4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
29 #define SIGNBIT (uint32_t)0x80000000
30 #define SIGNBIT64 ((uint64_t)1 << 63)
32 int exception_target_el(CPUARMState
*env
)
34 int target_el
= MAX(1, arm_current_el(env
));
37 * No such thing as secure EL1 if EL3 is aarch32,
38 * so update the target EL to EL3 in this case.
40 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
47 void raise_exception(CPUARMState
*env
, uint32_t excp
,
48 uint32_t syndrome
, uint32_t target_el
)
50 CPUState
*cs
= env_cpu(env
);
52 if (target_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
54 * Redirect NS EL1 exceptions to NS EL2. These are reported with
55 * their original syndrome register value, with the exception of
56 * SIMD/FP access traps, which are reported as uncategorized
57 * (see DDI0478C.a D1.10.4)
60 if (syn_get_ec(syndrome
) == EC_ADVSIMDFPACCESSTRAP
) {
61 syndrome
= syn_uncategorized();
65 assert(!excp_is_internal(excp
));
66 cs
->exception_index
= excp
;
67 env
->exception
.syndrome
= syndrome
;
68 env
->exception
.target_el
= target_el
;
72 void raise_exception_ra(CPUARMState
*env
, uint32_t excp
, uint32_t syndrome
,
73 uint32_t target_el
, uintptr_t ra
)
75 CPUState
*cs
= env_cpu(env
);
78 * restore_state_to_opc() will set env->exception.syndrome, so
79 * we must restore CPU state here before setting the syndrome
80 * the caller passed us, and cannot use cpu_loop_exit_restore().
82 cpu_restore_state(cs
, ra
);
83 raise_exception(env
, excp
, syndrome
, target_el
);
86 uint64_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t desc
,
87 uint64_t ireg
, uint64_t def
)
89 uint64_t tmp
, val
= 0;
90 uint32_t maxindex
= ((desc
& 3) + 1) * 8;
91 uint32_t base_reg
= desc
>> 2;
92 uint32_t shift
, index
, reg
;
94 for (shift
= 0; shift
< 64; shift
+= 8) {
95 index
= (ireg
>> shift
) & 0xff;
96 if (index
< maxindex
) {
97 reg
= base_reg
+ (index
>> 3);
98 tmp
= *aa32_vfp_dreg(env
, reg
);
99 tmp
= ((tmp
>> ((index
& 7) << 3)) & 0xff) << shift
;
101 tmp
= def
& (0xffull
<< shift
);
108 void HELPER(v8m_stackcheck
)(CPUARMState
*env
, uint32_t newvalue
)
111 * Perform the v8M stack limit check for SP updates from translated code,
112 * raising an exception if the limit is breached.
114 if (newvalue
< v7m_sp_limit(env
)) {
116 * Stack limit exceptions are a rare case, so rather than syncing
117 * PC/condbits before the call, we use raise_exception_ra() so
118 * that cpu_restore_state() will sort them out.
120 raise_exception_ra(env
, EXCP_STKOF
, 0, 1, GETPC());
124 /* Sign/zero extend */
125 uint32_t HELPER(sxtb16
)(uint32_t x
)
128 res
= (uint16_t)(int8_t)x
;
129 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
133 static void handle_possible_div0_trap(CPUARMState
*env
, uintptr_t ra
)
136 * Take a division-by-zero exception if necessary; otherwise return
137 * to get the usual non-trapping division behaviour (result of 0)
139 if (arm_feature(env
, ARM_FEATURE_M
)
140 && (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_DIV_0_TRP_MASK
)) {
141 raise_exception_ra(env
, EXCP_DIVBYZERO
, 0, 1, ra
);
145 uint32_t HELPER(uxtb16
)(uint32_t x
)
148 res
= (uint16_t)(uint8_t)x
;
149 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
153 int32_t HELPER(sdiv
)(CPUARMState
*env
, int32_t num
, int32_t den
)
156 handle_possible_div0_trap(env
, GETPC());
159 if (num
== INT_MIN
&& den
== -1) {
165 uint32_t HELPER(udiv
)(CPUARMState
*env
, uint32_t num
, uint32_t den
)
168 handle_possible_div0_trap(env
, GETPC());
174 uint32_t HELPER(rbit
)(uint32_t x
)
179 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
181 uint32_t res
= a
+ b
;
182 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
187 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
189 uint32_t res
= a
+ b
;
190 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
192 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
197 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
199 uint32_t res
= a
- b
;
200 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
202 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
207 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
209 uint32_t res
= a
+ b
;
217 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
219 uint32_t res
= a
- b
;
227 /* Signed saturation. */
228 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
234 mask
= (1u << shift
) - 1;
238 } else if (top
< -1) {
245 /* Unsigned saturation. */
246 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
250 max
= (1u << shift
) - 1;
254 } else if (val
> max
) {
261 /* Signed saturate. */
262 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
264 return do_ssat(env
, x
, shift
);
267 /* Dual halfword signed saturate. */
268 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
272 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
273 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
277 /* Unsigned saturate. */
278 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
280 return do_usat(env
, x
, shift
);
283 /* Dual halfword unsigned saturate. */
284 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
288 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
289 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
293 void HELPER(setend
)(CPUARMState
*env
)
295 env
->uncached_cpsr
^= CPSR_E
;
296 arm_rebuild_hflags(env
);
299 void HELPER(check_bxj_trap
)(CPUARMState
*env
, uint32_t rm
)
302 * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
303 * check if HSTR.TJDBX means we need to trap to EL2.
