Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / tcg / translate-mve.c
blobb1a8d6a65c0476e67c3ba7f4c4be570b0f161d28
1 /*
2 * ARM translation: M-profile MVE instructions
4 * Copyright (c) 2021 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "translate.h"
22 #include "translate-a32.h"
24 static inline int vidup_imm(DisasContext *s, int x)
26 return 1 << x;
29 /* Include the generated decoder */
30 #include "decode-mve.c.inc"
32 typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
33 typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
34 typedef void MVEGenLdStIlFn(TCGv_ptr, TCGv_i32, TCGv_i32);
35 typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
36 typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr);
37 typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
38 typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
39 typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64);
40 typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32);
41 typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64);
42 typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32);
43 typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
44 typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
45 typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
46 typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
47 typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
48 typedef void MVEGenVCVTRmodeFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
50 /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
51 static inline long mve_qreg_offset(unsigned reg)
53 return offsetof(CPUARMState, vfp.zregs[reg].d[0]);
56 static TCGv_ptr mve_qreg_ptr(unsigned reg)
58 TCGv_ptr ret = tcg_temp_new_ptr();
59 tcg_gen_addi_ptr(ret, tcg_env, mve_qreg_offset(reg));
60 return ret;
63 static bool mve_no_predication(DisasContext *s)
66 * Return true if we are executing the entire MVE instruction
67 * with no predication or partial-execution, and so we can safely
68 * use an inline TCG vector implementation.
70 return s->eci == 0 && s->mve_no_pred;
73 static bool mve_check_qreg_bank(DisasContext *s, int qmask)
76 * Check whether Qregs are in range. For v8.1M only Q0..Q7
77 * are supported, see VFPSmallRegisterBank().
79 return qmask < 8;
82 bool mve_eci_check(DisasContext *s)
85 * This is a beatwise insn: check that ECI is valid (not a
86 * reserved value) and note that we are handling it.
87 * Return true if OK, false if we generated an exception.
89 s->eci_handled = true;
90 switch (s->eci) {
91 case ECI_NONE:
92 case ECI_A0:
93 case ECI_A0A1:
94 case ECI_A0A1A2:
95 case ECI_A0A1A2B0:
96 return true;
97 default:
98 /* Reserved value: INVSTATE UsageFault */
99 gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized());
100 return false;
104 void mve_update_eci(DisasContext *s)
107 * The helper function will always update the CPUState field,
108 * so we only need to update the DisasContext field.
110 if (s->eci) {
111 s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE;
115 void mve_update_and_store_eci(DisasContext *s)
118 * For insns which don't call a helper function that will call
119 * mve_advance_vpt(), this version updates s->eci and also stores
120 * it out to the CPUState field.
122 if (s->eci) {
123 mve_update_eci(s);
124 store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits);
128 static bool mve_skip_first_beat(DisasContext *s)
130 /* Return true if PSR.ECI says we must skip the first beat of this insn */
131 switch (s->eci) {
132 case ECI_NONE:
133 return false;
134 case ECI_A0:
135 case ECI_A0A1:
136 case ECI_A0A1A2:
137 case ECI_A0A1A2B0:
138 return true;
139 default:
140 g_assert_not_reached();
144 static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn,
145 unsigned msize)
147 TCGv_i32 addr;
148 uint32_t offset;
149 TCGv_ptr qreg;
151 if (!dc_isar_feature(aa32_mve, s) ||
152 !mve_check_qreg_bank(s, a->qd) ||
153 !fn) {
154 return false;
157 /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
158 if (a->rn == 15 || (a->rn == 13 && a->w)) {
159 return false;
162 if (!mve_eci_check(s) || !vfp_access_check(s)) {
163 return true;
166 offset = a->imm << msize;
167 if (!a->a) {
168 offset = -offset;
170 addr = load_reg(s, a->rn);
171 if (a->p) {
172 tcg_gen_addi_i32(addr, addr, offset);
175 qreg = mve_qreg_ptr(a->qd);
176 fn(tcg_env, qreg, addr);
179 * Writeback always happens after the last beat of the insn,
180 * regardless of predication
182 if (a->w) {
183 if (!a->p) {
184 tcg_gen_addi_i32(addr, addr, offset);
186 store_reg(s, a->rn, addr);
188 mve_update_eci(s);
189 return true;
192 static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a)
194 static MVEGenLdStFn * const ldstfns[4][2] = {
195 { gen_helper_mve_vstrb, gen_helper_mve_vldrb },
196 { gen_helper_mve_vstrh, gen_helper_mve_vldrh },
197 { gen_helper_mve_vstrw, gen_helper_mve_vldrw },
198 { NULL, NULL }
200 return do_ldst(s, a, ldstfns[a->size][a->l], a->size);
203 #define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE) \
204 static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a) \
206 static MVEGenLdStFn * const ldstfns[2][2] = { \
207 { gen_helper_mve_##ST, gen_helper_mve_##SLD }, \
208 { NULL, gen_helper_mve_##ULD }, \
209 }; \
210 return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE); \
213 DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8)
214 DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8)
215 DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16)
217 static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn)
219 TCGv_i32 addr;
220 TCGv_ptr qd, qm;
222 if (!dc_isar_feature(aa32_mve, s) ||
223 !mve_check_qreg_bank(s, a->qd | a->qm) ||
224 !fn || a->rn == 15) {
225 /* Rn case is UNPREDICTABLE */
226 return false;
229 if (!mve_eci_check(s) || !vfp_access_check(s)) {
230 return true;
233 addr = load_reg(s, a->rn);
235 qd = mve_qreg_ptr(a->qd);
236 qm = mve_qreg_ptr(a->qm);
237 fn(tcg_env, qd, qm, addr);
238 mve_update_eci(s);
239 return true;
243 * The naming scheme here is "vldrb_sg_sh == in-memory byte loads
244 * signextended to halfword elements in register". _os_ indicates that
245 * the offsets in Qm should be scaled by the element size.
