Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / tcg / mte_helper.c
blob9d2ba287eebafd03b453eb982ef57307845237e2
1 /*
2 * ARM v8.5-MemTag Operations
4 * Copyright (c) 2020 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/page-protection.h"
26 #include "exec/ram_addr.h"
27 #include "exec/cpu_ldst.h"
28 #include "exec/helper-proto.h"
29 #include "hw/core/tcg-cpu-ops.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #include "mte_helper.h"
35 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
37 if (exclude == 0xffff) {
38 return 0;
40 if (offset == 0) {
41 while (exclude & (1 << tag)) {
42 tag = (tag + 1) & 15;
44 } else {
45 do {
46 do {
47 tag = (tag + 1) & 15;
48 } while (exclude & (1 << tag));
49 } while (--offset > 0);
51 return tag;
54 uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx,
55 uint64_t ptr, MMUAccessType ptr_access,
56 int ptr_size, MMUAccessType tag_access,
57 bool probe, uintptr_t ra)
59 #ifdef CONFIG_USER_ONLY
60 uint64_t clean_ptr = useronly_clean_ptr(ptr);
61 int flags = page_get_flags(clean_ptr);
62 uint8_t *tags;
63 uintptr_t index;
65 assert(!(probe && ra));
67 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
68 if (probe) {
69 return NULL;
71 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
72 !(flags & PAGE_VALID), ra);
75 /* Require both MAP_ANON and PROT_MTE for the page. */
76 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
77 return NULL;
80 tags = page_get_target_data(clean_ptr);
82 index = extract32(ptr, LOG2_TAG_GRANULE + 1,
83 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
84 return tags + index;
85 #else
86 CPUTLBEntryFull *full;
87 MemTxAttrs attrs;
88 int in_page, flags;
89 hwaddr ptr_paddr, tag_paddr, xlat;
90 MemoryRegion *mr;
91 ARMASIdx tag_asi;
92 AddressSpace *tag_as;
93 void *host;
96 * Probe the first byte of the virtual address. This raises an
97 * exception for inaccessible pages, and resolves the virtual address
98 * into the softmmu tlb.
100 * When RA == 0, this is either a pure probe or a no-fault-expected probe.
101 * Indicate to probe_access_flags no-fault, then either return NULL
102 * for the pure probe, or assert that we received a valid page for the
103 * no-fault-expected probe.
105 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
106 ra == 0, &host, &full, ra);
107 if (probe && (flags & TLB_INVALID_MASK)) {
108 return NULL;
110 assert(!(flags & TLB_INVALID_MASK));
112 /* If the virtual page MemAttr != Tagged, access unchecked. */
113 if (full->extra.arm.pte_attrs != 0xf0) {
114 return NULL;
118 * If not backed by host ram, there is no tag storage: access unchecked.
119 * This is probably a guest os bug though, so log it.
121 if (unlikely(flags & TLB_MMIO)) {
122 qemu_log_mask(LOG_GUEST_ERROR,
123 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
124 "but is not backed by host ram\n", ptr);
125 return NULL;
129 * Remember these values across the second lookup below,
130 * which may invalidate this pointer via tlb resize.
132 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
133 attrs = full->attrs;
134 full = NULL;
137 * The Normal memory access can extend to the next page. E.g. a single
138 * 8-byte access to the last byte of a page will check only the last
139 * tag on the first page.
140 * Any page access exception has priority over tag check exception.
142 in_page = -(ptr | TARGET_PAGE_MASK);
143 if (unlikely(ptr_size > in_page)) {
144 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
145 ptr_mmu_idx, ra == 0, &host, &full, ra);
146 assert(!(flags & TLB_INVALID_MASK));
149 /* Any debug exception has priority over a tag check exception. */
150 if (!probe && unlikely(flags & TLB_WATCHPOINT)) {
151 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
152 assert(ra != 0);
153 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
156 /* Convert to the physical address in tag space. */
157 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
159 /* Look up the address in tag space. */
160 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
161 tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
162 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
163 tag_access == MMU_DATA_STORE, attrs);
166 * Note that @mr will never be NULL. If there is nothing in the address
167 * space at @tag_paddr, the translation will return the unallocated memory
168 * region. For our purposes, the result must be ram.