305 if (env
->cp15
.hstr_el2
& HSTR_TJDBX
) {
307 * We know the condition code check passed, so take the IMPDEF
308 * choice to always report CV=1 COND 0xe
310 uint32_t syn
= syn_bxjtrap(1, 0xe, rm
);
311 raise_exception_ra(env
, EXCP_HYP_TRAP
, syn
, 2, GETPC());
315 #ifndef CONFIG_USER_ONLY
316 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
317 * The function returns the target EL (1-3) if the instruction is to be trapped;
318 * otherwise it returns 0 indicating it is not trapped.
320 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
322 int cur_el
= arm_current_el(env
);
325 if (arm_feature(env
, ARM_FEATURE_M
)) {
326 /* M profile cores can never trap WFI/WFE. */
330 /* If we are currently in EL0 then we need to check if SCTLR is set up for
331 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
333 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
336 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
337 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
338 /* Secure EL0 and Secure PL1 is at EL3 */
344 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
349 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
350 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
351 * bits will be zero indicating no trap.
354 mask
= is_wfe
? HCR_TWE
: HCR_TWI
;
355 if (arm_hcr_el2_eff(env
) & mask
) {
360 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
362 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
363 if (env
->cp15
.scr_el3
& mask
) {
372 void HELPER(wfi
)(CPUARMState
*env
, uint32_t insn_len
)
374 #ifdef CONFIG_USER_ONLY
376 * WFI in the user-mode emulator is technically permitted but not
377 * something any real-world code would do. AArch64 Linux kernels
378 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
379 * AArch32 kernels don't trap it so it will delay a bit.
380 * For QEMU, make it NOP here, because trying to raise EXCP_HLT
381 * would trigger an abort.
385 CPUState
*cs
= env_cpu(env
);
386 int target_el
= check_wfx_trap(env
, false);
388 if (cpu_has_work(cs
)) {
389 /* Don't bother to go into our "low power state" if
390 * we would just wake up immediately.
399 env
->regs
[15] -= insn_len
;
402 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0, insn_len
== 2),
406 cs
->exception_index
= EXCP_HLT
;
412 void HELPER(wfit
)(CPUARMState
*env
, uint64_t timeout
)
414 #ifdef CONFIG_USER_ONLY
416 * WFI in the user-mode emulator is technically permitted but not
417 * something any real-world code would do. AArch64 Linux kernels
418 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
419 * AArch32 kernels don't trap it so it will delay a bit.
420 * For QEMU, make it NOP here, because trying to raise EXCP_HLT
421 * would trigger an abort.
425 ARMCPU
*cpu
= env_archcpu(env
);
426 CPUState
*cs
= env_cpu(env
);
427 int target_el
= check_wfx_trap(env
, false);
428 /* The WFIT should time out when CNTVCT_EL0 >= the specified value. */
429 uint64_t cntval
= gt_get_countervalue(env
);
430 uint64_t offset
= gt_virt_cnt_offset(env
);
431 uint64_t cntvct
= cntval
- offset
;
434 if (cpu_has_work(cs
) || cntvct
>= timeout
) {
436 * Don't bother to go into our "low power state" if
437 * we would just wake up immediately.