247 /* This macro is just to make the arrays more compact in these functions */
248 #define F(N) gen_helper_mve_##N
250 /* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */
251 static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a)
253 static MVEGenLdStSGFn * const fns[2][4][4] = { {
254 { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL },
255 { NULL, NULL, F(vldrh_sg_sw), NULL },
256 { NULL, NULL, NULL, NULL },
257 { NULL, NULL, NULL, NULL }
258 }, {
259 { NULL, NULL, NULL, NULL },
260 { NULL, NULL, F(vldrh_sg_os_sw), NULL },
261 { NULL, NULL, NULL, NULL },
262 { NULL, NULL, NULL, NULL }
265 if (a->qd == a->qm) {
266 return false; /* UNPREDICTABLE */
268 return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
271 static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a)
273 static MVEGenLdStSGFn * const fns[2][4][4] = { {
274 { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL },
275 { NULL, F(vldrh_sg_uh), F(vldrh_sg_uw), NULL },
276 { NULL, NULL, F(vldrw_sg_uw), NULL },
277 { NULL, NULL, NULL, F(vldrd_sg_ud) }
278 }, {
279 { NULL, NULL, NULL, NULL },
280 { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL },
281 { NULL, NULL, F(vldrw_sg_os_uw), NULL },
282 { NULL, NULL, NULL, F(vldrd_sg_os_ud) }
285 if (a->qd == a->qm) {
286 return false; /* UNPREDICTABLE */
288 return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
291 static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a)
293 static MVEGenLdStSGFn * const fns[2][4][4] = { {
294 { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL },
295 { NULL, F(vstrh_sg_uh), F(vstrh_sg_uw), NULL },
296 { NULL, NULL, F(vstrw_sg_uw), NULL },
297 { NULL, NULL, NULL, F(vstrd_sg_ud) }
298 }, {
299 { NULL, NULL, NULL, NULL },
300 { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL },
301 { NULL, NULL, F(vstrw_sg_os_uw), NULL },
302 { NULL, NULL, NULL, F(vstrd_sg_os_ud) }
305 return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
308 #undef F
310 static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a,
311 MVEGenLdStSGFn *fn, unsigned msize)
313 uint32_t offset;
314 TCGv_ptr qd, qm;
316 if (!dc_isar_feature(aa32_mve, s) ||
317 !mve_check_qreg_bank(s, a->qd | a->qm) ||
318 !fn) {
319 return false;
322 if (!mve_eci_check(s) || !vfp_access_check(s)) {
323 return true;
326 offset = a->imm << msize;
327 if (!a->a) {
328 offset = -offset;
331 qd = mve_qreg_ptr(a->qd);
332 qm = mve_qreg_ptr(a->qm);
333 fn(tcg_env, qd, qm, tcg_constant_i32(offset));
334 mve_update_eci(s);
335 return true;
338 static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
340 static MVEGenLdStSGFn * const fns[] = {
341 gen_helper_mve_vldrw_sg_uw,
342 gen_helper_mve_vldrw_sg_wb_uw,
344 if (a->qd == a->qm) {
345 return false; /* UNPREDICTABLE */
347 return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
350 static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
352 static MVEGenLdStSGFn * const fns[] = {
353 gen_helper_mve_vldrd_sg_ud,
354 gen_helper_mve_vldrd_sg_wb_ud,
356 if (a->qd == a->qm) {
357 return false; /* UNPREDICTABLE */
359 return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
362 static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
364 static MVEGenLdStSGFn * const fns[] = {
365 gen_helper_mve_vstrw_sg_uw,
366 gen_helper_mve_vstrw_sg_wb_uw,
368 return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
371 static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
373 static MVEGenLdStSGFn * const fns[] = {
374 gen_helper_mve_vstrd_sg_ud,
375 gen_helper_mve_vstrd_sg_wb_ud,
377 return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
380 static bool do_vldst_il(DisasContext *s, arg_vldst_il *a, MVEGenLdStIlFn *fn,
381 int addrinc)
383 TCGv_i32 rn;
385 if (!dc_isar_feature(aa32_mve, s) ||
386 !mve_check_qreg_bank(s, a->qd) ||
387 !fn || (a->rn == 13 && a->w) || a->rn == 15) {
388 /* Variously UNPREDICTABLE or UNDEF or related-encoding */
389 return false;
391 if (!mve_eci_check(s) || !vfp_access_check(s)) {
392 return true;
395 rn = load_reg(s, a->rn);
397 * We pass the index of Qd, not a pointer, because the helper must
398 * access multiple Q registers starting at Qd and working up.
400 fn(tcg_env, tcg_constant_i32(a->qd), rn);
402 if (a->w) {
403 tcg_gen_addi_i32(rn, rn, addrinc);
404 store_reg(s, a->rn, rn);
406 mve_update_and_store_eci(s);
407 return true;
410 /* This macro is just to make the arrays more compact in these functions */
411 #define F(N) gen_helper_mve_##N
413 static bool trans_VLD2(DisasContext *s, arg_vldst_il *a)
