Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / tcg / helper-a64.c
blob56b431faf57f4809cac09692d18ec312b4b85113
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "gdbstub/helpers.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/exec-all.h"
32 #include "exec/cpu_ldst.h"
33 #include "qemu/int128.h"
34 #include "qemu/atomic128.h"
35 #include "fpu/softfloat.h"
36 #include <zlib.h> /* for crc32 */
38 /* C2.4.7 Multiply and divide */
39 /* special cases for 0 and LLONG_MIN are mandated by the standard */
40 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
42 if (den == 0) {
43 return 0;
45 return num / den;
48 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
50 if (den == 0) {
51 return 0;
53 if (num == LLONG_MIN && den == -1) {
54 return LLONG_MIN;
56 return num / den;
59 uint64_t HELPER(rbit64)(uint64_t x)
61 return revbit64(x);
64 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
66 update_spsel(env, imm);
69 void HELPER(msr_set_allint_el1)(CPUARMState *env)
71 /* ALLINT update to PSTATE. */
72 if (arm_hcrx_el2_eff(env) & HCRX_TALLINT) {
73 raise_exception_ra(env, EXCP_UDEF,
74 syn_aa64_sysregtrap(0, 1, 0, 4, 1, 0x1f, 0), 2,
75 GETPC());
78 env->pstate |= PSTATE_ALLINT;
81 static void daif_check(CPUARMState *env, uint32_t op,
82 uint32_t imm, uintptr_t ra)
84 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
85 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
86 raise_exception_ra(env, EXCP_UDEF,
87 syn_aa64_sysregtrap(0, extract32(op, 0, 3),
88 extract32(op, 3, 3), 4,
89 imm, 0x1f, 0),
90 exception_target_el(env), ra);
94 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
96 daif_check(env, 0x1e, imm, GETPC());
97 env->daif |= (imm << 6) & PSTATE_DAIF;
98 arm_rebuild_hflags(env);
101 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
103 daif_check(env, 0x1f, imm, GETPC());
104 env->daif &= ~((imm << 6) & PSTATE_DAIF);
105 arm_rebuild_hflags(env);
108 /* Convert a softfloat float_relation_ (as returned by
109 * the float*_compare functions) to the correct ARM
110 * NZCV flag state.
112 static inline uint32_t float_rel_to_flags(int res)
114 uint64_t flags;
115 switch (res) {
116 case float_relation_equal:
117 flags = PSTATE_Z | PSTATE_C;
118 break;
119 case float_relation_less:
120 flags = PSTATE_N;
121 break;
122 case float_relation_greater:
123 flags = PSTATE_C;
124 break;
125 case float_relation_unordered:
126 default:
127 flags = PSTATE_C | PSTATE_V;
128 break;
130 return flags;
133 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
135 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
138 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
140 return float_rel_to_flags(float16_compare(x, y, fp_status));
143 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
145 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
148 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
150 return float_rel_to_flags(float32_compare(x, y, fp_status));
153 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
155 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
158 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
160 return float_rel_to_flags(float64_compare(x, y, fp_status));
163 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
165 float_status *fpst = fpstp;
167 a = float32_squash_input_denormal(a, fpst);
168 b = float32_squash_input_denormal(b, fpst);
170 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
171 (float32_is_infinity(a) && float32_is_zero(b))) {
172 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
173 return make_float32((1U << 30) |
174 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
176 return float32_mul(a, b, fpst);
179 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
181 float_status *fpst = fpstp;
183 a = float64_squash_input_denormal(a, fpst);
184 b = float64_squash_input_denormal(b, fpst);
186 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
187 (float64_is_infinity(a) && float64_is_zero(b))) {
188 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
189 return make_float64((1ULL << 62) |
190 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
192 return float64_mul(a, b, fpst);
195 /* 64bit/double versions of the neon float compare functions */
196 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
198 float_status *fpst = fpstp;
199 return -float64_eq_quiet(a, b, fpst);
202 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
204 float_status *fpst = fpstp;
205 return -float64_le(b, a, fpst);
208 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
210 float_status *fpst = fpstp;
211 return -float64_lt(b, a, fpst);
214 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
215 * versions, these do a fully fused multiply-add or
216 * multiply-add-and-halve.
219 uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
221 float_status *fpst = fpstp;
223 a = float16_squash_input_denormal(a, fpst);
224 b = float16_squash_input_denormal(b, fpst);
226 a = float16_chs(a);
227 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
228 (float16_is_infinity(b) && float16_is_zero(a))) {
229 return float16_two;
231 return float16_muladd(a, b, float16_two, 0, fpst);
234 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
236 float_status *fpst = fpstp;
238 a = float32_squash_input_denormal(a, fpst);
239 b = float32_squash_input_denormal(b, fpst);
241 a = float32_chs(a);
242 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
243 (float32_is_infinity(b) && float32_is_zero(a))) {
244 return float32_two;
246 return float32_muladd(a, b, float32_two, 0, fpst);
249 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
251 float_status *fpst = fpstp;
253 a = float64_squash_input_denormal(a, fpst);
254 b = float64_squash_input_denormal(b, fpst);
256 a = float64_chs(a);
257 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
258 (float64_is_infinity(b) && float64_is_zero(a))) {
259 return float64_two;
261 return float64_muladd(a, b, float64_two, 0, fpst);
264 uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
266 float_status *fpst = fpstp;
268 a = float16_squash_input_denormal(a, fpst);
269 b = float16_squash_input_denormal(b, fpst);
271 a = float16_chs(a);
272 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
273 (float16_is_infinity(b) && float16_is_zero(a))) {
274 return float16_one_point_five;
276 return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
279 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
281 float_status *fpst = fpstp;
283 a = float32_squash_input_denormal(a, fpst);
284 b = float32_squash_input_denormal(b, fpst);
286 a = float32_chs(a);
287 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
288 (float32_is_infinity(b) && float32_is_zero(a))) {
289 return float32_one_point_five;
291 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
294 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
296 float_status *fpst = fpstp;
298 a = float64_squash_input_denormal(a, fpst);
299 b = float64_squash_input_denormal(b, fpst);
301 a = float64_chs(a);
302 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
303 (float64_is_infinity(b) && float64_is_zero(a))) {
304 return float64_one_point_five;
306 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
309 /* Pairwise long add: add pairs of adjacent elements into
310 * double-width elements in the result (eg _s8 is an 8x8->16 op)
312 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
314 uint64_t nsignmask = 0x0080008000800080ULL;
315 uint64_t wsignmask = 0x8000800080008000ULL;
316 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
317 uint64_t tmp1, tmp2;
318 uint64_t res, signres;
320 /* Extract odd elements, sign extend each to a 16 bit field */
321 tmp1 = a & elementmask;
322 tmp1 ^= nsignmask;
323 tmp1 |= wsignmask;
324 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
325 /* Ditto for the even elements */
326 tmp2 = (a >> 8) & elementmask;
327 tmp2 ^= nsignmask;
328 tmp2 |= wsignmask;
329 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
331 /* calculate the result by summing bits 0..14, 16..22, etc,
332 * and then adjusting the sign bits 15, 23, etc manually.
