Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / tcg / hflags.c
blobbab7822ef667f2c02676d1b83928f708e6a30d2d
1 /*
2 * ARM hflags
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12 #include "exec/helper-proto.h"
13 #include "cpregs.h"
15 static inline bool fgt_svc(CPUARMState *env, int el)
18 * Assuming fine-grained-traps are active, return true if we
19 * should be trapping on SVC instructions. Only AArch64 can
20 * trap on an SVC at EL1, but we don't need to special-case this
21 * because if this is AArch32 EL1 then arm_fgt_active() is false.
22 * We also know el is 0 or 1.
24 return el == 0 ?
25 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
26 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
29 /* Return true if memory alignment should be enforced. */
30 static bool aprofile_require_alignment(CPUARMState *env, int el, uint64_t sctlr)
32 #ifdef CONFIG_USER_ONLY
33 return false;
34 #else
35 /* Check the alignment enable bit. */
36 if (sctlr & SCTLR_A) {
37 return true;
41 * With PMSA, when the MPU is disabled, all memory types in the
42 * default map are Normal, so don't need aligment enforcing.
44 if (arm_feature(env, ARM_FEATURE_PMSA)) {
45 return false;
49 * With VMSA, if translation is disabled, then the default memory type
50 * is Device(-nGnRnE) instead of Normal, which requires that alignment
51 * be enforced. Since this affects all ram, it is most efficient
52 * to handle this during translation.
54 if (sctlr & SCTLR_M) {
55 /* Translation enabled: memory type in PTE via MAIR_ELx. */
56 return false;
58 if (el < 2 && (arm_hcr_el2_eff(env) & (HCR_DC | HCR_VM))) {
59 /* Stage 2 translation enabled: memory type in PTE. */
60 return false;
62 return true;
63 #endif
66 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
67 ARMMMUIdx mmu_idx,
68 CPUARMTBFlags flags)
70 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
71 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
73 if (arm_singlestep_active(env)) {
74 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
77 return flags;
80 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
81 ARMMMUIdx mmu_idx,
82 CPUARMTBFlags flags)
84 bool sctlr_b = arm_sctlr_b(env);
86 if (sctlr_b) {
87 DP_TBFLAG_A32(flags, SCTLR__B, 1);
89 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
90 DP_TBFLAG_ANY(flags, BE_DATA, 1);
92 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
94 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
97 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
98 ARMMMUIdx mmu_idx)
100 CPUARMTBFlags flags = {};
101 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
103 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
104 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
105 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
108 if (arm_v7m_is_handler_mode(env)) {
109 DP_TBFLAG_M32(flags, HANDLER, 1);
113 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
114 * is suppressing them because the requested execution priority
115 * is less than 0.
117 if (arm_feature(env, ARM_FEATURE_V8) &&
118 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
119 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
120 DP_TBFLAG_M32(flags, STACKCHECK, 1);
123 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
124 DP_TBFLAG_M32(flags, SECURE, 1);
127 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
130 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
131 static bool sme_fa64(CPUARMState *env, int el)
133 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
134 return false;
137 if (el <= 1 && !el_is_in_host(env, el)) {
138 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
139 return false;
142 if (el <= 2 && arm_is_el2_enabled(env)) {
143 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
144 return false;
147 if (arm_feature(env, ARM_FEATURE_EL3)) {
148 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
149 return false;
153 return true;
156 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
157 ARMMMUIdx mmu_idx)
159 CPUARMTBFlags flags = {};
160 int el = arm_current_el(env);
161 uint64_t sctlr = arm_sctlr(env, el);
163 if (aprofile_require_alignment(env, el, sctlr)) {
164 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
167 if (arm_el_is_aa64(env, 1)) {
168 DP_TBFLAG_A32(flags, VFPEN, 1);
171 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
172 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
173 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
176 if (arm_fgt_active(env, el)) {
177 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
178 if (fgt_svc(env, el)) {
179 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
183 if (env->uncached_cpsr & CPSR_IL) {
184 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
188 * The SME exception we are testing for is raised via
189 * AArch64.CheckFPAdvSIMDEnabled(), as called from
190 * AArch32.CheckAdvSIMDOrFPEnabled().