170 if (unlikely(!memory_region_is_ram(mr))) {
171 /* ??? Failure is a board configuration error. */
172 qemu_log_mask(LOG_UNIMP,
173 "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
174 "Normal Memory @ 0x%" HWADDR_PRIx "\n",
175 tag_paddr, ptr_paddr);
176 return NULL;
180 * Ensure the tag memory is dirty on write, for migration.
181 * Tag memory can never contain code or display memory (vga).
183 if (tag_access == MMU_DATA_STORE) {
184 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
185 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
188 return memory_region_get_ram_ptr(mr) + xlat;
189 #endif
192 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
193 uint64_t ptr, MMUAccessType ptr_access,
194 int ptr_size, MMUAccessType tag_access,
195 uintptr_t ra)
197 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access,
198 ptr_size, tag_access, false, ra);
201 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
203 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
204 int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
205 int start = extract32(env->cp15.rgsr_el1, 0, 4);
206 int seed = extract32(env->cp15.rgsr_el1, 8, 16);
207 int offset, i, rtag;
210 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
211 * deterministic algorithm. Except that with RRND==1 the kernel is
212 * not required to have set RGSR_EL1.SEED != 0, which is required for
213 * the deterministic algorithm to function. So we force a non-zero
214 * SEED for that case.
216 if (unlikely(seed == 0) && rrnd) {
217 do {
218 Error *err = NULL;
219 uint16_t two;
221 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
223 * Failed, for unknown reasons in the crypto subsystem.
224 * Best we can do is log the reason and use a constant seed.
226 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
227 error_get_pretty(err));
228 error_free(err);
229 two = 1;
231 seed = two;
232 } while (seed == 0);
235 /* RandomTag */
236 for (i = offset = 0; i < 4; ++i) {
237 /* NextRandomTagBit */
238 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
239 extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
240 seed = (top << 15) | (seed >> 1);
241 offset |= top << i;
243 rtag = choose_nonexcluded_tag(start, offset, exclude);
244 env->cp15.rgsr_el1 = rtag | (seed << 8);
246 return address_with_allocation_tag(rn, rtag);
249 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
250 int32_t offset, uint32_t tag_offset)
252 int start_tag = allocation_tag_from_addr(ptr);
253 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
254 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
256 return address_with_allocation_tag(ptr + offset, rtag);
259 int load_tag1(uint64_t ptr, uint8_t *mem)
261 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
262 return extract32(*mem, ofs, 4);
265 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
267 int mmu_idx = arm_env_mmu_index(env);
268 uint8_t *mem;
269 int rtag = 0;
271 /* Trap if accessing an invalid page. */
272 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
273 MMU_DATA_LOAD, GETPC());
275 /* Load if page supports tags. */
276 if (mem) {
277 rtag = load_tag1(ptr, mem);
280 return address_with_allocation_tag(xt, rtag);
283 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
285 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
286 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
287 arm_env_mmu_index(env), ra);
288 g_assert_not_reached();
292 /* For use in a non-parallel context, store to the given nibble. */
293 void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
295 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
296 *mem = deposit32(*mem, ofs, 4, tag);
299 /* For use in a parallel context, atomically store to the given nibble. */
300 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
302 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
303 uint8_t old = qatomic_read(mem);
305 while (1) {
306 uint8_t new = deposit32(old, ofs, 4, tag);
307 uint8_t cmp = qatomic_cmpxchg(mem, old, new);
308 if (likely(cmp == old)) {
309 return;
311 old = cmp;
315 typedef void stg_store1(uint64_t, uint8_t *, int);
317 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
318 uintptr_t ra, stg_store1 store1)
320 int mmu_idx = arm_env_mmu_index(env);
321 uint8_t *mem;
323 check_tag_aligned(env, ptr, ra);
325 /* Trap if accessing an invalid page. */
326 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
327 MMU_DATA_STORE, ra);
329 /* Store if page supports tags. */
330 if (mem) {
331 store1(ptr, mem, allocation_tag_from_addr(xt));
335 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
337 do_stg(env, ptr, xt, GETPC(), store_tag1);
340 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
342 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
345 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
347 int mmu_idx = arm_env_mmu_index(env);
348 uintptr_t ra = GETPC();
350 check_tag_aligned(env, ptr, ra);
351 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
354 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
355 uintptr_t ra, stg_store1 store1)
357 int mmu_idx = arm_env_mmu_index(env);
358 int tag = allocation_tag_from_addr(xt);
359 uint8_t *mem1, *mem2;
361 check_tag_aligned(env, ptr, ra);
364 * Trap if accessing an invalid page(s).