415 static MVEGenLdStIlFn * const fns[4][4] = {
416 { F(vld20b), F(vld20h), F(vld20w), NULL, },
417 { F(vld21b), F(vld21h), F(vld21w), NULL, },
418 { NULL, NULL, NULL, NULL },
419 { NULL, NULL, NULL, NULL },
421 if (a->qd > 6) {
422 return false;
424 return do_vldst_il(s, a, fns[a->pat][a->size], 32);
427 static bool trans_VLD4(DisasContext *s, arg_vldst_il *a)
429 static MVEGenLdStIlFn * const fns[4][4] = {
430 { F(vld40b), F(vld40h), F(vld40w), NULL, },
431 { F(vld41b), F(vld41h), F(vld41w), NULL, },
432 { F(vld42b), F(vld42h), F(vld42w), NULL, },
433 { F(vld43b), F(vld43h), F(vld43w), NULL, },
435 if (a->qd > 4) {
436 return false;
438 return do_vldst_il(s, a, fns[a->pat][a->size], 64);
441 static bool trans_VST2(DisasContext *s, arg_vldst_il *a)
443 static MVEGenLdStIlFn * const fns[4][4] = {
444 { F(vst20b), F(vst20h), F(vst20w), NULL, },
445 { F(vst21b), F(vst21h), F(vst21w), NULL, },
446 { NULL, NULL, NULL, NULL },
447 { NULL, NULL, NULL, NULL },
449 if (a->qd > 6) {
450 return false;
452 return do_vldst_il(s, a, fns[a->pat][a->size], 32);
455 static bool trans_VST4(DisasContext *s, arg_vldst_il *a)
457 static MVEGenLdStIlFn * const fns[4][4] = {
458 { F(vst40b), F(vst40h), F(vst40w), NULL, },
459 { F(vst41b), F(vst41h), F(vst41w), NULL, },
460 { F(vst42b), F(vst42h), F(vst42w), NULL, },
461 { F(vst43b), F(vst43h), F(vst43w), NULL, },
463 if (a->qd > 4) {
464 return false;
466 return do_vldst_il(s, a, fns[a->pat][a->size], 64);
469 #undef F
471 static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
473 TCGv_ptr qd;
474 TCGv_i32 rt;
476 if (!dc_isar_feature(aa32_mve, s) ||
477 !mve_check_qreg_bank(s, a->qd)) {
478 return false;
480 if (a->rt == 13 || a->rt == 15) {
481 /* UNPREDICTABLE; we choose to UNDEF */
482 return false;
484 if (!mve_eci_check(s) || !vfp_access_check(s)) {
485 return true;
488 rt = load_reg(s, a->rt);
489 if (mve_no_predication(s)) {
490 tcg_gen_gvec_dup_i32(a->size, mve_qreg_offset(a->qd), 16, 16, rt);
491 } else {
492 qd = mve_qreg_ptr(a->qd);
493 tcg_gen_dup_i32(a->size, rt, rt);
494 gen_helper_mve_vdup(tcg_env, qd, rt);
496 mve_update_eci(s);
497 return true;
500 static bool do_1op_vec(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn,
501 GVecGen2Fn vecfn)
503 TCGv_ptr qd, qm;
505 if (!dc_isar_feature(aa32_mve, s) ||
506 !mve_check_qreg_bank(s, a->qd | a->qm) ||
507 !fn) {
508 return false;
511 if (!mve_eci_check(s) || !vfp_access_check(s)) {
512 return true;
515 if (vecfn && mve_no_predication(s)) {
516 vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), 16, 16);
517 } else {
518 qd = mve_qreg_ptr(a->qd);
519 qm = mve_qreg_ptr(a->qm);
520 fn(tcg_env, qd, qm);
522 mve_update_eci(s);
523 return true;
526 static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn)
528 return do_1op_vec(s, a, fn, NULL);
531 #define DO_1OP_VEC(INSN, FN, VECFN) \
532 static bool trans_##INSN(DisasContext *s, arg_1op *a) \
534 static MVEGenOneOpFn * const fns[] = { \
535 gen_helper_mve_##FN##b, \
536 gen_helper_mve_##FN##h, \
537 gen_helper_mve_##FN##w, \
538 NULL, \
539 }; \
540 return do_1op_vec(s, a, fns[a->size], VECFN); \
543 #define DO_1OP(INSN, FN) DO_1OP_VEC(INSN, FN, NULL)
545 DO_1OP(VCLZ, vclz)
546 DO_1OP(VCLS, vcls)
547 DO_1OP_VEC(VABS, vabs, tcg_gen_gvec_abs)
548 DO_1OP_VEC(VNEG, vneg, tcg_gen_gvec_neg)
549 DO_1OP(VQABS, vqabs)
550 DO_1OP(VQNEG, vqneg)
551 DO_1OP(VMAXA, vmaxa)
552 DO_1OP(VMINA, vmina)
555 * For simple float/int conversions we use the fixed-point
556 * conversion helpers with a zero shift count
558 #define DO_VCVT(INSN, HFN, SFN) \
559 static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
561 gen_helper_mve_##HFN(env, qd, qm, tcg_constant_i32(0)); \
563 static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
565 gen_helper_mve_##SFN(env, qd, qm, tcg_constant_i32(0)); \
567 static bool trans_##INSN(DisasContext *s, arg_1op *a) \
569 static MVEGenOneOpFn * const fns[] = { \
570 NULL, \
571 gen_##INSN##h, \
572 gen_##INSN##s, \
573 NULL, \
574 }; \
575 if (!dc_isar_feature(aa32_mve_fp, s)) { \
576 return false; \
578 return do_1op(s, a, fns[a->size]); \
581 DO_VCVT(VCVT_SF, vcvt_sh, vcvt_sf)
582 DO_VCVT(VCVT_UF, vcvt_uh, vcvt_uf)
583 DO_VCVT(VCVT_FS, vcvt_hs, vcvt_fs)
584 DO_VCVT(VCVT_FU, vcvt_hu, vcvt_fu)
586 static bool do_vcvt_rmode(DisasContext *s, arg_1op *a,
587 ARMFPRounding rmode, bool u)
590 * Handle VCVT fp to int with specified rounding mode.
591 * This is a 1op fn but we must pass the rounding mode as
592 * an immediate to the helper.