444 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0, false),
448 if (uadd64_overflow(timeout
, offset
, &nexttick
)) {
449 nexttick
= UINT64_MAX
;
451 if (nexttick
> INT64_MAX
/ gt_cntfrq_period_ns(cpu
)) {
453 * If the timeout is too long for the signed 64-bit range
454 * of a QEMUTimer, let it expire early.
456 timer_mod_ns(cpu
->wfxt_timer
, INT64_MAX
);
458 timer_mod(cpu
->wfxt_timer
, nexttick
);
460 cs
->exception_index
= EXCP_HLT
;
466 void HELPER(wfe
)(CPUARMState
*env
)
468 /* This is a hint instruction that is semantically different
469 * from YIELD even though we currently implement it identically.
470 * Don't actually halt the CPU, just yield back to top
471 * level loop. This is not going into a "low power state"
472 * (ie halting until some event occurs), so we never take
473 * a configurable trap to a different exception level.
478 void HELPER(yield
)(CPUARMState
*env
)
480 CPUState
*cs
= env_cpu(env
);
482 /* This is a non-trappable hint instruction that generally indicates
483 * that the guest is currently busy-looping. Yield control back to the
484 * top level loop so that a more deserving VCPU has a chance to run.
486 cs
->exception_index
= EXCP_YIELD
;
490 /* Raise an internal-to-QEMU exception. This is limited to only
491 * those EXCP values which are special cases for QEMU to interrupt
492 * execution and not to be used for exceptions which are passed to
493 * the guest (those must all have syndrome information and thus should
494 * use exception_with_syndrome*).
496 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
498 CPUState
*cs
= env_cpu(env
);
500 assert(excp_is_internal(excp
));
501 cs
->exception_index
= excp
;
505 /* Raise an exception with the specified syndrome register value */
506 void HELPER(exception_with_syndrome_el
)(CPUARMState
*env
, uint32_t excp
,
507 uint32_t syndrome
, uint32_t target_el
)
509 raise_exception(env
, excp
, syndrome
, target_el
);
513 * Raise an exception with the specified syndrome register value
514 * to the default target el.
516 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
519 raise_exception(env
, excp
, syndrome
, exception_target_el(env
));
522 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
524 return cpsr_read(env
) & ~CPSR_EXEC
;
527 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
529 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
530 /* TODO: Not all cpsr bits are relevant to hflags. */
531 arm_rebuild_hflags(env
);
534 /* Write the CPSR for a 32-bit exception return */
535 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
540 arm_call_pre_el_change_hook(env_archcpu(env
));
543 mask
= aarch32_cpsr_valid_mask(env
->features
, &env_archcpu(env
)->isar
);
544 cpsr_write(env
, val
, mask
, CPSRWriteExceptionReturn
);
546 /* Generated code has already stored the new PC value, but
547 * without masking out its low bits, because which bits need
548 * masking depends on whether we're returning to Thumb or ARM
549 * state. Do the masking now.
551 env
->regs
[15] &= (env
->thumb
? ~1 : ~3);
552 arm_rebuild_hflags(env
);
555 arm_call_el_change_hook(env_archcpu(env
));
559 /* Access to user mode registers from privileged modes. */
560 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
565 val
= env
->banked_r13
[BANK_USRSYS
];
566 } else if (regno
== 14) {
567 val
= env
->banked_r14
[BANK_USRSYS
];
568 } else if (regno
>= 8
569 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
570 val
= env
->usr_regs
[regno
- 8];
572 val
= env
->regs
[regno
];
577 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
580 env
->banked_r13
[BANK_USRSYS
] = val
;
581 } else if (regno
== 14) {
582 env
->banked_r14
[BANK_USRSYS
] = val
;
583 } else if (regno
>= 8
584 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
585 env
->usr_regs
[regno
- 8] = val
;
587 env
->regs
[regno
] = val
;
591 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
593 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
596 env
->banked_r13
[bank_number(mode
)] = val
;
600 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
602 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
603 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
604 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
606 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
607 exception_target_el(env
));
610 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
611 return env
->regs
[13];
613 return env
->banked_r13
[bank_number(mode
)];
617 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
620 /* Raise an exception if the requested access is one of the UNPREDICTABLE
621 * cases; otherwise return. This broadly corresponds to the pseudocode
622 * BankedRegisterAccessValid() and SPSRAccessValid(),
623 * except that we have already handled some cases at translate time.