365 * This takes priority over !allocation_tag_access_enabled.
367 if (ptr & TAG_GRANULE) {
368 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
369 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
370 TAG_GRANULE, MMU_DATA_STORE, ra);
371 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
372 MMU_DATA_STORE, TAG_GRANULE,
373 MMU_DATA_STORE, ra);
375 /* Store if page(s) support tags. */
376 if (mem1) {
377 store1(TAG_GRANULE, mem1, tag);
379 if (mem2) {
380 store1(0, mem2, tag);
382 } else {
383 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
384 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
385 2 * TAG_GRANULE, MMU_DATA_STORE, ra);
386 if (mem1) {
387 tag |= tag << 4;
388 qatomic_set(mem1, tag);
393 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
395 do_st2g(env, ptr, xt, GETPC(), store_tag1);
398 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
400 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
403 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
405 int mmu_idx = arm_env_mmu_index(env);
406 uintptr_t ra = GETPC();
407 int in_page = -(ptr | TARGET_PAGE_MASK);
409 check_tag_aligned(env, ptr, ra);
411 if (likely(in_page >= 2 * TAG_GRANULE)) {
412 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
413 } else {
414 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
415 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
419 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
421 int mmu_idx = arm_env_mmu_index(env);
422 uintptr_t ra = GETPC();
423 int gm_bs = env_archcpu(env)->gm_blocksize;
424 int gm_bs_bytes = 4 << gm_bs;
425 void *tag_mem;
426 uint64_t ret;
427 int shift;
429 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
431 /* Trap if accessing an invalid page. */
432 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
433 gm_bs_bytes, MMU_DATA_LOAD, ra);
435 /* The tag is squashed to zero if the page does not support tags. */
436 if (!tag_mem) {
437 return 0;
441 * The ordering of elements within the word corresponds to
442 * a little-endian operation. Computation of shift comes from
444 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>
445 * data<index*4+3:index*4> = tag
447 * Because of the alignment of ptr above, BS=6 has shift=0.
448 * All memory operations are aligned. Defer support for BS=2,
449 * requiring insertion or extraction of a nibble, until we
450 * support a cpu that requires it.
452 switch (gm_bs) {
453 case 3:
454 /* 32 bytes -> 2 tags -> 8 result bits */
455 ret = *(uint8_t *)tag_mem;
456 break;
457 case 4:
458 /* 64 bytes -> 4 tags -> 16 result bits */
459 ret = cpu_to_le16(*(uint16_t *)tag_mem);
460 break;
461 case 5:
462 /* 128 bytes -> 8 tags -> 32 result bits */
463 ret = cpu_to_le32(*(uint32_t *)tag_mem);
464 break;
465 case 6:
466 /* 256 bytes -> 16 tags -> 64 result bits */
467 return cpu_to_le64(*(uint64_t *)tag_mem);
468 default:
470 * CPU configured with unsupported/invalid gm blocksize.
471 * This is detected early in arm_cpu_realizefn.
473 g_assert_not_reached();
475 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
476 return ret << shift;
479 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
481 int mmu_idx = arm_env_mmu_index(env);
482 uintptr_t ra = GETPC();
483 int gm_bs = env_archcpu(env)->gm_blocksize;
484 int gm_bs_bytes = 4 << gm_bs;
485 void *tag_mem;
486 int shift;
488 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
490 /* Trap if accessing an invalid page. */
491 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
492 gm_bs_bytes, MMU_DATA_LOAD, ra);
495 * Tag store only happens if the page support tags,
496 * and if the OS has enabled access to the tags.