594 TCGv_ptr qd, qm;
595 static MVEGenVCVTRmodeFn * const fns[4][2] = {
596 { NULL, NULL },
597 { gen_helper_mve_vcvt_rm_sh, gen_helper_mve_vcvt_rm_uh },
598 { gen_helper_mve_vcvt_rm_ss, gen_helper_mve_vcvt_rm_us },
599 { NULL, NULL },
601 MVEGenVCVTRmodeFn *fn = fns[a->size][u];
603 if (!dc_isar_feature(aa32_mve_fp, s) ||
604 !mve_check_qreg_bank(s, a->qd | a->qm) ||
605 !fn) {
606 return false;
609 if (!mve_eci_check(s) || !vfp_access_check(s)) {
610 return true;
613 qd = mve_qreg_ptr(a->qd);
614 qm = mve_qreg_ptr(a->qm);
615 fn(tcg_env, qd, qm, tcg_constant_i32(arm_rmode_to_sf(rmode)));
616 mve_update_eci(s);
617 return true;
620 #define DO_VCVT_RMODE(INSN, RMODE, U) \
621 static bool trans_##INSN(DisasContext *s, arg_1op *a) \
623 return do_vcvt_rmode(s, a, RMODE, U); \
626 DO_VCVT_RMODE(VCVTAS, FPROUNDING_TIEAWAY, false)
627 DO_VCVT_RMODE(VCVTAU, FPROUNDING_TIEAWAY, true)
628 DO_VCVT_RMODE(VCVTNS, FPROUNDING_TIEEVEN, false)
629 DO_VCVT_RMODE(VCVTNU, FPROUNDING_TIEEVEN, true)
630 DO_VCVT_RMODE(VCVTPS, FPROUNDING_POSINF, false)
631 DO_VCVT_RMODE(VCVTPU, FPROUNDING_POSINF, true)
632 DO_VCVT_RMODE(VCVTMS, FPROUNDING_NEGINF, false)
633 DO_VCVT_RMODE(VCVTMU, FPROUNDING_NEGINF, true)
635 #define DO_VCVT_SH(INSN, FN) \
636 static bool trans_##INSN(DisasContext *s, arg_1op *a) \
638 if (!dc_isar_feature(aa32_mve_fp, s)) { \
639 return false; \
641 return do_1op(s, a, gen_helper_mve_##FN); \
644 DO_VCVT_SH(VCVTB_SH, vcvtb_sh)
645 DO_VCVT_SH(VCVTT_SH, vcvtt_sh)
646 DO_VCVT_SH(VCVTB_HS, vcvtb_hs)
647 DO_VCVT_SH(VCVTT_HS, vcvtt_hs)
649 #define DO_VRINT(INSN, RMODE) \
650 static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
652 gen_helper_mve_vrint_rm_h(env, qd, qm, \
653 tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
655 static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
657 gen_helper_mve_vrint_rm_s(env, qd, qm, \
658 tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
660 static bool trans_##INSN(DisasContext *s, arg_1op *a) \
662 static MVEGenOneOpFn * const fns[] = { \
663 NULL, \
664 gen_##INSN##h, \
665 gen_##INSN##s, \
666 NULL, \
667 }; \
668 if (!dc_isar_feature(aa32_mve_fp, s)) { \
669 return false; \
671 return do_1op(s, a, fns[a->size]); \
674 DO_VRINT(VRINTN, FPROUNDING_TIEEVEN)
675 DO_VRINT(VRINTA, FPROUNDING_TIEAWAY)
676 DO_VRINT(VRINTZ, FPROUNDING_ZERO)
677 DO_VRINT(VRINTM, FPROUNDING_NEGINF)
678 DO_VRINT(VRINTP, FPROUNDING_POSINF)
680 static bool trans_VRINTX(DisasContext *s, arg_1op *a)
682 static MVEGenOneOpFn * const fns[] = {
683 NULL,
684 gen_helper_mve_vrintx_h,
685 gen_helper_mve_vrintx_s,
686 NULL,
688 if (!dc_isar_feature(aa32_mve_fp, s)) {
689 return false;
691 return do_1op(s, a, fns[a->size]);
694 /* Narrowing moves: only size 0 and 1 are valid */
695 #define DO_VMOVN(INSN, FN) \
696 static bool trans_##INSN(DisasContext *s, arg_1op *a) \
698 static MVEGenOneOpFn * const fns[] = { \
699 gen_helper_mve_##FN##b, \
700 gen_helper_mve_##FN##h, \
701 NULL, \
702 NULL, \
703 }; \
704 return do_1op(s, a, fns[a->size]); \
707 DO_VMOVN(VMOVNB, vmovnb)
708 DO_VMOVN(VMOVNT, vmovnt)
709 DO_VMOVN(VQMOVUNB, vqmovunb)
710 DO_VMOVN(VQMOVUNT, vqmovunt)
711 DO_VMOVN(VQMOVN_BS, vqmovnbs)
712 DO_VMOVN(VQMOVN_TS, vqmovnts)
713 DO_VMOVN(VQMOVN_BU, vqmovnbu)
714 DO_VMOVN(VQMOVN_TU, vqmovntu)
716 static bool trans_VREV16(DisasContext *s, arg_1op *a)
718 static MVEGenOneOpFn * const fns[] = {
719 gen_helper_mve_vrev16b,
720 NULL,
721 NULL,
722 NULL,
724 return do_1op(s, a, fns[a->size]);
727 static bool trans_VREV32(DisasContext *s, arg_1op *a)
729 static MVEGenOneOpFn * const fns[] = {
730 gen_helper_mve_vrev32b,
731 gen_helper_mve_vrev32h,
732 NULL,
733 NULL,
735 return do_1op(s, a, fns[a->size]);
738 static bool trans_VREV64(DisasContext *s, arg_1op *a)
740 static MVEGenOneOpFn * const fns[] = {
741 gen_helper_mve_vrev64b,
742 gen_helper_mve_vrev64h,
743 gen_helper_mve_vrev64w,
744 NULL,
746 return do_1op(s, a, fns[a->size]);
749 static bool trans_VMVN(DisasContext *s, arg_1op *a)
751 return do_1op_vec(s, a, gen_helper_mve_vmvn, tcg_gen_gvec_not);
754 static bool trans_VABS_fp(DisasContext *s, arg_1op *a)
756 static MVEGenOneOpFn * const fns[] = {
757 NULL,
758 gen_helper_mve_vfabsh,
759 gen_helper_mve_vfabss,
760 NULL,
762 if (!dc_isar_feature(aa32_mve_fp, s)) {
763 return false;
765 return do_1op(s, a, fns[a->size]);
768 static bool trans_VNEG_fp(DisasContext *s, arg_1op *a)
770 static MVEGenOneOpFn * const fns[] = {
771 NULL,
772 gen_helper_mve_vfnegh,
773 gen_helper_mve_vfnegs,
774 NULL,
776 if (!dc_isar_feature(aa32_mve_fp, s)) {