333 * This ensures the addition can't overflow the 16 bit field.
335 signres = (tmp1 ^ tmp2) & wsignmask;
336 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
337 res ^= signres;
339 return res;
342 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
344 uint64_t tmp;
346 tmp = a & 0x00ff00ff00ff00ffULL;
347 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
348 return tmp;
351 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
353 int32_t reslo, reshi;
355 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
356 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
358 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
361 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
363 uint64_t tmp;
365 tmp = a & 0x0000ffff0000ffffULL;
366 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
367 return tmp;
370 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
371 uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
373 float_status *fpst = fpstp;
374 uint16_t val16, sbit;
375 int16_t exp;
377 if (float16_is_any_nan(a)) {
378 float16 nan = a;
379 if (float16_is_signaling_nan(a, fpst)) {
380 float_raise(float_flag_invalid, fpst);
381 if (!fpst->default_nan_mode) {
382 nan = float16_silence_nan(a, fpst);
385 if (fpst->default_nan_mode) {
386 nan = float16_default_nan(fpst);
388 return nan;
391 a = float16_squash_input_denormal(a, fpst);
393 val16 = float16_val(a);
394 sbit = 0x8000 & val16;
395 exp = extract32(val16, 10, 5);
397 if (exp == 0) {
398 return make_float16(deposit32(sbit, 10, 5, 0x1e));
399 } else {
400 return make_float16(deposit32(sbit, 10, 5, ~exp));
404 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
406 float_status *fpst = fpstp;
407 uint32_t val32, sbit;
408 int32_t exp;
410 if (float32_is_any_nan(a)) {
411 float32 nan = a;
412 if (float32_is_signaling_nan(a, fpst)) {
413 float_raise(float_flag_invalid, fpst);
414 if (!fpst->default_nan_mode) {
415 nan = float32_silence_nan(a, fpst);
418 if (fpst->default_nan_mode) {
419 nan = float32_default_nan(fpst);
421 return nan;
424 a = float32_squash_input_denormal(a, fpst);
426 val32 = float32_val(a);
427 sbit = 0x80000000ULL & val32;
428 exp = extract32(val32, 23, 8);
430 if (exp == 0) {
431 return make_float32(sbit | (0xfe << 23));
432 } else {
433 return make_float32(sbit | (~exp & 0xff) << 23);
437 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
439 float_status *fpst = fpstp;
440 uint64_t val64, sbit;
441 int64_t exp;
443 if (float64_is_any_nan(a)) {
444 float64 nan = a;
445 if (float64_is_signaling_nan(a, fpst)) {
446 float_raise(float_flag_invalid, fpst);
447 if (!fpst->default_nan_mode) {
448 nan = float64_silence_nan(a, fpst);
451 if (fpst->default_nan_mode) {
452 nan = float64_default_nan(fpst);
454 return nan;
457 a = float64_squash_input_denormal(a, fpst);
459 val64 = float64_val(a);
460 sbit = 0x8000000000000000ULL & val64;
461 exp = extract64(float64_val(a), 52, 11);
463 if (exp == 0) {
464 return make_float64(sbit | (0x7feULL << 52));
465 } else {
466 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
470 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
472 /* Von Neumann rounding is implemented by using round-to-zero
473 * and then setting the LSB of the result if Inexact was raised.
475 float32 r;
476 float_status *fpst = &env->vfp.fp_status;
477 float_status tstat = *fpst;
478 int exflags;
480 set_float_rounding_mode(float_round_to_zero, &tstat);
481 set_float_exception_flags(0, &tstat);
482 r = float64_to_float32(a, &tstat);
483 exflags = get_float_exception_flags(&tstat);
484 if (exflags & float_flag_inexact) {
485 r = make_float32(float32_val(r) | 1);
487 exflags |= get_float_exception_flags(fpst);
488 set_float_exception_flags(exflags, fpst);
489 return r;
492 /* 64-bit versions of the CRC helpers. Note that although the operation
493 * (and the prototypes of crc32c() and crc32() mean that only the bottom
494 * 32 bits of the accumulator and result are used, we pass and return
495 * uint64_t for convenience of the generated code. Unlike the 32-bit
496 * instruction set versions, val may genuinely have 64 bits of data in it.
497 * The upper bytes of val (above the number specified by 'bytes') must have
498 * been zeroed out by the caller.
500 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
502 uint8_t buf[8];
504 stq_le_p(buf, val);
506 /* zlib crc32 converts the accumulator and output to one's complement. */
507 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
510 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
512 uint8_t buf[8];
514 stq_le_p(buf, val);
516 /* Linux crc32c converts the output to one's complement. */
517 return crc32c(acc, buf, bytes) ^ 0xffffffff;
521 * AdvSIMD half-precision
524 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
526 #define ADVSIMD_HALFOP(name) \
527 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
529 float_status *fpst = fpstp; \
530 return float16_ ## name(a, b, fpst); \
533 ADVSIMD_HALFOP(add)
534 ADVSIMD_HALFOP(sub)
535 ADVSIMD_HALFOP(mul)
536 ADVSIMD_HALFOP(div)
537 ADVSIMD_HALFOP(min)
538 ADVSIMD_HALFOP(max)
539 ADVSIMD_HALFOP(minnum)
540 ADVSIMD_HALFOP(maxnum)
542 #define ADVSIMD_TWOHALFOP(name) \
543 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
545 float16 a1, a2, b1, b2; \
546 uint32_t r1, r2; \
547 float_status *fpst = fpstp; \
548 a1 = extract32(two_a, 0, 16); \
549 a2 = extract32(two_a, 16, 16); \
550 b1 = extract32(two_b, 0, 16); \
551 b2 = extract32(two_b, 16, 16); \
552 r1 = float16_ ## name(a1, b1, fpst); \
553 r2 = float16_ ## name(a2, b2, fpst); \
554 return deposit32(r1, 16, 16, r2); \
557 ADVSIMD_TWOHALFOP(add)
558 ADVSIMD_TWOHALFOP(sub)
559 ADVSIMD_TWOHALFOP(mul)
560 ADVSIMD_TWOHALFOP(div)
561 ADVSIMD_TWOHALFOP(min)
562 ADVSIMD_TWOHALFOP(max)
563 ADVSIMD_TWOHALFOP(minnum)
564 ADVSIMD_TWOHALFOP(maxnum)
566 /* Data processing - scalar floating-point and advanced SIMD */
567 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
569 float_status *fpst = fpstp;
571 a = float16_squash_input_denormal(a, fpst);
572 b = float16_squash_input_denormal(b, fpst);
574 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
575 (float16_is_infinity(a) && float16_is_zero(b))) {
576 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
577 return make_float16((1U << 14) |
578 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
580 return float16_mul(a, b, fpst);
583 ADVSIMD_HALFOP(mulx)
584 ADVSIMD_TWOHALFOP(mulx)
586 /* fused multiply-accumulate */
587 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
588 void *fpstp)
590 float_status *fpst = fpstp;
591 return float16_muladd(a, b, c, 0, fpst);
594 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
595 uint32_t two_c, void *fpstp)
597 float_status *fpst = fpstp;
598 float16 a1, a2, b1, b2, c1, c2;
599 uint32_t r1, r2;
600 a1 = extract32(two_a, 0, 16);
601 a2 = extract32(two_a, 16, 16);
602 b1 = extract32(two_b, 0, 16);
603 b2 = extract32(two_b, 16, 16);
604 c1 = extract32(two_c, 0, 16);
605 c2 = extract32(two_c, 16, 16);
606 r1 = float16_muladd(a1, b1, c1, 0, fpst);
607 r2 = float16_muladd(a2, b2, c2, 0, fpst);
608 return deposit32(r1, 16, 16, r2);
612 * Floating point comparisons produce an integer result. Softfloat
613 * routines return float_relation types which we convert to the 0/-1
614 * Neon requires.