625 int curmode
= env
->uncached_cpsr
& CPSR_M
;
627 if (tgtmode
== ARM_CPU_MODE_HYP
) {
629 * Handle Hyp target regs first because some are special cases
630 * which don't want the usual "not accessible from tgtmode" check.
633 case 16 ... 17: /* ELR_Hyp, SPSR_Hyp */
634 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
639 if (curmode
!= ARM_CPU_MODE_MON
) {
644 g_assert_not_reached();
649 if (curmode
== tgtmode
) {
653 if (tgtmode
== ARM_CPU_MODE_USR
) {
656 if (curmode
!= ARM_CPU_MODE_FIQ
) {
661 if (curmode
== ARM_CPU_MODE_SYS
) {
666 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
678 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
679 exception_target_el(env
));
682 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
685 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
689 if (tgtmode
== (env
->uncached_cpsr
& CPSR_M
)) {
690 /* Only happens for SPSR_Hyp access in Hyp mode */
693 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
696 case 17: /* ELR_Hyp */
697 env
->elr_el
[2] = value
;
700 env
->banked_r13
[bank_number(tgtmode
)] = value
;
703 env
->banked_r14
[r14_bank_number(tgtmode
)] = value
;
707 case ARM_CPU_MODE_USR
:
708 env
->usr_regs
[regno
- 8] = value
;
710 case ARM_CPU_MODE_FIQ
:
711 env
->fiq_regs
[regno
- 8] = value
;
714 g_assert_not_reached();
718 g_assert_not_reached();
722 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
724 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
728 if (tgtmode
== (env
->uncached_cpsr
& CPSR_M
)) {
729 /* Only happens for SPSR_Hyp access in Hyp mode */
732 return env
->banked_spsr
[bank_number(tgtmode
)];
734 case 17: /* ELR_Hyp */
735 return env
->elr_el
[2];
737 return env
->banked_r13
[bank_number(tgtmode
)];
739 return env
->banked_r14
[r14_bank_number(tgtmode
)];
742 case ARM_CPU_MODE_USR
:
743 return env
->usr_regs
[regno
- 8];
744 case ARM_CPU_MODE_FIQ
:
745 return env
->fiq_regs
[regno
- 8];
747 g_assert_not_reached();
750 g_assert_not_reached();
754 const void *HELPER(access_check_cp_reg
)(CPUARMState
*env
, uint32_t key
,
755 uint32_t syndrome
, uint32_t isread
)
757 ARMCPU
*cpu
= env_archcpu(env
);
758 const ARMCPRegInfo
*ri
= get_arm_cp_reginfo(cpu
->cp_regs
, key
);
759 CPAccessResult res
= CP_ACCESS_OK
;
764 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
765 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
766 res
= CP_ACCESS_TRAP
;
771 res
= ri
->accessfn(env
, ri
, isread
);
775 * If the access function indicates a trap from EL0 to EL1 then
776 * that always takes priority over the HSTR_EL2 trap. (If it indicates
777 * a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates
778 * a trap to EL2, then the syndrome is the same either way so we don't
779 * care whether technically the architecture says that HSTR_EL2 trap or
780 * the other trap takes priority. So we take the "check HSTR_EL2" path
781 * for all of those cases.)
783 if (res
!= CP_ACCESS_OK
&& ((res
& CP_ACCESS_EL_MASK
) == 0) &&
784 arm_current_el(env
) == 0) {
789 * HSTR_EL2 traps from EL1 are checked earlier, in generated code;
790 * we only need to check here for traps from EL0.
792 if (!is_a64(env
) && arm_current_el(env
) == 0 && ri
->cp
== 15 &&
793 arm_is_el2_enabled(env
) &&
794 (arm_hcr_el2_eff(env
) & (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
795 uint32_t mask
= 1 << ri
->crn
;
797 if (ri
->type
& ARM_CP_64BIT
) {
801 /* T4 and T14 are RES0 */
802 mask
&= ~((1 << 4) | (1 << 14));
804 if (env
->cp15
.hstr_el2
& mask
) {
805 res
= CP_ACCESS_TRAP_EL2
;
811 * Fine-grained traps also are lower priority than undef-to-EL1,
812 * higher priority than trap-to-EL3, and we don't care about priority
813 * order with other EL2 traps because the syndrome value is the same.