777 return false;
779 return do_1op(s, a, fns[a->size]);
782 static bool do_2op_vec(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn,
783 GVecGen3Fn *vecfn)
785 TCGv_ptr qd, qn, qm;
787 if (!dc_isar_feature(aa32_mve, s) ||
788 !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) ||
789 !fn) {
790 return false;
792 if (!mve_eci_check(s) || !vfp_access_check(s)) {
793 return true;
796 if (vecfn && mve_no_predication(s)) {
797 vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qn),
798 mve_qreg_offset(a->qm), 16, 16);
799 } else {
800 qd = mve_qreg_ptr(a->qd);
801 qn = mve_qreg_ptr(a->qn);
802 qm = mve_qreg_ptr(a->qm);
803 fn(tcg_env, qd, qn, qm);
805 mve_update_eci(s);
806 return true;
809 static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn *fn)
811 return do_2op_vec(s, a, fn, NULL);
814 #define DO_LOGIC(INSN, HELPER, VECFN) \
815 static bool trans_##INSN(DisasContext *s, arg_2op *a) \
817 return do_2op_vec(s, a, HELPER, VECFN); \
820 DO_LOGIC(VAND, gen_helper_mve_vand, tcg_gen_gvec_and)
821 DO_LOGIC(VBIC, gen_helper_mve_vbic, tcg_gen_gvec_andc)
822 DO_LOGIC(VORR, gen_helper_mve_vorr, tcg_gen_gvec_or)
823 DO_LOGIC(VORN, gen_helper_mve_vorn, tcg_gen_gvec_orc)
824 DO_LOGIC(VEOR, gen_helper_mve_veor, tcg_gen_gvec_xor)
826 static bool trans_VPSEL(DisasContext *s, arg_2op *a)
828 /* This insn updates predication bits */
829 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
830 return do_2op(s, a, gen_helper_mve_vpsel);
833 #define DO_2OP_VEC(INSN, FN, VECFN) \
834 static bool trans_##INSN(DisasContext *s, arg_2op *a) \
836 static MVEGenTwoOpFn * const fns[] = { \
837 gen_helper_mve_##FN##b, \
838 gen_helper_mve_##FN##h, \
839 gen_helper_mve_##FN##w, \
840 NULL, \
841 }; \
842 return do_2op_vec(s, a, fns[a->size], VECFN); \
845 #define DO_2OP(INSN, FN) DO_2OP_VEC(INSN, FN, NULL)
847 DO_2OP_VEC(VADD, vadd, tcg_gen_gvec_add)
848 DO_2OP_VEC(VSUB, vsub, tcg_gen_gvec_sub)
849 DO_2OP_VEC(VMUL, vmul, tcg_gen_gvec_mul)
850 DO_2OP(VMULH_S, vmulhs)
851 DO_2OP(VMULH_U, vmulhu)
852 DO_2OP(VRMULH_S, vrmulhs)
853 DO_2OP(VRMULH_U, vrmulhu)
854 DO_2OP_VEC(VMAX_S, vmaxs, tcg_gen_gvec_smax)
855 DO_2OP_VEC(VMAX_U, vmaxu, tcg_gen_gvec_umax)
856 DO_2OP_VEC(VMIN_S, vmins, tcg_gen_gvec_smin)
857 DO_2OP_VEC(VMIN_U, vminu, tcg_gen_gvec_umin)
858 DO_2OP(VABD_S, vabds)
859 DO_2OP(VABD_U, vabdu)
860 DO_2OP(VHADD_S, vhadds)
861 DO_2OP(VHADD_U, vhaddu)
862 DO_2OP(VHSUB_S, vhsubs)
863 DO_2OP(VHSUB_U, vhsubu)
864 DO_2OP(VMULL_BS, vmullbs)
865 DO_2OP(VMULL_BU, vmullbu)
866 DO_2OP(VMULL_TS, vmullts)
867 DO_2OP(VMULL_TU, vmulltu)
868 DO_2OP(VQDMULH, vqdmulh)
869 DO_2OP(VQRDMULH, vqrdmulh)
870 DO_2OP(VQADD_S, vqadds)
871 DO_2OP(VQADD_U, vqaddu)
872 DO_2OP(VQSUB_S, vqsubs)
873 DO_2OP(VQSUB_U, vqsubu)
874 DO_2OP(VSHL_S, vshls)
875 DO_2OP(VSHL_U, vshlu)
876 DO_2OP(VRSHL_S, vrshls)
877 DO_2OP(VRSHL_U, vrshlu)
878 DO_2OP(VQSHL_S, vqshls)
879 DO_2OP(VQSHL_U, vqshlu)
880 DO_2OP(VQRSHL_S, vqrshls)
881 DO_2OP(VQRSHL_U, vqrshlu)
882 DO_2OP(VQDMLADH, vqdmladh)
883 DO_2OP(VQDMLADHX, vqdmladhx)
884 DO_2OP(VQRDMLADH, vqrdmladh)
885 DO_2OP(VQRDMLADHX, vqrdmladhx)
886 DO_2OP(VQDMLSDH, vqdmlsdh)
887 DO_2OP(VQDMLSDHX, vqdmlsdhx)
888 DO_2OP(VQRDMLSDH, vqrdmlsdh)
889 DO_2OP(VQRDMLSDHX, vqrdmlsdhx)
890 DO_2OP(VRHADD_S, vrhadds)
891 DO_2OP(VRHADD_U, vrhaddu)
893 * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose
894 * so we can reuse the DO_2OP macro. (Our implementation calculates the
895 * "expected" results in this case.) Similarly for VHCADD.
897 DO_2OP(VCADD90, vcadd90)
898 DO_2OP(VCADD270, vcadd270)
899 DO_2OP(VHCADD90, vhcadd90)
900 DO_2OP(VHCADD270, vhcadd270)
902 static bool trans_VQDMULLB(DisasContext *s, arg_2op *a)
904 static MVEGenTwoOpFn * const fns[] = {
905 NULL,
906 gen_helper_mve_vqdmullbh,
907 gen_helper_mve_vqdmullbw,
908 NULL,
910 if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
911 /* UNPREDICTABLE; we choose to undef */
912 return false;
914 return do_2op(s, a, fns[a->size]);
917 static bool trans_VQDMULLT(DisasContext *s, arg_2op *a)
919 static MVEGenTwoOpFn * const fns[] = {
920 NULL,
921 gen_helper_mve_vqdmullth,
922 gen_helper_mve_vqdmulltw,
923 NULL,
925 if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
926 /* UNPREDICTABLE; we choose to undef */
927 return false;
929 return do_2op(s, a, fns[a->size]);
932 static bool trans_VMULLP_B(DisasContext *s, arg_2op *a)
935 * Note that a->size indicates the output size, ie VMULL.P8
936 * is the 8x8->16 operation and a->size is MO_16; VMULL.P16
937 * is the 16x16->32 operation and a->size is MO_32.
