 .access = PL3_RW, .type = ARM_CP_CONST,
6694 .resetvalue = 0 },
6695 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6696 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6697 .access = PL3_W, .type = ARM_CP_NO_RAW,
6698 .writefn = tlbi_aa64_alle3is_write },
6699 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6700 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6701 .access = PL3_W, .type = ARM_CP_NO_RAW,
6702 .writefn = tlbi_aa64_vae3is_write },
6703 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6704 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6705 .access = PL3_W, .type = ARM_CP_NO_RAW,
6706 .writefn = tlbi_aa64_vae3is_write },
6707 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6708 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6709 .access = PL3_W, .type = ARM_CP_NO_RAW,
6710 .writefn = tlbi_aa64_alle3_write },
6711 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6712 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6713 .access = PL3_W, .type = ARM_CP_NO_RAW,
6714 .writefn = tlbi_aa64_vae3_write },
6715 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6716 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6717 .access = PL3_W, .type = ARM_CP_NO_RAW,
6718 .writefn = tlbi_aa64_vae3_write },
6721 #ifndef CONFIG_USER_ONLY
6723 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6724 bool isread)
6726 if (arm_current_el(env) == 1) {
6727 /* This must be a FEAT_NV access */
6728 return CP_ACCESS_OK;
6730 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6731 return CP_ACCESS_TRAP_UNCATEGORIZED;
6733 return CP_ACCESS_OK;
6736 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6737 bool isread)
6739 if (arm_current_el(env) == 1) {
6740 /* This must be a FEAT_NV access with NVx == 101 */
6741 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6742 return CP_ACCESS_TRAP_EL2;
6745 return e2h_access(env, ri, isread);
6748 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6749 bool isread)
6751 if (arm_current_el(env) == 1) {
6752 /* This must be a FEAT_NV access with NVx == 101 */
6753 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6754 return CP_ACCESS_TRAP_EL2;
6757 return e2h_access(env, ri, isread);
6760 /* Test if system register redirection is to occur in the current state. */
6761 static bool redirect_for_e2h(CPUARMState *env)
6763 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6766 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6768 CPReadFn *readfn;
6770 if (redirect_for_e2h(env)) {
6771 /* Switch to the saved EL2 version of the register. */
6772 ri = ri->opaque;
6773 readfn = ri->readfn;
6774 } else {
6775 readfn = ri->orig_readfn;
6777 if (readfn == NULL) {
6778 readfn = raw_read;
6780 return readfn(env, ri);
6783 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6784 uint64_t value)
6786 CPWriteFn *writefn;
6788 if (redirect_for_e2h(env)) {
6789 /* Switch to the saved EL2 version of the register. */
6790 ri = ri->opaque;
6791 writefn = ri->writefn;
6792 } else {
6793 writefn = ri->orig_writefn;
6795 if (writefn == NULL) {
6796 writefn = raw_write;
6798 writefn(env, ri, value);
6801 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6803 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6804 return ri->orig_readfn(env, ri->opaque);
6807 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6808 uint64_t value)
6810 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6811 return ri->orig_writefn(env, ri->opaque, value);
6814 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6815 const ARMCPRegInfo *ri,
6816 bool isread)
6818 if (arm_current_el(env) == 1) {
6820 * This must be a FEAT_NV access (will either trap or redirect
6821 * to memory). None of the registers with _EL12 aliases want to
6822 * apply their trap controls for this kind of access, so don't
6823 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6825 return CP_ACCESS_OK;
6827 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6828 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6829 return CP_ACCESS_TRAP_UNCATEGORIZED;
6831 if (ri->orig_accessfn) {
6832 return ri->orig_accessfn(env, ri->opaque, isread);
6834 return CP_ACCESS_OK;
6837 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6839 struct E2HAlias {
6840 uint32_t src_key, dst_key, new_key;
6841 const char *src_name, *dst_name, *new_name;
6842 bool (*feature)(const ARMISARegisters *id);
6845 #define K(op0, op1, crn, crm, op2) \
6846 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6848 static const struct E2HAlias aliases[] = {
6849 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6850 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6851 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6852 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6853 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6854 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6855 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6856 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6857 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6858 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6859 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6860 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6861 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6862 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6863 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6864 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6865 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6866 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6867 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6868 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6869 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6870 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6871 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6872 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6873 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6874 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6875 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6876 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6877 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6878 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6879 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6880 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6883 * Note that redirection of ZCR is mentioned in the description
6884 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6885 * not in the summary table.
6887 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6888 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6889 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6890 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6892 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6893 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6895 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6896 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6897 isar_feature_aa64_scxtnum },
6899 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6900 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6902 #undef K
6904 size_t i;
6906 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6907 const struct E2HAlias *a = &aliases[i];
6908 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6909 bool ok;
6911 if (a->feature && !a->feature(&cpu->isar)) {
6912 continue;
6915 src_reg = g_hash_table_lookup(cpu->cp_regs,
6916 (gpointer)(uintptr_t)a->src_key);
6917 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6918 (gpointer)(uintptr_t)a->dst_key);
6919 g_assert(src_reg != NULL);
6920 g_assert(dst_reg != NULL);
6922 /* Cross-compare names to detect typos in the keys. */
6923 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6924 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6926 /* None of the core system registers use opaque; we will. */
6927 g_assert(src_reg->opaque == NULL);
6929 /* Create alias before redirection so we dup the right data. */
6930 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6932 new_reg->name = a->new_name;
6933 new_reg->type |= ARM_CP_ALIAS;
6934 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6935 new_reg->access &= PL2_RW | PL3_RW;
6936 /* The new_reg op fields are as per new_key, not the target reg */
6937 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6938 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6939 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6940 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6941 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6942 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6943 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6944 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6945 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6946 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6947 new_reg->opaque = src_reg;
6948 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6949 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6950 new_reg->orig_accessfn = src_reg->accessfn;
6951 if (!new_reg->raw_readfn) {
6952 new_reg->raw_readfn = raw_read;
6954 if (!new_reg->raw_writefn) {
6955 new_reg->raw_writefn = raw_write;
6957 new_reg->readfn = el2_e2h_e12_read;
6958 new_reg->writefn = el2_e2h_e12_write;
6959 new_reg->accessfn = el2_e2h_e12_access;
6962 * If the _EL1 register is redirected to memory by FEAT_NV2,
6963 * then it shares the offset with the _EL12 register,
6964 * and which one is redirected depends on HCR_EL2.NV1.
6966 if (new_reg->nv2_redirect_offset) {
6967 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6968 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6969 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6972 ok = g_hash_table_insert(cpu->cp_regs,
6973 (gpointer)(uintptr_t)a->new_key, new_reg);
6974 g_assert(ok);
6976 src_reg->opaque = dst_reg;
6977 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6978 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6979 if (!src_reg->raw_readfn) {
6980 src_reg->raw_readfn = raw_read;
6982 if (!src_reg->raw_writefn) {
6983 src_reg->raw_writefn = raw_write;
6985 src_reg->readfn = el2_e2h_read;
6986 src_reg->writefn = el2_e2h_write;
6989 #endif
6991 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6992 bool isread)
6994 int cur_el = arm_current_el(env);
6996 if (cur_el < 2) {
6997 uint64_t hcr = arm_hcr_el2_eff(env);
6999 if (cur_el == 0) {
7000 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
7001 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
7002 return CP_ACCESS_TRAP_EL2;
7004 } else {
7005 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7006 return CP_ACCESS_TRAP;
7008 if (hcr & HCR_TID2) {
7009 return CP_ACCESS_TRAP_EL2;
7012 } else if (hcr & HCR_TID2) {
7013 return CP_ACCESS_TRAP_EL2;
7017 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
7018 return CP_ACCESS_TRAP_EL2;
7021 return CP_ACCESS_OK;
7025 * Check for traps to RAS registers, which are controlled
7026 * by HCR_EL2.TERR and SCR_EL3.TERR.
7028 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
7029 bool isread)
7031 int el = arm_current_el(env);
7033 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
7034 return CP_ACCESS_TRAP_EL2;
7036 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
7037 return CP_ACCESS_TRAP_EL3;
7039 return CP_ACCESS_OK;
7042 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7044 int el = arm_current_el(env);
7046 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7047 return env->cp15.vdisr_el2;
7049 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7050 return 0; /* RAZ/WI */
7052 return env->cp15.disr_el1;
7055 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7057 int el = arm_current_el(env);
7059 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7060 env->cp15.vdisr_el2 = val;
7061 return;
7063 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7064 return; /* RAZ/WI */
7066 env->cp15.disr_el1 = val;
7070 * Minimal RAS implementation with no Error Records.
7071 * Which means that all of the Error Record registers:
7072 * ERXADDR_EL1
7073 * ERXCTLR_EL1
7074 * ERXFR_EL1
7075 * ERXMISC0_EL1
7076 * ERXMISC1_EL1
7077 * ERXMISC2_EL1
7078 * ERXMISC3_EL1
7079 * ERXPFGCDN_EL1 (RASv1p1)
7080 * ERXPFGCTL_EL1 (RASv1p1)
7081 * ERXPFGF_EL1 (RASv1p1)
7082 * ERXSTATUS_EL1
7083 * and
7084 * ERRSELR_EL1
7085 * may generate UNDEFINED, which is the effect we get by not
7086 * listing them at all.
7088 * These registers have fine-grained trap bits, but UNDEF-to-EL1
7089 * is higher priority than FGT-to-EL2 so we do not need to list them
7090 * in order to check for an FGT.
7092 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7093 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7094 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7095 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7096 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7097 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7098 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7099 .access = PL1_R, .accessfn = access_terr,
7100 .fgt = FGT_ERRIDR_EL1,
7101 .type = ARM_CP_CONST, .resetvalue = 0 },
7102 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7103 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7104 .nv2_redirect_offset = 0x500,
7105 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7106 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7107 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7108 .nv2_redirect_offset = 0x508,
7109 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7113 * Return the exception level to which exceptions should be taken
7114 * via SVEAccessTrap. This excludes the check for whether the exception
7115 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
7116 * be found by testing 0 < fp_exception_el < sve_exception_el.
7118 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
7119 * pseudocode does *not* separate out the FP trap checks, but has them
7120 * all in one function.
7122 int sve_exception_el(CPUARMState *env, int el)
7124 #ifndef CONFIG_USER_ONLY
7125 if (el <= 1 && !el_is_in_host(env, el)) {
7126 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7127 case 1:
7128 if (el != 0) {
7129 break;
7131 /* fall through */
7132 case 0:
7133 case 2:
7134 return 1;
7138 if (el <= 2 && arm_is_el2_enabled(env)) {
7139 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7140 if (env->cp15.hcr_el2 & HCR_E2H) {
7141 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7142 case 1:
7143 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7144 break;
7146 /* fall through */
7147 case 0:
7148 case 2:
7149 return 2;
7151 } else {
7152 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7153 return 2;
7158 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
7159 if (arm_feature(env, ARM_FEATURE_EL3)
7160 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7161 return 3;
7163 #endif
7164 return 0;
7168 * Return the exception level to which exceptions should be taken for SME.
7169 * C.f. the ARM pseudocode function CheckSMEAccess.
7171 int sme_exception_el(CPUARMState *env, int el)
7173 #ifndef CONFIG_USER_ONLY
7174 if (el <= 1 && !el_is_in_host(env, el)) {
7175 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7176 case 1:
7177 if (el != 0) {
7178 break;
7180 /* fall through */
7181 case 0:
7182 case 2:
7183 return 1;
7187 if (el <= 2 && arm_is_el2_enabled(env)) {
7188 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7189 if (env->cp15.hcr_el2 & HCR_E2H) {
7190 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7191 case 1:
7192 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7193 break;
7195 /* fall through */
7196 case 0:
7197 case 2:
7198 return 2;
7200 } else {
7201 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7202 return 2;
7207 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
7208 if (arm_feature(env, ARM_FEATURE_EL3)
7209 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7210 return 3;
7212 #endif
7213 return 0;
7217 * Given that SVE is enabled, return the vector length for EL.
7219 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7221 ARMCPU *cpu = env_archcpu(env);
7222 uint64_t *cr = env->vfp.zcr_el;
7223 uint32_t map = cpu->sve_vq.map;
7224 uint32_t len = ARM_MAX_VQ - 1;
7226 if (sm) {
7227 cr = env->vfp.smcr_el;
7228 map = cpu->sme_vq.map;
7231 if (el <= 1 && !el_is_in_host(env, el)) {
7232 len = MIN(len, 0xf & (uint32_t)cr[1]);
7234 if (el <= 2 && arm_is_el2_enabled(env)) {
7235 len = MIN(len, 0xf & (uint32_t)cr[2]);
7237 if (arm_feature(env, ARM_FEATURE_EL3)) {
7238 len = MIN(len, 0xf & (uint32_t)cr[3]);
7241 map &= MAKE_64BIT_MASK(0, len + 1);
7242 if (map != 0) {
7243 return 31 - clz32(map);
7246 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7247 assert(sm);
7248 return ctz32(cpu->sme_vq.map);
7251 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7253 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7256 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7257 uint64_t value)
7259 int cur_el = arm_current_el(env);
7260 int old_len = sve_vqm1_for_el(env, cur_el);
7261 int new_len;
7263 /* Bits other than [3:0] are RAZ/WI. */
7264 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7265 raw_write(env, ri, value & 0xf);
7268 * Because we arrived here, we know both FP and SVE are enabled;
7269 * otherwise we would have trapped access to the ZCR_ELn register.
7271 new_len = sve_vqm1_for_el(env, cur_el);
7272 if (new_len < old_len) {
7273 aarch64_sve_narrow_vq(env, new_len + 1);
7277 static const ARMCPRegInfo zcr_reginfo[] = {
7278 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7279 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7280 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7281 .access = PL1_RW, .type = ARM_CP_SVE,
7282 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7283 .writefn = zcr_write, .raw_writefn = raw_write },
7284 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7285 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7286 .access = PL2_RW, .type = ARM_CP_SVE,
7287 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7288 .writefn = zcr_write, .raw_writefn = raw_write },
7289 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7290 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7291 .access = PL3_RW, .type = ARM_CP_SVE,
7292 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7293 .writefn = zcr_write, .raw_writefn = raw_write },
7296 #ifdef TARGET_AARCH64
7297 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7298 bool isread)
7300 int el = arm_current_el(env);
7302 if (el == 0) {
7303 uint64_t sctlr = arm_sctlr(env, el);
7304 if (!(sctlr & SCTLR_EnTP2)) {
7305 return CP_ACCESS_TRAP;
7308 /* TODO: FEAT_FGT */
7309 if (el < 3
7310 && arm_feature(env, ARM_FEATURE_EL3)
7311 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7312 return CP_ACCESS_TRAP_EL3;
7314 return CP_ACCESS_OK;
7317 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7318 bool isread)
7320 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7321 if (arm_current_el(env) == 2
7322 && arm_feature(env, ARM_FEATURE_EL3)
7323 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7324 return CP_ACCESS_TRAP_EL3;
7326 return CP_ACCESS_OK;
7329 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7330 bool isread)
7332 if (arm_current_el(env) < 3
7333 && arm_feature(env, ARM_FEATURE_EL3)
7334 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7335 return CP_ACCESS_TRAP_EL3;
7337 return CP_ACCESS_OK;
7340 /* ResetSVEState */
7341 static void arm_reset_sve_state(CPUARMState *env)
7343 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7344 /* Recall that FFR is stored as pregs[16]. */
7345 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7346 vfp_set_fpcr(env, 0x0800009f);
7349 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7351 uint64_t change = (env->svcr ^ new) & mask;
7353 if (change == 0) {
7354 return;
7356 env->svcr ^= change;
7358 if (change & R_SVCR_SM_MASK) {
7359 arm_reset_sve_state(env);
7363 * ResetSMEState.
7365 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7366 * on enable: while disabled, the storage is inaccessible and the
7367 * value does not matter. We're not saving the storage in vmstate
7368 * when disabled either.
7370 if (change & new & R_SVCR_ZA_MASK) {
7371 memset(env->zarray, 0, sizeof(env->zarray));
7374 if (tcg_enabled()) {
7375 arm_rebuild_hflags(env);
7379 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7380 uint64_t value)
7382 aarch64_set_svcr(env, value, -1);
7385 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7386 uint64_t value)
7388 int cur_el = arm_current_el(env);
7389 int old_len = sve_vqm1_for_el(env, cur_el);
7390 int new_len;
7392 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7393 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7394 raw_write(env, ri, value);
7397 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7398 * when SVL is widened (old values kept, or zeros). Choose to keep the
7399 * current values for simplicity. But for QEMU internals, we must still
7400 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7401 * above aarch64_sve_narrow_vq.
7403 new_len = sve_vqm1_for_el(env, cur_el);
7404 if (new_len < old_len) {
7405 aarch64_sve_narrow_vq(env, new_len + 1);
7409 static const ARMCPRegInfo sme_reginfo[] = {
7410 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7411 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7412 .access = PL0_RW, .accessfn = access_tpidr2,
7413 .fgt = FGT_NTPIDR2_EL0,
7414 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7415 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7416 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7417 .access = PL0_RW, .type = ARM_CP_SME,
7418 .fieldoffset = offsetof(CPUARMState, svcr),
7419 .writefn = svcr_write, .raw_writefn = raw_write },
7420 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7421 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7422 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7423 .access = PL1_RW, .type = ARM_CP_SME,
7424 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7425 .writefn = smcr_write, .raw_writefn = raw_write },
7426 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7427 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7428 .access = PL2_RW, .type = ARM_CP_SME,
7429 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7430 .writefn = smcr_write, .raw_writefn = raw_write },
7431 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7432 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7433 .access = PL3_RW, .type = ARM_CP_SME,
7434 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7435 .writefn = smcr_write, .raw_writefn = raw_write },
7436 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7437 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7438 .access = PL1_R, .accessfn = access_aa64_tid1,
7440 * IMPLEMENTOR = 0 (software)
7441 * REVISION = 0 (implementation defined)
7442 * SMPS = 0 (no streaming execution priority in QEMU)
7443 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7445 .type = ARM_CP_CONST, .resetvalue = 0, },
7447 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7449 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7450 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7451 .access = PL1_RW, .accessfn = access_smpri,
7452 .fgt = FGT_NSMPRI_EL1,
7453 .type = ARM_CP_CONST, .resetvalue = 0 },
7454 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7456 .nv2_redirect_offset = 0x1f8,
7457 .access = PL2_RW, .accessfn = access_smprimap,
7458 .type = ARM_CP_CONST, .resetvalue = 0 },
7461 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7462 uint64_t value)
7464 CPUState *cs = env_cpu(env);
7466 tlb_flush(cs);
7469 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7470 uint64_t value)
7472 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7473 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7474 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7475 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7477 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7480 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7482 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7483 env_archcpu(env)->reset_l0gptsz);
7486 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7487 uint64_t value)
7489 CPUState *cs = env_cpu(env);
7491 tlb_flush_all_cpus_synced(cs);
7494 static const ARMCPRegInfo rme_reginfo[] = {
7495 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7496 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7497 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7498 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7499 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7500 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7501 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7502 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7503 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7504 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7505 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7506 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7507 .access = PL3_W, .type = ARM_CP_NO_RAW,
7508 .writefn = tlbi_aa64_paall_write },
7509 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7510 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7511 .access = PL3_W, .type = ARM_CP_NO_RAW,
7512 .writefn = tlbi_aa64_paallos_write },
7514 * QEMU does not have a way to invalidate by physical address, thus
7515 * invalidating a range of physical addresses is accomplished by
7516 * flushing all tlb entries in the outer shareable domain,
7517 * just like PAALLOS.
7519 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7520 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7521 .access = PL3_W, .type = ARM_CP_NO_RAW,
7522 .writefn = tlbi_aa64_paallos_write },
7523 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7524 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7525 .access = PL3_W, .type = ARM_CP_NO_RAW,
7526 .writefn = tlbi_aa64_paallos_write },
7527 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7528 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7529 .access = PL3_W, .type = ARM_CP_NOP },
7532 static const ARMCPRegInfo rme_mte_reginfo[] = {
7533 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7534 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7535 .access = PL3_W, .type = ARM_CP_NOP },
7538 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
7539 uint64_t value)
7541 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
7544 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
7546 return env->pstate & PSTATE_ALLINT;
7549 static CPAccessResult aa64_allint_access(CPUARMState *env,
7550 const ARMCPRegInfo *ri, bool isread)
7552 if (!isread && arm_current_el(env) == 1 &&
7553 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
7554 return CP_ACCESS_TRAP_EL2;
7556 return CP_ACCESS_OK;
7559 static const ARMCPRegInfo nmi_reginfo[] = {
7560 { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
7562 .type = ARM_CP_NO_RAW,
7563 .access = PL1_RW, .accessfn = aa64_allint_access,
7564 .fieldoffset = offsetof(CPUARMState, pstate),
7565 .writefn = aa64_allint_write, .readfn = aa64_allint_read,
7566 .resetfn = arm_cp_reset_ignore },
7568 #endif /* TARGET_AARCH64 */
7570 static void define_pmu_regs(ARMCPU *cpu)
7573 * v7 performance monitor control register: same implementor
7574 * field as main ID register, and we implement four counters in
7575 * addition to the cycle count register.