617 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
619 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
621 float_status *fpst = fpstp;
622 int compare = float16_compare_quiet(a, b, fpst);
623 return ADVSIMD_CMPRES(compare == float_relation_equal);
626 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
628 float_status *fpst = fpstp;
629 int compare = float16_compare(a, b, fpst);
630 return ADVSIMD_CMPRES(compare == float_relation_greater ||
631 compare == float_relation_equal);
634 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
636 float_status *fpst = fpstp;
637 int compare = float16_compare(a, b, fpst);
638 return ADVSIMD_CMPRES(compare == float_relation_greater);
641 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
643 float_status *fpst = fpstp;
644 float16 f0 = float16_abs(a);
645 float16 f1 = float16_abs(b);
646 int compare = float16_compare(f0, f1, fpst);
647 return ADVSIMD_CMPRES(compare == float_relation_greater ||
648 compare == float_relation_equal);
651 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
653 float_status *fpst = fpstp;
654 float16 f0 = float16_abs(a);
655 float16 f1 = float16_abs(b);
656 int compare = float16_compare(f0, f1, fpst);
657 return ADVSIMD_CMPRES(compare == float_relation_greater);
660 /* round to integral */
661 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
663 return float16_round_to_int(x, fp_status);
666 uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
668 int old_flags = get_float_exception_flags(fp_status), new_flags;
669 float16 ret;
671 ret = float16_round_to_int(x, fp_status);
673 /* Suppress any inexact exceptions the conversion produced */
674 if (!(old_flags & float_flag_inexact)) {
675 new_flags = get_float_exception_flags(fp_status);
676 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
679 return ret;
683 * Half-precision floating point conversion functions
685 * There are a multitude of conversion functions with various
686 * different rounding modes. This is dealt with by the calling code
687 * setting the mode appropriately before calling the helper.
690 uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
692 float_status *fpst = fpstp;
694 /* Invalid if we are passed a NaN */
695 if (float16_is_any_nan(a)) {
696 float_raise(float_flag_invalid, fpst);
697 return 0;
699 return float16_to_int16(a, fpst);
702 uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
704 float_status *fpst = fpstp;
706 /* Invalid if we are passed a NaN */
707 if (float16_is_any_nan(a)) {
708 float_raise(float_flag_invalid, fpst);
709 return 0;
711 return float16_to_uint16(a, fpst);
714 static int el_from_spsr(uint32_t spsr)
716 /* Return the exception level that this SPSR is requesting a return to,
717 * or -1 if it is invalid (an illegal return)
719 if (spsr & PSTATE_nRW) {
720 switch (spsr & CPSR_M) {
721 case ARM_CPU_MODE_USR:
722 return 0;
723 case ARM_CPU_MODE_HYP:
724 return 2;
725 case ARM_CPU_MODE_FIQ:
726 case ARM_CPU_MODE_IRQ:
727 case ARM_CPU_MODE_SVC:
728 case ARM_CPU_MODE_ABT:
729 case ARM_CPU_MODE_UND:
730 case ARM_CPU_MODE_SYS:
731 return 1;
732 case ARM_CPU_MODE_MON:
733 /* Returning to Mon from AArch64 is never possible,
734 * so this is an illegal return.
736 default:
737 return -1;
739 } else {
740 if (extract32(spsr, 1, 1)) {
741 /* Return with reserved M[1] bit set */
742 return -1;
744 if (extract32(spsr, 0, 4) == 1) {
745 /* return to EL0 with M[0] bit set */
746 return -1;
748 return extract32(spsr, 2, 2);
752 static void cpsr_write_from_spsr_elx(CPUARMState *env,
753 uint32_t val)
755 uint32_t mask;
757 /* Save SPSR_ELx.SS into PSTATE. */
758 env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
759 val &= ~PSTATE_SS;
761 /* Move DIT to the correct location for CPSR */
762 if (val & PSTATE_DIT) {
763 val &= ~PSTATE_DIT;
764 val |= CPSR_DIT;
767 mask = aarch32_cpsr_valid_mask(env->features, \
768 &env_archcpu(env)->isar);
769 cpsr_write(env, val, mask, CPSRWriteRaw);
772 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
774 int cur_el = arm_current_el(env);
775 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
776 uint32_t spsr = env->banked_spsr[spsr_idx];
777 int new_el;
778 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
780 aarch64_save_sp(env, cur_el);
782 arm_clear_exclusive(env);
784 /* We must squash the PSTATE.SS bit to zero unless both of the
785 * following hold:
786 * 1. debug exceptions are currently disabled
787 * 2. singlestep will be active in the EL we return to
788 * We check 1 here and 2 after we've done the pstate/cpsr write() to
789 * transition to the EL we're going to.
791 if (arm_generate_debug_exceptions(env)) {
792 spsr &= ~PSTATE_SS;
796 * FEAT_RME forbids return from EL3 with an invalid security state.
797 * We don't need an explicit check for FEAT_RME here because we enforce
798 * in scr_write() that you can't set the NSE bit without it.
800 if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
801 goto illegal_return;
804 new_el = el_from_spsr(spsr);
805 if (new_el == -1) {
806 goto illegal_return;
808 if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
809 /* Disallow return to an EL which is unimplemented or higher
810 * than the current one.