939 static MVEGenTwoOpFn * const fns[] = {
940 NULL,
941 gen_helper_mve_vmullpbh,
942 gen_helper_mve_vmullpbw,
943 NULL,
945 return do_2op(s, a, fns[a->size]);
948 static bool trans_VMULLP_T(DisasContext *s, arg_2op *a)
950 /* a->size is as for trans_VMULLP_B */
951 static MVEGenTwoOpFn * const fns[] = {
952 NULL,
953 gen_helper_mve_vmullpth,
954 gen_helper_mve_vmullptw,
955 NULL,
957 return do_2op(s, a, fns[a->size]);
961 * VADC and VSBC: these perform an add-with-carry or subtract-with-carry
962 * of the 32-bit elements in each lane of the input vectors, where the
963 * carry-out of each add is the carry-in of the next. The initial carry
964 * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C
965 * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C.
966 * These insns are subject to beat-wise execution. Partial execution
967 * of an I=1 (initial carry input fixed) insn which does not
968 * execute the first beat must start with the current FPSCR.NZCV
969 * value, not the fixed constant input.
971 static bool trans_VADC(DisasContext *s, arg_2op *a)
973 return do_2op(s, a, gen_helper_mve_vadc);
976 static bool trans_VADCI(DisasContext *s, arg_2op *a)
978 if (mve_skip_first_beat(s)) {
979 return trans_VADC(s, a);
981 return do_2op(s, a, gen_helper_mve_vadci);
984 static bool trans_VSBC(DisasContext *s, arg_2op *a)
986 return do_2op(s, a, gen_helper_mve_vsbc);
989 static bool trans_VSBCI(DisasContext *s, arg_2op *a)
991 if (mve_skip_first_beat(s)) {
992 return trans_VSBC(s, a);
994 return do_2op(s, a, gen_helper_mve_vsbci);
997 #define DO_2OP_FP(INSN, FN) \
998 static bool trans_##INSN(DisasContext *s, arg_2op *a) \
1000 static MVEGenTwoOpFn * const fns[] = { \
1001 NULL, \
1002 gen_helper_mve_##FN##h, \
1003 gen_helper_mve_##FN##s, \
1004 NULL, \
1005 }; \
1006 if (!dc_isar_feature(aa32_mve_fp, s)) { \
1007 return false; \
1009 return do_2op(s, a, fns[a->size]); \
1012 DO_2OP_FP(VADD_fp, vfadd)
1013 DO_2OP_FP(VSUB_fp, vfsub)
1014 DO_2OP_FP(VMUL_fp, vfmul)
1015 DO_2OP_FP(VABD_fp, vfabd)
1016 DO_2OP_FP(VMAXNM, vmaxnm)
1017 DO_2OP_FP(VMINNM, vminnm)
1018 DO_2OP_FP(VCADD90_fp, vfcadd90)
1019 DO_2OP_FP(VCADD270_fp, vfcadd270)
1020 DO_2OP_FP(VFMA, vfma)
1021 DO_2OP_FP(VFMS, vfms)
1022 DO_2OP_FP(VCMUL0, vcmul0)
1023 DO_2OP_FP(VCMUL90, vcmul90)
1024 DO_2OP_FP(VCMUL180, vcmul180)
1025 DO_2OP_FP(VCMUL270, vcmul270)
1026 DO_2OP_FP(VCMLA0, vcmla0)
1027 DO_2OP_FP(VCMLA90, vcmla90)
1028 DO_2OP_FP(VCMLA180, vcmla180)
1029 DO_2OP_FP(VCMLA270, vcmla270)
1030 DO_2OP_FP(VMAXNMA, vmaxnma)
1031 DO_2OP_FP(VMINNMA, vminnma)
1033 static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
1034 MVEGenTwoOpScalarFn fn)
1036 TCGv_ptr qd, qn;
1037 TCGv_i32 rm;
1039 if (!dc_isar_feature(aa32_mve, s) ||
1040 !mve_check_qreg_bank(s, a->qd | a->qn) ||
1041 !fn) {
1042 return false;
1044 if (a->rm == 13 || a->rm == 15) {
1045 /* UNPREDICTABLE */
1046 return false;
1048 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1049 return true;
1052 qd = mve_qreg_ptr(a->qd);
1053 qn = mve_qreg_ptr(a->qn);
1054 rm = load_reg(s, a->rm);
1055 fn(tcg_env, qd, qn, rm);
1056 mve_update_eci(s);
1057 return true;
1060 #define DO_2OP_SCALAR(INSN, FN) \
1061 static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \
1063 static MVEGenTwoOpScalarFn * const fns[] = { \
1064 gen_helper_mve_##FN##b, \
1065 gen_helper_mve_##FN##h, \
1066 gen_helper_mve_##FN##w, \
1067 NULL, \
1068 }; \
1069 return do_2op_scalar(s, a, fns[a->size]); \
1072 DO_2OP_SCALAR(VADD_scalar, vadd_scalar)
1073 DO_2OP_SCALAR(VSUB_scalar, vsub_scalar)
1074 DO_2OP_SCALAR(VMUL_scalar, vmul_scalar)
1075 DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar)
1076 DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar)
1077 DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar)
1078 DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar)
1079 DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar)
1080 DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar)
1081 DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar)
1082 DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar)
1083 DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
1084 DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
1085 DO_2OP_SCALAR(VBRSR, vbrsr)
1086 DO_2OP_SCALAR(VMLA, vmla)
1087 DO_2OP_SCALAR(VMLAS, vmlas)
1088 DO_2OP_SCALAR(VQDMLAH, vqdmlah)
1089 DO_2OP_SCALAR(VQRDMLAH, vqrdmlah)
1090 DO_2OP_SCALAR(VQDMLASH, vqdmlash)
1091 DO_2OP_SCALAR(VQRDMLASH, vqrdmlash)
1093 static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
1095 static MVEGenTwoOpScalarFn * const fns[] = {
1096 NULL,
1097 gen_helper_mve_vqdmullb_scalarh,
1098 gen_helper_mve_vqdmullb_scalarw,
1099 NULL,
1101 if (a->qd == a->qn && a->size == MO_32) {
1102 /* UNPREDICTABLE; we choose to undef */
1103 return false;
1105 return do_2op_scalar(s, a, fns[a->size]);
1108 static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
1110 static MVEGenTwoOpScalarFn * const fns[] = {
1111 NULL,
1112 gen_helper_mve_vqdmullt_scalarh,
1113 gen_helper_mve_vqdmullt_scalarw,
1114 NULL,
1116 if (a->qd == a->qn && a->size == MO_32) {
1117 /* UNPREDICTABLE; we choose to undef */
1118 return false;
1120 return do_2op_scalar(s, a, fns[a->size]);
1124 #define DO_2OP_FP_SCALAR(INSN, FN) \
1125 static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \
1127 static MVEGenTwoOpScalarFn * const fns[] = { \