7577 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7578 ARMCPRegInfo pmcr = {
7579 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7580 .access = PL0_RW,
7581 .fgt = FGT_PMCR_EL0,
7582 .type = ARM_CP_IO | ARM_CP_ALIAS,
7583 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7584 .accessfn = pmreg_access,
7585 .readfn = pmcr_read, .raw_readfn = raw_read,
7586 .writefn = pmcr_write, .raw_writefn = raw_write,
7588 ARMCPRegInfo pmcr64 = {
7589 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7590 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7591 .access = PL0_RW, .accessfn = pmreg_access,
7592 .fgt = FGT_PMCR_EL0,
7593 .type = ARM_CP_IO,
7594 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7595 .resetvalue = cpu->isar.reset_pmcr_el0,
7596 .readfn = pmcr_read, .raw_readfn = raw_read,
7597 .writefn = pmcr_write, .raw_writefn = raw_write,
7600 define_one_arm_cp_reg(cpu, &pmcr);
7601 define_one_arm_cp_reg(cpu, &pmcr64);
7602 for (i = 0; i < pmcrn; i++) {
7603 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7604 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7605 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7606 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7607 ARMCPRegInfo pmev_regs[] = {
7608 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7609 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7610 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7611 .fgt = FGT_PMEVCNTRN_EL0,
7612 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7613 .accessfn = pmreg_access_xevcntr },
7614 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7615 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7616 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7617 .type = ARM_CP_IO,
7618 .fgt = FGT_PMEVCNTRN_EL0,
7619 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7620 .raw_readfn = pmevcntr_rawread,
7621 .raw_writefn = pmevcntr_rawwrite },
7622 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7623 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7624 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7625 .fgt = FGT_PMEVTYPERN_EL0,
7626 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7627 .accessfn = pmreg_access },
7628 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7629 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7630 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7631 .fgt = FGT_PMEVTYPERN_EL0,
7632 .type = ARM_CP_IO,
7633 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7634 .raw_writefn = pmevtyper_rawwrite },
7636 define_arm_cp_regs(cpu, pmev_regs);
7637 g_free(pmevcntr_name);
7638 g_free(pmevcntr_el0_name);
7639 g_free(pmevtyper_name);
7640 g_free(pmevtyper_el0_name);
7642 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7643 ARMCPRegInfo v81_pmu_regs[] = {
7644 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7645 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7646 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7647 .fgt = FGT_PMCEIDN_EL0,
7648 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7649 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7650 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7651 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7652 .fgt = FGT_PMCEIDN_EL0,
7653 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7655 define_arm_cp_regs(cpu, v81_pmu_regs);
7657 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7658 static const ARMCPRegInfo v84_pmmir = {
7659 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7660 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7661 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7662 .fgt = FGT_PMMIR_EL1,
7663 .resetvalue = 0
7665 define_one_arm_cp_reg(cpu, &v84_pmmir);
7669 #ifndef CONFIG_USER_ONLY
7671 * We don't know until after realize whether there's a GICv3
7672 * attached, and that is what registers the gicv3 sysregs.
7673 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7674 * at runtime.
7676 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7678 ARMCPU *cpu = env_archcpu(env);
7679 uint64_t pfr1 = cpu->isar.id_pfr1;
7681 if (env->gicv3state) {
7682 pfr1 |= 1 << 28;
7684 return pfr1;
7687 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7689 ARMCPU *cpu = env_archcpu(env);
7690 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7692 if (env->gicv3state) {
7693 pfr0 |= 1 << 24;
7695 return pfr0;
7697 #endif
7700 * Shared logic between LORID and the rest of the LOR* registers.
7701 * Secure state exclusion has already been dealt with.
7703 static CPAccessResult access_lor_ns(CPUARMState *env,
7704 const ARMCPRegInfo *ri, bool isread)
7706 int el = arm_current_el(env);
7708 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7709 return CP_ACCESS_TRAP_EL2;
7711 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7712 return CP_ACCESS_TRAP_EL3;
7714 return CP_ACCESS_OK;
7717 static CPAccessResult access_lor_other(CPUARMState *env,
7718 const ARMCPRegInfo *ri, bool isread)
7720 if (arm_is_secure_below_el3(env)) {
7721 /* Access denied in secure mode. */
7722 return CP_ACCESS_TRAP;
7724 return access_lor_ns(env, ri, isread);
7728 * A trivial implementation of ARMv8.1-LOR leaves all of these
7729 * registers fixed at 0, which indicates that there are zero
7730 * supported Limited Ordering regions.
7732 static const ARMCPRegInfo lor_reginfo[] = {
7733 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7734 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7735 .access = PL1_RW, .accessfn = access_lor_other,
7736 .fgt = FGT_LORSA_EL1,
7737 .type = ARM_CP_CONST, .resetvalue = 0 },
7738 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7739 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7740 .access = PL1_RW, .accessfn = access_lor_other,
7741 .fgt = FGT_LOREA_EL1,
7742 .type = ARM_CP_CONST, .resetvalue = 0 },
7743 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7744 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7745 .access = PL1_RW, .accessfn = access_lor_other,
7746 .fgt = FGT_LORN_EL1,
7747 .type = ARM_CP_CONST, .resetvalue = 0 },
7748 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7749 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7750 .access = PL1_RW, .accessfn = access_lor_other,
7751 .fgt = FGT_LORC_EL1,
7752 .type = ARM_CP_CONST, .resetvalue = 0 },
7753 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7754 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7755 .access = PL1_R, .accessfn = access_lor_ns,
7756 .fgt = FGT_LORID_EL1,
7757 .type = ARM_CP_CONST, .resetvalue = 0 },
7760 #ifdef TARGET_AARCH64
7761 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7762 bool isread)
7764 int el = arm_current_el(env);
7766 if (el < 2 &&
7767 arm_is_el2_enabled(env) &&
7768 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7769 return CP_ACCESS_TRAP_EL2;
7771 if (el < 3 &&
7772 arm_feature(env, ARM_FEATURE_EL3) &&
7773 !(env->cp15.scr_el3 & SCR_APK)) {
7774 return CP_ACCESS_TRAP_EL3;
7776 return CP_ACCESS_OK;
7779 static const ARMCPRegInfo pauth_reginfo[] = {
7780 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7781 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7782 .access = PL1_RW, .accessfn = access_pauth,
7783 .fgt = FGT_APDAKEY,
7784 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7785 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7786 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7787 .access = PL1_RW, .accessfn = access_pauth,
7788 .fgt = FGT_APDAKEY,
7789 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7790 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7791 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7792 .access = PL1_RW, .accessfn = access_pauth,
7793 .fgt = FGT_APDBKEY,
7794 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7795 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7796 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7797 .access = PL1_RW, .accessfn = access_pauth,
7798 .fgt = FGT_APDBKEY,
7799 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7800 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7801 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7802 .access = PL1_RW, .accessfn = access_pauth,
7803 .fgt = FGT_APGAKEY,
7804 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7805 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7806 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7807 .access = PL1_RW, .accessfn = access_pauth,
7808 .fgt = FGT_APGAKEY,
7809 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7810 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7811 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7812 .access = PL1_RW, .accessfn = access_pauth,
7813 .fgt = FGT_APIAKEY,
7814 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7815 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7816 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7817 .access = PL1_RW, .accessfn = access_pauth,
7818 .fgt = FGT_APIAKEY,
7819 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7820 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7821 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7822 .access = PL1_RW, .accessfn = access_pauth,
7823 .fgt = FGT_APIBKEY,
7824 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7825 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7827 .access = PL1_RW, .accessfn = access_pauth,
7828 .fgt = FGT_APIBKEY,
7829 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7832 static const ARMCPRegInfo tlbirange_reginfo[] = {
7833 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7834 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7835 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7836 .fgt = FGT_TLBIRVAE1IS,
7837 .writefn = tlbi_aa64_rvae1is_write },
7838 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7839 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7840 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7841 .fgt = FGT_TLBIRVAAE1IS,
7842 .writefn = tlbi_aa64_rvae1is_write },
7843 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7844 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7845 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7846 .fgt = FGT_TLBIRVALE1IS,
7847 .writefn = tlbi_aa64_rvae1is_write },
7848 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7850 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7851 .fgt = FGT_TLBIRVAALE1IS,
7852 .writefn = tlbi_aa64_rvae1is_write },
7853 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7855 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7856 .fgt = FGT_TLBIRVAE1OS,
7857 .writefn = tlbi_aa64_rvae1is_write },
7858 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7859 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7860 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7861 .fgt = FGT_TLBIRVAAE1OS,
7862 .writefn = tlbi_aa64_rvae1is_write },
7863 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7865 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7866 .fgt = FGT_TLBIRVALE1OS,
7867 .writefn = tlbi_aa64_rvae1is_write },
7868 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7870 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7871 .fgt = FGT_TLBIRVAALE1OS,
7872 .writefn = tlbi_aa64_rvae1is_write },
7873 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7876 .fgt = FGT_TLBIRVAE1,
7877 .writefn = tlbi_aa64_rvae1_write },
7878 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7881 .fgt = FGT_TLBIRVAAE1,
7882 .writefn = tlbi_aa64_rvae1_write },
7883 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7885 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7886 .fgt = FGT_TLBIRVALE1,
7887 .writefn = tlbi_aa64_rvae1_write },
7888 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7891 .fgt = FGT_TLBIRVAALE1,
7892 .writefn = tlbi_aa64_rvae1_write },
7893 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7895 .access = PL2_W, .type = ARM_CP_NO_RAW,
7896 .writefn = tlbi_aa64_ripas2e1is_write },
7897 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7898 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7899 .access = PL2_W, .type = ARM_CP_NO_RAW,
7900 .writefn = tlbi_aa64_ripas2e1is_write },
7901 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7903 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7904 .writefn = tlbi_aa64_rvae2is_write },
7905 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7907 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7908 .writefn = tlbi_aa64_rvae2is_write },
7909 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7911 .access = PL2_W, .type = ARM_CP_NO_RAW,
7912 .writefn = tlbi_aa64_ripas2e1_write },
7913 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7915 .access = PL2_W, .type = ARM_CP_NO_RAW,
7916 .writefn = tlbi_aa64_ripas2e1_write },
7917 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7919 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7920 .writefn = tlbi_aa64_rvae2is_write },
7921 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7923 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7924 .writefn = tlbi_aa64_rvae2is_write },
7925 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7927 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7928 .writefn = tlbi_aa64_rvae2_write },
7929 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7931 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7932 .writefn = tlbi_aa64_rvae2_write },
7933 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7934 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7935 .access = PL3_W, .type = ARM_CP_NO_RAW,
7936 .writefn = tlbi_aa64_rvae3is_write },
7937 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7938 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7939 .access = PL3_W, .type = ARM_CP_NO_RAW,
7940 .writefn = tlbi_aa64_rvae3is_write },
7941 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7942 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7943 .access = PL3_W, .type = ARM_CP_NO_RAW,
7944 .writefn = tlbi_aa64_rvae3is_write },
7945 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7946 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7947 .access = PL3_W, .type = ARM_CP_NO_RAW,
7948 .writefn = tlbi_aa64_rvae3is_write },
7949 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7950 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7951 .access = PL3_W, .type = ARM_CP_NO_RAW,
7952 .writefn = tlbi_aa64_rvae3_write },
7953 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7954 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7955 .access = PL3_W, .type = ARM_CP_NO_RAW,
7956 .writefn = tlbi_aa64_rvae3_write },
7959 static const ARMCPRegInfo tlbios_reginfo[] = {
7960 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7961 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7962 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7963 .fgt = FGT_TLBIVMALLE1OS,
7964 .writefn = tlbi_aa64_vmalle1is_write },
7965 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7966 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7967 .fgt = FGT_TLBIVAE1OS,
7968 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7969 .writefn = tlbi_aa64_vae1is_write },
7970 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7972 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7973 .fgt = FGT_TLBIASIDE1OS,
7974 .writefn = tlbi_aa64_vmalle1is_write },
7975 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7976 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7977 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7978 .fgt = FGT_TLBIVAAE1OS,
7979 .writefn = tlbi_aa64_vae1is_write },
7980 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7981 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7982 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7983 .fgt = FGT_TLBIVALE1OS,
7984 .writefn = tlbi_aa64_vae1is_write },
7985 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7987 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7988 .fgt = FGT_TLBIVAALE1OS,
7989 .writefn = tlbi_aa64_vae1is_write },
7990 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7991 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7992 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7993 .writefn = tlbi_aa64_alle2is_write },
7994 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7996 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7997 .writefn = tlbi_aa64_vae2is_write },
7998 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7999 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
8000 .access = PL2_W, .type = ARM_CP_NO_RAW,
8001 .writefn = tlbi_aa64_alle1is_write },
8002 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
8003 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
8004 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8005 .writefn = tlbi_aa64_vae2is_write },
8006 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
8007 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
8008 .access = PL2_W, .type = ARM_CP_NO_RAW,
8009 .writefn = tlbi_aa64_alle1is_write },
8010 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
8011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
8012 .access = PL2_W, .type = ARM_CP_NOP },
8013 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
8014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
8015 .access = PL2_W, .type = ARM_CP_NOP },
8016 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
8018 .access = PL2_W, .type = ARM_CP_NOP },
8019 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
8021 .access = PL2_W, .type = ARM_CP_NOP },
8022 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
8023 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
8024 .access = PL3_W, .type = ARM_CP_NO_RAW,
8025 .writefn = tlbi_aa64_alle3is_write },
8026 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
8027 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
8028 .access = PL3_W, .type = ARM_CP_NO_RAW,
8029 .writefn = tlbi_aa64_vae3is_write },
8030 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
8031 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
8032 .access = PL3_W, .type = ARM_CP_NO_RAW,
8033 .writefn = tlbi_aa64_vae3is_write },
8036 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
8038 Error *err = NULL;
8039 uint64_t ret;
8041 /* Success sets NZCV = 0000. */
8042 env->NF = env->CF = env->VF = 0, env->ZF = 1;
8044 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
8046 * ??? Failed, for unknown reasons in the crypto subsystem.
8047 * The best we can do is log the reason and return the
8048 * timed-out indication to the guest. There is no reason
8049 * we know to expect this failure to be transitory, so the
8050 * guest may well hang retrying the operation.
8052 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
8053 ri->name, error_get_pretty(err));
8054 error_free(err);
8056 env->ZF = 0; /* NZCF = 0100 */
8057 return 0;
8059 return ret;
8062 /* We do not support re-seeding, so the two registers operate the same. */
8063 static const ARMCPRegInfo rndr_reginfo[] = {
8064 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
8065 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8066 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
8067 .access = PL0_R, .readfn = rndr_readfn },
8068 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
8069 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8070 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
8071 .access = PL0_R, .readfn = rndr_readfn },
8074 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8075 uint64_t value)
8077 #ifdef CONFIG_TCG
8078 ARMCPU *cpu = env_archcpu(env);
8079 /* CTR_EL0 System register -> DminLine, bits [19:16] */
8080 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8081 uint64_t vaddr_in = (uint64_t) value;
8082 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8083 void *haddr;
8084 int mem_idx = arm_env_mmu_index(env);
8086 /* This won't be crossing page boundaries */
8087 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8088 if (haddr) {
8089 #ifndef CONFIG_USER_ONLY
8091 ram_addr_t offset;
8092 MemoryRegion *mr;
8094 /* RCU lock is already being held */
8095 mr = memory_region_from_host(haddr, &offset);
8097 if (mr) {
8098 memory_region_writeback(mr, offset, dline_size);
8100 #endif /*CONFIG_USER_ONLY*/
8102 #else
8103 /* Handled by hardware accelerator. */
8104 g_assert_not_reached();
8105 #endif /* CONFIG_TCG */
8108 static const ARMCPRegInfo dcpop_reg[] = {
8109 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8110 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8111 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8112 .fgt = FGT_DCCVAP,
8113 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8116 static const ARMCPRegInfo dcpodp_reg[] = {
8117 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8118 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8119 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8120 .fgt = FGT_DCCVADP,
8121 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8124 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8125 bool isread)
8127 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8128 return CP_ACCESS_TRAP_EL2;
8131 return CP_ACCESS_OK;
8134 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8135 bool isread)
8137 int el = arm_current_el(env);
8138 if (el < 2 && arm_is_el2_enabled(env)) {
8139 uint64_t hcr = arm_hcr_el2_eff(env);
8140 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8141 return CP_ACCESS_TRAP_EL2;
8144 if (el < 3 &&
8145 arm_feature(env, ARM_FEATURE_EL3) &&
8146 !(env->cp15.scr_el3 & SCR_ATA)) {
8147 return CP_ACCESS_TRAP_EL3;
8149 return CP_ACCESS_OK;
8152 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8153 bool isread)
8155 CPAccessResult nv1 = access_nv1(env, ri, isread);
8157 if (nv1 != CP_ACCESS_OK) {
8158 return nv1;
8160 return access_mte(env, ri, isread);
8163 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8164 bool isread)
8167 * TFSR_EL2: similar to generic access_mte(), but we need to
8168 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8169 * if NV2 is enabled then we will redirect this to TFSR_EL1
8170 * after doing the HCR and SCR ATA traps; otherwise this will
8171 * be a trap to EL2 and the HCR/SCR traps do not apply.
8173 int el = arm_current_el(env);
8175 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8176 return CP_ACCESS_OK;
8178 if (el < 2 && arm_is_el2_enabled(env)) {
8179 uint64_t hcr = arm_hcr_el2_eff(env);
8180 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8181 return CP_ACCESS_TRAP_EL2;
8184 if (el < 3 &&
8185 arm_feature(env, ARM_FEATURE_EL3) &&
8186 !(env->cp15.scr_el3 & SCR_ATA)) {
8187 return CP_ACCESS_TRAP_EL3;
8189 return CP_ACCESS_OK;
8192 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8194 return env->pstate & PSTATE_TCO;
8197 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8199 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8202 static const ARMCPRegInfo mte_reginfo[] = {
8203 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8204 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8205 .access = PL1_RW, .accessfn = access_mte,
8206 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8207 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8208 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8209 .access = PL1_RW, .accessfn = access_tfsr_el1,
8210 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8211 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8212 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8213 .type = ARM_CP_NV2_REDIRECT,
8214 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8215 .access = PL2_RW, .accessfn = access_tfsr_el2,
8216 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8217 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8218 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8219 .access = PL3_RW,
8220 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8221 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8222 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8223 .access = PL1_RW, .accessfn = access_mte,
8224 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8225 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8226 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8227 .access = PL1_RW, .accessfn = access_mte,
8228 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8229 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8230 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8231 .type = ARM_CP_NO_RAW,
8232 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8233 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8235 .type = ARM_CP_NOP, .access = PL1_W,
8236 .fgt = FGT_DCIVAC,
8237 .accessfn = aa64_cacheop_poc_access },
8238 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8239 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8240 .fgt = FGT_DCISW,
8241 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8242 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8243 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8244 .type = ARM_CP_NOP, .access = PL1_W,
8245 .fgt = FGT_DCIVAC,
8246 .accessfn = aa64_cacheop_poc_access },
8247 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8249 .fgt = FGT_DCISW,
8250 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8251 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8252 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8253 .fgt = FGT_DCCSW,
8254 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8255 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8256 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8257 .fgt = FGT_DCCSW,
8258 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8259 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8260 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8261 .fgt = FGT_DCCISW,
8262 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8263 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8264 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8265 .fgt = FGT_DCCISW,
8266 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8269 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8270 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8271 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8272 .type = ARM_CP_CONST, .access = PL0_RW, },
8275 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8276 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8277 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8278 .type = ARM_CP_NOP, .access = PL0_W,
8279 .fgt = FGT_DCCVAC,
8280 .accessfn = aa64_cacheop_poc_access },
8281 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8283 .type = ARM_CP_NOP, .access = PL0_W,
8284 .fgt = FGT_DCCVAC,
8285 .accessfn = aa64_cacheop_poc_access },
8286 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8287 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8288 .type = ARM_CP_NOP, .access = PL0_W,
8289 .fgt = FGT_DCCVAP,
8290 .accessfn = aa64_cacheop_poc_access },
8291 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8292 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8293 .type = ARM_CP_NOP, .access = PL0_W,
8294 .fgt = FGT_DCCVAP,
8295 .accessfn = aa64_cacheop_poc_access },
8296 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8297 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8298 .type = ARM_CP_NOP, .access = PL0_W,
8299 .fgt = FGT_DCCVADP,
8300 .accessfn = aa64_cacheop_poc_access },
8301 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8302 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8303 .type = ARM_CP_NOP, .access = PL0_W,
8304 .fgt = FGT_DCCVADP,
8305 .accessfn = aa64_cacheop_poc_access },
8306 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8307 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8308 .type = ARM_CP_NOP, .access = PL0_W,
8309 .fgt = FGT_DCCIVAC,
8310 .accessfn = aa64_cacheop_poc_access },
8311 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8312 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8313 .type = ARM_CP_NOP, .access = PL0_W,
8314 .fgt = FGT_DCCIVAC,
8315 .accessfn = aa64_cacheop_poc_access },
8316 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8317 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8318 .access = PL0_W, .type = ARM_CP_DC_GVA,
8319 #ifndef CONFIG_USER_ONLY
8320 /* Avoid overhead of an access check that always passes in user-mode */
8321 .accessfn = aa64_zva_access,
8322 .fgt = FGT_DCZVA,
8323 #endif
8325 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8326 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8327 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8328 #ifndef CONFIG_USER_ONLY
8329 /* Avoid overhead of an access check that always passes in user-mode */
8330 .accessfn = aa64_zva_access,
8331 .fgt = FGT_DCZVA,
8332 #endif
8336 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8337 bool isread)
8339 uint64_t hcr = arm_hcr_el2_eff(env);
8340 int el = arm_current_el(env);
8342 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8343 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8344 if (hcr & HCR_TGE) {
8345 return CP_ACCESS_TRAP_EL2;
8347 return CP_ACCESS_TRAP;
8349 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8350 return CP_ACCESS_TRAP_EL2;
8352 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8353 return CP_ACCESS_TRAP_EL2;
8355 if (el < 3
8356 && arm_feature(env, ARM_FEATURE_EL3)
8357 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8358 return CP_ACCESS_TRAP_EL3;
8360 return CP_ACCESS_OK;
8363 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8364 const ARMCPRegInfo *ri,
8365 bool isread)
8367 CPAccessResult nv1 = access_nv1(env, ri, isread);
8369 if (nv1 != CP_ACCESS_OK) {
8370 return nv1;
8372 return access_scxtnum(env, ri, isread);
8375 static const ARMCPRegInfo scxtnum_reginfo[] = {
8376 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8377 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8378 .access = PL0_RW, .accessfn = access_scxtnum,
8379 .fgt = FGT_SCXTNUM_EL0,
8380 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8381 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8382 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8383 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8384 .fgt = FGT_SCXTNUM_EL1,
8385 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8386 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8387 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8388 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8389 .access = PL2_RW, .accessfn = access_scxtnum,
8390 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8391 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8392 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8393 .access = PL3_RW,
8394 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8397 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8398 bool isread)
8400 if (arm_current_el(env) == 2 &&
8401 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8402 return CP_ACCESS_TRAP_EL3;
8404 return CP_ACCESS_OK;
8407 static const ARMCPRegInfo fgt_reginfo[] = {
8408 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8409 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8410 .nv2_redirect_offset = 0x1b8,
8411 .access = PL2_RW, .accessfn = access_fgt,
8412 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8413 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8414 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8415 .nv2_redirect_offset = 0x1c0,
8416 .access = PL2_RW, .accessfn = access_fgt,
8417 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8418 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8419 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8420 .nv2_redirect_offset = 0x1d0,
8421 .access = PL2_RW, .accessfn = access_fgt,
8422 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8423 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8424 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8425 .nv2_redirect_offset = 0x1d8,
8426 .access = PL2_RW, .accessfn = access_fgt,
8427 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8428 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8429 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8430 .nv2_redirect_offset = 0x1c8,
8431 .access = PL2_RW, .accessfn = access_fgt,
8432 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8435 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8436 uint64_t value)
8439 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8440 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8441 * about the RESS bits at the top -- we choose the "generate an EL2
8442 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8443 * the ptw.c code detect the resulting invalid address).