812 goto illegal_return;
815 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
816 /* Return to an EL which is configured for a different register width */
817 goto illegal_return;
820 if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
821 goto illegal_return;
824 bql_lock();
825 arm_call_pre_el_change_hook(env_archcpu(env));
826 bql_unlock();
828 if (!return_to_aa64) {
829 env->aarch64 = false;
830 /* We do a raw CPSR write because aarch64_sync_64_to_32()
831 * will sort the register banks out for us, and we've already
832 * caught all the bad-mode cases in el_from_spsr().
834 cpsr_write_from_spsr_elx(env, spsr);
835 if (!arm_singlestep_active(env)) {
836 env->pstate &= ~PSTATE_SS;
838 aarch64_sync_64_to_32(env);
840 if (spsr & CPSR_T) {
841 env->regs[15] = new_pc & ~0x1;
842 } else {
843 env->regs[15] = new_pc & ~0x3;
845 helper_rebuild_hflags_a32(env, new_el);
846 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
847 "AArch32 EL%d PC 0x%" PRIx32 "\n",
848 cur_el, new_el, env->regs[15]);
849 } else {
850 int tbii;
852 env->aarch64 = true;
853 spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
854 pstate_write(env, spsr);
855 if (!arm_singlestep_active(env)) {
856 env->pstate &= ~PSTATE_SS;
858 aarch64_restore_sp(env, new_el);
859 helper_rebuild_hflags_a64(env, new_el);
862 * Apply TBI to the exception return address. We had to delay this
863 * until after we selected the new EL, so that we could select the
864 * correct TBI+TBID bits. This is made easier by waiting until after
865 * the hflags rebuild, since we can pull the composite TBII field
866 * from there.
868 tbii = EX_TBFLAG_A64(env->hflags, TBII);
869 if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
870 /* TBI is enabled. */
871 int core_mmu_idx = arm_env_mmu_index(env);
872 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
873 new_pc = sextract64(new_pc, 0, 56);
874 } else {
875 new_pc = extract64(new_pc, 0, 56);
878 env->pc = new_pc;
880 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
881 "AArch64 EL%d PC 0x%" PRIx64 "\n",
882 cur_el, new_el, env->pc);
886 * Note that cur_el can never be 0. If new_el is 0, then
887 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
889 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
891 bql_lock();
892 arm_call_el_change_hook(env_archcpu(env));
893 bql_unlock();
895 return;
897 illegal_return:
898 /* Illegal return events of various kinds have architecturally
899 * mandated behaviour:
900 * restore NZCV and DAIF from SPSR_ELx
901 * set PSTATE.IL
902 * restore PC from ELR_ELx
903 * no change to exception level, execution state or stack pointer
905 env->pstate |= PSTATE_IL;
906 env->pc = new_pc;
907 spsr &= PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT;
908 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT);
909 pstate_write(env, spsr);
910 if (!arm_singlestep_active(env)) {
911 env->pstate &= ~PSTATE_SS;
913 helper_rebuild_hflags_a64(env, cur_el);
914 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
915 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
919 * Square Root and Reciprocal square root
922 uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
924 float_status *s = fpstp;
926 return float16_sqrt(a, s);
929 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
931 uintptr_t ra = GETPC();
934 * Implement DC ZVA, which zeroes a fixed-length block of memory.
935 * Note that we do not implement the (architecturally mandated)
936 * alignment fault for attempts to use this on Device memory
937 * (which matches the usual QEMU behaviour of not implementing either
938 * alignment faults or any memory attribute handling).
940 int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
941 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
942 int mmu_idx = arm_env_mmu_index(env);
943 void *mem;
946 * Trapless lookup. In addition to actual invalid page, may
947 * return NULL for I/O, watchpoints, clean pages, etc.
949 mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
951 #ifndef CONFIG_USER_ONLY
952 if (unlikely(!mem)) {
954 * Trap if accessing an invalid page. DC_ZVA requires that we supply
955 * the original pointer for an invalid page. But watchpoints require
956 * that we probe the actual space. So do both.
958 (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
959 mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
961 if (unlikely(!mem)) {
963 * The only remaining reason for mem == NULL is I/O.
964 * Just do a series of byte writes as the architecture demands.
966 for (int i = 0; i < blocklen; i++) {
967 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
969 return;
972 #endif
974 set_helper_retaddr(ra);
975 memset(mem, 0, blocklen);
976 clear_helper_retaddr();
979 void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
980 uint32_t access_type, uint32_t mmu_idx)
982 arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
983 mmu_idx, GETPC());
986 /* Memory operations (memset, memmove, memcpy) */
989 * Return true if the CPY* and SET* insns can execute; compare
990 * pseudocode CheckMOPSEnabled(), though we refactor it a little.
992 static bool mops_enabled(CPUARMState *env)
994 int el = arm_current_el(env);
996 if (el < 2 &&
997 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
998 !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) {
999 return false;
1002 if (el == 0) {
1003 if (!el_is_in_host(env, 0)) {
1004 return env->cp15.sctlr_el[1] & SCTLR_MSCEN;
1005 } else {
1006 return env->cp15.sctlr_el[2] & SCTLR_MSCEN;
1009 return true;
1012 static void check_mops_enabled(CPUARMState *env, uintptr_t ra)
1014 if (!mops_enabled(env)) {
1015 raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(),
1016 exception_target_el(env), ra);
1021 * Return the target exception level for an exception due
1022 * to mismatched arguments in a FEAT_MOPS copy or set.
1023 * Compare pseudocode MismatchedCpySetTargetEL()
1025 static int mops_mismatch_exception_target_el(CPUARMState *env)
1027 int el = arm_current_el(env);
1029 if (el > 1) {
1030 return el;
1032 if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
1033 return 2;
1035 if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) {
1036 return 2;
1038 return 1;
1042 * Check whether an M or E instruction was executed with a CF value
1043 * indicating the wrong option for this implementation.
1044 * Assumes we are always Option A.
1046 static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome,
1047 uintptr_t ra)
1049 if (env->CF != 0) {
1050 syndrome |= 1 << 17; /* Set the wrong-option bit */
1051 raise_exception_ra(env, EXCP_UDEF, syndrome,
1052 mops_mismatch_exception_target_el(env), ra);
1057 * Return the maximum number of bytes we can transfer starting at addr
1058 * without crossing a page boundary.
1060 static uint64_t page_limit(uint64_t addr)
1062 return TARGET_PAGE_ALIGN(addr + 1) - addr;
1066 * Return the number of bytes we can copy starting from addr and working
1067 * backwards without crossing a page boundary.
1069 static uint64_t page_limit_rev(uint64_t addr)
1071 return (addr & ~TARGET_PAGE_MASK) + 1;
1075 * Perform part of a memory set on an area of guest memory starting at
1076 * toaddr (a dirty address) and extending for setsize bytes.
1078 * Returns the number of bytes actually set, which might be less than
1079 * setsize; the caller should loop until the whole set has been done.