815 if (arm_fgt_active(env
, arm_current_el(env
))) {
816 uint64_t trapword
= 0;
817 unsigned int idx
= FIELD_EX32(ri
->fgt
, FGT
, IDX
);
818 unsigned int bitpos
= FIELD_EX32(ri
->fgt
, FGT
, BITPOS
);
819 bool rev
= FIELD_EX32(ri
->fgt
, FGT
, REV
);
822 if (ri
->fgt
& FGT_EXEC
) {
823 assert(idx
< ARRAY_SIZE(env
->cp15
.fgt_exec
));
824 trapword
= env
->cp15
.fgt_exec
[idx
];
825 } else if (isread
&& (ri
->fgt
& FGT_R
)) {
826 assert(idx
< ARRAY_SIZE(env
->cp15
.fgt_read
));
827 trapword
= env
->cp15
.fgt_read
[idx
];
828 } else if (!isread
&& (ri
->fgt
& FGT_W
)) {
829 assert(idx
< ARRAY_SIZE(env
->cp15
.fgt_write
));
830 trapword
= env
->cp15
.fgt_write
[idx
];
833 trapbit
= extract64(trapword
, bitpos
, 1);
834 if (trapbit
!= rev
) {
835 res
= CP_ACCESS_TRAP_EL2
;
840 if (likely(res
== CP_ACCESS_OK
)) {
845 switch (res
& ~CP_ACCESS_EL_MASK
) {
848 case CP_ACCESS_TRAP_UNCATEGORIZED
:
849 /* Only CP_ACCESS_TRAP traps are direct to a specified EL */
850 assert((res
& CP_ACCESS_EL_MASK
) == 0);
851 if (cpu_isar_feature(aa64_ids
, cpu
) && isread
&&
852 arm_cpreg_in_idspace(ri
)) {
854 * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
855 * not EC_UNCATEGORIZED
859 syndrome
= syn_uncategorized();
862 g_assert_not_reached();
865 target_el
= res
& CP_ACCESS_EL_MASK
;
868 target_el
= exception_target_el(env
);
871 assert(arm_current_el(env
) != 3);
872 assert(arm_is_el2_enabled(env
));
875 assert(arm_feature(env
, ARM_FEATURE_EL3
));
878 /* No "direct" traps to EL1 */
879 g_assert_not_reached();
882 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
885 const void *HELPER(lookup_cp_reg
)(CPUARMState
*env
, uint32_t key
)
887 ARMCPU
*cpu
= env_archcpu(env
);
888 const ARMCPRegInfo
*ri
= get_arm_cp_reginfo(cpu
->cp_regs
, key
);
895 * Test for HCR_EL2.TIDCP at EL1.
896 * Since implementation defined registers are rare, and within QEMU
897 * most of them are no-op, do not waste HFLAGS space for this and
898 * always use a helper.
900 void HELPER(tidcp_el1
)(CPUARMState
*env
, uint32_t syndrome
)
902 if (arm_hcr_el2_eff(env
) & HCR_TIDCP
) {
903 raise_exception_ra(env
, EXCP_UDEF
, syndrome
, 2, GETPC());
908 * Similarly, for FEAT_TIDCP1 at EL0.
909 * We have already checked for the presence of the feature.
911 void HELPER(tidcp_el0
)(CPUARMState
*env
, uint32_t syndrome
)
913 /* See arm_sctlr(), but we also need the sctlr el. */
914 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, 0);
915 int target_el
= mmu_idx
== ARMMMUIdx_E20_0
? 2 : 1;
918 * The bit is not valid unless the target el is aa64, but since the
919 * bit test is simpler perform that first and check validity after.