8445 env->cp15.vncr_el2 = value & ~0xfffULL;
8448 static const ARMCPRegInfo nv2_reginfo[] = {
8449 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8450 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8451 .access = PL2_RW,
8452 .writefn = vncr_write,
8453 .nv2_redirect_offset = 0xb0,
8454 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8457 #endif /* TARGET_AARCH64 */
8459 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8460 bool isread)
8462 int el = arm_current_el(env);
8464 if (el == 0) {
8465 uint64_t sctlr = arm_sctlr(env, el);
8466 if (!(sctlr & SCTLR_EnRCTX)) {
8467 return CP_ACCESS_TRAP;
8469 } else if (el == 1) {
8470 uint64_t hcr = arm_hcr_el2_eff(env);
8471 if (hcr & HCR_NV) {
8472 return CP_ACCESS_TRAP_EL2;
8475 return CP_ACCESS_OK;
8478 static const ARMCPRegInfo predinv_reginfo[] = {
8479 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8480 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8481 .fgt = FGT_CFPRCTX,
8482 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8483 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8484 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8485 .fgt = FGT_DVPRCTX,
8486 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8487 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8488 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8489 .fgt = FGT_CPPRCTX,
8490 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8492 * Note the AArch32 opcodes have a different OPC1.
8494 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8495 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8496 .fgt = FGT_CFPRCTX,
8497 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8498 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8499 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8500 .fgt = FGT_DVPRCTX,
8501 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8502 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8503 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8504 .fgt = FGT_CPPRCTX,
8505 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8508 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8510 /* Read the high 32 bits of the current CCSIDR */
8511 return extract64(ccsidr_read(env, ri), 32, 32);
8514 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8515 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8516 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8517 .access = PL1_R,
8518 .accessfn = access_tid4,
8519 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8522 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8523 bool isread)
8525 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8526 return CP_ACCESS_TRAP_EL2;
8529 return CP_ACCESS_OK;
8532 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8533 bool isread)
8535 if (arm_feature(env, ARM_FEATURE_V8)) {
8536 return access_aa64_tid3(env, ri, isread);
8539 return CP_ACCESS_OK;
8542 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8543 bool isread)
8545 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8546 return CP_ACCESS_TRAP_EL2;
8549 return CP_ACCESS_OK;
8552 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8553 const ARMCPRegInfo *ri, bool isread)
8556 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8557 * in v7A, not in v8A.
8559 if (!arm_feature(env, ARM_FEATURE_V8) &&
8560 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8561 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8562 return CP_ACCESS_TRAP_EL2;
8564 return CP_ACCESS_OK;
8567 static const ARMCPRegInfo jazelle_regs[] = {
8568 { .name = "JIDR",
8569 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8570 .access = PL1_R, .accessfn = access_jazelle,
8571 .type = ARM_CP_CONST, .resetvalue = 0 },
8572 { .name = "JOSCR",
8573 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8574 .accessfn = access_joscr_jmcr,
8575 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8576 { .name = "JMCR",
8577 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8578 .accessfn = access_joscr_jmcr,
8579 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8582 static const ARMCPRegInfo contextidr_el2 = {
8583 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8584 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8585 .access = PL2_RW,
8586 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8589 static const ARMCPRegInfo vhe_reginfo[] = {
8590 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8591 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8592 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8593 .raw_writefn = raw_write,
8594 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8595 #ifndef CONFIG_USER_ONLY
8596 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8597 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8598 .fieldoffset =
8599 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8600 .type = ARM_CP_IO, .access = PL2_RW,
8601 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8602 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8603 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8604 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8605 .resetfn = gt_hv_timer_reset,
8606 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8607 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8608 .type = ARM_CP_IO,
8609 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8610 .access = PL2_RW,
8611 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8612 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8613 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8614 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8615 .type = ARM_CP_IO | ARM_CP_ALIAS,
8616 .access = PL2_RW, .accessfn = access_el1nvpct,
8617 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8618 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8619 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8620 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8621 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8622 .type = ARM_CP_IO | ARM_CP_ALIAS,
8623 .access = PL2_RW, .accessfn = access_el1nvvct,
8624 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8625 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8626 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8627 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8628 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8629 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8630 .access = PL2_RW, .accessfn = e2h_access,
8631 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8632 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8633 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8634 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8635 .access = PL2_RW, .accessfn = e2h_access,
8636 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8637 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8638 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8639 .type = ARM_CP_IO | ARM_CP_ALIAS,
8640 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8641 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8642 .access = PL2_RW, .accessfn = access_el1nvpct,
8643 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8644 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8645 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8646 .type = ARM_CP_IO | ARM_CP_ALIAS,
8647 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8648 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8649 .access = PL2_RW, .accessfn = access_el1nvvct,
8650 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8651 #endif
8654 #ifndef CONFIG_USER_ONLY
8655 static const ARMCPRegInfo ats1e1_reginfo[] = {
8656 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8657 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8658 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8659 .fgt = FGT_ATS1E1RP,
8660 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8661 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8662 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8663 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8664 .fgt = FGT_ATS1E1WP,
8665 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8668 static const ARMCPRegInfo ats1cp_reginfo[] = {
8669 { .name = "ATS1CPRP",
8670 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8671 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8672 .writefn = ats_write },
8673 { .name = "ATS1CPWP",
8674 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8675 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8676 .writefn = ats_write },
8678 #endif
8681 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8682 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8683 * is non-zero, which is never for ARMv7, optionally in ARMv8
8684 * and mandatorily for ARMv8.2 and up.
8685 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8686 * implementation is RAZ/WI we can ignore this detail, as we
8687 * do for ACTLR.
8689 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8690 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8691 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8692 .access = PL1_RW, .accessfn = access_tacr,
8693 .type = ARM_CP_CONST, .resetvalue = 0 },
8694 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8695 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8696 .access = PL2_RW, .type = ARM_CP_CONST,
8697 .resetvalue = 0 },
8700 void register_cp_regs_for_features(ARMCPU *cpu)
8702 /* Register all the coprocessor registers based on feature bits */
8703 CPUARMState *env = &cpu->env;
8704 if (arm_feature(env, ARM_FEATURE_M)) {
8705 /* M profile has no coprocessor registers */
8706 return;
8709 define_arm_cp_regs(cpu, cp_reginfo);
8710 if (!arm_feature(env, ARM_FEATURE_V8)) {
8712 * Must go early as it is full of wildcards that may be
8713 * overridden by later definitions.
8715 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8718 if (arm_feature(env, ARM_FEATURE_V6)) {
8719 /* The ID registers all have impdef reset values */
8720 ARMCPRegInfo v6_idregs[] = {
8721 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8723 .access = PL1_R, .type = ARM_CP_CONST,
8724 .accessfn = access_aa32_tid3,
8725 .resetvalue = cpu->isar.id_pfr0 },
8727 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8728 * the value of the GIC field until after we define these regs.
8730 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8732 .access = PL1_R, .type = ARM_CP_NO_RAW,
8733 .accessfn = access_aa32_tid3,
8734 #ifdef CONFIG_USER_ONLY
8735 .type = ARM_CP_CONST,
8736 .resetvalue = cpu->isar.id_pfr1,
8737 #else
8738 .type = ARM_CP_NO_RAW,
8739 .accessfn = access_aa32_tid3,
8740 .readfn = id_pfr1_read,
8741 .writefn = arm_cp_write_ignore
8742 #endif
8744 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8746 .access = PL1_R, .type = ARM_CP_CONST,
8747 .accessfn = access_aa32_tid3,
8748 .resetvalue = cpu->isar.id_dfr0 },
8749 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8751 .access = PL1_R, .type = ARM_CP_CONST,
8752 .accessfn = access_aa32_tid3,
8753 .resetvalue = cpu->id_afr0 },
8754 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8756 .access = PL1_R, .type = ARM_CP_CONST,
8757 .accessfn = access_aa32_tid3,
8758 .resetvalue = cpu->isar.id_mmfr0 },
8759 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8761 .access = PL1_R, .type = ARM_CP_CONST,
8762 .accessfn = access_aa32_tid3,
8763 .resetvalue = cpu->isar.id_mmfr1 },
8764 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8766 .access = PL1_R, .type = ARM_CP_CONST,
8767 .accessfn = access_aa32_tid3,
8768 .resetvalue = cpu->isar.id_mmfr2 },
8769 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8771 .access = PL1_R, .type = ARM_CP_CONST,
8772 .accessfn = access_aa32_tid3,
8773 .resetvalue = cpu->isar.id_mmfr3 },
8774 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8776 .access = PL1_R, .type = ARM_CP_CONST,
8777 .accessfn = access_aa32_tid3,
8778 .resetvalue = cpu->isar.id_isar0 },
8779 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8781 .access = PL1_R, .type = ARM_CP_CONST,
8782 .accessfn = access_aa32_tid3,
8783 .resetvalue = cpu->isar.id_isar1 },
8784 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8786 .access = PL1_R, .type = ARM_CP_CONST,
8787 .accessfn = access_aa32_tid3,
8788 .resetvalue = cpu->isar.id_isar2 },
8789 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8791 .access = PL1_R, .type = ARM_CP_CONST,
8792 .accessfn = access_aa32_tid3,
8793 .resetvalue = cpu->isar.id_isar3 },
8794 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8796 .access = PL1_R, .type = ARM_CP_CONST,
8797 .accessfn = access_aa32_tid3,
8798 .resetvalue = cpu->isar.id_isar4 },
8799 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8801 .access = PL1_R, .type = ARM_CP_CONST,
8802 .accessfn = access_aa32_tid3,
8803 .resetvalue = cpu->isar.id_isar5 },
8804 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8806 .access = PL1_R, .type = ARM_CP_CONST,
8807 .accessfn = access_aa32_tid3,
8808 .resetvalue = cpu->isar.id_mmfr4 },
8809 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8811 .access = PL1_R, .type = ARM_CP_CONST,
8812 .accessfn = access_aa32_tid3,
8813 .resetvalue = cpu->isar.id_isar6 },
8815 define_arm_cp_regs(cpu, v6_idregs);
8816 define_arm_cp_regs(cpu, v6_cp_reginfo);
8817 } else {
8818 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8820 if (arm_feature(env, ARM_FEATURE_V6K)) {
8821 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8823 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8824 !arm_feature(env, ARM_FEATURE_PMSA)) {
8825 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8827 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8828 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8830 if (arm_feature(env, ARM_FEATURE_V7)) {
8831 ARMCPRegInfo clidr = {
8832 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8833 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8834 .access = PL1_R, .type = ARM_CP_CONST,
8835 .accessfn = access_tid4,
8836 .fgt = FGT_CLIDR_EL1,
8837 .resetvalue = cpu->clidr
8839 define_one_arm_cp_reg(cpu, &clidr);
8840 define_arm_cp_regs(cpu, v7_cp_reginfo);
8841 define_debug_regs(cpu);
8842 define_pmu_regs(cpu);
8843 } else {
8844 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8846 if (arm_feature(env, ARM_FEATURE_V8)) {
8848 * v8 ID registers, which all have impdef reset values.
8849 * Note that within the ID register ranges the unused slots
8850 * must all RAZ, not UNDEF; future architecture versions may
8851 * define new registers here.
8852 * ID registers which are AArch64 views of the AArch32 ID registers
8853 * which already existed in v6 and v7 are handled elsewhere,
8854 * in v6_idregs[].
8856 int i;
8857 ARMCPRegInfo v8_idregs[] = {
8859 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8860 * emulation because we don't know the right value for the
8861 * GIC field until after we define these regs.
8863 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8865 .access = PL1_R,
8866 #ifdef CONFIG_USER_ONLY
8867 .type = ARM_CP_CONST,
8868 .resetvalue = cpu->isar.id_aa64pfr0
8869 #else
8870 .type = ARM_CP_NO_RAW,
8871 .accessfn = access_aa64_tid3,
8872 .readfn = id_aa64pfr0_read,
8873 .writefn = arm_cp_write_ignore
8874 #endif
8876 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8878 .access = PL1_R, .type = ARM_CP_CONST,
8879 .accessfn = access_aa64_tid3,
8880 .resetvalue = cpu->isar.id_aa64pfr1},
8881 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8883 .access = PL1_R, .type = ARM_CP_CONST,
8884 .accessfn = access_aa64_tid3,
8885 .resetvalue = 0 },
8886 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8888 .access = PL1_R, .type = ARM_CP_CONST,
8889 .accessfn = access_aa64_tid3,
8890 .resetvalue = 0 },
8891 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8893 .access = PL1_R, .type = ARM_CP_CONST,
8894 .accessfn = access_aa64_tid3,
8895 .resetvalue = cpu->isar.id_aa64zfr0 },
8896 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8898 .access = PL1_R, .type = ARM_CP_CONST,
8899 .accessfn = access_aa64_tid3,
8900 .resetvalue = cpu->isar.id_aa64smfr0 },
8901 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8903 .access = PL1_R, .type = ARM_CP_CONST,
8904 .accessfn = access_aa64_tid3,
8905 .resetvalue = 0 },
8906 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8908 .access = PL1_R, .type = ARM_CP_CONST,
8909 .accessfn = access_aa64_tid3,
8910 .resetvalue = 0 },
8911 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8913 .access = PL1_R, .type = ARM_CP_CONST,
8914 .accessfn = access_aa64_tid3,
8915 .resetvalue = cpu->isar.id_aa64dfr0 },
8916 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8918 .access = PL1_R, .type = ARM_CP_CONST,
8919 .accessfn = access_aa64_tid3,
8920 .resetvalue = cpu->isar.id_aa64dfr1 },
8921 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8923 .access = PL1_R, .type = ARM_CP_CONST,
8924 .accessfn = access_aa64_tid3,
8925 .resetvalue = 0 },
8926 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8928 .access = PL1_R, .type = ARM_CP_CONST,
8929 .accessfn = access_aa64_tid3,
8930 .resetvalue = 0 },
8931 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8933 .access = PL1_R, .type = ARM_CP_CONST,
8934 .accessfn = access_aa64_tid3,
8935 .resetvalue = cpu->id_aa64afr0 },
8936 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8938 .access = PL1_R, .type = ARM_CP_CONST,
8939 .accessfn = access_aa64_tid3,
8940 .resetvalue = cpu->id_aa64afr1 },
8941 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8943 .access = PL1_R, .type = ARM_CP_CONST,
8944 .accessfn = access_aa64_tid3,
8945 .resetvalue = 0 },
8946 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8948 .access = PL1_R, .type = ARM_CP_CONST,
8949 .accessfn = access_aa64_tid3,
8950 .resetvalue = 0 },
8951 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8953 .access = PL1_R, .type = ARM_CP_CONST,
8954 .accessfn = access_aa64_tid3,
8955 .resetvalue = cpu->isar.id_aa64isar0 },
8956 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8958 .access = PL1_R, .type = ARM_CP_CONST,
8959 .accessfn = access_aa64_tid3,
8960 .resetvalue = cpu->isar.id_aa64isar1 },
8961 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8963 .access = PL1_R, .type = ARM_CP_CONST,
8964 .accessfn = access_aa64_tid3,
8965 .resetvalue = cpu->isar.id_aa64isar2 },
8966 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8968 .access = PL1_R, .type = ARM_CP_CONST,
8969 .accessfn = access_aa64_tid3,
8970 .resetvalue = 0 },
8971 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8973 .access = PL1_R, .type = ARM_CP_CONST,
8974 .accessfn = access_aa64_tid3,
8975 .resetvalue = 0 },
8976 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8978 .access = PL1_R, .type = ARM_CP_CONST,
8979 .accessfn = access_aa64_tid3,
8980 .resetvalue = 0 },
8981 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8983 .access = PL1_R, .type = ARM_CP_CONST,
8984 .accessfn = access_aa64_tid3,
8985 .resetvalue = 0 },
8986 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8988 .access = PL1_R, .type = ARM_CP_CONST,
8989 .accessfn = access_aa64_tid3,
8990 .resetvalue = 0 },
8991 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8993 .access = PL1_R, .type = ARM_CP_CONST,
8994 .accessfn = access_aa64_tid3,
8995 .resetvalue = cpu->isar.id_aa64mmfr0 },
8996 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8998 .access = PL1_R, .type = ARM_CP_CONST,
8999 .accessfn = access_aa64_tid3,
9000 .resetvalue = cpu->isar.id_aa64mmfr1 },
9001 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
9002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
9003 .access = PL1_R, .type = ARM_CP_CONST,
9004 .accessfn = access_aa64_tid3,
9005 .resetvalue = cpu->isar.id_aa64mmfr2 },
9006 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
9007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
9008 .access = PL1_R, .type = ARM_CP_CONST,
9009 .accessfn = access_aa64_tid3,
9010 .resetvalue = cpu->isar.id_aa64mmfr3 },
9011 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
9013 .access = PL1_R, .type = ARM_CP_CONST,
9014 .accessfn = access_aa64_tid3,
9015 .resetvalue = 0 },
9016 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
9018 .access = PL1_R, .type = ARM_CP_CONST,
9019 .accessfn = access_aa64_tid3,
9020 .resetvalue = 0 },
9021 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
9023 .access = PL1_R, .type = ARM_CP_CONST,
9024 .accessfn = access_aa64_tid3,
9025 .resetvalue = 0 },
9026 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
9028 .access = PL1_R, .type = ARM_CP_CONST,
9029 .accessfn = access_aa64_tid3,
9030 .resetvalue = 0 },
9031 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
9032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9033 .access = PL1_R, .type = ARM_CP_CONST,
9034 .accessfn = access_aa64_tid3,
9035 .resetvalue = cpu->isar.mvfr0 },
9036 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
9037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9038 .access = PL1_R, .type = ARM_CP_CONST,
9039 .accessfn = access_aa64_tid3,
9040 .resetvalue = cpu->isar.mvfr1 },
9041 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
9042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9043 .access = PL1_R, .type = ARM_CP_CONST,
9044 .accessfn = access_aa64_tid3,
9045 .resetvalue = cpu->isar.mvfr2 },
9047 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
9048 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
9049 * as RAZ, since it is in the "reserved for future ID
9050 * registers, RAZ" part of the AArch32 encoding space.