192 if (el == 0
193 && FIELD_EX64(env->svcr, SVCR, SM)
194 && (!arm_is_el2_enabled(env)
195 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
196 && arm_el_is_aa64(env, 1)
197 && !sme_fa64(env, el)) {
198 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
201 if (arm_aa32_secure_pl1_0(env)) {
202 DP_TBFLAG_A32(flags, S_PL1_0, 1);
205 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
208 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
209 ARMMMUIdx mmu_idx)
211 CPUARMTBFlags flags = {};
212 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
213 uint64_t tcr = regime_tcr(env, mmu_idx);
214 uint64_t hcr = arm_hcr_el2_eff(env);
215 uint64_t sctlr;
216 int tbii, tbid;
218 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
220 /* Get control bits for tagged addresses. */
221 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
222 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
224 DP_TBFLAG_A64(flags, TBII, tbii);
225 DP_TBFLAG_A64(flags, TBID, tbid);
227 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
228 int sve_el = sve_exception_el(env, el);
231 * If either FP or SVE are disabled, translator does not need len.
232 * If SVE EL > FP EL, FP exception has precedence, and translator
233 * does not need SVE EL. Save potential re-translations by forcing
234 * the unneeded data to zero.
236 if (fp_el != 0) {
237 if (sve_el > fp_el) {
238 sve_el = 0;
240 } else if (sve_el == 0) {
241 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
243 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
245 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
246 int sme_el = sme_exception_el(env, el);
247 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
249 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
250 if (sme_el == 0) {
251 /* Similarly, do not compute SVL if SME is disabled. */
252 int svl = sve_vqm1_for_el_sm(env, el, true);
253 DP_TBFLAG_A64(flags, SVL, svl);
254 if (sm) {
255 /* If SVE is disabled, we will not have set VL above. */
256 DP_TBFLAG_A64(flags, VL, svl);
259 if (sm) {
260 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
261 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
263 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
266 sctlr = regime_sctlr(env, stage1);
268 if (aprofile_require_alignment(env, el, sctlr)) {
269 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
272 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
273 DP_TBFLAG_ANY(flags, BE_DATA, 1);
276 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
278 * In order to save space in flags, we record only whether
279 * pauth is "inactive", meaning all insns are implemented as
280 * a nop, or "active" when some action must be performed.
281 * The decision of which action to take is left to a helper.
283 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
284 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
288 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
289 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
290 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
291 DP_TBFLAG_A64(flags, BT, 1);
295 if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) {
296 if (sctlr & SCTLR_nAA) {
297 DP_TBFLAG_A64(flags, NAA, 1);
301 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
302 if (!(env->pstate & PSTATE_UAO)) {
303 switch (mmu_idx) {
304 case ARMMMUIdx_E10_1:
305 case ARMMMUIdx_E10_1_PAN:
306 /* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */
307 if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) {
308 DP_TBFLAG_A64(flags, UNPRIV, 1);
310 break;
311 case ARMMMUIdx_E20_2:
312 case ARMMMUIdx_E20_2_PAN:
314 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
315 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
317 if (env->cp15.hcr_el2 & HCR_TGE) {
318 DP_TBFLAG_A64(flags, UNPRIV, 1);
320 break;
321 default:
322 break;
326 if (env->pstate & PSTATE_IL) {
327 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
330 if (arm_fgt_active(env, el)) {
331 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
332 if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
333 DP_TBFLAG_A64(flags, TRAP_ERET, 1);
335 if (fgt_svc(env, el)) {
336 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
341 * ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care
342 * of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present.