921 if ((env
->cp15
.sctlr_el
[target_el
] & SCTLR_TIDCP
)
922 && arm_el_is_aa64(env
, target_el
)) {
923 raise_exception_ra(env
, EXCP_UDEF
, syndrome
, target_el
, GETPC());
927 void HELPER(set_cp_reg
)(CPUARMState
*env
, const void *rip
, uint32_t value
)
929 const ARMCPRegInfo
*ri
= rip
;
931 if (ri
->type
& ARM_CP_IO
) {
933 ri
->writefn(env
, ri
, value
);
936 ri
->writefn(env
, ri
, value
);
940 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, const void *rip
)
942 const ARMCPRegInfo
*ri
= rip
;
945 if (ri
->type
& ARM_CP_IO
) {
947 res
= ri
->readfn(env
, ri
);
950 res
= ri
->readfn(env
, ri
);
956 void HELPER(set_cp_reg64
)(CPUARMState
*env
, const void *rip
, uint64_t value
)
958 const ARMCPRegInfo
*ri
= rip
;
960 if (ri
->type
& ARM_CP_IO
) {
962 ri
->writefn(env
, ri
, value
);
965 ri
->writefn(env
, ri
, value
);
969 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, const void *rip
)
971 const ARMCPRegInfo
*ri
= rip
;
974 if (ri
->type
& ARM_CP_IO
) {
976 res
= ri
->readfn(env
, ri
);
979 res
= ri
->readfn(env
, ri
);
985 void HELPER(pre_hvc
)(CPUARMState
*env
)
987 ARMCPU
*cpu
= env_archcpu(env
);
988 int cur_el
= arm_current_el(env
);
989 /* FIXME: Use actual secure state. */
993 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
994 /* If PSCI is enabled and this looks like a valid PSCI call then
995 * that overrides the architecturally mandated HVC behaviour.
1000 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1001 /* If EL2 doesn't exist, HVC always UNDEFs */
1003 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1004 /* EL3.HCE has priority over EL2.HCD. */
1005 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
1007 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
1010 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
1011 * For ARMv8/AArch64, HVC is allowed in EL3.
1012 * Note that we've already trapped HVC from EL0 at translation
1015 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
1020 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
1021 exception_target_el(env
));
1025 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
1027 ARMCPU
*cpu
= env_archcpu(env
);
1028 int cur_el
= arm_current_el(env
);
1029 bool secure
= arm_is_secure(env
);
1030 bool smd_flag
= env
->cp15
.scr_el3
& SCR_SMD
;
1033 * SMC behaviour is summarized in the following table.
1034 * This helper handles the "Trap to EL2" and "Undef insn" cases.
1035 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
1038 * -> ARM_FEATURE_EL3 and !SMD
1039 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
1041 * Conduit SMC, valid call Trap to EL2 PSCI Call
1042 * Conduit SMC, inval call Trap to EL2 Trap to EL3
1043 * Conduit not SMC Trap to EL2 Trap to EL3
1046 * -> ARM_FEATURE_EL3 and SMD
1047 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
1049 * Conduit SMC, valid call Trap to EL2 PSCI Call
1050 * Conduit SMC, inval call Trap to EL2 Undef insn
1051 * Conduit not SMC Trap to EL2 Undef insn
1054 * -> !ARM_FEATURE_EL3
1055 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
1057 * Conduit SMC, valid call Trap to EL2 PSCI Call
1058 * Conduit SMC, inval call Trap to EL2 Undef insn
1059 * Conduit not SMC Undef or trap[1] Undef insn
1062 * - if HCR_EL2.NV == 1 we must trap to EL2
1063 * - if HCR_EL2.NV == 0 then newer architecture revisions permit
1064 * AArch64 (but not AArch32) to trap to EL2 as an IMPDEF choice
1065 * - otherwise we must UNDEF
1066 * We take the IMPDEF choice to always UNDEF if HCR_EL2.NV == 0.
1069 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
1070 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
1071 * extensions, SMD only applies to NS state.
1072 * On ARMv7 without the Virtualization extensions, the SMD bit
1073 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
1074 * so we need not special case this here.
1076 bool smd
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd_flag
1077 : smd_flag
&& !secure
;
1079 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
1080 !(arm_hcr_el2_eff(env
) & HCR_NV
) &&
1081 cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
1083 * If we have no EL3 then traditionally SMC always UNDEFs and can't be
1084 * trapped to EL2. For nested virtualization, SMC can be trapped to
1085 * the outer hypervisor. PSCI-via-SMC is a sort of ersatz EL3
1086 * firmware within QEMU, and we want an EL2 guest to be able
1087 * to forbid its EL1 from making PSCI calls into QEMU's
1088 * "firmware" via HCR.TSC, so for these purposes treat
1089 * PSCI-via-SMC as implying an EL3.
1090 * This handles the very last line of the previous table.