498 if (!tag_mem) {
499 return;
502 /* See LDGM for comments on BS and on shift. */
503 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
504 val >>= shift;
505 switch (gm_bs) {
506 case 3:
507 /* 32 bytes -> 2 tags -> 8 result bits */
508 *(uint8_t *)tag_mem = val;
509 break;
510 case 4:
511 /* 64 bytes -> 4 tags -> 16 result bits */
512 *(uint16_t *)tag_mem = cpu_to_le16(val);
513 break;
514 case 5:
515 /* 128 bytes -> 8 tags -> 32 result bits */
516 *(uint32_t *)tag_mem = cpu_to_le32(val);
517 break;
518 case 6:
519 /* 256 bytes -> 16 tags -> 64 result bits */
520 *(uint64_t *)tag_mem = cpu_to_le64(val);
521 break;
522 default:
523 /* cpu configured with unsupported gm blocksize. */
524 g_assert_not_reached();
528 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
530 uintptr_t ra = GETPC();
531 int mmu_idx = arm_env_mmu_index(env);
532 int log2_dcz_bytes, log2_tag_bytes;
533 intptr_t dcz_bytes, tag_bytes;
534 uint8_t *mem;
537 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
538 * i.e. 32 bytes, which is an unreasonably small dcz anyway,
539 * to make sure that we can access one complete tag byte here.
541 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
542 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
543 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
544 tag_bytes = (intptr_t)1 << log2_tag_bytes;
545 ptr &= -dcz_bytes;
547 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
548 MMU_DATA_STORE, ra);
549 if (mem) {
550 int tag_pair = (val & 0xf) * 0x11;
551 memset(mem, tag_pair, tag_bytes);
555 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
556 uint64_t dirty_ptr, uintptr_t ra)
558 int is_write, syn;
560 env->exception.vaddress = dirty_ptr;
562 is_write = FIELD_EX32(desc, MTEDESC, WRITE);
563 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
564 0x11);
565 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
566 g_assert_not_reached();
569 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
570 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
572 int select;
574 if (regime_has_2_ranges(arm_mmu_idx)) {
575 select = extract64(dirty_ptr, 55, 1);
576 } else {
577 select = 0;
579 env->cp15.tfsr_el[el] |= 1 << select;
580 #ifdef CONFIG_USER_ONLY
582 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
583 * which then sends a SIGSEGV when the thread is next scheduled.
584 * This cpu will return to the main loop at the end of the TB,
585 * which is rather sooner than "normal". But the alternative
586 * is waiting until the next syscall.
588 qemu_cpu_kick(env_cpu(env));
589 #endif
592 /* Record a tag check failure. */
593 void mte_check_fail(CPUARMState *env, uint32_t desc,
594 uint64_t dirty_ptr, uintptr_t ra)
596 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
597 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
598 int el, reg_el, tcf;
599 uint64_t sctlr;
601 reg_el = regime_el(env, arm_mmu_idx);
602 sctlr = env->cp15.sctlr_el[reg_el];
604 switch (arm_mmu_idx) {
605 case ARMMMUIdx_E10_0:
606 case ARMMMUIdx_E20_0:
607 el = 0;
608 tcf = extract64(sctlr, 38, 2);
609 break;
610 default:
611 el = reg_el;
612 tcf = extract64(sctlr, 40, 2);
615 switch (tcf) {
616 case 1:
617 /* Tag check fail causes a synchronous exception. */
618 mte_sync_check_fail(env, desc, dirty_ptr, ra);
619 break;
621 case 0:
623 * Tag check fail does not affect the PE.
624 * We eliminate this case by not setting MTE_ACTIVE
625 * in tb_flags, so that we never make this runtime call.
627 g_assert_not_reached();
629 case 2:
630 /* Tag check fail causes asynchronous flag set. */
631 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
632 break;
634 case 3:
636 * Tag check fail causes asynchronous flag set for stores, or
637 * a synchronous exception for loads.
639 if (FIELD_EX32(desc, MTEDESC, WRITE)) {
640 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
641 } else {
642 mte_sync_check_fail(env, desc, dirty_ptr, ra);
644 break;
649 * checkN:
650 * @tag: tag memory to test
651 * @odd: true to begin testing at tags at odd nibble
652 * @cmp: the tag to compare against
653 * @count: number of tags to test
655 * Return the number of successful tests.
656 * Thus a return value < @count indicates a failure.
658 * A note about sizes: count is expected to be small.
660 * The most common use will be LDP/STP of two integer registers,
661 * which means 16 bytes of memory touching at most 2 tags, but
662 * often the access is aligned and thus just 1 tag.
664 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
665 * touching at most 5 tags. SVE LDR/STR (vector) with the default
666 * vector length is also 64 bytes; the maximum architectural length
667 * is 256 bytes touching at most 9 tags.