1080 * The caller should ensure that the guest registers are correct
1081 * for the possibility that the first byte of the set encounters
1082 * an exception or watchpoint. We guarantee not to take any faults
1083 * for bytes other than the first.
1085 static uint64_t set_step(CPUARMState *env, uint64_t toaddr,
1086 uint64_t setsize, uint32_t data, int memidx,
1087 uint32_t *mtedesc, uintptr_t ra)
1089 void *mem;
1091 setsize = MIN(setsize, page_limit(toaddr));
1092 if (*mtedesc) {
1093 uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc);
1094 if (mtesize == 0) {
1095 /* Trap, or not. All CPU state is up to date */
1096 mte_check_fail(env, *mtedesc, toaddr, ra);
1097 /* Continue, with no further MTE checks required */
1098 *mtedesc = 0;
1099 } else {
1100 /* Advance to the end, or to the tag mismatch */
1101 setsize = MIN(setsize, mtesize);
1105 toaddr = useronly_clean_ptr(toaddr);
1107 * Trapless lookup: returns NULL for invalid page, I/O,
1108 * watchpoints, clean pages, etc.
1110 mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx);
1112 #ifndef CONFIG_USER_ONLY
1113 if (unlikely(!mem)) {
1115 * Slow-path: just do one byte write. This will handle the
1116 * watchpoint, invalid page, etc handling correctly.
1117 * For clean code pages, the next iteration will see
1118 * the page dirty and will use the fast path.
1120 cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra);
1121 return 1;
1123 #endif
1124 /* Easy case: just memset the host memory */
1125 set_helper_retaddr(ra);
1126 memset(mem, data, setsize);
1127 clear_helper_retaddr();
1128 return setsize;
1132 * Similar, but setting tags. The architecture requires us to do this
1133 * in 16-byte chunks. SETP accesses are not tag checked; they set
1134 * the tags.
1136 static uint64_t set_step_tags(CPUARMState *env, uint64_t toaddr,
1137 uint64_t setsize, uint32_t data, int memidx,
1138 uint32_t *mtedesc, uintptr_t ra)
1140 void *mem;
1141 uint64_t cleanaddr;
1143 setsize = MIN(setsize, page_limit(toaddr));
1145 cleanaddr = useronly_clean_ptr(toaddr);
1147 * Trapless lookup: returns NULL for invalid page, I/O,
1148 * watchpoints, clean pages, etc.
1150 mem = tlb_vaddr_to_host(env, cleanaddr, MMU_DATA_STORE, memidx);
1152 #ifndef CONFIG_USER_ONLY
1153 if (unlikely(!mem)) {
1155 * Slow-path: just do one write. This will handle the
1156 * watchpoint, invalid page, etc handling correctly.
1157 * The architecture requires that we do 16 bytes at a time,
1158 * and we know both ptr and size are 16 byte aligned.
1159 * For clean code pages, the next iteration will see
1160 * the page dirty and will use the fast path.
1162 uint64_t repldata = data * 0x0101010101010101ULL;
1163 MemOpIdx oi16 = make_memop_idx(MO_TE | MO_128, memidx);
1164 cpu_st16_mmu(env, toaddr, int128_make128(repldata, repldata), oi16, ra);
1165 mte_mops_set_tags(env, toaddr, 16, *mtedesc);
1166 return 16;
1168 #endif
1169 /* Easy case: just memset the host memory */
1170 set_helper_retaddr(ra);
1171 memset(mem, data, setsize);
1172 clear_helper_retaddr();
1173 mte_mops_set_tags(env, toaddr, setsize, *mtedesc);
1174 return setsize;
1177 typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr,
1178 uint64_t setsize, uint32_t data,
1179 int memidx, uint32_t *mtedesc, uintptr_t ra);
1181 /* Extract register numbers from a MOPS exception syndrome value */
1182 static int mops_destreg(uint32_t syndrome)
1184 return extract32(syndrome, 10, 5);
1187 static int mops_srcreg(uint32_t syndrome)
1189 return extract32(syndrome, 5, 5);
1192 static int mops_sizereg(uint32_t syndrome)
1194 return extract32(syndrome, 0, 5);
1198 * Return true if TCMA and TBI bits mean we need to do MTE checks.
1199 * We only need to do this once per MOPS insn, not for every page.
1201 static bool mte_checks_needed(uint64_t ptr, uint32_t desc)
1203 int bit55 = extract64(ptr, 55, 1);
1206 * Note that tbi_check() returns true for "access checked" but
1207 * tcma_check() returns true for "access unchecked".
1209 if (!tbi_check(desc, bit55)) {
1210 return false;
1212 return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr));
1215 /* Take an exception if the SETG addr/size are not granule aligned */
1216 static void check_setg_alignment(CPUARMState *env, uint64_t ptr, uint64_t size,
1217 uint32_t memidx, uintptr_t ra)
1219 if ((size != 0 && !QEMU_IS_ALIGNED(ptr, TAG_GRANULE)) ||
1220 !QEMU_IS_ALIGNED(size, TAG_GRANULE)) {
1221 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
1222 memidx, ra);
1227 static uint64_t arm_reg_or_xzr(CPUARMState *env, int reg)
1230 * Runtime equivalent of cpu_reg() -- return the CPU register value,
1231 * for contexts when index 31 means XZR (not SP).
1233 return reg == 31 ? 0 : env->xregs[reg];
1237 * For the Memory Set operation, our implementation chooses
1238 * always to use "option A", where we update Xd to the final
1239 * address in the SETP insn, and set Xn to be -(bytes remaining).
1240 * On SETM and SETE insns we only need update Xn.