1128 NULL, \
1129 gen_helper_mve_##FN##h, \
1130 gen_helper_mve_##FN##s, \
1131 NULL, \
1132 }; \
1133 if (!dc_isar_feature(aa32_mve_fp, s)) { \
1134 return false; \
1136 return do_2op_scalar(s, a, fns[a->size]); \
1139 DO_2OP_FP_SCALAR(VADD_fp_scalar, vfadd_scalar)
1140 DO_2OP_FP_SCALAR(VSUB_fp_scalar, vfsub_scalar)
1141 DO_2OP_FP_SCALAR(VMUL_fp_scalar, vfmul_scalar)
1142 DO_2OP_FP_SCALAR(VFMA_scalar, vfma_scalar)
1143 DO_2OP_FP_SCALAR(VFMAS_scalar, vfmas_scalar)
1145 static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
1146 MVEGenLongDualAccOpFn *fn)
1148 TCGv_ptr qn, qm;
1149 TCGv_i64 rda_i, rda_o;
1150 TCGv_i32 rdalo, rdahi;
1152 if (!dc_isar_feature(aa32_mve, s) ||
1153 !mve_check_qreg_bank(s, a->qn | a->qm) ||
1154 !fn) {
1155 return false;
1158 * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1159 * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1161 if (a->rdahi == 13 || a->rdahi == 15) {
1162 return false;
1164 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1165 return true;
1168 qn = mve_qreg_ptr(a->qn);
1169 qm = mve_qreg_ptr(a->qm);
1172 * This insn is subject to beat-wise execution. Partial execution
1173 * of an A=0 (no-accumulate) insn which does not execute the first
1174 * beat must start with the current rda value, not 0.
1176 rda_o = tcg_temp_new_i64();
1177 if (a->a || mve_skip_first_beat(s)) {
1178 rda_i = rda_o;
1179 rdalo = load_reg(s, a->rdalo);
1180 rdahi = load_reg(s, a->rdahi);
1181 tcg_gen_concat_i32_i64(rda_i, rdalo, rdahi);
1182 } else {
1183 rda_i = tcg_constant_i64(0);
1186 fn(rda_o, tcg_env, qn, qm, rda_i);
1188 rdalo = tcg_temp_new_i32();
1189 rdahi = tcg_temp_new_i32();
1190 tcg_gen_extrl_i64_i32(rdalo, rda_o);
1191 tcg_gen_extrh_i64_i32(rdahi, rda_o);
1192 store_reg(s, a->rdalo, rdalo);
1193 store_reg(s, a->rdahi, rdahi);
1194 mve_update_eci(s);
1195 return true;
1198 static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a)
1200 static MVEGenLongDualAccOpFn * const fns[4][2] = {
1201 { NULL, NULL },
1202 { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh },
1203 { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw },
1204 { NULL, NULL },
1206 return do_long_dual_acc(s, a, fns[a->size][a->x]);
1209 static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a)
1211 static MVEGenLongDualAccOpFn * const fns[4][2] = {
1212 { NULL, NULL },
1213 { gen_helper_mve_vmlaldavuh, NULL },
1214 { gen_helper_mve_vmlaldavuw, NULL },
1215 { NULL, NULL },
1217 return do_long_dual_acc(s, a, fns[a->size][a->x]);
1220 static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a)
1222 static MVEGenLongDualAccOpFn * const fns[4][2] = {
1223 { NULL, NULL },
1224 { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh },
1225 { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw },
1226 { NULL, NULL },
1228 return do_long_dual_acc(s, a, fns[a->size][a->x]);
1231 static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a)
1233 static MVEGenLongDualAccOpFn * const fns[] = {
1234 gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw,
1236 return do_long_dual_acc(s, a, fns[a->x]);
1239 static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a)
1241 static MVEGenLongDualAccOpFn * const fns[] = {
1242 gen_helper_mve_vrmlaldavhuw, NULL,
1244 return do_long_dual_acc(s, a, fns[a->x]);
1247 static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a)
1249 static MVEGenLongDualAccOpFn * const fns[] = {
1250 gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw,
1252 return do_long_dual_acc(s, a, fns[a->x]);
1255 static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn)
1257 TCGv_ptr qn, qm;
1258 TCGv_i32 rda_i, rda_o;
1260 if (!dc_isar_feature(aa32_mve, s) ||
1261 !mve_check_qreg_bank(s, a->qn) ||
1262 !fn) {
1263 return false;
1265 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1266 return true;
1269 qn = mve_qreg_ptr(a->qn);
1270 qm = mve_qreg_ptr(a->qm);
1273 * This insn is subject to beat-wise execution. Partial execution
1274 * of an A=0 (no-accumulate) insn which does not execute the first
1275 * beat must start with the current rda value, not 0.
1277 if (a->a || mve_skip_first_beat(s)) {
1278 rda_o = rda_i = load_reg(s, a->rda);
1279 } else {
1280 rda_i = tcg_constant_i32(0);
1281 rda_o = tcg_temp_new_i32();
1284 fn(rda_o, tcg_env, qn, qm, rda_i);
1285 store_reg(s, a->rda, rda_o);
1287 mve_update_eci(s);
1288 return true;
1291 #define DO_DUAL_ACC(INSN, FN) \
1292 static bool trans_##INSN(DisasContext *s, arg_vmladav *a) \
1294 static MVEGenDualAccOpFn * const fns[4][2] = { \
1295 { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb }, \
1296 { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh }, \
1297 { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw }, \
1298 { NULL, NULL }, \
1299 }; \
1300 return do_dual_acc(s, a, fns[a->size][a->x]); \
1303 DO_DUAL_ACC(VMLADAV_S, vmladavs)
1304 DO_DUAL_ACC(VMLSDAV, vmlsdav)
1306 static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a)
1308 static MVEGenDualAccOpFn * const fns[4][2] = {
1309 { gen_helper_mve_vmladavub, NULL },
1310 { gen_helper_mve_vmladavuh, NULL },
1311 { gen_helper_mve_vmladavuw, NULL },
1312 { NULL, NULL },
1314 return do_dual_acc(s, a, fns[a->size][a->x]);
1317 static void gen_vpst(DisasContext *s, uint32_t mask)
1320 * Set the VPR mask fields. We take advantage of MASK01 and MASK23
1321 * being adjacent fields in the register.