9052 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
9053 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9054 .access = PL1_R, .type = ARM_CP_CONST,
9055 .accessfn = access_aa64_tid3,
9056 .resetvalue = 0 },
9057 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
9058 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9059 .access = PL1_R, .type = ARM_CP_CONST,
9060 .accessfn = access_aa64_tid3,
9061 .resetvalue = 0 },
9062 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
9063 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9064 .access = PL1_R, .type = ARM_CP_CONST,
9065 .accessfn = access_aa64_tid3,
9066 .resetvalue = 0 },
9068 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
9069 * they're also RAZ for AArch64, and in v8 are gradually
9070 * being filled with AArch64-view-of-AArch32-ID-register
9071 * for new ID registers.
9073 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
9074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9075 .access = PL1_R, .type = ARM_CP_CONST,
9076 .accessfn = access_aa64_tid3,
9077 .resetvalue = 0 },
9078 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9080 .access = PL1_R, .type = ARM_CP_CONST,
9081 .accessfn = access_aa64_tid3,
9082 .resetvalue = cpu->isar.id_pfr2 },
9083 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9085 .access = PL1_R, .type = ARM_CP_CONST,
9086 .accessfn = access_aa64_tid3,
9087 .resetvalue = cpu->isar.id_dfr1 },
9088 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9090 .access = PL1_R, .type = ARM_CP_CONST,
9091 .accessfn = access_aa64_tid3,
9092 .resetvalue = cpu->isar.id_mmfr5 },
9093 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9095 .access = PL1_R, .type = ARM_CP_CONST,
9096 .accessfn = access_aa64_tid3,
9097 .resetvalue = 0 },
9098 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9099 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9100 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9101 .fgt = FGT_PMCEIDN_EL0,
9102 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9103 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9105 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9106 .fgt = FGT_PMCEIDN_EL0,
9107 .resetvalue = cpu->pmceid0 },
9108 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9109 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9110 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9111 .fgt = FGT_PMCEIDN_EL0,
9112 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9113 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9114 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9115 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9116 .fgt = FGT_PMCEIDN_EL0,
9117 .resetvalue = cpu->pmceid1 },
9119 #ifdef CONFIG_USER_ONLY
9120 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9121 { .name = "ID_AA64PFR0_EL1",
9122 .exported_bits = R_ID_AA64PFR0_FP_MASK |
9123 R_ID_AA64PFR0_ADVSIMD_MASK |
9124 R_ID_AA64PFR0_SVE_MASK |
9125 R_ID_AA64PFR0_DIT_MASK,
9126 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9127 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9128 { .name = "ID_AA64PFR1_EL1",
9129 .exported_bits = R_ID_AA64PFR1_BT_MASK |
9130 R_ID_AA64PFR1_SSBS_MASK |
9131 R_ID_AA64PFR1_MTE_MASK |
9132 R_ID_AA64PFR1_SME_MASK },
9133 { .name = "ID_AA64PFR*_EL1_RESERVED",
9134 .is_glob = true },
9135 { .name = "ID_AA64ZFR0_EL1",
9136 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9137 R_ID_AA64ZFR0_AES_MASK |
9138 R_ID_AA64ZFR0_BITPERM_MASK |
9139 R_ID_AA64ZFR0_BFLOAT16_MASK |
9140 R_ID_AA64ZFR0_B16B16_MASK |
9141 R_ID_AA64ZFR0_SHA3_MASK |
9142 R_ID_AA64ZFR0_SM4_MASK |
9143 R_ID_AA64ZFR0_I8MM_MASK |
9144 R_ID_AA64ZFR0_F32MM_MASK |
9145 R_ID_AA64ZFR0_F64MM_MASK },
9146 { .name = "ID_AA64SMFR0_EL1",
9147 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9148 R_ID_AA64SMFR0_BI32I32_MASK |
9149 R_ID_AA64SMFR0_B16F32_MASK |
9150 R_ID_AA64SMFR0_F16F32_MASK |
9151 R_ID_AA64SMFR0_I8I32_MASK |
9152 R_ID_AA64SMFR0_F16F16_MASK |
9153 R_ID_AA64SMFR0_B16B16_MASK |
9154 R_ID_AA64SMFR0_I16I32_MASK |
9155 R_ID_AA64SMFR0_F64F64_MASK |
9156 R_ID_AA64SMFR0_I16I64_MASK |
9157 R_ID_AA64SMFR0_SMEVER_MASK |
9158 R_ID_AA64SMFR0_FA64_MASK },
9159 { .name = "ID_AA64MMFR0_EL1",
9160 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9161 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9162 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9163 { .name = "ID_AA64MMFR1_EL1",
9164 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9165 { .name = "ID_AA64MMFR2_EL1",
9166 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9167 { .name = "ID_AA64MMFR3_EL1",
9168 .exported_bits = 0 },
9169 { .name = "ID_AA64MMFR*_EL1_RESERVED",
9170 .is_glob = true },
9171 { .name = "ID_AA64DFR0_EL1",
9172 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9173 { .name = "ID_AA64DFR1_EL1" },
9174 { .name = "ID_AA64DFR*_EL1_RESERVED",
9175 .is_glob = true },
9176 { .name = "ID_AA64AFR*",
9177 .is_glob = true },
9178 { .name = "ID_AA64ISAR0_EL1",
9179 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9180 R_ID_AA64ISAR0_SHA1_MASK |
9181 R_ID_AA64ISAR0_SHA2_MASK |
9182 R_ID_AA64ISAR0_CRC32_MASK |
9183 R_ID_AA64ISAR0_ATOMIC_MASK |
9184 R_ID_AA64ISAR0_RDM_MASK |
9185 R_ID_AA64ISAR0_SHA3_MASK |
9186 R_ID_AA64ISAR0_SM3_MASK |
9187 R_ID_AA64ISAR0_SM4_MASK |
9188 R_ID_AA64ISAR0_DP_MASK |
9189 R_ID_AA64ISAR0_FHM_MASK |
9190 R_ID_AA64ISAR0_TS_MASK |
9191 R_ID_AA64ISAR0_RNDR_MASK },
9192 { .name = "ID_AA64ISAR1_EL1",
9193 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9194 R_ID_AA64ISAR1_APA_MASK |
9195 R_ID_AA64ISAR1_API_MASK |
9196 R_ID_AA64ISAR1_JSCVT_MASK |
9197 R_ID_AA64ISAR1_FCMA_MASK |
9198 R_ID_AA64ISAR1_LRCPC_MASK |
9199 R_ID_AA64ISAR1_GPA_MASK |
9200 R_ID_AA64ISAR1_GPI_MASK |
9201 R_ID_AA64ISAR1_FRINTTS_MASK |
9202 R_ID_AA64ISAR1_SB_MASK |
9203 R_ID_AA64ISAR1_BF16_MASK |
9204 R_ID_AA64ISAR1_DGH_MASK |
9205 R_ID_AA64ISAR1_I8MM_MASK },
9206 { .name = "ID_AA64ISAR2_EL1",
9207 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9208 R_ID_AA64ISAR2_RPRES_MASK |
9209 R_ID_AA64ISAR2_GPA3_MASK |
9210 R_ID_AA64ISAR2_APA3_MASK |
9211 R_ID_AA64ISAR2_MOPS_MASK |
9212 R_ID_AA64ISAR2_BC_MASK |
9213 R_ID_AA64ISAR2_RPRFM_MASK |
9214 R_ID_AA64ISAR2_CSSC_MASK },
9215 { .name = "ID_AA64ISAR*_EL1_RESERVED",
9216 .is_glob = true },
9218 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9219 #endif
9221 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9222 * TODO: For RMR, a write with bit 1 set should do something with
9223 * cpu_reset(). In the meantime, "the bit is strictly a request",
9224 * so we are in spec just ignoring writes.
9226 if (!arm_feature(env, ARM_FEATURE_EL3) &&
9227 !arm_feature(env, ARM_FEATURE_EL2)) {
9228 ARMCPRegInfo el1_reset_regs[] = {
9229 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9230 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9231 .access = PL1_R,
9232 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9233 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9234 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9235 .access = PL1_RW, .type = ARM_CP_CONST,
9236 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9238 define_arm_cp_regs(cpu, el1_reset_regs);
9240 define_arm_cp_regs(cpu, v8_idregs);
9241 define_arm_cp_regs(cpu, v8_cp_reginfo);
9242 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9243 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9246 for (i = 4; i < 16; i++) {
9248 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9249 * For pre-v8 cores there are RAZ patterns for these in
9250 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9251 * v8 extends the "must RAZ" part of the ID register space
9252 * to also cover c0, 0, c{8-15}, {0-7}.
9253 * These are STATE_AA32 because in the AArch64 sysreg space
9254 * c4-c7 is where the AArch64 ID registers live (and we've
9255 * already defined those in v8_idregs[]), and c8-c15 are not
9256 * "must RAZ" for AArch64.
9258 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9259 ARMCPRegInfo v8_aa32_raz_idregs = {
9260 .name = name,
9261 .state = ARM_CP_STATE_AA32,
9262 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9263 .access = PL1_R, .type = ARM_CP_CONST,
9264 .accessfn = access_aa64_tid3,
9265 .resetvalue = 0 };
9266 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9271 * Register the base EL2 cpregs.
9272 * Pre v8, these registers are implemented only as part of the
9273 * Virtualization Extensions (EL2 present). Beginning with v8,
9274 * if EL2 is missing but EL3 is enabled, mostly these become
9275 * RES0 from EL3, with some specific exceptions.
9277 if (arm_feature(env, ARM_FEATURE_EL2)
9278 || (arm_feature(env, ARM_FEATURE_EL3)
9279 && arm_feature(env, ARM_FEATURE_V8))) {
9280 uint64_t vmpidr_def = mpidr_read_val(env);
9281 ARMCPRegInfo vpidr_regs[] = {
9282 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9283 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9284 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9285 .resetvalue = cpu->midr,
9286 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9287 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9288 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9289 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9290 .access = PL2_RW, .resetvalue = cpu->midr,
9291 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9292 .nv2_redirect_offset = 0x88,
9293 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9294 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9295 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9296 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9297 .resetvalue = vmpidr_def,
9298 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9299 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9300 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9301 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9302 .access = PL2_RW, .resetvalue = vmpidr_def,
9303 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9304 .nv2_redirect_offset = 0x50,
9305 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9308 * The only field of MDCR_EL2 that has a defined architectural reset
9309 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9311 ARMCPRegInfo mdcr_el2 = {
9312 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9313 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9314 .writefn = mdcr_el2_write,
9315 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9316 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9318 define_one_arm_cp_reg(cpu, &mdcr_el2);
9319 define_arm_cp_regs(cpu, vpidr_regs);
9320 define_arm_cp_regs(cpu, el2_cp_reginfo);
9321 if (arm_feature(env, ARM_FEATURE_V8)) {
9322 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9324 if (cpu_isar_feature(aa64_sel2, cpu)) {
9325 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9328 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9329 * See commentary near RMR_EL1.
9331 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9332 static const ARMCPRegInfo el2_reset_regs[] = {
9333 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9334 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9335 .access = PL2_R,
9336 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9337 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9338 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9339 .access = PL2_R,
9340 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9341 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9342 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9343 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9345 define_arm_cp_regs(cpu, el2_reset_regs);
9349 /* Register the base EL3 cpregs. */
9350 if (arm_feature(env, ARM_FEATURE_EL3)) {
9351 define_arm_cp_regs(cpu, el3_cp_reginfo);
9352 ARMCPRegInfo el3_regs[] = {
9353 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9354 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9355 .access = PL3_R,
9356 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9357 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9358 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9359 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9360 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9361 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9362 .access = PL3_RW, .type = ARM_CP_CONST,
9363 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9364 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9365 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9366 .access = PL3_RW,
9367 .raw_writefn = raw_write, .writefn = sctlr_write,
9368 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9369 .resetvalue = cpu->reset_sctlr },
9372 define_arm_cp_regs(cpu, el3_regs);
9375 * The behaviour of NSACR is sufficiently various that we don't
9376 * try to describe it in a single reginfo:
9377 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9378 * reads as constant 0xc00 from NS EL1 and NS EL2
9379 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9380 * if v7 without EL3, register doesn't exist
9381 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9383 if (arm_feature(env, ARM_FEATURE_EL3)) {
9384 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9385 static const ARMCPRegInfo nsacr = {
9386 .name = "NSACR", .type = ARM_CP_CONST,
9387 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9388 .access = PL1_RW, .accessfn = nsacr_access,
9389 .resetvalue = 0xc00
9391 define_one_arm_cp_reg(cpu, &nsacr);
9392 } else {
9393 static const ARMCPRegInfo nsacr = {
9394 .name = "NSACR",
9395 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9396 .access = PL3_RW | PL1_R,
9397 .resetvalue = 0,
9398 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9400 define_one_arm_cp_reg(cpu, &nsacr);
9402 } else {
9403 if (arm_feature(env, ARM_FEATURE_V8)) {
9404 static const ARMCPRegInfo nsacr = {
9405 .name = "NSACR", .type = ARM_CP_CONST,
9406 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9407 .access = PL1_R,
9408 .resetvalue = 0xc00
9410 define_one_arm_cp_reg(cpu, &nsacr);
9414 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9415 if (arm_feature(env, ARM_FEATURE_V6)) {
9416 /* PMSAv6 not implemented */
9417 assert(arm_feature(env, ARM_FEATURE_V7));
9418 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9419 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9420 } else {
9421 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9423 } else {
9424 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9425 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9426 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9427 if (cpu_isar_feature(aa32_hpd, cpu)) {
9428 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9431 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9432 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9434 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9435 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9437 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9438 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9440 #ifndef CONFIG_USER_ONLY
9441 if (cpu_isar_feature(aa64_ecv, cpu)) {
9442 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9444 #endif
9445 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9446 ARMCPRegInfo vapa_cp_reginfo[] = {
9447 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9448 .access = PL1_RW, .resetvalue = 0,
9449 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9450 offsetoflow32(CPUARMState, cp15.par_ns) },
9451 .writefn = par_write},
9452 #ifndef CONFIG_USER_ONLY
9453 /* This underdecoding is safe because the reginfo is NO_RAW. */
9454 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9455 .access = PL1_W, .accessfn = ats_access,
9456 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9457 #endif
9461 * When LPAE exists this 32-bit PAR register is an alias of the
9462 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9464 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9465 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9467 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9469 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9470 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9472 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9473 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9475 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9476 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9478 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9479 define_arm_cp_regs(cpu, omap_cp_reginfo);
9481 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9482 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9484 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9485 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9487 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9488 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9490 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9491 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9493 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9494 define_arm_cp_regs(cpu, jazelle_regs);
9497 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9498 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9499 * be read-only (ie write causes UNDEF exception).
9502 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9504 * Pre-v8 MIDR space.
9505 * Note that the MIDR isn't a simple constant register because
9506 * of the TI925 behaviour where writes to another register can
9507 * cause the MIDR value to change.
9509 * Unimplemented registers in the c15 0 0 0 space default to
9510 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9511 * and friends override accordingly.
9513 { .name = "MIDR",
9514 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9515 .access = PL1_R, .resetvalue = cpu->midr,
9516 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9517 .readfn = midr_read,
9518 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9519 .type = ARM_CP_OVERRIDE },
9520 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9521 { .name = "DUMMY",
9522 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9523 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9524 { .name = "DUMMY",
9525 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9526 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9527 { .name = "DUMMY",
9528 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9529 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9530 { .name = "DUMMY",
9531 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9532 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9533 { .name = "DUMMY",
9534 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9535 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9537 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9538 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9540 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9541 .fgt = FGT_MIDR_EL1,
9542 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9543 .readfn = midr_read },
9544 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9545 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9546 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9547 .access = PL1_R, .resetvalue = cpu->midr },
9548 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9550 .access = PL1_R,
9551 .accessfn = access_aa64_tid1,
9552 .fgt = FGT_REVIDR_EL1,
9553 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9555 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9556 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9557 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9558 .access = PL1_R, .resetvalue = cpu->midr
9560 ARMCPRegInfo id_cp_reginfo[] = {
9561 /* These are common to v8 and pre-v8 */
9562 { .name = "CTR",
9563 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9564 .access = PL1_R, .accessfn = ctr_el0_access,
9565 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9566 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9567 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9568 .access = PL0_R, .accessfn = ctr_el0_access,
9569 .fgt = FGT_CTR_EL0,
9570 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9571 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9572 { .name = "TCMTR",
9573 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9574 .access = PL1_R,
9575 .accessfn = access_aa32_tid1,
9576 .type = ARM_CP_CONST, .resetvalue = 0 },
9578 /* TLBTR is specific to VMSA */
9579 ARMCPRegInfo id_tlbtr_reginfo = {
9580 .name = "TLBTR",
9581 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9582 .access = PL1_R,
9583 .accessfn = access_aa32_tid1,
9584 .type = ARM_CP_CONST, .resetvalue = 0,
9586 /* MPUIR is specific to PMSA V6+ */
9587 ARMCPRegInfo id_mpuir_reginfo = {
9588 .name = "MPUIR",
9589 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9590 .access = PL1_R, .type = ARM_CP_CONST,
9591 .resetvalue = cpu->pmsav7_dregion << 8
9593 /* HMPUIR is specific to PMSA V8 */
9594 ARMCPRegInfo id_hmpuir_reginfo = {
9595 .name = "HMPUIR",
9596 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9597 .access = PL2_R, .type = ARM_CP_CONST,
9598 .resetvalue = cpu->pmsav8r_hdregion
9600 static const ARMCPRegInfo crn0_wi_reginfo = {
9601 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9602 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9603 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9605 #ifdef CONFIG_USER_ONLY
9606 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9607 { .name = "MIDR_EL1",
9608 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9609 R_MIDR_EL1_PARTNUM_MASK |
9610 R_MIDR_EL1_ARCHITECTURE_MASK |
9611 R_MIDR_EL1_VARIANT_MASK |
9612 R_MIDR_EL1_IMPLEMENTER_MASK },
9613 { .name = "REVIDR_EL1" },
9615 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9616 #endif
9617 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9618 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9619 size_t i;
9621 * Register the blanket "writes ignored" value first to cover the
9622 * whole space. Then update the specific ID registers to allow write
9623 * access, so that they ignore writes rather than causing them to
9624 * UNDEF.
9626 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9627 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9628 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9630 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9631 id_cp_reginfo[i].access = PL1_RW;
9633 id_mpuir_reginfo.access = PL1_RW;
9634 id_tlbtr_reginfo.access = PL1_RW;
9636 if (arm_feature(env, ARM_FEATURE_V8)) {
9637 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9638 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9639 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9641 } else {
9642 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9644 define_arm_cp_regs(cpu, id_cp_reginfo);
9645 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9646 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9647 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9648 arm_feature(env, ARM_FEATURE_V8)) {
9649 uint32_t i = 0;
9650 char *tmp_string;
9652 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9653 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9654 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9656 /* Register alias is only valid for first 32 indexes */
9657 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9658 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9659 uint8_t opc1 = extract32(i, 4, 1);
9660 uint8_t opc2 = extract32(i, 0, 1) << 2;
9662 tmp_string = g_strdup_printf("PRBAR%u", i);
9663 ARMCPRegInfo tmp_prbarn_reginfo = {
9664 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9665 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9666 .access = PL1_RW, .resetvalue = 0,
9667 .accessfn = access_tvm_trvm,
9668 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9670 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9671 g_free(tmp_string);
9673 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9674 tmp_string = g_strdup_printf("PRLAR%u", i);
9675 ARMCPRegInfo tmp_prlarn_reginfo = {
9676 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9677 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9678 .access = PL1_RW, .resetvalue = 0,
9679 .accessfn = access_tvm_trvm,
9680 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9682 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9683 g_free(tmp_string);
9686 /* Register alias is only valid for first 32 indexes */
9687 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9688 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9689 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9690 uint8_t opc2 = extract32(i, 0, 1) << 2;
9692 tmp_string = g_strdup_printf("HPRBAR%u", i);
9693 ARMCPRegInfo tmp_hprbarn_reginfo = {
9694 .name = tmp_string,
9695 .type = ARM_CP_NO_RAW,
9696 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9697 .access = PL2_RW, .resetvalue = 0,
9698 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9700 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9701 g_free(tmp_string);
9703 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9704 tmp_string = g_strdup_printf("HPRLAR%u", i);
9705 ARMCPRegInfo tmp_hprlarn_reginfo = {
9706 .name = tmp_string,
9707 .type = ARM_CP_NO_RAW,
9708 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9709 .access = PL2_RW, .resetvalue = 0,
9710 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9712 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9713 g_free(tmp_string);
9715 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9716 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9720 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9721 ARMCPRegInfo mpidr_cp_reginfo[] = {
9722 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9723 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9724 .fgt = FGT_MPIDR_EL1,
9725 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9727 #ifdef CONFIG_USER_ONLY
9728 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9729 { .name = "MPIDR_EL1",
9730 .fixed_bits = 0x0000000080000000 },
9732 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9733 #endif
9734 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9737 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9738 ARMCPRegInfo auxcr_reginfo[] = {
9739 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9740 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9741 .access = PL1_RW, .accessfn = access_tacr,
9742 .nv2_redirect_offset = 0x118,
9743 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9744 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9745 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9746 .access = PL2_RW, .type = ARM_CP_CONST,
9747 .resetvalue = 0 },
9748 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9749 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9750 .access = PL3_RW, .type = ARM_CP_CONST,
9751 .resetvalue = 0 },
9753 define_arm_cp_regs(cpu, auxcr_reginfo);
9754 if (cpu_isar_feature(aa32_ac2, cpu)) {
9755 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9759 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9761 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9762 * There are two flavours:
9763 * (1) older 32-bit only cores have a simple 32-bit CBAR
9764 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9765 * 32-bit register visible to AArch32 at a different encoding
9766 * to the "flavour 1" register and with the bits rearranged to
9767 * be able to squash a 64-bit address into the 32-bit view.