1242 * @env: CPU
1243 * @syndrome: syndrome value for mismatch exceptions
1244 * (also contains the register numbers we need to use)
1245 * @mtedesc: MTE descriptor word
1246 * @stepfn: function which does a single part of the set operation
1247 * @is_setg: true if this is the tag-setting SETG variant
1249 static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1250 StepFn *stepfn, bool is_setg, uintptr_t ra)
1252 /* Prologue: we choose to do up to the next page boundary */
1253 int rd = mops_destreg(syndrome);
1254 int rs = mops_srcreg(syndrome);
1255 int rn = mops_sizereg(syndrome);
1256 uint8_t data = arm_reg_or_xzr(env, rs);
1257 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1258 uint64_t toaddr = env->xregs[rd];
1259 uint64_t setsize = env->xregs[rn];
1260 uint64_t stagesetsize, step;
1262 check_mops_enabled(env, ra);
1264 if (setsize > INT64_MAX) {
1265 setsize = INT64_MAX;
1266 if (is_setg) {
1267 setsize &= ~0xf;
1271 if (unlikely(is_setg)) {
1272 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1273 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1274 mtedesc = 0;
1277 stagesetsize = MIN(setsize, page_limit(toaddr));
1278 while (stagesetsize) {
1279 env->xregs[rd] = toaddr;
1280 env->xregs[rn] = setsize;
1281 step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1282 toaddr += step;
1283 setsize -= step;
1284 stagesetsize -= step;
1286 /* Insn completed, so update registers to the Option A format */
1287 env->xregs[rd] = toaddr + setsize;
1288 env->xregs[rn] = -setsize;
1290 /* Set NZCV = 0000 to indicate we are an Option A implementation */
1291 env->NF = 0;
1292 env->ZF = 1; /* our env->ZF encoding is inverted */
1293 env->CF = 0;
1294 env->VF = 0;
1295 return;
1298 void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1300 do_setp(env, syndrome, mtedesc, set_step, false, GETPC());
1303 void HELPER(setgp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1305 do_setp(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1308 static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1309 StepFn *stepfn, bool is_setg, uintptr_t ra)
1311 /* Main: we choose to do all the full-page chunks */
1312 CPUState *cs = env_cpu(env);
1313 int rd = mops_destreg(syndrome);
1314 int rs = mops_srcreg(syndrome);
1315 int rn = mops_sizereg(syndrome);
1316 uint8_t data = arm_reg_or_xzr(env, rs);
1317 uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1318 uint64_t setsize = -env->xregs[rn];
1319 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1320 uint64_t step, stagesetsize;
1322 check_mops_enabled(env, ra);
1325 * We're allowed to NOP out "no data to copy" before the consistency
1326 * checks; we choose to do so.
1328 if (env->xregs[rn] == 0) {
1329 return;
1332 check_mops_wrong_option(env, syndrome, ra);
1335 * Our implementation will work fine even if we have an unaligned
1336 * destination address, and because we update Xn every time around
1337 * the loop below and the return value from stepfn() may be less
1338 * than requested, we might find toaddr is unaligned. So we don't
1339 * have an IMPDEF check for alignment here.
1342 if (unlikely(is_setg)) {
1343 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1344 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1345 mtedesc = 0;
1348 /* Do the actual memset: we leave the last partial page to SETE */
1349 stagesetsize = setsize & TARGET_PAGE_MASK;
1350 while (stagesetsize > 0) {
1351 step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1352 toaddr += step;
1353 setsize -= step;
1354 stagesetsize -= step;
1355 env->xregs[rn] = -setsize;
1356 if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) {
1357 cpu_loop_exit_restore(cs, ra);
1362 void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1364 do_setm(env, syndrome, mtedesc, set_step, false, GETPC());
1367 void HELPER(setgm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1369 do_setm(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1372 static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1373 StepFn *stepfn, bool is_setg, uintptr_t ra)
1375 /* Epilogue: do the last partial page */
1376 int rd = mops_destreg(syndrome);
1377 int rs = mops_srcreg(syndrome);
1378 int rn = mops_sizereg(syndrome);
1379 uint8_t data = arm_reg_or_xzr(env, rs);
1380 uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1381 uint64_t setsize = -env->xregs[rn];
1382 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1383 uint64_t step;
1385 check_mops_enabled(env, ra);
1388 * We're allowed to NOP out "no data to copy" before the consistency
1389 * checks; we choose to do so.
1391 if (setsize == 0) {
1392 return;
1395 check_mops_wrong_option(env, syndrome, ra);
1398 * Our implementation has no address alignment requirements, but
1399 * we do want to enforce the "less than a page" size requirement,
1400 * so we don't need to have the "check for interrupts" here.
1402 if (setsize >= TARGET_PAGE_SIZE) {
1403 raise_exception_ra(env, EXCP_UDEF, syndrome,
1404 mops_mismatch_exception_target_el(env), ra);
1407 if (unlikely(is_setg)) {
1408 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1409 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1410 mtedesc = 0;
1413 /* Do the actual memset */
1414 while (setsize > 0) {
1415 step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1416 toaddr += step;
1417 setsize -= step;
1418 env->xregs[rn] = -setsize;
1422 void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1424 do_sete(env, syndrome, mtedesc, set_step, false, GETPC());
1427 void HELPER(setge)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1429 do_sete(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1433 * Perform part of a memory copy from the guest memory at fromaddr
1434 * and extending for copysize bytes, to the guest memory at
1435 * toaddr. Both addresses are dirty.
1437 * Returns the number of bytes actually set, which might be less than
1438 * copysize; the caller should loop until the whole copy has been done.
1439 * The caller should ensure that the guest registers are correct
1440 * for the possibility that the first byte of the copy encounters
1441 * an exception or watchpoint. We guarantee not to take any faults
1442 * for bytes other than the first.
1444 static uint64_t copy_step(CPUARMState *env, uint64_t toaddr, uint64_t fromaddr,
1445 uint64_t copysize, int wmemidx, int rmemidx,
1446 uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1448 void *rmem;
1449 void *wmem;
1451 /* Don't cross a page boundary on either source or destination */
1452 copysize = MIN(copysize, page_limit(toaddr));
1453 copysize = MIN(copysize, page_limit(fromaddr));
1455 * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1456 * or else copy up to but not including the byte with the mismatch.
1458 if (*rdesc) {
1459 uint64_t mtesize = mte_mops_probe(env, fromaddr, copysize, *rdesc);
1460 if (mtesize == 0) {
1461 mte_check_fail(env, *rdesc, fromaddr, ra);
1462 *rdesc = 0;
1463 } else {
1464 copysize = MIN(copysize, mtesize);
1467 if (*wdesc) {
1468 uint64_t mtesize = mte_mops_probe(env, toaddr, copysize, *wdesc);
1469 if (mtesize == 0) {
1470 mte_check_fail(env, *wdesc, toaddr, ra);
1471 *wdesc = 0;
1472 } else {
1473 copysize = MIN(copysize, mtesize);
1477 toaddr = useronly_clean_ptr(toaddr);
1478 fromaddr = useronly_clean_ptr(fromaddr);
1479 /* Trapless lookup of whether we can get a host memory pointer */
1480 wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1481 rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1483 #ifndef CONFIG_USER_ONLY
1485 * If we don't have host memory for both source and dest then just
1486 * do a single byte copy. This will handle watchpoints, invalid pages,
1487 * etc correctly. For clean code pages, the next iteration will see
1488 * the page dirty and will use the fast path.
1490 if (unlikely(!rmem || !wmem)) {
1491 uint8_t byte;
1492 if (rmem) {
1493 byte = *(uint8_t *)rmem;
1494 } else {
1495 byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1497 if (wmem) {
1498 *(uint8_t *)wmem = byte;
1499 } else {
1500 cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1502 return 1;
1504 #endif
1505 /* Easy case: just memmove the host memory */
1506 set_helper_retaddr(ra);
1507 memmove(wmem, rmem, copysize);
1508 clear_helper_retaddr();
1509 return copysize;
1513 * Do part of a backwards memory copy. Here toaddr and fromaddr point
1514 * to the *last* byte to be copied.