1092 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
1093 exception_target_el(env
));
1096 if (cur_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TSC
)) {
1097 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
1098 * We also want an EL2 guest to be able to forbid its EL1 from
1099 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
1100 * This handles all the "Trap to EL2" cases of the previous table.
1102 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
1105 /* Catch the two remaining "Undef insn" cases of the previous table:
1106 * - PSCI conduit is SMC but we don't have a valid PCSI call,
1107 * - We don't have EL3 or SMD is set.
1109 if (!arm_is_psci_call(cpu
, EXCP_SMC
) &&
1110 (smd
|| !arm_feature(env
, ARM_FEATURE_EL3
))) {
1111 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
1112 exception_target_el(env
));
1116 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1117 The only way to do that in TCG is a conditional branch, which clobbers
1118 all our temporaries. For now implement these as helper functions. */
1120 /* Similarly for variable shift instructions. */
1122 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1124 int shift
= i
& 0xff;
1131 } else if (shift
!= 0) {
1132 env
->CF
= (x
>> (32 - shift
)) & 1;
1138 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1140 int shift
= i
& 0xff;
1143 env
->CF
= (x
>> 31) & 1;
1147 } else if (shift
!= 0) {
1148 env
->CF
= (x
>> (shift
- 1)) & 1;
1154 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1156 int shift
= i
& 0xff;
1158 env
->CF
= (x
>> 31) & 1;
1159 return (int32_t)x
>> 31;
1160 } else if (shift
!= 0) {
1161 env
->CF
= (x
>> (shift
- 1)) & 1;
1162 return (int32_t)x
>> shift
;
1167 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1171 shift
= shift1
& 0x1f;
1174 env
->CF
= (x
>> 31) & 1;
1177 env
->CF
= (x
>> (shift
- 1)) & 1;
1178 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));
1182 void HELPER(probe_access
)(CPUARMState
*env
, target_ulong ptr
,
1183 uint32_t access_type
, uint32_t mmu_idx
,
1186 uint32_t in_page
= -((uint32_t)ptr
| TARGET_PAGE_SIZE
);
1187 uintptr_t ra
= GETPC();
1189 if (likely(size
<= in_page
)) {
1190 probe_access(env
, ptr
, size
, access_type
, mmu_idx
, ra
);
1192 probe_access(env
, ptr
, in_page
, access_type
, mmu_idx
, ra
);
1193 probe_access(env
, ptr
+ in_page
, size
- in_page
,
1194 access_type
, mmu_idx
, ra
);
1199 * This function corresponds to AArch64.vESBOperation().
1200 * Note that the AArch32 version is not functionally different.
1202 void HELPER(vesb
)(CPUARMState
*env
)
1205 * The EL2Enabled() check is done inside arm_hcr_el2_eff,
1206 * and will return HCR_EL2.VSE == 0, so nothing happens.
1208 uint64_t hcr
= arm_hcr_el2_eff(env
);
1209 bool enabled
= !(hcr
& HCR_TGE
) && (hcr
& HCR_AMO
);
1210 bool pending
= enabled
&& (hcr
& HCR_VSE
);
1211 bool masked
= (env
->daif
& PSTATE_A
);
1213 /* If VSE pending and masked, defer the exception. */
1214 if (pending
&& masked
) {
1217 if (arm_el_is_aa64(env
, 1)) {
1218 /* Copy across IDS and ISS from VSESR. */
1219 syndrome
= env
->cp15
.vsesr_el2
& 0x1ffffff;
1221 ARMMMUFaultInfo fi
= { .type
= ARMFault_AsyncExternal
};
1223 if (extended_addresses_enabled(env
)) {
1224 syndrome
= arm_fi_to_lfsc(&fi
);
1226 syndrome
= arm_fi_to_sfsc(&fi
);
1228 /* Copy across AET and ExT from VSESR. */
1229 syndrome
|= env
->cp15
.vsesr_el2
& 0xd000;
1232 /* Set VDISR_EL2.A along with the syndrome. */
1233 env
->cp15
.vdisr_el2
= syndrome
| (1u << 31);
1235 /* Clear pending virtual SError */
1236 env
->cp15
.hcr_el2
&= ~HCR_VSE
;
1237 cpu_reset_interrupt(env_cpu(env
), CPU_INTERRUPT_VSERR
);