9768 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9769 * in future if we support AArch32-only configs of some of the
9770 * AArch64 cores we might need to add a specific feature flag
9771 * to indicate cores with "flavour 2" CBAR.
9773 if (arm_feature(env, ARM_FEATURE_V8)) {
9774 /* 32 bit view is [31:18] 0...0 [43:32]. */
9775 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9776 | extract64(cpu->reset_cbar, 32, 12);
9777 ARMCPRegInfo cbar_reginfo[] = {
9778 { .name = "CBAR",
9779 .type = ARM_CP_CONST,
9780 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9781 .access = PL1_R, .resetvalue = cbar32 },
9782 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9783 .type = ARM_CP_CONST,
9784 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9785 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9787 /* We don't implement a r/w 64 bit CBAR currently */
9788 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9789 define_arm_cp_regs(cpu, cbar_reginfo);
9790 } else {
9791 ARMCPRegInfo cbar = {
9792 .name = "CBAR",
9793 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9794 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9795 .fieldoffset = offsetof(CPUARMState,
9796 cp15.c15_config_base_address)
9798 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9799 cbar.access = PL1_R;
9800 cbar.fieldoffset = 0;
9801 cbar.type = ARM_CP_CONST;
9803 define_one_arm_cp_reg(cpu, &cbar);
9807 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9808 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9809 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9810 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9811 .access = PL1_RW, .writefn = vbar_write,
9812 .accessfn = access_nv1,
9813 .fgt = FGT_VBAR_EL1,
9814 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9815 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9816 offsetof(CPUARMState, cp15.vbar_ns) },
9817 .resetvalue = 0 },
9819 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9822 /* Generic registers whose values depend on the implementation */
9824 ARMCPRegInfo sctlr = {
9825 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9826 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9827 .access = PL1_RW, .accessfn = access_tvm_trvm,
9828 .fgt = FGT_SCTLR_EL1,
9829 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9830 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9831 offsetof(CPUARMState, cp15.sctlr_ns) },
9832 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9833 .raw_writefn = raw_write,
9835 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9837 * Normally we would always end the TB on an SCTLR write, but Linux
9838 * arch/arm/mach-pxa/sleep.S expects two instructions following
9839 * an MMU enable to execute from cache. Imitate this behaviour.
9841 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9843 define_one_arm_cp_reg(cpu, &sctlr);
9845 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9846 arm_feature(env, ARM_FEATURE_V8)) {
9847 ARMCPRegInfo vsctlr = {
9848 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9849 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9850 .access = PL2_RW, .resetvalue = 0x0,
9851 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9853 define_one_arm_cp_reg(cpu, &vsctlr);
9857 if (cpu_isar_feature(aa64_lor, cpu)) {
9858 define_arm_cp_regs(cpu, lor_reginfo);
9860 if (cpu_isar_feature(aa64_pan, cpu)) {
9861 define_one_arm_cp_reg(cpu, &pan_reginfo);
9863 #ifndef CONFIG_USER_ONLY
9864 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9865 define_arm_cp_regs(cpu, ats1e1_reginfo);
9867 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9868 define_arm_cp_regs(cpu, ats1cp_reginfo);
9870 #endif
9871 if (cpu_isar_feature(aa64_uao, cpu)) {
9872 define_one_arm_cp_reg(cpu, &uao_reginfo);
9875 if (cpu_isar_feature(aa64_dit, cpu)) {
9876 define_one_arm_cp_reg(cpu, &dit_reginfo);
9878 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9879 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9881 if (cpu_isar_feature(any_ras, cpu)) {
9882 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9885 if (cpu_isar_feature(aa64_vh, cpu) ||
9886 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9887 define_one_arm_cp_reg(cpu, &contextidr_el2);
9889 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9890 define_arm_cp_regs(cpu, vhe_reginfo);
9893 if (cpu_isar_feature(aa64_sve, cpu)) {
9894 define_arm_cp_regs(cpu, zcr_reginfo);
9897 if (cpu_isar_feature(aa64_hcx, cpu)) {
9898 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9901 #ifdef TARGET_AARCH64
9902 if (cpu_isar_feature(aa64_sme, cpu)) {
9903 define_arm_cp_regs(cpu, sme_reginfo);
9905 if (cpu_isar_feature(aa64_pauth, cpu)) {
9906 define_arm_cp_regs(cpu, pauth_reginfo);
9908 if (cpu_isar_feature(aa64_rndr, cpu)) {
9909 define_arm_cp_regs(cpu, rndr_reginfo);
9911 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9912 define_arm_cp_regs(cpu, tlbirange_reginfo);
9914 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9915 define_arm_cp_regs(cpu, tlbios_reginfo);
9917 /* Data Cache clean instructions up to PoP */
9918 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9919 define_one_arm_cp_reg(cpu, dcpop_reg);
9921 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9922 define_one_arm_cp_reg(cpu, dcpodp_reg);
9927 * If full MTE is enabled, add all of the system registers.
9928 * If only "instructions available at EL0" are enabled,
9929 * then define only a RAZ/WI version of PSTATE.TCO.
9931 if (cpu_isar_feature(aa64_mte, cpu)) {
9932 ARMCPRegInfo gmid_reginfo = {
9933 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9934 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9935 .access = PL1_R, .accessfn = access_aa64_tid5,
9936 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9938 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9939 define_arm_cp_regs(cpu, mte_reginfo);
9940 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9941 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9942 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9943 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9946 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9947 define_arm_cp_regs(cpu, scxtnum_reginfo);
9950 if (cpu_isar_feature(aa64_fgt, cpu)) {
9951 define_arm_cp_regs(cpu, fgt_reginfo);
9954 if (cpu_isar_feature(aa64_rme, cpu)) {
9955 define_arm_cp_regs(cpu, rme_reginfo);
9956 if (cpu_isar_feature(aa64_mte, cpu)) {
9957 define_arm_cp_regs(cpu, rme_mte_reginfo);
9961 if (cpu_isar_feature(aa64_nv2, cpu)) {
9962 define_arm_cp_regs(cpu, nv2_reginfo);
9965 if (cpu_isar_feature(aa64_nmi, cpu)) {
9966 define_arm_cp_regs(cpu, nmi_reginfo);
9968 #endif
9970 if (cpu_isar_feature(any_predinv, cpu)) {
9971 define_arm_cp_regs(cpu, predinv_reginfo);
9974 if (cpu_isar_feature(any_ccidx, cpu)) {
9975 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9978 #ifndef CONFIG_USER_ONLY
9980 * Register redirections and aliases must be done last,
9981 * after the registers from the other extensions have been defined.
9983 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9984 define_arm_vh_e2h_redirects_aliases(cpu);
9986 #endif
9990 * Private utility function for define_one_arm_cp_reg_with_opaque():
9991 * add a single reginfo struct to the hash table.
9993 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9994 void *opaque, CPState state,
9995 CPSecureState secstate,
9996 int crm, int opc1, int opc2,
9997 const char *name)
9999 CPUARMState *env = &cpu->env;
10000 uint32_t key;
10001 ARMCPRegInfo *r2;
10002 bool is64 = r->type & ARM_CP_64BIT;
10003 bool ns = secstate & ARM_CP_SECSTATE_NS;
10004 int cp = r->cp;
10005 size_t name_len;
10006 bool make_const;
10008 switch (state) {
10009 case ARM_CP_STATE_AA32:
10010 /* We assume it is a cp15 register if the .cp field is left unset. */
10011 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
10012 cp = 15;
10014 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
10015 break;
10016 case ARM_CP_STATE_AA64:
10018 * To allow abbreviation of ARMCPRegInfo definitions, we treat
10019 * cp == 0 as equivalent to the value for "standard guest-visible
10020 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
10021 * in their AArch64 view (the .cp value may be non-zero for the
10022 * benefit of the AArch32 view).
10024 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
10025 cp = CP_REG_ARM64_SYSREG_CP;
10027 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
10028 break;
10029 default:
10030 g_assert_not_reached();
10033 /* Overriding of an existing definition must be explicitly requested. */
10034 if (!(r->type & ARM_CP_OVERRIDE)) {
10035 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
10036 if (oldreg) {
10037 assert(oldreg->type & ARM_CP_OVERRIDE);
10042 * Eliminate registers that are not present because the EL is missing.
10043 * Doing this here makes it easier to put all registers for a given
10044 * feature into the same ARMCPRegInfo array and define them all at once.
10046 make_const = false;
10047 if (arm_feature(env, ARM_FEATURE_EL3)) {
10049 * An EL2 register without EL2 but with EL3 is (usually) RES0.
10050 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
10052 int min_el = ctz32(r->access) / 2;
10053 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
10054 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
10055 return;
10057 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
10059 } else {
10060 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
10061 ? PL2_RW : PL1_RW);
10062 if ((r->access & max_el) == 0) {
10063 return;
10067 /* Combine cpreg and name into one allocation. */
10068 name_len = strlen(name) + 1;
10069 r2 = g_malloc(sizeof(*r2) + name_len);
10070 *r2 = *r;
10071 r2->name = memcpy(r2 + 1, name, name_len);
10074 * Update fields to match the instantiation, overwiting wildcards
10075 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
10077 r2->cp = cp;
10078 r2->crm = crm;
10079 r2->opc1 = opc1;
10080 r2->opc2 = opc2;
10081 r2->state = state;
10082 r2->secure = secstate;
10083 if (opaque) {
10084 r2->opaque = opaque;
10087 if (make_const) {
10088 /* This should not have been a very special register to begin. */
10089 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10090 assert(old_special == 0 || old_special == ARM_CP_NOP);
10092 * Set the special function to CONST, retaining the other flags.
10093 * This is important for e.g. ARM_CP_SVE so that we still
10094 * take the SVE trap if CPTR_EL3.EZ == 0.
10096 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10098 * Usually, these registers become RES0, but there are a few
10099 * special cases like VPIDR_EL2 which have a constant non-zero
10100 * value with writes ignored.
10102 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10103 r2->resetvalue = 0;
10106 * ARM_CP_CONST has precedence, so removing the callbacks and
10107 * offsets are not strictly necessary, but it is potentially
10108 * less confusing to debug later.
10110 r2->readfn = NULL;
10111 r2->writefn = NULL;
10112 r2->raw_readfn = NULL;
10113 r2->raw_writefn = NULL;
10114 r2->resetfn = NULL;
10115 r2->fieldoffset = 0;
10116 r2->bank_fieldoffsets[0] = 0;
10117 r2->bank_fieldoffsets[1] = 0;
10118 } else {
10119 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10121 if (isbanked) {
10123 * Register is banked (using both entries in array).
10124 * Overwriting fieldoffset as the array is only used to define
10125 * banked registers but later only fieldoffset is used.
10127 r2->fieldoffset = r->bank_fieldoffsets[ns];
10129 if (state == ARM_CP_STATE_AA32) {
10130 if (isbanked) {
10132 * If the register is banked then we don't need to migrate or
10133 * reset the 32-bit instance in certain cases:
10135 * 1) If the register has both 32-bit and 64-bit instances
10136 * then we can count on the 64-bit instance taking care
10137 * of the non-secure bank.
10138 * 2) If ARMv8 is enabled then we can count on a 64-bit
10139 * version taking care of the secure bank. This requires
10140 * that separate 32 and 64-bit definitions are provided.
10142 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10143 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10144 r2->type |= ARM_CP_ALIAS;
10146 } else if ((secstate != r->secure) && !ns) {
10148 * The register is not banked so we only want to allow
10149 * migration of the non-secure instance.
10151 r2->type |= ARM_CP_ALIAS;
10154 if (HOST_BIG_ENDIAN &&
10155 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10156 r2->fieldoffset += sizeof(uint32_t);
10162 * By convention, for wildcarded registers only the first
10163 * entry is used for migration; the others are marked as
10164 * ALIAS so we don't try to transfer the register
10165 * multiple times. Special registers (ie NOP/WFI) are
10166 * never migratable and not even raw-accessible.
10168 if (r2->type & ARM_CP_SPECIAL_MASK) {
10169 r2->type |= ARM_CP_NO_RAW;
10171 if (((r->crm == CP_ANY) && crm != 0) ||
10172 ((r->opc1 == CP_ANY) && opc1 != 0) ||
10173 ((r->opc2 == CP_ANY) && opc2 != 0)) {
10174 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10178 * Check that raw accesses are either forbidden or handled. Note that
10179 * we can't assert this earlier because the setup of fieldoffset for
10180 * banked registers has to be done first.
10182 if (!(r2->type & ARM_CP_NO_RAW)) {
10183 assert(!raw_accessors_invalid(r2));
10186 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10190 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10191 const ARMCPRegInfo *r, void *opaque)
10194 * Define implementations of coprocessor registers.
10195 * We store these in a hashtable because typically
10196 * there are less than 150 registers in a space which
10197 * is 16*16*16*8*8 = 262144 in size.
10198 * Wildcarding is supported for the crm, opc1 and opc2 fields.
10199 * If a register is defined twice then the second definition is
10200 * used, so this can be used to define some generic registers and
10201 * then override them with implementation specific variations.
10202 * At least one of the original and the second definition should
10203 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10204 * against accidental use.
10206 * The state field defines whether the register is to be
10207 * visible in the AArch32 or AArch64 execution state. If the
10208 * state is set to ARM_CP_STATE_BOTH then we synthesise a
10209 * reginfo structure for the AArch32 view, which sees the lower
10210 * 32 bits of the 64 bit register.
10212 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10213 * be wildcarded. AArch64 registers are always considered to be 64
10214 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10215 * the register, if any.
10217 int crm, opc1, opc2;
10218 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10219 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10220 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10221 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10222 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10223 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10224 CPState state;
10226 /* 64 bit registers have only CRm and Opc1 fields */
10227 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10228 /* op0 only exists in the AArch64 encodings */
10229 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10230 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10231 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10233 * This API is only for Arm's system coprocessors (14 and 15) or
10234 * (M-profile or v7A-and-earlier only) for implementation defined
10235 * coprocessors in the range 0..7. Our decode assumes this, since
10236 * 8..13 can be used for other insns including VFP and Neon. See
10237 * valid_cp() in translate.c. Assert here that we haven't tried
10238 * to use an invalid coprocessor number.
10240 switch (r->state) {
10241 case ARM_CP_STATE_BOTH:
10242 /* 0 has a special meaning, but otherwise the same rules as AA32. */
10243 if (r->cp == 0) {
10244 break;
10246 /* fall through */
10247 case ARM_CP_STATE_AA32:
10248 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10249 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10250 assert(r->cp >= 14 && r->cp <= 15);
10251 } else {
10252 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10254 break;
10255 case ARM_CP_STATE_AA64:
10256 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10257 break;
10258 default:
10259 g_assert_not_reached();
10262 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10263 * encodes a minimum access level for the register. We roll this
10264 * runtime check into our general permission check code, so check
10265 * here that the reginfo's specified permissions are strict enough
10266 * to encompass the generic architectural permission check.
10268 if (r->state != ARM_CP_STATE_AA32) {
10269 CPAccessRights mask;
10270 switch (r->opc1) {
10271 case 0:
10272 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10273 mask = PL0U_R | PL1_RW;
10274 break;
10275 case 1: case 2:
10276 /* min_EL EL1 */
10277 mask = PL1_RW;
10278 break;
10279 case 3:
10280 /* min_EL EL0 */
10281 mask = PL0_RW;
10282 break;
10283 case 4:
10284 case 5:
10285 /* min_EL EL2 */
10286 mask = PL2_RW;
10287 break;
10288 case 6:
10289 /* min_EL EL3 */
10290 mask = PL3_RW;
10291 break;
10292 case 7:
10293 /* min_EL EL1, secure mode only (we don't check the latter) */
10294 mask = PL1_RW;
10295 break;
10296 default:
10297 /* broken reginfo with out-of-range opc1 */
10298 g_assert_not_reached();
10300 /* assert our permissions are not too lax (stricter is fine) */
10301 assert((r->access & ~mask) == 0);
10305 * Check that the register definition has enough info to handle
10306 * reads and writes if they are permitted.
10308 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10309 if (r->access & PL3_R) {
10310 assert((r->fieldoffset ||
10311 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10312 r->readfn);
10314 if (r->access & PL3_W) {
10315 assert((r->fieldoffset ||
10316 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10317 r->writefn);
10321 for (crm = crmmin; crm <= crmmax; crm++) {
10322 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10323 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10324 for (state = ARM_CP_STATE_AA32;
10325 state <= ARM_CP_STATE_AA64; state++) {
10326 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10327 continue;
10329 if (state == ARM_CP_STATE_AA32) {
10331 * Under AArch32 CP registers can be common
10332 * (same for secure and non-secure world) or banked.
10334 char *name;
10336 switch (r->secure) {
10337 case ARM_CP_SECSTATE_S:
10338 case ARM_CP_SECSTATE_NS:
10339 add_cpreg_to_hashtable(cpu, r, opaque, state,
10340 r->secure, crm, opc1, opc2,
10341 r->name);
10342 break;
10343 case ARM_CP_SECSTATE_BOTH:
10344 name = g_strdup_printf("%s_S", r->name);
10345 add_cpreg_to_hashtable(cpu, r, opaque, state,
10346 ARM_CP_SECSTATE_S,
10347 crm, opc1, opc2, name);
10348 g_free(name);
10349 add_cpreg_to_hashtable(cpu, r, opaque, state,
10350 ARM_CP_SECSTATE_NS,
10351 crm, opc1, opc2, r->name);
10352 break;
10353 default:
10354 g_assert_not_reached();
10356 } else {
10358 * AArch64 registers get mapped to non-secure instance
10359 * of AArch32
10361 add_cpreg_to_hashtable(cpu, r, opaque, state,
10362 ARM_CP_SECSTATE_NS,
10363 crm, opc1, opc2, r->name);
10371 /* Define a whole list of registers */
10372 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10373 void *opaque, size_t len)
10375 size_t i;
10376 for (i = 0; i < len; ++i) {
10377 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10382 * Modify ARMCPRegInfo for access from userspace.
10384 * This is a data driven modification directed by
10385 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10386 * user-space cannot alter any values and dynamic values pertaining to
10387 * execution state are hidden from user space view anyway.
10389 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10390 const ARMCPRegUserSpaceInfo *mods,
10391 size_t mods_len)
10393 for (size_t mi = 0; mi < mods_len; ++mi) {
10394 const ARMCPRegUserSpaceInfo *m = mods + mi;
10395 GPatternSpec *pat = NULL;
10397 if (m->is_glob) {
10398 pat = g_pattern_spec_new(m->name);
10400 for (size_t ri = 0; ri < regs_len; ++ri) {
10401 ARMCPRegInfo *r = regs + ri;
10403 if (pat && g_pattern_match_string(pat, r->name)) {
10404 r->type = ARM_CP_CONST;
10405 r->access = PL0U_R;
10406 r->resetvalue = 0;
10407 /* continue */
10408 } else if (strcmp(r->name, m->name) == 0) {
10409 r->type = ARM_CP_CONST;
10410 r->access = PL0U_R;
10411 r->resetvalue &= m->exported_bits;
10412 r->resetvalue |= m->fixed_bits;
10413 break;
10416 if (pat) {
10417 g_pattern_spec_free(pat);
10422 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10424 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10427 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10428 uint64_t value)
10430 /* Helper coprocessor write function for write-ignore registers */
10433 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10435 /* Helper coprocessor write function for read-as-zero registers */
10436 return 0;
10439 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10441 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10444 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10447 * Return true if it is not valid for us to switch to
10448 * this CPU mode (ie all the UNPREDICTABLE cases in
10449 * the ARM ARM CPSRWriteByInstr pseudocode).
10452 /* Changes to or from Hyp via MSR and CPS are illegal. */
10453 if (write_type == CPSRWriteByInstr &&
10454 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10455 mode == ARM_CPU_MODE_HYP)) {
10456 return 1;
10459 switch (mode) {
10460 case ARM_CPU_MODE_USR:
10461 return 0;
10462 case ARM_CPU_MODE_SYS:
10463 case ARM_CPU_MODE_SVC:
10464 case ARM_CPU_MODE_ABT:
10465 case ARM_CPU_MODE_UND:
10466 case ARM_CPU_MODE_IRQ:
10467 case ARM_CPU_MODE_FIQ:
10469 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10470 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10473 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10474 * and CPS are treated as illegal mode changes.