1516 static uint64_t copy_step_rev(CPUARMState *env, uint64_t toaddr,
1517 uint64_t fromaddr,
1518 uint64_t copysize, int wmemidx, int rmemidx,
1519 uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1521 void *rmem;
1522 void *wmem;
1524 /* Don't cross a page boundary on either source or destination */
1525 copysize = MIN(copysize, page_limit_rev(toaddr));
1526 copysize = MIN(copysize, page_limit_rev(fromaddr));
1529 * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1530 * or else copy up to but not including the byte with the mismatch.
1532 if (*rdesc) {
1533 uint64_t mtesize = mte_mops_probe_rev(env, fromaddr, copysize, *rdesc);
1534 if (mtesize == 0) {
1535 mte_check_fail(env, *rdesc, fromaddr, ra);
1536 *rdesc = 0;
1537 } else {
1538 copysize = MIN(copysize, mtesize);
1541 if (*wdesc) {
1542 uint64_t mtesize = mte_mops_probe_rev(env, toaddr, copysize, *wdesc);
1543 if (mtesize == 0) {
1544 mte_check_fail(env, *wdesc, toaddr, ra);
1545 *wdesc = 0;
1546 } else {
1547 copysize = MIN(copysize, mtesize);
1551 toaddr = useronly_clean_ptr(toaddr);
1552 fromaddr = useronly_clean_ptr(fromaddr);
1553 /* Trapless lookup of whether we can get a host memory pointer */
1554 wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1555 rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1557 #ifndef CONFIG_USER_ONLY
1559 * If we don't have host memory for both source and dest then just
1560 * do a single byte copy. This will handle watchpoints, invalid pages,
1561 * etc correctly. For clean code pages, the next iteration will see
1562 * the page dirty and will use the fast path.
1564 if (unlikely(!rmem || !wmem)) {
1565 uint8_t byte;
1566 if (rmem) {
1567 byte = *(uint8_t *)rmem;
1568 } else {
1569 byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1571 if (wmem) {
1572 *(uint8_t *)wmem = byte;
1573 } else {
1574 cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1576 return 1;
1578 #endif
1580 * Easy case: just memmove the host memory. Note that wmem and
1581 * rmem here point to the *last* byte to copy.
1583 set_helper_retaddr(ra);
1584 memmove(wmem - (copysize - 1), rmem - (copysize - 1), copysize);
1585 clear_helper_retaddr();
1586 return copysize;
1590 * for the Memory Copy operation, our implementation chooses always
1591 * to use "option A", where we update Xd and Xs to the final addresses
1592 * in the CPYP insn, and then in CPYM and CPYE only need to update Xn.
1594 * @env: CPU
1595 * @syndrome: syndrome value for mismatch exceptions
1596 * (also contains the register numbers we need to use)
1597 * @wdesc: MTE descriptor for the writes (destination)
1598 * @rdesc: MTE descriptor for the reads (source)
1599 * @move: true if this is CPY (memmove), false for CPYF (memcpy forwards)
1601 static void do_cpyp(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1602 uint32_t rdesc, uint32_t move, uintptr_t ra)
1604 int rd = mops_destreg(syndrome);
1605 int rs = mops_srcreg(syndrome);
1606 int rn = mops_sizereg(syndrome);
1607 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1608 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1609 bool forwards = true;
1610 uint64_t toaddr = env->xregs[rd];
1611 uint64_t fromaddr = env->xregs[rs];
1612 uint64_t copysize = env->xregs[rn];
1613 uint64_t stagecopysize, step;
1615 check_mops_enabled(env, ra);
1618 if (move) {
1620 * Copy backwards if necessary. The direction for a non-overlapping
1621 * copy is IMPDEF; we choose forwards.
1623 if (copysize > 0x007FFFFFFFFFFFFFULL) {
1624 copysize = 0x007FFFFFFFFFFFFFULL;
1626 uint64_t fs = extract64(fromaddr, 0, 56);
1627 uint64_t ts = extract64(toaddr, 0, 56);
1628 uint64_t fe = extract64(fromaddr + copysize, 0, 56);
1630 if (fs < ts && fe > ts) {
1631 forwards = false;
1633 } else {
1634 if (copysize > INT64_MAX) {
1635 copysize = INT64_MAX;
1639 if (!mte_checks_needed(fromaddr, rdesc)) {
1640 rdesc = 0;
1642 if (!mte_checks_needed(toaddr, wdesc)) {
1643 wdesc = 0;
1646 if (forwards) {
1647 stagecopysize = MIN(copysize, page_limit(toaddr));
1648 stagecopysize = MIN(stagecopysize, page_limit(fromaddr));
1649 while (stagecopysize) {
1650 env->xregs[rd] = toaddr;
1651 env->xregs[rs] = fromaddr;
1652 env->xregs[rn] = copysize;
1653 step = copy_step(env, toaddr, fromaddr, stagecopysize,
1654 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1655 toaddr += step;
1656 fromaddr += step;
1657 copysize -= step;
1658 stagecopysize -= step;
1660 /* Insn completed, so update registers to the Option A format */
1661 env->xregs[rd] = toaddr + copysize;
1662 env->xregs[rs] = fromaddr + copysize;
1663 env->xregs[rn] = -copysize;
1664 } else {
1666 * In a reverse copy the to and from addrs in Xs and Xd are the start
1667 * of the range, but it's more convenient for us to work with pointers
1668 * to the last byte being copied.
1670 toaddr += copysize - 1;
1671 fromaddr += copysize - 1;
1672 stagecopysize = MIN(copysize, page_limit_rev(toaddr));
1673 stagecopysize = MIN(stagecopysize, page_limit_rev(fromaddr));
1674 while (stagecopysize) {
1675 env->xregs[rn] = copysize;
1676 step = copy_step_rev(env, toaddr, fromaddr, stagecopysize,
1677 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1678 copysize -= step;
1679 stagecopysize -= step;
1680 toaddr -= step;
1681 fromaddr -= step;
1684 * Insn completed, so update registers to the Option A format.
1685 * For a reverse copy this is no different to the CPYP input format.