669 * The loop below uses 7 logical operations and 1 memory operation
670 * per tag pair. An implementation that loads an aligned word and
671 * uses masking to ignore adjacent tags requires 18 logical operations
672 * and thus does not begin to pay off until 6 tags.
673 * Which, according to the survey above, is unlikely to be common.
675 static int checkN(uint8_t *mem, int odd, int cmp, int count)
677 int n = 0, diff;
679 /* Replicate the test tag and compare. */
680 cmp *= 0x11;
681 diff = *mem++ ^ cmp;
683 if (odd) {
684 goto start_odd;
687 while (1) {
688 /* Test even tag. */
689 if (unlikely((diff) & 0x0f)) {
690 break;
692 if (++n == count) {
693 break;
696 start_odd:
697 /* Test odd tag. */
698 if (unlikely((diff) & 0xf0)) {
699 break;
701 if (++n == count) {
702 break;
705 diff = *mem++ ^ cmp;
707 return n;
711 * checkNrev:
712 * @tag: tag memory to test
713 * @odd: true to begin testing at tags at odd nibble
714 * @cmp: the tag to compare against
715 * @count: number of tags to test
717 * Return the number of successful tests.
718 * Thus a return value < @count indicates a failure.
720 * This is like checkN, but it runs backwards, checking the
721 * tags starting with @tag and then the tags preceding it.
722 * This is needed by the backwards-memory-copying operations.
724 static int checkNrev(uint8_t *mem, int odd, int cmp, int count)
726 int n = 0, diff;
728 /* Replicate the test tag and compare. */
729 cmp *= 0x11;
730 diff = *mem-- ^ cmp;
732 if (!odd) {
733 goto start_even;
736 while (1) {
737 /* Test odd tag. */
738 if (unlikely((diff) & 0xf0)) {
739 break;
741 if (++n == count) {
742 break;
745 start_even:
746 /* Test even tag. */
747 if (unlikely((diff) & 0x0f)) {
748 break;
750 if (++n == count) {
751 break;
754 diff = *mem-- ^ cmp;
756 return n;
760 * mte_probe_int() - helper for mte_probe and mte_check
761 * @env: CPU environment
762 * @desc: MTEDESC descriptor
763 * @ptr: virtual address of the base of the access
764 * @fault: return virtual address of the first check failure
766 * Internal routine for both mte_probe and mte_check.
767 * Return zero on failure, filling in *fault.
768 * Return negative on trivial success for tbi disabled.
769 * Return positive on success with tbi enabled.
771 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
772 uintptr_t ra, uint64_t *fault)
774 int mmu_idx, ptr_tag, bit55;
775 uint64_t ptr_last, prev_page, next_page;
776 uint64_t tag_first, tag_last;
777 uint32_t sizem1, tag_count, n, c;
778 uint8_t *mem1, *mem2;
779 MMUAccessType type;
781 bit55 = extract64(ptr, 55, 1);
782 *fault = ptr;
784 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
785 if (unlikely(!tbi_check(desc, bit55))) {
786 return -1;
789 ptr_tag = allocation_tag_from_addr(ptr);
791 if (tcma_check(desc, bit55, ptr_tag)) {
792 return 1;
795 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
796 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
797 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
799 /* Find the addr of the end of the access */
800 ptr_last = ptr + sizem1;
802 /* Round the bounds to the tag granule, and compute the number of tags. */
803 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
804 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
805 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
807 /* Locate the page boundaries. */
808 prev_page = ptr & TARGET_PAGE_MASK;
809 next_page = prev_page + TARGET_PAGE_SIZE;
811 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
812 /* Memory access stays on one page. */
813 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
814 MMU_DATA_LOAD, ra);
815 if (!mem1) {
816 return 1;
818 /* Perform all of the comparisons. */
819 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
820 } else {
821 /* Memory access crosses to next page. */
822 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
823 MMU_DATA_LOAD, ra);
825 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
826 ptr_last - next_page + 1,
827 MMU_DATA_LOAD, ra);
830 * Perform all of the comparisons.
831 * Note the possible but unlikely case of the operation spanning
832 * two pages that do not both have tagging enabled.