10476 if (write_type == CPSRWriteByInstr &&
10477 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10478 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10479 return 1;
10481 return 0;
10482 case ARM_CPU_MODE_HYP:
10483 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10484 case ARM_CPU_MODE_MON:
10485 return arm_current_el(env) < 3;
10486 default:
10487 return 1;
10491 uint32_t cpsr_read(CPUARMState *env)
10493 int ZF;
10494 ZF = (env->ZF == 0);
10495 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10496 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10497 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10498 | ((env->condexec_bits & 0xfc) << 8)
10499 | (env->GE << 16) | (env->daif & CPSR_AIF);
10502 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10503 CPSRWriteType write_type)
10505 uint32_t changed_daif;
10506 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10507 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10509 if (mask & CPSR_NZCV) {
10510 env->ZF = (~val) & CPSR_Z;
10511 env->NF = val;
10512 env->CF = (val >> 29) & 1;
10513 env->VF = (val << 3) & 0x80000000;
10515 if (mask & CPSR_Q) {
10516 env->QF = ((val & CPSR_Q) != 0);
10518 if (mask & CPSR_T) {
10519 env->thumb = ((val & CPSR_T) != 0);
10521 if (mask & CPSR_IT_0_1) {
10522 env->condexec_bits &= ~3;
10523 env->condexec_bits |= (val >> 25) & 3;
10525 if (mask & CPSR_IT_2_7) {
10526 env->condexec_bits &= 3;
10527 env->condexec_bits |= (val >> 8) & 0xfc;
10529 if (mask & CPSR_GE) {
10530 env->GE = (val >> 16) & 0xf;
10534 * In a V7 implementation that includes the security extensions but does
10535 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10536 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10537 * bits respectively.
10539 * In a V8 implementation, it is permitted for privileged software to
10540 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10542 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10543 arm_feature(env, ARM_FEATURE_EL3) &&
10544 !arm_feature(env, ARM_FEATURE_EL2) &&
10545 !arm_is_secure(env)) {
10547 changed_daif = (env->daif ^ val) & mask;
10549 if (changed_daif & CPSR_A) {
10551 * Check to see if we are allowed to change the masking of async
10552 * abort exceptions from a non-secure state.
10554 if (!(env->cp15.scr_el3 & SCR_AW)) {
10555 qemu_log_mask(LOG_GUEST_ERROR,
10556 "Ignoring attempt to switch CPSR_A flag from "
10557 "non-secure world with SCR.AW bit clear\n");
10558 mask &= ~CPSR_A;
10562 if (changed_daif & CPSR_F) {
10564 * Check to see if we are allowed to change the masking of FIQ
10565 * exceptions from a non-secure state.
10567 if (!(env->cp15.scr_el3 & SCR_FW)) {
10568 qemu_log_mask(LOG_GUEST_ERROR,
10569 "Ignoring attempt to switch CPSR_F flag from "
10570 "non-secure world with SCR.FW bit clear\n");
10571 mask &= ~CPSR_F;
10575 * Check whether non-maskable FIQ (NMFI) support is enabled.
10576 * If this bit is set software is not allowed to mask
10577 * FIQs, but is allowed to set CPSR_F to 0.
10579 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10580 (val & CPSR_F)) {
10581 qemu_log_mask(LOG_GUEST_ERROR,
10582 "Ignoring attempt to enable CPSR_F flag "
10583 "(non-maskable FIQ [NMFI] support enabled)\n");
10584 mask &= ~CPSR_F;
10589 env->daif &= ~(CPSR_AIF & mask);
10590 env->daif |= val & CPSR_AIF & mask;
10592 if (write_type != CPSRWriteRaw &&
10593 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10594 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10596 * Note that we can only get here in USR mode if this is a
10597 * gdb stub write; for this case we follow the architectural
10598 * behaviour for guest writes in USR mode of ignoring an attempt
10599 * to switch mode. (Those are caught by translate.c for writes
10600 * triggered by guest instructions.)
10602 mask &= ~CPSR_M;
10603 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10605 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10606 * v7, and has defined behaviour in v8:
10607 * + leave CPSR.M untouched
10608 * + allow changes to the other CPSR fields
10609 * + set PSTATE.IL
10610 * For user changes via the GDB stub, we don't set PSTATE.IL,
10611 * as this would be unnecessarily harsh for a user error.
10613 mask &= ~CPSR_M;
10614 if (write_type != CPSRWriteByGDBStub &&
10615 arm_feature(env, ARM_FEATURE_V8)) {
10616 mask |= CPSR_IL;
10617 val |= CPSR_IL;
10619 qemu_log_mask(LOG_GUEST_ERROR,
10620 "Illegal AArch32 mode switch attempt from %s to %s\n",
10621 aarch32_mode_name(env->uncached_cpsr),
10622 aarch32_mode_name(val));
10623 } else {
10624 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10625 write_type == CPSRWriteExceptionReturn ?
10626 "Exception return from AArch32" :
10627 "AArch32 mode switch from",
10628 aarch32_mode_name(env->uncached_cpsr),
10629 aarch32_mode_name(val), env->regs[15]);
10630 switch_mode(env, val & CPSR_M);
10633 mask &= ~CACHED_CPSR_BITS;
10634 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10635 if (tcg_enabled() && rebuild_hflags) {
10636 arm_rebuild_hflags(env);
10640 #ifdef CONFIG_USER_ONLY
10642 static void switch_mode(CPUARMState *env, int mode)
10644 ARMCPU *cpu = env_archcpu(env);
10646 if (mode != ARM_CPU_MODE_USR) {
10647 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10651 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10652 uint32_t cur_el, bool secure)
10654 return 1;
10657 void aarch64_sync_64_to_32(CPUARMState *env)
10659 g_assert_not_reached();
10662 #else
10664 static void switch_mode(CPUARMState *env, int mode)
10666 int old_mode;
10667 int i;
10669 old_mode = env->uncached_cpsr & CPSR_M;
10670 if (mode == old_mode) {
10671 return;
10674 if (old_mode == ARM_CPU_MODE_FIQ) {
10675 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10676 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10677 } else if (mode == ARM_CPU_MODE_FIQ) {
10678 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10679 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10682 i = bank_number(old_mode);
10683 env->banked_r13[i] = env->regs[13];
10684 env->banked_spsr[i] = env->spsr;
10686 i = bank_number(mode);
10687 env->regs[13] = env->banked_r13[i];
10688 env->spsr = env->banked_spsr[i];
10690 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10691 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10695 * Physical Interrupt Target EL Lookup Table
10697 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10699 * The below multi-dimensional table is used for looking up the target
10700 * exception level given numerous condition criteria. Specifically, the
10701 * target EL is based on SCR and HCR routing controls as well as the
10702 * currently executing EL and secure state.
10704 * Dimensions:
10705 * target_el_table[2][2][2][2][2][4]
10706 * | | | | | +--- Current EL
10707 * | | | | +------ Non-secure(0)/Secure(1)
10708 * | | | +--------- HCR mask override
10709 * | | +------------ SCR exec state control
10710 * | +--------------- SCR mask override
10711 * +------------------ 32-bit(0)/64-bit(1) EL3
10713 * The table values are as such:
10714 * 0-3 = EL0-EL3
10715 * -1 = Cannot occur
10717 * The ARM ARM target EL table includes entries indicating that an "exception
10718 * is not taken". The two cases where this is applicable are:
10719 * 1) An exception is taken from EL3 but the SCR does not have the exception
10720 * routed to EL3.
10721 * 2) An exception is taken from EL2 but the HCR does not have the exception
10722 * routed to EL2.
10723 * In these two cases, the below table contain a target of EL1. This value is
10724 * returned as it is expected that the consumer of the table data will check
10725 * for "target EL >= current EL" to ensure the exception is not taken.
10727 * SCR HCR
10728 * 64 EA AMO From
10729 * BIT IRQ IMO Non-secure Secure
10730 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10732 static const int8_t target_el_table[2][2][2][2][2][4] = {
10733 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10734 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10735 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10736 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10737 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10738 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10739 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10740 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10741 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10742 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10743 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10744 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10745 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10746 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10747 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10748 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10752 * Determine the target EL for physical exceptions
10754 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10755 uint32_t cur_el, bool secure)
10757 CPUARMState *env = cpu_env(cs);
10758 bool rw;
10759 bool scr;
10760 bool hcr;
10761 int target_el;
10762 /* Is the highest EL AArch64? */
10763 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10764 uint64_t hcr_el2;
10766 if (arm_feature(env, ARM_FEATURE_EL3)) {
10767 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10768 } else {
10770 * Either EL2 is the highest EL (and so the EL2 register width
10771 * is given by is64); or there is no EL2 or EL3, in which case
10772 * the value of 'rw' does not affect the table lookup anyway.
10774 rw = is64;
10777 hcr_el2 = arm_hcr_el2_eff(env);
10778 switch (excp_idx) {
10779 case EXCP_IRQ:
10780 case EXCP_NMI:
10781 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10782 hcr = hcr_el2 & HCR_IMO;
10783 break;
10784 case EXCP_FIQ:
10785 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10786 hcr = hcr_el2 & HCR_FMO;
10787 break;
10788 default:
10789 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10790 hcr = hcr_el2 & HCR_AMO;
10791 break;
10795 * For these purposes, TGE and AMO/IMO/FMO both force the
10796 * interrupt to EL2. Fold TGE into the bit extracted above.
10798 hcr |= (hcr_el2 & HCR_TGE) != 0;
10800 /* Perform a table-lookup for the target EL given the current state */
10801 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10803 assert(target_el > 0);
10805 return target_el;
10808 void arm_log_exception(CPUState *cs)
10810 int idx = cs->exception_index;
10812 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10813 const char *exc = NULL;
10814 static const char * const excnames[] = {
10815 [EXCP_UDEF] = "Undefined Instruction",
10816 [EXCP_SWI] = "SVC",
10817 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10818 [EXCP_DATA_ABORT] = "Data Abort",
10819 [EXCP_IRQ] = "IRQ",
10820 [EXCP_FIQ] = "FIQ",
10821 [EXCP_BKPT] = "Breakpoint",
10822 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10823 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10824 [EXCP_HVC] = "Hypervisor Call",
10825 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10826 [EXCP_SMC] = "Secure Monitor Call",
10827 [EXCP_VIRQ] = "Virtual IRQ",
10828 [EXCP_VFIQ] = "Virtual FIQ",
10829 [EXCP_SEMIHOST] = "Semihosting call",
10830 [EXCP_NOCP] = "v7M NOCP UsageFault",
10831 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10832 [EXCP_STKOF] = "v8M STKOF UsageFault",
10833 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10834 [EXCP_LSERR] = "v8M LSERR UsageFault",
10835 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10836 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10837 [EXCP_VSERR] = "Virtual SERR",
10838 [EXCP_GPC] = "Granule Protection Check",
10839 [EXCP_NMI] = "NMI",
10840 [EXCP_VINMI] = "Virtual IRQ NMI",
10841 [EXCP_VFNMI] = "Virtual FIQ NMI",
10844 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10845 exc = excnames[idx];
10847 if (!exc) {
10848 exc = "unknown";
10850 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10851 idx, exc, cs->cpu_index);
10856 * Function used to synchronize QEMU's AArch64 register set with AArch32
10857 * register set. This is necessary when switching between AArch32 and AArch64
10858 * execution state.
10860 void aarch64_sync_32_to_64(CPUARMState *env)
10862 int i;
10863 uint32_t mode = env->uncached_cpsr & CPSR_M;
10865 /* We can blanket copy R[0:7] to X[0:7] */
10866 for (i = 0; i < 8; i++) {
10867 env->xregs[i] = env->regs[i];
10871 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10872 * Otherwise, they come from the banked user regs.
10874 if (mode == ARM_CPU_MODE_FIQ) {
10875 for (i = 8; i < 13; i++) {
10876 env->xregs[i] = env->usr_regs[i - 8];
10878 } else {
10879 for (i = 8; i < 13; i++) {
10880 env->xregs[i] = env->regs[i];
10885 * Registers x13-x23 are the various mode SP and FP registers. Registers
10886 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10887 * from the mode banked register.
10889 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10890 env->xregs[13] = env->regs[13];
10891 env->xregs[14] = env->regs[14];
10892 } else {
10893 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10894 /* HYP is an exception in that it is copied from r14 */
10895 if (mode == ARM_CPU_MODE_HYP) {
10896 env->xregs[14] = env->regs[14];
10897 } else {
10898 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10902 if (mode == ARM_CPU_MODE_HYP) {
10903 env->xregs[15] = env->regs[13];
10904 } else {
10905 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10908 if (mode == ARM_CPU_MODE_IRQ) {
10909 env->xregs[16] = env->regs[14];
10910 env->xregs[17] = env->regs[13];
10911 } else {
10912 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10913 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10916 if (mode == ARM_CPU_MODE_SVC) {
10917 env->xregs[18] = env->regs[14];
10918 env->xregs[19] = env->regs[13];
10919 } else {
10920 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10921 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10924 if (mode == ARM_CPU_MODE_ABT) {
10925 env->xregs[20] = env->regs[14];
10926 env->xregs[21] = env->regs[13];
10927 } else {
10928 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10929 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10932 if (mode == ARM_CPU_MODE_UND) {
10933 env->xregs[22] = env->regs[14];
10934 env->xregs[23] = env->regs[13];
10935 } else {
10936 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10937 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10941 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10942 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10943 * FIQ bank for r8-r14.
10945 if (mode == ARM_CPU_MODE_FIQ) {
10946 for (i = 24; i < 31; i++) {
10947 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10949 } else {
10950 for (i = 24; i < 29; i++) {
10951 env->xregs[i] = env->fiq_regs[i - 24];
10953 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10954 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10957 env->pc = env->regs[15];
10961 * Function used to synchronize QEMU's AArch32 register set with AArch64
10962 * register set. This is necessary when switching between AArch32 and AArch64
10963 * execution state.
10965 void aarch64_sync_64_to_32(CPUARMState *env)
10967 int i;
10968 uint32_t mode = env->uncached_cpsr & CPSR_M;
10970 /* We can blanket copy X[0:7] to R[0:7] */
10971 for (i = 0; i < 8; i++) {
10972 env->regs[i] = env->xregs[i];
10976 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10977 * Otherwise, we copy x8-x12 into the banked user regs.
10979 if (mode == ARM_CPU_MODE_FIQ) {
10980 for (i = 8; i < 13; i++) {
10981 env->usr_regs[i - 8] = env->xregs[i];
10983 } else {
10984 for (i = 8; i < 13; i++) {
10985 env->regs[i] = env->xregs[i];
10990 * Registers r13 & r14 depend on the current mode.
10991 * If we are in a given mode, we copy the corresponding x registers to r13
10992 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10993 * for the mode.
10995 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10996 env->regs[13] = env->xregs[13];
10997 env->regs[14] = env->xregs[14];
10998 } else {
10999 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
11002 * HYP is an exception in that it does not have its own banked r14 but
11003 * shares the USR r14
11005 if (mode == ARM_CPU_MODE_HYP) {
11006 env->regs[14] = env->xregs[14];
11007 } else {
11008 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
11012 if (mode == ARM_CPU_MODE_HYP) {
11013 env->regs[13] = env->xregs[15];
11014 } else {
11015 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
11018 if (mode == ARM_CPU_MODE_IRQ) {
11019 env->regs[14] = env->xregs[16];
11020 env->regs[13] = env->xregs[17];
11021 } else {
11022 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
11023 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
11026 if (mode == ARM_CPU_MODE_SVC) {
11027 env->regs[14] = env->xregs[18];
11028 env->regs[13] = env->xregs[19];
11029 } else {
11030 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
11031 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
11034 if (mode == ARM_CPU_MODE_ABT) {
11035 env->regs[14] = env->xregs[20];
11036 env->regs[13] = env->xregs[21];
11037 } else {
11038 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
11039 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
11042 if (mode == ARM_CPU_MODE_UND) {
11043 env->regs[14] = env->xregs[22];
11044 env->regs[13] = env->xregs[23];
11045 } else {
11046 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
11047 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
11051 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
11052 * mode, then we can copy to r8-r14. Otherwise, we copy to the
11053 * FIQ bank for r8-r14.
11055 if (mode == ARM_CPU_MODE_FIQ) {
11056 for (i = 24; i < 31; i++) {
11057 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
11059 } else {
11060 for (i = 24; i < 29; i++) {
11061 env->fiq_regs[i - 24] = env->xregs[i];
11063 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
11064 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
11067 env->regs[15] = env->pc;
11070 static void take_aarch32_exception(CPUARMState *env, int new_mode,
11071 uint32_t mask, uint32_t offset,
11072 uint32_t newpc)
11074 int new_el;
11076 /* Change the CPU state so as to actually take the exception. */
11077 switch_mode(env, new_mode);
11080 * For exceptions taken to AArch32 we must clear the SS bit in both
11081 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
11083 env->pstate &= ~PSTATE_SS;
11084 env->spsr = cpsr_read(env);
11085 /* Clear IT bits. */
11086 env->condexec_bits = 0;
11087 /* Switch to the new mode, and to the correct instruction set. */
11088 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11090 /* This must be after mode switching. */
11091 new_el = arm_current_el(env);
11093 /* Set new mode endianness */
11094 env->uncached_cpsr &= ~CPSR_E;
11095 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11096 env->uncached_cpsr |= CPSR_E;
11098 /* J and IL must always be cleared for exception entry */
11099 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11100 env->daif |= mask;
11102 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11103 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11104 env->uncached_cpsr |= CPSR_SSBS;
11105 } else {
11106 env->uncached_cpsr &= ~CPSR_SSBS;
11110 if (new_mode == ARM_CPU_MODE_HYP) {
11111 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11112 env->elr_el[2] = env->regs[15];
11113 } else {
11114 /* CPSR.PAN is normally preserved preserved unless... */
11115 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11116 switch (new_el) {
11117 case 3:
11118 if (!arm_is_secure_below_el3(env)) {
11119 /* ... the target is EL3, from non-secure state. */
11120 env->uncached_cpsr &= ~CPSR_PAN;
11121 break;
11123 /* ... the target is EL3, from secure state ... */
11124 /* fall through */
11125 case 1:
11126 /* ... the target is EL1 and SCTLR.SPAN is 0. */
11127 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11128 env->uncached_cpsr |= CPSR_PAN;
11130 break;
11134 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11135 * and we should just guard the thumb mode on V4
11137 if (arm_feature(env, ARM_FEATURE_V4T)) {
11138 env->thumb =
11139 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11141 env->regs[14] = env->regs[15] + offset;
11143 env->regs[15] = newpc;
11145 if (tcg_enabled()) {
11146 arm_rebuild_hflags(env);
11150 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11153 * Handle exception entry to Hyp mode; this is sufficiently
11154 * different to entry to other AArch32 modes that we handle it
11155 * separately here.
11157 * The vector table entry used is always the 0x14 Hyp mode entry point,
11158 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11159 * The offset applied to the preferred return address is always zero
11160 * (see DDI0487C.a section G1.12.3).
11161 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11163 uint32_t addr, mask;
11164 ARMCPU *cpu = ARM_CPU(cs);
11165 CPUARMState *env = &cpu->env;
11167 switch (cs->exception_index) {
11168 case EXCP_UDEF:
11169 addr = 0x04;
11170 break;
11171 case EXCP_SWI:
11172 addr = 0x08;
11173 break;
11174 case EXCP_BKPT:
11175 /* Fall through to prefetch abort. */
11176 case EXCP_PREFETCH_ABORT:
11177 env->cp15.ifar_s = env->exception.vaddress;
11178 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11179 (uint32_t)env->exception.vaddress);
11180 addr = 0x0c;
11181 break;
11182 case EXCP_DATA_ABORT:
11183 env->cp15.dfar_s = env->exception.vaddress;
11184 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11185 (uint32_t)env->exception.vaddress);
11186 addr = 0x10;
11187 break;
11188 case EXCP_IRQ:
11189 addr = 0x18;
11190 break;
11191 case EXCP_FIQ:
11192 addr = 0x1c;
11193 break;
11194 case EXCP_HVC:
11195 addr = 0x08;
11196 break;
11197 case EXCP_HYP_TRAP:
11198 addr = 0x14;
11199 break;
11200 default:
11201 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11204 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11205 if (!arm_feature(env, ARM_FEATURE_V8)) {
11207 * QEMU syndrome values are v8-style. v7 has the IL bit
11208 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11209 * If this is a v7 CPU, squash the IL bit in those cases.