344 if (el == 1 && (hcr & HCR_NV)) {
345 DP_TBFLAG_A64(flags, TRAP_ERET, 1);
346 DP_TBFLAG_A64(flags, NV, 1);
347 if (hcr & HCR_NV1) {
348 DP_TBFLAG_A64(flags, NV1, 1);
350 if (hcr & HCR_NV2) {
351 DP_TBFLAG_A64(flags, NV2, 1);
352 if (hcr & HCR_E2H) {
353 DP_TBFLAG_A64(flags, NV2_MEM_E20, 1);
355 if (env->cp15.sctlr_el[2] & SCTLR_EE) {
356 DP_TBFLAG_A64(flags, NV2_MEM_BE, 1);
361 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
363 * Set MTE_ACTIVE if any access may be Checked, and leave clear
364 * if all accesses must be Unchecked:
365 * 1) If no TBI, then there are no tags in the address to check,
366 * 2) If Tag Check Override, then all accesses are Unchecked,
367 * 3) If Tag Check Fail == 0, then Checked access have no effect,
368 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
370 if (allocation_tag_access_enabled(env, el, sctlr)) {
371 DP_TBFLAG_A64(flags, ATA, 1);
372 if (tbid
373 && !(env->pstate & PSTATE_TCO)
374 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
375 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
376 if (!EX_TBFLAG_A64(flags, UNPRIV)) {
378 * In non-unpriv contexts (eg EL0), unpriv load/stores
379 * act like normal ones; duplicate the MTE info to
380 * avoid translate-a64.c having to check UNPRIV to see
381 * whether it is OK to index into MTE_ACTIVE[].
383 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
387 /* And again for unprivileged accesses, if required. */
388 if (EX_TBFLAG_A64(flags, UNPRIV)
389 && tbid
390 && !(env->pstate & PSTATE_TCO)
391 && (sctlr & SCTLR_TCF0)
392 && allocation_tag_access_enabled(env, 0, sctlr)) {
393 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
396 * For unpriv tag-setting accesses we also need ATA0. Again, in
397 * contexts where unpriv and normal insns are the same we
398 * duplicate the ATA bit to save effort for translate-a64.c.
400 if (EX_TBFLAG_A64(flags, UNPRIV)) {
401 if (allocation_tag_access_enabled(env, 0, sctlr)) {
402 DP_TBFLAG_A64(flags, ATA0, 1);
404 } else {
405 DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA));
407 /* Cache TCMA as well as TBI. */
408 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
411 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
414 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
416 int el = arm_current_el(env);
417 int fp_el = fp_exception_el(env, el);
418 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
420 if (is_a64(env)) {
421 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
422 } else if (arm_feature(env, ARM_FEATURE_M)) {
423 return rebuild_hflags_m32(env, fp_el, mmu_idx);
424 } else {
425 return rebuild_hflags_a32(env, fp_el, mmu_idx);
429 void arm_rebuild_hflags(CPUARMState *env)
431 env->hflags = rebuild_hflags_internal(env);
435 * If we have triggered a EL state change we can't rely on the
436 * translator having passed it to us, we need to recompute.
438 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
440 int el = arm_current_el(env);
441 int fp_el = fp_exception_el(env, el);
442 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
444 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
447 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
449 int fp_el = fp_exception_el(env, el);
450 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
452 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
456 * If we have triggered a EL state change we can't rely on the
457 * translator having passed it to us, we need to recompute.
459 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
461 int el = arm_current_el(env);
462 int fp_el = fp_exception_el(env, el);
463 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
464 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
467 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
469 int fp_el = fp_exception_el(env, el);
470 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
472 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
475 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
477 int fp_el = fp_exception_el(env, el);
478 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
480 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
483 void assert_hflags_rebuild_correctly(CPUARMState *env)
485 #ifdef CONFIG_DEBUG_TCG
486 CPUARMTBFlags c = env->hflags;
487 CPUARMTBFlags r = rebuild_hflags_internal(env);
489 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
490 fprintf(stderr, "TCG hflags mismatch "
491 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
492 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
493 c.flags, c.flags2, r.flags, r.flags2);
494 abort();
496 #endif