834 n = c = (next_page - tag_first) / TAG_GRANULE;
835 if (mem1) {
836 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
838 if (n == c) {
839 if (!mem2) {
840 return 1;
842 n += checkN(mem2, 0, ptr_tag, tag_count - c);
846 if (likely(n == tag_count)) {
847 return 1;
851 * If we failed, we know which granule. For the first granule, the
852 * failure address is @ptr, the first byte accessed. Otherwise the
853 * failure address is the first byte of the nth granule.
855 if (n > 0) {
856 *fault = tag_first + n * TAG_GRANULE;
858 return 0;
861 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
863 uint64_t fault;
864 int ret = mte_probe_int(env, desc, ptr, ra, &fault);
866 if (unlikely(ret == 0)) {
867 mte_check_fail(env, desc, fault, ra);
868 } else if (ret < 0) {
869 return ptr;
871 return useronly_clean_ptr(ptr);
874 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
877 * R_XCHFJ: Alignment check not caused by memory type is priority 1,
878 * higher than any translation fault. When MTE is disabled, tcg
879 * performs the alignment check during the code generated for the
880 * memory access. With MTE enabled, we must check this here before
881 * raising any translation fault in allocation_tag_mem.
883 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
884 if (unlikely(align)) {
885 align = (1u << align) - 1;
886 if (unlikely(ptr & align)) {
887 int idx = FIELD_EX32(desc, MTEDESC, MIDX);
888 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
889 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
890 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
894 return mte_check(env, desc, ptr, GETPC());
898 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
899 * Returns false if the access is Checked and the check failed. This
900 * is only intended to probe the tag -- the validity of the page must
901 * be checked beforehand.
903 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
905 uint64_t fault;
906 int ret = mte_probe_int(env, desc, ptr, 0, &fault);
908 return ret != 0;
912 * Perform an MTE checked access for DC_ZVA.
914 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
916 uintptr_t ra = GETPC();
917 int log2_dcz_bytes, log2_tag_bytes;
918 int mmu_idx, bit55;
919 intptr_t dcz_bytes, tag_bytes, i;
920 void *mem;
921 uint64_t ptr_tag, mem_tag, align_ptr;
923 bit55 = extract64(ptr, 55, 1);
925 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
926 if (unlikely(!tbi_check(desc, bit55))) {
927 return ptr;
930 ptr_tag = allocation_tag_from_addr(ptr);
932 if (tcma_check(desc, bit55, ptr_tag)) {
933 goto done;
937 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
938 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
939 * sure that we can access one complete tag byte here.
941 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
942 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
943 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
944 tag_bytes = (intptr_t)1 << log2_tag_bytes;
945 align_ptr = ptr & -dcz_bytes;
948 * Trap if accessing an invalid page. DC_ZVA requires that we supply
949 * the original pointer for an invalid page. But watchpoints require
950 * that we probe the actual space. So do both.
952 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
953 (void) probe_write(env, ptr, 1, mmu_idx, ra);
954 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
955 dcz_bytes, MMU_DATA_LOAD, ra);
956 if (!mem) {
957 goto done;
961 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
962 * it is quite easy to perform all of the comparisons at once without
963 * any extra masking.
965 * The most common zva block size is 64; some of the thunderx cpus use
966 * a block size of 128. For user-only, aarch64_max_initfn will set the
967 * block size to 512. Fill out the other cases for future-proofing.
969 * In order to be able to find the first miscompare later, we want the
970 * tag bytes to be in little-endian order.
972 switch (log2_tag_bytes) {
973 case 0: /* zva_blocksize 32 */
974 mem_tag = *(uint8_t *)mem;
975 ptr_tag *= 0x11u;
976 break;
977 case 1: /* zva_blocksize 64 */
978 mem_tag = cpu_to_le16(*(uint16_t *)mem);
979 ptr_tag *= 0x1111u;
980 break;
981 case 2: /* zva_blocksize 128 */
982 mem_tag = cpu_to_le32(*(uint32_t *)mem);
983 ptr_tag *= 0x11111111u;
984 break;
985 case 3: /* zva_blocksize 256 */
986 mem_tag = cpu_to_le64(*(uint64_t *)mem);
987 ptr_tag *= 0x1111111111111111ull;
988 break;
990 default: /* zva_blocksize 512, 1024, 2048 */
991 ptr_tag *= 0x1111111111111111ull;
992 i = 0;
993 do {
994 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
995 if (unlikely(mem_tag != ptr_tag)) {
996 goto fail;
998 i += 8;
999 align_ptr += 16 * TAG_GRANULE;
1000 } while (i < tag_bytes);
1001 goto done;
1004 if (likely(mem_tag == ptr_tag)) {
1005 goto done;
1008 fail:
1009 /* Locate the first nibble that differs. */
1010 i = ctz64(mem_tag ^ ptr_tag) >> 4;
1011 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
1013 done:
1014 return useronly_clean_ptr(ptr);
1017 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1018 uint32_t desc)
1020 int mmu_idx, tag_count;
1021 uint64_t ptr_tag, tag_first, tag_last;
1022 void *mem;
1023 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1024 uint32_t n;
1026 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1027 /* True probe; this will never fault */
1028 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1029 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1030 size, MMU_DATA_LOAD, true, 0);
1031 if (!mem) {
1032 return size;
1036 * TODO: checkN() is not designed for checks of the size we expect
1037 * for FEAT_MOPS operations, so we should implement this differently.