11211 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11212 (cs->exception_index == EXCP_DATA_ABORT &&
11213 !(env->exception.syndrome & ARM_EL_ISV)) ||
11214 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11215 env->exception.syndrome &= ~ARM_EL_IL;
11218 env->cp15.esr_el[2] = env->exception.syndrome;
11221 if (arm_current_el(env) != 2 && addr < 0x14) {
11222 addr = 0x14;
11225 mask = 0;
11226 if (!(env->cp15.scr_el3 & SCR_EA)) {
11227 mask |= CPSR_A;
11229 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11230 mask |= CPSR_I;
11232 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11233 mask |= CPSR_F;
11236 addr += env->cp15.hvbar;
11238 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11241 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11243 ARMCPU *cpu = ARM_CPU(cs);
11244 CPUARMState *env = &cpu->env;
11245 uint32_t addr;
11246 uint32_t mask;
11247 int new_mode;
11248 uint32_t offset;
11249 uint32_t moe;
11251 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11252 switch (syn_get_ec(env->exception.syndrome)) {
11253 case EC_BREAKPOINT:
11254 case EC_BREAKPOINT_SAME_EL:
11255 moe = 1;
11256 break;
11257 case EC_WATCHPOINT:
11258 case EC_WATCHPOINT_SAME_EL:
11259 moe = 10;
11260 break;
11261 case EC_AA32_BKPT:
11262 moe = 3;
11263 break;
11264 case EC_VECTORCATCH:
11265 moe = 5;
11266 break;
11267 default:
11268 moe = 0;
11269 break;
11272 if (moe) {
11273 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11276 if (env->exception.target_el == 2) {
11277 /* Debug exceptions are reported differently on AArch32 */
11278 switch (syn_get_ec(env->exception.syndrome)) {
11279 case EC_BREAKPOINT:
11280 case EC_BREAKPOINT_SAME_EL:
11281 case EC_AA32_BKPT:
11282 case EC_VECTORCATCH:
11283 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11284 0, 0, 0x22);
11285 break;
11286 case EC_WATCHPOINT:
11287 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11288 EC_DATAABORT);
11289 break;
11290 case EC_WATCHPOINT_SAME_EL:
11291 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11292 EC_DATAABORT_SAME_EL);
11293 break;
11295 arm_cpu_do_interrupt_aarch32_hyp(cs);
11296 return;
11299 switch (cs->exception_index) {
11300 case EXCP_UDEF:
11301 new_mode = ARM_CPU_MODE_UND;
11302 addr = 0x04;
11303 mask = CPSR_I;
11304 if (env->thumb) {
11305 offset = 2;
11306 } else {
11307 offset = 4;
11309 break;
11310 case EXCP_SWI:
11311 new_mode = ARM_CPU_MODE_SVC;
11312 addr = 0x08;
11313 mask = CPSR_I;
11314 /* The PC already points to the next instruction. */
11315 offset = 0;
11316 break;
11317 case EXCP_BKPT:
11318 /* Fall through to prefetch abort. */
11319 case EXCP_PREFETCH_ABORT:
11320 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11321 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11322 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11323 env->exception.fsr, (uint32_t)env->exception.vaddress);
11324 new_mode = ARM_CPU_MODE_ABT;
11325 addr = 0x0c;
11326 mask = CPSR_A | CPSR_I;
11327 offset = 4;
11328 break;
11329 case EXCP_DATA_ABORT:
11330 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11331 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11332 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11333 env->exception.fsr,
11334 (uint32_t)env->exception.vaddress);
11335 new_mode = ARM_CPU_MODE_ABT;
11336 addr = 0x10;
11337 mask = CPSR_A | CPSR_I;
11338 offset = 8;
11339 break;
11340 case EXCP_IRQ:
11341 new_mode = ARM_CPU_MODE_IRQ;
11342 addr = 0x18;
11343 /* Disable IRQ and imprecise data aborts. */
11344 mask = CPSR_A | CPSR_I;
11345 offset = 4;
11346 if (env->cp15.scr_el3 & SCR_IRQ) {
11347 /* IRQ routed to monitor mode */
11348 new_mode = ARM_CPU_MODE_MON;
11349 mask |= CPSR_F;
11351 break;
11352 case EXCP_FIQ:
11353 new_mode = ARM_CPU_MODE_FIQ;
11354 addr = 0x1c;
11355 /* Disable FIQ, IRQ and imprecise data aborts. */
11356 mask = CPSR_A | CPSR_I | CPSR_F;
11357 if (env->cp15.scr_el3 & SCR_FIQ) {
11358 /* FIQ routed to monitor mode */
11359 new_mode = ARM_CPU_MODE_MON;
11361 offset = 4;
11362 break;
11363 case EXCP_VIRQ:
11364 new_mode = ARM_CPU_MODE_IRQ;
11365 addr = 0x18;
11366 /* Disable IRQ and imprecise data aborts. */
11367 mask = CPSR_A | CPSR_I;
11368 offset = 4;
11369 break;
11370 case EXCP_VFIQ:
11371 new_mode = ARM_CPU_MODE_FIQ;
11372 addr = 0x1c;
11373 /* Disable FIQ, IRQ and imprecise data aborts. */
11374 mask = CPSR_A | CPSR_I | CPSR_F;
11375 offset = 4;
11376 break;
11377 case EXCP_VSERR:
11380 * Note that this is reported as a data abort, but the DFAR
11381 * has an UNKNOWN value. Construct the SError syndrome from
11382 * AET and ExT fields.
11384 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11386 if (extended_addresses_enabled(env)) {
11387 env->exception.fsr = arm_fi_to_lfsc(&fi);
11388 } else {
11389 env->exception.fsr = arm_fi_to_sfsc(&fi);
11391 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11392 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11393 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11394 env->exception.fsr);
11396 new_mode = ARM_CPU_MODE_ABT;
11397 addr = 0x10;
11398 mask = CPSR_A | CPSR_I;
11399 offset = 8;
11401 break;
11402 case EXCP_SMC:
11403 new_mode = ARM_CPU_MODE_MON;
11404 addr = 0x08;
11405 mask = CPSR_A | CPSR_I | CPSR_F;
11406 offset = 0;
11407 break;
11408 default:
11409 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11410 return; /* Never happens. Keep compiler happy. */
11413 if (new_mode == ARM_CPU_MODE_MON) {
11414 addr += env->cp15.mvbar;
11415 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11416 /* High vectors. When enabled, base address cannot be remapped. */
11417 addr += 0xffff0000;
11418 } else {
11420 * ARM v7 architectures provide a vector base address register to remap
11421 * the interrupt vector table.
11422 * This register is only followed in non-monitor mode, and is banked.
11423 * Note: only bits 31:5 are valid.
11425 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11428 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11429 env->cp15.scr_el3 &= ~SCR_NS;
11432 take_aarch32_exception(env, new_mode, mask, offset, addr);
11435 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11438 * Return the register number of the AArch64 view of the AArch32
11439 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11440 * be that of the AArch32 mode the exception came from.
11442 int mode = env->uncached_cpsr & CPSR_M;
11444 switch (aarch32_reg) {
11445 case 0 ... 7:
11446 return aarch32_reg;
11447 case 8 ... 12:
11448 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11449 case 13:
11450 switch (mode) {
11451 case ARM_CPU_MODE_USR:
11452 case ARM_CPU_MODE_SYS:
11453 return 13;
11454 case ARM_CPU_MODE_HYP:
11455 return 15;
11456 case ARM_CPU_MODE_IRQ:
11457 return 17;
11458 case ARM_CPU_MODE_SVC:
11459 return 19;
11460 case ARM_CPU_MODE_ABT:
11461 return 21;
11462 case ARM_CPU_MODE_UND:
11463 return 23;
11464 case ARM_CPU_MODE_FIQ:
11465 return 29;
11466 default:
11467 g_assert_not_reached();
11469 case 14:
11470 switch (mode) {
11471 case ARM_CPU_MODE_USR:
11472 case ARM_CPU_MODE_SYS:
11473 case ARM_CPU_MODE_HYP:
11474 return 14;
11475 case ARM_CPU_MODE_IRQ:
11476 return 16;
11477 case ARM_CPU_MODE_SVC:
11478 return 18;
11479 case ARM_CPU_MODE_ABT:
11480 return 20;
11481 case ARM_CPU_MODE_UND:
11482 return 22;
11483 case ARM_CPU_MODE_FIQ:
11484 return 30;
11485 default:
11486 g_assert_not_reached();
11488 case 15:
11489 return 31;
11490 default:
11491 g_assert_not_reached();
11495 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11497 uint32_t ret = cpsr_read(env);
11499 /* Move DIT to the correct location for SPSR_ELx */
11500 if (ret & CPSR_DIT) {
11501 ret &= ~CPSR_DIT;
11502 ret |= PSTATE_DIT;
11504 /* Merge PSTATE.SS into SPSR_ELx */
11505 ret |= env->pstate & PSTATE_SS;
11507 return ret;
11510 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11512 /* Return true if this syndrome value is a synchronous external abort */
11513 switch (syn_get_ec(syndrome)) {
11514 case EC_INSNABORT:
11515 case EC_INSNABORT_SAME_EL:
11516 case EC_DATAABORT:
11517 case EC_DATAABORT_SAME_EL:
11518 /* Look at fault status code for all the synchronous ext abort cases */
11519 switch (syndrome & 0x3f) {
11520 case 0x10:
11521 case 0x13:
11522 case 0x14:
11523 case 0x15:
11524 case 0x16:
11525 case 0x17:
11526 return true;
11527 default:
11528 return false;
11530 default:
11531 return false;
11535 /* Handle exception entry to a target EL which is using AArch64 */
11536 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11538 ARMCPU *cpu = ARM_CPU(cs);
11539 CPUARMState *env = &cpu->env;
11540 unsigned int new_el = env->exception.target_el;
11541 target_ulong addr = env->cp15.vbar_el[new_el];
11542 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11543 unsigned int old_mode;
11544 unsigned int cur_el = arm_current_el(env);
11545 int rt;
11547 if (tcg_enabled()) {
11549 * Note that new_el can never be 0. If cur_el is 0, then
11550 * el0_a64 is is_a64(), else el0_a64 is ignored.
11552 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11555 if (cur_el < new_el) {
11557 * Entry vector offset depends on whether the implemented EL
11558 * immediately lower than the target level is using AArch32 or AArch64
11560 bool is_aa64;
11561 uint64_t hcr;
11563 switch (new_el) {
11564 case 3:
11565 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11566 break;
11567 case 2:
11568 hcr = arm_hcr_el2_eff(env);
11569 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11570 is_aa64 = (hcr & HCR_RW) != 0;
11571 break;
11573 /* fall through */
11574 case 1:
11575 is_aa64 = is_a64(env);
11576 break;
11577 default:
11578 g_assert_not_reached();
11581 if (is_aa64) {
11582 addr += 0x400;
11583 } else {
11584 addr += 0x600;
11586 } else if (pstate_read(env) & PSTATE_SP) {
11587 addr += 0x200;
11590 switch (cs->exception_index) {
11591 case EXCP_GPC:
11592 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11593 env->cp15.mfar_el3);
11594 /* fall through */
11595 case EXCP_PREFETCH_ABORT:
11596 case EXCP_DATA_ABORT:
11598 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11599 * to be taken to the SError vector entrypoint.
11601 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11602 syndrome_is_sync_extabt(env->exception.syndrome)) {
11603 addr += 0x180;
11605 env->cp15.far_el[new_el] = env->exception.vaddress;
11606 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11607 env->cp15.far_el[new_el]);
11608 /* fall through */
11609 case EXCP_BKPT:
11610 case EXCP_UDEF:
11611 case EXCP_SWI:
11612 case EXCP_HVC:
11613 case EXCP_HYP_TRAP:
11614 case EXCP_SMC:
11615 switch (syn_get_ec(env->exception.syndrome)) {
11616 case EC_ADVSIMDFPACCESSTRAP:
11618 * QEMU internal FP/SIMD syndromes from AArch32 include the
11619 * TA and coproc fields which are only exposed if the exception
11620 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11621 * AArch64 format syndrome.
11623 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11624 break;
11625 case EC_CP14RTTRAP:
11626 case EC_CP15RTTRAP:
11627 case EC_CP14DTTRAP:
11629 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11630 * the raw register field from the insn; when taking this to
11631 * AArch64 we must convert it to the AArch64 view of the register
11632 * number. Notice that we read a 4-bit AArch32 register number and
11633 * write back a 5-bit AArch64 one.
11635 rt = extract32(env->exception.syndrome, 5, 4);
11636 rt = aarch64_regnum(env, rt);
11637 env->exception.syndrome = deposit32(env->exception.syndrome,
11638 5, 5, rt);
11639 break;
11640 case EC_CP15RRTTRAP:
11641 case EC_CP14RRTTRAP:
11642 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11643 rt = extract32(env->exception.syndrome, 5, 4);
11644 rt = aarch64_regnum(env, rt);
11645 env->exception.syndrome = deposit32(env->exception.syndrome,
11646 5, 5, rt);
11647 rt = extract32(env->exception.syndrome, 10, 4);
11648 rt = aarch64_regnum(env, rt);
11649 env->exception.syndrome = deposit32(env->exception.syndrome,
11650 10, 5, rt);
11651 break;
11653 env->cp15.esr_el[new_el] = env->exception.syndrome;
11654 break;
11655 case EXCP_IRQ:
11656 case EXCP_VIRQ:
11657 case EXCP_NMI:
11658 case EXCP_VINMI:
11659 addr += 0x80;
11660 break;
11661 case EXCP_FIQ:
11662 case EXCP_VFIQ:
11663 case EXCP_VFNMI:
11664 addr += 0x100;
11665 break;
11666 case EXCP_VSERR:
11667 addr += 0x180;
11668 /* Construct the SError syndrome from IDS and ISS fields. */
11669 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11670 env->cp15.esr_el[new_el] = env->exception.syndrome;
11671 break;
11672 default:
11673 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11676 if (is_a64(env)) {
11677 old_mode = pstate_read(env);
11678 aarch64_save_sp(env, arm_current_el(env));
11679 env->elr_el[new_el] = env->pc;
11681 if (cur_el == 1 && new_el == 1) {
11682 uint64_t hcr = arm_hcr_el2_eff(env);
11683 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11684 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11686 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11687 * by setting M[3:2] to 0b10.
11688 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11689 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11691 old_mode = deposit32(old_mode, 2, 2, 2);
11694 } else {
11695 old_mode = cpsr_read_for_spsr_elx(env);
11696 env->elr_el[new_el] = env->regs[15];
11698 aarch64_sync_32_to_64(env);
11700 env->condexec_bits = 0;
11702 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11704 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11705 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11706 env->elr_el[new_el]);
11708 if (cpu_isar_feature(aa64_pan, cpu)) {
11709 /* The value of PSTATE.PAN is normally preserved, except when ... */
11710 new_mode |= old_mode & PSTATE_PAN;
11711 switch (new_el) {
11712 case 2:
11713 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11714 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11715 != (HCR_E2H | HCR_TGE)) {
11716 break;
11718 /* fall through */
11719 case 1:
11720 /* ... the target is EL1 ... */
11721 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11722 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11723 new_mode |= PSTATE_PAN;
11725 break;
11728 if (cpu_isar_feature(aa64_mte, cpu)) {
11729 new_mode |= PSTATE_TCO;
11732 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11733 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11734 new_mode |= PSTATE_SSBS;
11735 } else {
11736 new_mode &= ~PSTATE_SSBS;
11740 if (cpu_isar_feature(aa64_nmi, cpu)) {
11741 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
11742 new_mode |= PSTATE_ALLINT;
11743 } else {
11744 new_mode &= ~PSTATE_ALLINT;
11748 pstate_write(env, PSTATE_DAIF | new_mode);
11749 env->aarch64 = true;
11750 aarch64_restore_sp(env, new_el);
11752 if (tcg_enabled()) {
11753 helper_rebuild_hflags_a64(env, new_el);
11756 env->pc = addr;
11758 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11759 new_el, env->pc, pstate_read(env));
11763 * Do semihosting call and set the appropriate return value. All the
11764 * permission and validity checks have been done at translate time.
11766 * We only see semihosting exceptions in TCG only as they are not
11767 * trapped to the hypervisor in KVM.
11769 #ifdef CONFIG_TCG
11770 static void tcg_handle_semihosting(CPUState *cs)
11772 ARMCPU *cpu = ARM_CPU(cs);
11773 CPUARMState *env = &cpu->env;
11775 if (is_a64(env)) {
11776 qemu_log_mask(CPU_LOG_INT,
11777 "...handling as semihosting call 0x%" PRIx64 "\n",
11778 env->xregs[0]);
11779 do_common_semihosting(cs);
11780 env->pc += 4;
11781 } else {
11782 qemu_log_mask(CPU_LOG_INT,
11783 "...handling as semihosting call 0x%x\n",
11784 env->regs[0]);
11785 do_common_semihosting(cs);
11786 env->regs[15] += env->thumb ? 2 : 4;
11789 #endif
11792 * Handle a CPU exception for A and R profile CPUs.
11793 * Do any appropriate logging, handle PSCI calls, and then hand off
11794 * to the AArch64-entry or AArch32-entry function depending on the
11795 * target exception level's register width.
11797 * Note: this is used for both TCG (as the do_interrupt tcg op),
11798 * and KVM to re-inject guest debug exceptions, and to
11799 * inject a Synchronous-External-Abort.
11801 void arm_cpu_do_interrupt(CPUState *cs)
11803 ARMCPU *cpu = ARM_CPU(cs);
11804 CPUARMState *env = &cpu->env;
11805 unsigned int new_el = env->exception.target_el;
11807 assert(!arm_feature(env, ARM_FEATURE_M));
11809 arm_log_exception(cs);
11810 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11811 new_el);
11812 if (qemu_loglevel_mask(CPU_LOG_INT)
11813 && !excp_is_internal(cs->exception_index)) {
11814 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11815 syn_get_ec(env->exception.syndrome),
11816 env->exception.syndrome);
11819 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11820 arm_handle_psci_call(cpu);
11821 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11822 return;
11826 * Semihosting semantics depend on the register width of the code
11827 * that caused the exception, not the target exception level, so
11828 * must be handled here.
11830 #ifdef CONFIG_TCG
11831 if (cs->exception_index == EXCP_SEMIHOST) {
11832 tcg_handle_semihosting(cs);
11833 return;
11835 #endif
11838 * Hooks may change global state so BQL should be held, also the
11839 * BQL needs to be held for any modification of
11840 * cs->interrupt_request.
11842 g_assert(bql_locked());
11844 arm_call_pre_el_change_hook(cpu);
11846 assert(!excp_is_internal(cs->exception_index));
11847 if (arm_el_is_aa64(env, new_el)) {
11848 arm_cpu_do_interrupt_aarch64(cs);
11849 } else {
11850 arm_cpu_do_interrupt_aarch32(cs);
11853 arm_call_el_change_hook(cpu);
11855 if (!kvm_enabled()) {
11856 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11859 #endif /* !CONFIG_USER_ONLY */
11861 uint64_t arm_sctlr(CPUARMState *env, int el)
11863 if (arm_aa32_secure_pl1_0(env)) {
11864 /* In Secure PL1&0 SCTLR_S is always controlling */
11865 el = 3;
11866 } else if (el == 0) {
11867 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11868 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11869 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11871 return env->cp15.sctlr_el[el];
11874 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11876 if (regime_has_2_ranges(mmu_idx)) {
11877 return extract64(tcr, 37, 2);
11878 } else if (regime_is_stage2(mmu_idx)) {
11879 return 0; /* VTCR_EL2 */
11880 } else {
11881 /* Replicate the single TBI bit so we always have 2 bits. */
11882 return extract32(tcr, 20, 1) * 3;
11886 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11888 if (regime_has_2_ranges(mmu_idx)) {
11889 return extract64(tcr, 51, 2);
11890 } else if (regime_is_stage2(mmu_idx)) {
11891 return 0; /* VTCR_EL2 */
11892 } else {
11893 /* Replicate the single TBID bit so we always have 2 bits. */
11894 return extract32(tcr, 29, 1) * 3;
11898 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11900 if (regime_has_2_ranges(mmu_idx)) {
11901 return extract64(tcr, 57, 2);
11902 } else {
11903 /* Replicate the single TCMA bit so we always have 2 bits. */
11904 return extract32(tcr, 30, 1) * 3;
11908 static ARMGranuleSize tg0_to_gran_size(int tg)
11910 switch (tg) {
11911 case 0:
11912 return Gran4K;
11913 case 1:
11914 return Gran64K;
11915 case 2:
11916 return Gran16K;
11917 default:
11918 return GranInvalid;
11922 static ARMGranuleSize tg1_to_gran_size(int tg)
11924 switch (tg) {
11925 case 1:
11926 return Gran16K;
11927 case 2:
11928 return Gran4K;
11929 case 3:
11930 return Gran64K;
11931 default:
11932 return GranInvalid;
11936 static inline bool have4k(ARMCPU *cpu, bool stage2)
11938 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11939 : cpu_isar_feature(aa64_tgran4, cpu);
11942 static inline bool have16k(ARMCPU *cpu, bool stage2)
11944 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11945 : cpu_isar_feature(aa64_tgran16, cpu);
11948 static inline bool have64k(ARMCPU *cpu, bool stage2)
11950 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11951 : cpu_isar_feature(aa64_tgran64, cpu);
11954 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11955 bool stage2)
11957 switch (gran) {
11958 case Gran4K:
11959 if (have4k(cpu, stage2)) {
11960 return gran;
11962 break;
11963 case Gran16K:
11964 if (have16k(cpu, stage2)) {
11965 return gran;
11967 break;
11968 case Gran64K:
11969 if (have64k(cpu, stage2)) {
11970 return gran;
11972 break;
11973 case GranInvalid:
11974 break;
11977 * If the guest selects a granule size that isn't implemented,
11978 * the architecture requires that we behave as if it selected one
11979 * that is (with an IMPDEF choice of which one to pick). We choose
11980 * to implement the smallest supported granule size.