1687 env->xregs[rn] = copysize;
1690 /* Set NZCV = 0000 to indicate we are an Option A implementation */
1691 env->NF = 0;
1692 env->ZF = 1; /* our env->ZF encoding is inverted */
1693 env->CF = 0;
1694 env->VF = 0;
1695 return;
1698 void HELPER(cpyp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1699 uint32_t rdesc)
1701 do_cpyp(env, syndrome, wdesc, rdesc, true, GETPC());
1704 void HELPER(cpyfp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1705 uint32_t rdesc)
1707 do_cpyp(env, syndrome, wdesc, rdesc, false, GETPC());
1710 static void do_cpym(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1711 uint32_t rdesc, uint32_t move, uintptr_t ra)
1713 /* Main: we choose to copy until less than a page remaining */
1714 CPUState *cs = env_cpu(env);
1715 int rd = mops_destreg(syndrome);
1716 int rs = mops_srcreg(syndrome);
1717 int rn = mops_sizereg(syndrome);
1718 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1719 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1720 bool forwards = true;
1721 uint64_t toaddr, fromaddr, copysize, step;
1723 check_mops_enabled(env, ra);
1725 /* We choose to NOP out "no data to copy" before consistency checks */
1726 if (env->xregs[rn] == 0) {
1727 return;
1730 check_mops_wrong_option(env, syndrome, ra);
1732 if (move) {
1733 forwards = (int64_t)env->xregs[rn] < 0;
1736 if (forwards) {
1737 toaddr = env->xregs[rd] + env->xregs[rn];
1738 fromaddr = env->xregs[rs] + env->xregs[rn];
1739 copysize = -env->xregs[rn];
1740 } else {
1741 copysize = env->xregs[rn];
1742 /* This toaddr and fromaddr point to the *last* byte to copy */
1743 toaddr = env->xregs[rd] + copysize - 1;
1744 fromaddr = env->xregs[rs] + copysize - 1;
1747 if (!mte_checks_needed(fromaddr, rdesc)) {
1748 rdesc = 0;
1750 if (!mte_checks_needed(toaddr, wdesc)) {
1751 wdesc = 0;
1754 /* Our implementation has no particular parameter requirements for CPYM */
1756 /* Do the actual memmove */
1757 if (forwards) {
1758 while (copysize >= TARGET_PAGE_SIZE) {
1759 step = copy_step(env, toaddr, fromaddr, copysize,
1760 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1761 toaddr += step;
1762 fromaddr += step;
1763 copysize -= step;
1764 env->xregs[rn] = -copysize;
1765 if (copysize >= TARGET_PAGE_SIZE &&
1766 unlikely(cpu_loop_exit_requested(cs))) {
1767 cpu_loop_exit_restore(cs, ra);
1770 } else {
1771 while (copysize >= TARGET_PAGE_SIZE) {
1772 step = copy_step_rev(env, toaddr, fromaddr, copysize,
1773 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1774 toaddr -= step;
1775 fromaddr -= step;
1776 copysize -= step;
1777 env->xregs[rn] = copysize;
1778 if (copysize >= TARGET_PAGE_SIZE &&
1779 unlikely(cpu_loop_exit_requested(cs))) {
1780 cpu_loop_exit_restore(cs, ra);
1786 void HELPER(cpym)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1787 uint32_t rdesc)
1789 do_cpym(env, syndrome, wdesc, rdesc, true, GETPC());
1792 void HELPER(cpyfm)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1793 uint32_t rdesc)
1795 do_cpym(env, syndrome, wdesc, rdesc, false, GETPC());
1798 static void do_cpye(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1799 uint32_t rdesc, uint32_t move, uintptr_t ra)
1801 /* Epilogue: do the last partial page */
1802 int rd = mops_destreg(syndrome);
1803 int rs = mops_srcreg(syndrome);
1804 int rn = mops_sizereg(syndrome);
1805 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1806 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1807 bool forwards = true;
1808 uint64_t toaddr, fromaddr, copysize, step;
1810 check_mops_enabled(env, ra);
1812 /* We choose to NOP out "no data to copy" before consistency checks */
1813 if (env->xregs[rn] == 0) {
1814 return;
1817 check_mops_wrong_option(env, syndrome, ra);
1819 if (move) {
1820 forwards = (int64_t)env->xregs[rn] < 0;
1823 if (forwards) {
1824 toaddr = env->xregs[rd] + env->xregs[rn];
1825 fromaddr = env->xregs[rs] + env->xregs[rn];
1826 copysize = -env->xregs[rn];
1827 } else {
1828 copysize = env->xregs[rn];
1829 /* This toaddr and fromaddr point to the *last* byte to copy */
1830 toaddr = env->xregs[rd] + copysize - 1;
1831 fromaddr = env->xregs[rs] + copysize - 1;
1834 if (!mte_checks_needed(fromaddr, rdesc)) {
1835 rdesc = 0;
1837 if (!mte_checks_needed(toaddr, wdesc)) {
1838 wdesc = 0;
1841 /* Check the size; we don't want to have do a check-for-interrupts */
1842 if (copysize >= TARGET_PAGE_SIZE) {
1843 raise_exception_ra(env, EXCP_UDEF, syndrome,
1844 mops_mismatch_exception_target_el(env), ra);
1847 /* Do the actual memmove */
1848 if (forwards) {
1849 while (copysize > 0) {
1850 step = copy_step(env, toaddr, fromaddr, copysize,
1851 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1852 toaddr += step;
1853 fromaddr += step;
1854 copysize -= step;
1855 env->xregs[rn] = -copysize;
1857 } else {
1858 while (copysize > 0) {
1859 step = copy_step_rev(env, toaddr, fromaddr, copysize,
1860 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1861 toaddr -= step;
1862 fromaddr -= step;
1863 copysize -= step;
1864 env->xregs[rn] = copysize;
1869 void HELPER(cpye)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1870 uint32_t rdesc)
1872 do_cpye(env, syndrome, wdesc, rdesc, true, GETPC());
1875 void HELPER(cpyfe)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1876 uint32_t rdesc)
1878 do_cpye(env, syndrome, wdesc, rdesc, false, GETPC());
1881 static bool is_guarded_page(CPUARMState *env, target_ulong addr, uintptr_t ra)
1883 #ifdef CONFIG_USER_ONLY
1884 return page_get_flags(addr) & PAGE_BTI;
1885 #else
1886 CPUTLBEntryFull *full;
1887 void *host;
1888 int mmu_idx = cpu_mmu_index(env_cpu(env), true);
1889 int flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
1890 false, &host, &full, ra);
1892 assert(!(flags & TLB_INVALID_MASK));
1893 return full->extra.arm.guarded;
1894 #endif
1897 void HELPER(guarded_page_check)(CPUARMState *env)
1900 * We have already verified that bti is enabled, and that the
1901 * instruction at PC is not ok for BTYPE. This is always at
1902 * the beginning of a block, so PC is always up-to-date and
1903 * no unwind is required.
1905 if (is_guarded_page(env, env->pc, 0)) {
1906 raise_exception(env, EXCP_UDEF, syn_btitrap(env->btype),
1907 exception_target_el(env));
1911 void HELPER(guarded_page_br)(CPUARMState *env, target_ulong pc)
1914 * We have already checked for branch via x16 and x17.
1915 * What remains for choosing BTYPE is checking for a guarded page.
1917 env->btype = is_guarded_page(env, pc, GETPC()) ? 3 : 1;