1038 * Maybe we should do something like
1039 * if (region start and size are aligned nicely) {
1040 * do direct loads of 64 tag bits at a time;
1041 * } else {
1042 * call checkN()
1045 /* Round the bounds to the tag granule, and compute the number of tags. */
1046 ptr_tag = allocation_tag_from_addr(ptr);
1047 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1048 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE);
1049 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1050 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1051 if (likely(n == tag_count)) {
1052 return size;
1056 * Failure; for the first granule, it's at @ptr. Otherwise
1057 * it's at the first byte of the nth granule. Calculate how
1058 * many bytes we can access without hitting that failure.
1060 if (n == 0) {
1061 return 0;
1062 } else {
1063 return n * TAG_GRANULE - (ptr - tag_first);
1067 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1068 uint32_t desc)
1070 int mmu_idx, tag_count;
1071 uint64_t ptr_tag, tag_first, tag_last;
1072 void *mem;
1073 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1074 uint32_t n;
1076 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1078 * True probe; this will never fault. Note that our caller passes
1079 * us a pointer to the end of the region, but allocation_tag_mem_probe()
1080 * wants a pointer to the start. Because we know we don't span a page
1081 * boundary and that allocation_tag_mem_probe() doesn't otherwise care
1082 * about the size, pass in a size of 1 byte. This is simpler than
1083 * adjusting the ptr to point to the start of the region and then having
1084 * to adjust the returned 'mem' to get the end of the tag memory.
1086 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1087 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1088 1, MMU_DATA_LOAD, true, 0);
1089 if (!mem) {
1090 return size;
1094 * TODO: checkNrev() is not designed for checks of the size we expect
1095 * for FEAT_MOPS operations, so we should implement this differently.
1096 * Maybe we should do something like
1097 * if (region start and size are aligned nicely) {
1098 * do direct loads of 64 tag bits at a time;
1099 * } else {
1100 * call checkN()
1103 /* Round the bounds to the tag granule, and compute the number of tags. */
1104 ptr_tag = allocation_tag_from_addr(ptr);
1105 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE);
1106 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1107 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1108 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1109 if (likely(n == tag_count)) {
1110 return size;
1114 * Failure; for the first granule, it's at @ptr. Otherwise
1115 * it's at the last byte of the nth granule. Calculate how
1116 * many bytes we can access without hitting that failure.
1118 if (n == 0) {
1119 return 0;
1120 } else {
1121 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last);
1125 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size,
1126 uint32_t desc)
1128 int mmu_idx, tag_count;
1129 uint64_t ptr_tag;
1130 void *mem;
1132 if (!desc) {
1133 /* Tags not actually enabled */
1134 return;
1137 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1138 /* True probe: this will never fault */
1139 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size,
1140 MMU_DATA_STORE, true, 0);
1141 if (!mem) {
1142 return;
1146 * We know that ptr and size are both TAG_GRANULE aligned; store
1147 * the tag from the pointer value into the tag memory.
1149 ptr_tag = allocation_tag_from_addr(ptr);
1150 tag_count = size / TAG_GRANULE;
1151 if (ptr & TAG_GRANULE) {
1152 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */
1153 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag);
1154 mem++;
1155 tag_count--;
1157 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2);
1158 if (tag_count & 1) {
1159 /* Final trailing unaligned nibble */
1160 mem += tag_count / 2;
1161 store_tag1_parallel(0, mem, ptr_tag);