11982 if (have4k(cpu, stage2)) {
11983 return Gran4K;
11985 if (have16k(cpu, stage2)) {
11986 return Gran16K;
11988 assert(have64k(cpu, stage2));
11989 return Gran64K;
11992 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11993 ARMMMUIdx mmu_idx, bool data,
11994 bool el1_is_aa32)
11996 uint64_t tcr = regime_tcr(env, mmu_idx);
11997 bool epd, hpd, tsz_oob, ds, ha, hd;
11998 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11999 ARMGranuleSize gran;
12000 ARMCPU *cpu = env_archcpu(env);
12001 bool stage2 = regime_is_stage2(mmu_idx);
12003 if (!regime_has_2_ranges(mmu_idx)) {
12004 select = 0;
12005 tsz = extract32(tcr, 0, 6);
12006 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12007 if (stage2) {
12008 /* VTCR_EL2 */
12009 hpd = false;
12010 } else {
12011 hpd = extract32(tcr, 24, 1);
12013 epd = false;
12014 sh = extract32(tcr, 12, 2);
12015 ps = extract32(tcr, 16, 3);
12016 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
12017 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12018 ds = extract64(tcr, 32, 1);
12019 } else {
12020 bool e0pd;
12023 * Bit 55 is always between the two regions, and is canonical for
12024 * determining if address tagging is enabled.
12026 select = extract64(va, 55, 1);
12027 if (!select) {
12028 tsz = extract32(tcr, 0, 6);
12029 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12030 epd = extract32(tcr, 7, 1);
12031 sh = extract32(tcr, 12, 2);
12032 hpd = extract64(tcr, 41, 1);
12033 e0pd = extract64(tcr, 55, 1);
12034 } else {
12035 tsz = extract32(tcr, 16, 6);
12036 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
12037 epd = extract32(tcr, 23, 1);
12038 sh = extract32(tcr, 28, 2);
12039 hpd = extract64(tcr, 42, 1);
12040 e0pd = extract64(tcr, 56, 1);
12042 ps = extract64(tcr, 32, 3);
12043 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
12044 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12045 ds = extract64(tcr, 59, 1);
12047 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
12048 regime_is_user(env, mmu_idx)) {
12049 epd = true;
12053 gran = sanitize_gran_size(cpu, gran, stage2);
12055 if (cpu_isar_feature(aa64_st, cpu)) {
12056 max_tsz = 48 - (gran == Gran64K);
12057 } else {
12058 max_tsz = 39;
12062 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
12063 * adjust the effective value of DS, as documented.
12065 min_tsz = 16;
12066 if (gran == Gran64K) {
12067 if (cpu_isar_feature(aa64_lva, cpu)) {
12068 min_tsz = 12;
12070 ds = false;
12071 } else if (ds) {
12072 if (regime_is_stage2(mmu_idx)) {
12073 if (gran == Gran16K) {
12074 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
12075 } else {
12076 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
12078 } else {
12079 if (gran == Gran16K) {
12080 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
12081 } else {
12082 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
12085 if (ds) {
12086 min_tsz = 12;
12090 if (stage2 && el1_is_aa32) {
12092 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
12093 * are loosened: a configured IPA of 40 bits is permitted even if
12094 * the implemented PA is less than that (and so a 40 bit IPA would
12095 * fault for an AArch64 EL1). See R_DTLMN.
12097 min_tsz = MIN(min_tsz, 24);
12100 if (tsz > max_tsz) {
12101 tsz = max_tsz;
12102 tsz_oob = true;
12103 } else if (tsz < min_tsz) {
12104 tsz = min_tsz;
12105 tsz_oob = true;
12106 } else {
12107 tsz_oob = false;
12110 /* Present TBI as a composite with TBID. */
12111 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12112 if (!data) {
12113 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12115 tbi = (tbi >> select) & 1;
12117 return (ARMVAParameters) {
12118 .tsz = tsz,
12119 .ps = ps,
12120 .sh = sh,
12121 .select = select,
12122 .tbi = tbi,
12123 .epd = epd,
12124 .hpd = hpd,
12125 .tsz_oob = tsz_oob,
12126 .ds = ds,
12127 .ha = ha,
12128 .hd = ha && hd,
12129 .gran = gran,
12134 * Note that signed overflow is undefined in C. The following routines are
12135 * careful to use unsigned types where modulo arithmetic is required.
12136 * Failure to do so _will_ break on newer gcc.
12139 /* Signed saturating arithmetic. */
12141 /* Perform 16-bit signed saturating addition. */
12142 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12144 uint16_t res;
12146 res = a + b;
12147 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12148 if (a & 0x8000) {
12149 res = 0x8000;
12150 } else {
12151 res = 0x7fff;
12154 return res;
12157 /* Perform 8-bit signed saturating addition. */
12158 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12160 uint8_t res;
12162 res = a + b;
12163 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12164 if (a & 0x80) {
12165 res = 0x80;
12166 } else {
12167 res = 0x7f;
12170 return res;
12173 /* Perform 16-bit signed saturating subtraction. */
12174 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12176 uint16_t res;
12178 res = a - b;
12179 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12180 if (a & 0x8000) {
12181 res = 0x8000;
12182 } else {
12183 res = 0x7fff;
12186 return res;
12189 /* Perform 8-bit signed saturating subtraction. */
12190 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12192 uint8_t res;
12194 res = a - b;
12195 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12196 if (a & 0x80) {
12197 res = 0x80;
12198 } else {
12199 res = 0x7f;
12202 return res;
12205 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12206 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12207 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12208 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12209 #define PFX q
12211 #include "op_addsub.h"
12213 /* Unsigned saturating arithmetic. */
12214 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12216 uint16_t res;
12217 res = a + b;
12218 if (res < a) {
12219 res = 0xffff;
12221 return res;
12224 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12226 if (a > b) {
12227 return a - b;
12228 } else {
12229 return 0;
12233 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12235 uint8_t res;
12236 res = a + b;
12237 if (res < a) {
12238 res = 0xff;
12240 return res;
12243 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12245 if (a > b) {
12246 return a - b;
12247 } else {
12248 return 0;
12252 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12253 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12254 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12255 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12256 #define PFX uq
12258 #include "op_addsub.h"
12260 /* Signed modulo arithmetic. */
12261 #define SARITH16(a, b, n, op) do { \
12262 int32_t sum; \
12263 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12264 RESULT(sum, n, 16); \
12265 if (sum >= 0) \
12266 ge |= 3 << (n * 2); \
12267 } while (0)
12269 #define SARITH8(a, b, n, op) do { \
12270 int32_t sum; \
12271 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12272 RESULT(sum, n, 8); \
12273 if (sum >= 0) \
12274 ge |= 1 << n; \
12275 } while (0)
12278 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12279 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12280 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12281 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12282 #define PFX s
12283 #define ARITH_GE
12285 #include "op_addsub.h"
12287 /* Unsigned modulo arithmetic. */
12288 #define ADD16(a, b, n) do { \
12289 uint32_t sum; \
12290 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12291 RESULT(sum, n, 16); \
12292 if ((sum >> 16) == 1) \
12293 ge |= 3 << (n * 2); \
12294 } while (0)
12296 #define ADD8(a, b, n) do { \
12297 uint32_t sum; \
12298 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12299 RESULT(sum, n, 8); \
12300 if ((sum >> 8) == 1) \
12301 ge |= 1 << n; \
12302 } while (0)
12304 #define SUB16(a, b, n) do { \
12305 uint32_t sum; \
12306 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12307 RESULT(sum, n, 16); \
12308 if ((sum >> 16) == 0) \
12309 ge |= 3 << (n * 2); \
12310 } while (0)
12312 #define SUB8(a, b, n) do { \
12313 uint32_t sum; \
12314 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12315 RESULT(sum, n, 8); \
12316 if ((sum >> 8) == 0) \
12317 ge |= 1 << n; \
12318 } while (0)
12320 #define PFX u
12321 #define ARITH_GE
12323 #include "op_addsub.h"
12325 /* Halved signed arithmetic. */
12326 #define ADD16(a, b, n) \
12327 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12328 #define SUB16(a, b, n) \
12329 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12330 #define ADD8(a, b, n) \
12331 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12332 #define SUB8(a, b, n) \
12333 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12334 #define PFX sh
12336 #include "op_addsub.h"
12338 /* Halved unsigned arithmetic. */
12339 #define ADD16(a, b, n) \
12340 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12341 #define SUB16(a, b, n) \
12342 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12343 #define ADD8(a, b, n) \
12344 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12345 #define SUB8(a, b, n) \
12346 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12347 #define PFX uh
12349 #include "op_addsub.h"
12351 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12353 if (a > b) {
12354 return a - b;
12355 } else {
12356 return b - a;
12360 /* Unsigned sum of absolute byte differences. */
12361 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12363 uint32_t sum;
12364 sum = do_usad(a, b);
12365 sum += do_usad(a >> 8, b >> 8);
12366 sum += do_usad(a >> 16, b >> 16);
12367 sum += do_usad(a >> 24, b >> 24);
12368 return sum;
12371 /* For ARMv6 SEL instruction. */
12372 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12374 uint32_t mask;
12376 mask = 0;
12377 if (flags & 1) {
12378 mask |= 0xff;
12380 if (flags & 2) {
12381 mask |= 0xff00;
12383 if (flags & 4) {
12384 mask |= 0xff0000;
12386 if (flags & 8) {
12387 mask |= 0xff000000;
12389 return (a & mask) | (b & ~mask);
12393 * CRC helpers.
12394 * The upper bytes of val (above the number specified by 'bytes') must have
12395 * been zeroed out by the caller.
12397 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12399 uint8_t buf[4];
12401 stl_le_p(buf, val);
12403 /* zlib crc32 converts the accumulator and output to one's complement. */
12404 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12407 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12409 uint8_t buf[4];
12411 stl_le_p(buf, val);
12413 /* Linux crc32c converts the output to one's complement. */
12414 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12418 * Return the exception level to which FP-disabled exceptions should
12419 * be taken, or 0 if FP is enabled.
12421 int fp_exception_el(CPUARMState *env, int cur_el)
12423 #ifndef CONFIG_USER_ONLY
12424 uint64_t hcr_el2;
12427 * CPACR and the CPTR registers don't exist before v6, so FP is
12428 * always accessible
12430 if (!arm_feature(env, ARM_FEATURE_V6)) {
12431 return 0;
12434 if (arm_feature(env, ARM_FEATURE_M)) {
12435 /* CPACR can cause a NOCP UsageFault taken to current security state */
12436 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12437 return 1;
12440 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12441 if (!extract32(env->v7m.nsacr, 10, 1)) {
12442 /* FP insns cause a NOCP UsageFault taken to Secure */
12443 return 3;
12447 return 0;
12450 hcr_el2 = arm_hcr_el2_eff(env);
12453 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12454 * 0, 2 : trap EL0 and EL1/PL1 accesses
12455 * 1 : trap only EL0 accesses
12456 * 3 : trap no accesses
12457 * This register is ignored if E2H+TGE are both set.
12459 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12460 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12462 switch (fpen) {
12463 case 1:
12464 if (cur_el != 0) {
12465 break;
12467 /* fall through */
12468 case 0:
12469 case 2:
12470 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12471 if (!arm_el_is_aa64(env, 3)
12472 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12473 return 3;
12475 if (cur_el <= 1) {
12476 return 1;
12478 break;
12483 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12484 * to control non-secure access to the FPU. It doesn't have any
12485 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12487 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12488 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12489 if (!extract32(env->cp15.nsacr, 10, 1)) {
12490 /* FP insns act as UNDEF */
12491 return cur_el == 2 ? 2 : 1;
12496 * CPTR_EL2 is present in v7VE or v8, and changes format
12497 * with HCR_EL2.E2H (regardless of TGE).
12499 if (cur_el <= 2) {
12500 if (hcr_el2 & HCR_E2H) {
12501 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12502 case 1:
12503 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12504 break;
12506 /* fall through */
12507 case 0:
12508 case 2:
12509 return 2;
12511 } else if (arm_is_el2_enabled(env)) {
12512 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12513 return 2;
12518 /* CPTR_EL3 : present in v8 */
12519 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12520 /* Trap all FP ops to EL3 */
12521 return 3;
12523 #endif
12524 return 0;
12528 * Return the exception level we're running at if this is our mmu_idx.
12529 * s_pl1_0 should be true if this is the AArch32 Secure PL1&0 translation
12530 * regime.
12532 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0)
12534 if (mmu_idx & ARM_MMU_IDX_M) {
12535 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12538 switch (mmu_idx) {
12539 case ARMMMUIdx_E10_0:
12540 case ARMMMUIdx_E20_0:
12541 return 0;
12542 case ARMMMUIdx_E10_1:
12543 case ARMMMUIdx_E10_1_PAN:
12544 return s_pl1_0 ? 3 : 1;
12545 case ARMMMUIdx_E2:
12546 case ARMMMUIdx_E20_2:
12547 case ARMMMUIdx_E20_2_PAN:
12548 return 2;
12549 case ARMMMUIdx_E3:
12550 return 3;
12551 default:
12552 g_assert_not_reached();
12556 #ifndef CONFIG_TCG
12557 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12559 g_assert_not_reached();
12561 #endif
12563 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12565 ARMMMUIdx idx;
12566 uint64_t hcr;
12568 if (arm_feature(env, ARM_FEATURE_M)) {
12569 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12572 /* See ARM pseudo-function ELIsInHost. */
12573 switch (el) {
12574 case 0:
12575 hcr = arm_hcr_el2_eff(env);
12576 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12577 idx = ARMMMUIdx_E20_0;
12578 } else {
12579 idx = ARMMMUIdx_E10_0;
12581 break;
12582 case 3:
12584 * AArch64 EL3 has its own translation regime; AArch32 EL3
12585 * uses the Secure PL1&0 translation regime.
12587 if (arm_el_is_aa64(env, 3)) {
12588 return ARMMMUIdx_E3;
12590 /* fall through */
12591 case 1:
12592 if (arm_pan_enabled(env)) {
12593 idx = ARMMMUIdx_E10_1_PAN;
12594 } else {
12595 idx = ARMMMUIdx_E10_1;
12597 break;
12598 case 2:
12599 /* Note that TGE does not apply at EL2. */
12600 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12601 if (arm_pan_enabled(env)) {
12602 idx = ARMMMUIdx_E20_2_PAN;
12603 } else {
12604 idx = ARMMMUIdx_E20_2;
12606 } else {
12607 idx = ARMMMUIdx_E2;
12609 break;
12610 default:
12611 g_assert_not_reached();
12614 return idx;
12617 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12619 return arm_mmu_idx_el(env, arm_current_el(env));
12622 static bool mve_no_pred(CPUARMState *env)
12625 * Return true if there is definitely no predication of MVE
12626 * instructions by VPR or LTPSIZE. (Returning false even if there
12627 * isn't any predication is OK; generated code will just be
12628 * a little worse.)
12629 * If the CPU does not implement MVE then this TB flag is always 0.
12631 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12632 * logic in gen_update_fp_context() needs to be updated to match.
12634 * We do not include the effect of the ECI bits here -- they are
12635 * tracked in other TB flags. This simplifies the logic for
12636 * "when did we emit code that changes the MVE_NO_PRED TB flag
12637 * and thus need to end the TB?".
12639 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12640 return false;
12642 if (env->v7m.vpr) {
12643 return false;
12645 if (env->v7m.ltpsize < 4) {
12646 return false;
12648 return true;
12651 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12652 uint64_t *cs_base, uint32_t *pflags)
12654 CPUARMTBFlags flags;
12656 assert_hflags_rebuild_correctly(env);
12657 flags = env->hflags;
12659 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12660 *pc = env->pc;
12661 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12662 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12664 } else {
12665 *pc = env->regs[15];
12667 if (arm_feature(env, ARM_FEATURE_M)) {
12668 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12669 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12670 != env->v7m.secure) {
12671 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12674 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12675 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12676 (env->v7m.secure &&
12677 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12679 * ASPEN is set, but FPCA/SFPA indicate that there is no
12680 * active FP context; we must create a new FP context before
12681 * executing any FP insn.
12683 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12686 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12687 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12688 DP_TBFLAG_M32(flags, LSPACT, 1);
12691 if (mve_no_pred(env)) {
12692 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12694 } else {
12696 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12697 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12699 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12700 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12701 } else {
12702 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12703 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12705 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12706 DP_TBFLAG_A32(flags, VFPEN, 1);
12710 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12711 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12715 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12716 * states defined in the ARM ARM for software singlestep:
12717 * SS_ACTIVE PSTATE.SS State
12718 * 0 x Inactive (the TB flag for SS is always 0)
12719 * 1 0 Active-pending
12720 * 1 1 Active-not-pending
12721 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12723 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12724 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12727 *pflags = flags.flags;
12728 *cs_base = flags.flags2;
12731 #ifdef TARGET_AARCH64
12733 * The manual says that when SVE is enabled and VQ is widened the
12734 * implementation is allowed to zero the previously inaccessible
12735 * portion of the registers. The corollary to that is that when
12736 * SVE is enabled and VQ is narrowed we are also allowed to zero
12737 * the now inaccessible portion of the registers.
12739 * The intent of this is that no predicate bit beyond VQ is ever set.
12740 * Which means that some operations on predicate registers themselves
12741 * may operate on full uint64_t or even unrolled across the maximum
12742 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12743 * may well be cheaper than conditionals to restrict the operation
12744 * to the relevant portion of a uint16_t[16].
12746 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12748 int i, j;
12749 uint64_t pmask;
12751 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12752 assert(vq <= env_archcpu(env)->sve_max_vq);
12754 /* Zap the high bits of the zregs. */
12755 for (i = 0; i < 32; i++) {
12756 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12759 /* Zap the high bits of the pregs and ffr. */
12760 pmask = 0;
12761 if (vq & 3) {
12762 pmask = ~(-1ULL << (16 * (vq & 3)));
12764 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12765 for (i = 0; i < 17; ++i) {
12766 env->vfp.pregs[i].p[j] &= pmask;
12768 pmask = 0;
12772 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12774 int exc_el;
12776 if (sm) {
12777 exc_el = sme_exception_el(env, el);
12778 } else {
12779 exc_el = sve_exception_el(env, el);
12781 if (exc_el) {
12782 return 0; /* disabled */
12784 return sve_vqm1_for_el_sm(env, el, sm);
12788 * Notice a change in SVE vector size when changing EL.
12790 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12791 int new_el, bool el0_a64)
12793 ARMCPU *cpu = env_archcpu(env);
12794 int old_len, new_len;
12795 bool old_a64, new_a64, sm;
12797 /* Nothing to do if no SVE. */
12798 if (!cpu_isar_feature(aa64_sve, cpu)) {
12799 return;
12802 /* Nothing to do if FP is disabled in either EL. */
12803 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12804 return;
12807 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12808 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12811 * Both AArch64.TakeException and AArch64.ExceptionReturn
12812 * invoke ResetSVEState when taking an exception from, or
12813 * returning to, AArch32 state when PSTATE.SM is enabled.
12815 sm = FIELD_EX64(env->svcr, SVCR, SM);
12816 if (old_a64 != new_a64 && sm) {
12817 arm_reset_sve_state(env);
12818 return;
12822 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12823 * at ELx, or not available because the EL is in AArch32 state, then
12824 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12825 * has an effective value of 0".
12827 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12828 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12829 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12830 * we already have the correct register contents when encountering the
12831 * vq0->vq0 transition between EL0->EL1.
12833 old_len = new_len = 0;
12834 if (old_a64) {
12835 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12837 if (new_a64) {
12838 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12841 /* When changing vector length, clear inaccessible state. */
12842 if (new_len < old_len) {
12843 aarch64_sve_narrow_vq(env, new_len + 1);
12846 #endif
12848 #ifndef CONFIG_USER_ONLY
12849 ARMSecuritySpace arm_security_space(CPUARMState *env)
12851 if (arm_feature(env, ARM_FEATURE_M)) {
12852 return arm_secure_to_space(env->v7m.secure);
12856 * If EL3 is not supported then the secure state is implementation
12857 * defined, in which case QEMU defaults to non-secure.
12859 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12860 return ARMSS_NonSecure;
12863 /* Check for AArch64 EL3 or AArch32 Mon. */
12864 if (is_a64(env)) {
12865 if (extract32(env->pstate, 2, 2) == 3) {
12866 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12867 return ARMSS_Root;
12868 } else {
12869 return ARMSS_Secure;
12872 } else {
12873 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12874 return ARMSS_Secure;
12878 return arm_security_space_below_el3(env);
12881 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12883 assert(!arm_feature(env, ARM_FEATURE_M));
12886 * If EL3 is not supported then the secure state is implementation
12887 * defined, in which case QEMU defaults to non-secure.
12889 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12890 return ARMSS_NonSecure;
12894 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12895 * Ignoring NSE when !NS retains consistency without having to
12896 * modify other predicates.
12898 if (!(env->cp15.scr_el3 & SCR_NS)) {
12899 return ARMSS_Secure;
12900 } else if (env->cp15.scr_el3 & SCR_NSE) {
12901 return ARMSS_Realm;
12902 } else {
12903 return ARMSS_NonSecure;
12906 #endif /* !CONFIG_USER_ONLY */