1323 * Updating the masks is not predicated, but it is subject to beat-wise
1324 * execution, and the mask is updated on the odd-numbered beats.
1325 * So if PSR.ECI says we should skip beat 1, we mustn't update the
1326 * 01 mask field.
1328 TCGv_i32 vpr = load_cpu_field(v7m.vpr);
1329 switch (s->eci) {
1330 case ECI_NONE:
1331 case ECI_A0:
1332 /* Update both 01 and 23 fields */
1333 tcg_gen_deposit_i32(vpr, vpr,
1334 tcg_constant_i32(mask | (mask << 4)),
1335 R_V7M_VPR_MASK01_SHIFT,
1336 R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH);
1337 break;
1338 case ECI_A0A1:
1339 case ECI_A0A1A2:
1340 case ECI_A0A1A2B0:
1341 /* Update only the 23 mask field */
1342 tcg_gen_deposit_i32(vpr, vpr,
1343 tcg_constant_i32(mask),
1344 R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH);
1345 break;
1346 default:
1347 g_assert_not_reached();
1349 store_cpu_field(vpr, v7m.vpr);
1352 static bool trans_VPST(DisasContext *s, arg_VPST *a)
1354 /* mask == 0 is a "related encoding" */
1355 if (!dc_isar_feature(aa32_mve, s) || !a->mask) {
1356 return false;
1358 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1359 return true;
1361 gen_vpst(s, a->mask);
1362 mve_update_and_store_eci(s);
1363 return true;
1366 static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a)
1369 * Invert the predicate in VPR.P0. We have call out to
1370 * a helper because this insn itself is beatwise and can
1371 * be predicated.
1373 if (!dc_isar_feature(aa32_mve, s)) {
1374 return false;
1376 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1377 return true;
1380 gen_helper_mve_vpnot(tcg_env);
1381 /* This insn updates predication bits */
1382 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1383 mve_update_eci(s);
1384 return true;
1387 static bool trans_VADDV(DisasContext *s, arg_VADDV *a)
1389 /* VADDV: vector add across vector */
1390 static MVEGenVADDVFn * const fns[4][2] = {
1391 { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub },
1392 { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh },
1393 { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw },
1394 { NULL, NULL }
1396 TCGv_ptr qm;
1397 TCGv_i32 rda_i, rda_o;
1399 if (!dc_isar_feature(aa32_mve, s) ||
1400 a->size == 3) {
1401 return false;
1403 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1404 return true;
1408 * This insn is subject to beat-wise execution. Partial execution
1409 * of an A=0 (no-accumulate) insn which does not execute the first
1410 * beat must start with the current value of Rda, not zero.
1412 if (a->a || mve_skip_first_beat(s)) {
1413 /* Accumulate input from Rda */
1414 rda_o = rda_i = load_reg(s, a->rda);
1415 } else {
1416 /* Accumulate starting at zero */
1417 rda_i = tcg_constant_i32(0);
1418 rda_o = tcg_temp_new_i32();
1421 qm = mve_qreg_ptr(a->qm);
1422 fns[a->size][a->u](rda_o, tcg_env, qm, rda_i);
1423 store_reg(s, a->rda, rda_o);
1425 mve_update_eci(s);
1426 return true;
1429 static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a)
1432 * Vector Add Long Across Vector: accumulate the 32-bit
1433 * elements of the vector into a 64-bit result stored in
1434 * a pair of general-purpose registers.
1435 * No need to check Qm's bank: it is only 3 bits in decode.
1437 TCGv_ptr qm;
1438 TCGv_i64 rda_i, rda_o;
1439 TCGv_i32 rdalo, rdahi;
1441 if (!dc_isar_feature(aa32_mve, s)) {
1442 return false;
1445 * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1446 * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1448 if (a->rdahi == 13 || a->rdahi == 15) {
1449 return false;
1451 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1452 return true;
1456 * This insn is subject to beat-wise execution. Partial execution
1457 * of an A=0 (no-accumulate) insn which does not execute the first
1458 * beat must start with the current value of RdaHi:RdaLo, not zero.
1460 rda_o = tcg_temp_new_i64();
1461 if (a->a || mve_skip_first_beat(s)) {
1462 /* Accumulate input from RdaHi:RdaLo */
1463 rda_i = rda_o;
1464 rdalo = load_reg(s, a->rdalo);
1465 rdahi = load_reg(s, a->rdahi);
1466 tcg_gen_concat_i32_i64(rda_i, rdalo, rdahi);
1467 } else {
1468 /* Accumulate starting at zero */
1469 rda_i = tcg_constant_i64(0);
1472 qm = mve_qreg_ptr(a->qm);
1473 if (a->u) {
1474 gen_helper_mve_vaddlv_u(rda_o, tcg_env, qm, rda_i);
1475 } else {
1476 gen_helper_mve_vaddlv_s(rda_o, tcg_env, qm, rda_i);
1479 rdalo = tcg_temp_new_i32();
1480 rdahi = tcg_temp_new_i32();
1481 tcg_gen_extrl_i64_i32(rdalo, rda_o);
1482 tcg_gen_extrh_i64_i32(rdahi, rda_o);
1483 store_reg(s, a->rdalo, rdalo);
1484 store_reg(s, a->rdahi, rdahi);
1485 mve_update_eci(s);
1486 return true;
1489 static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn,
1490 GVecGen2iFn *vecfn)
1492 TCGv_ptr qd;
1493 uint64_t imm;
1495 if (!dc_isar_feature(aa32_mve, s) ||
1496 !mve_check_qreg_bank(s, a->qd) ||
1497 !fn) {
1498 return false;
1500 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1501 return true;
1504 imm = asimd_imm_const(a->imm, a->cmode, a->op);
1506 if (vecfn && mve_no_predication(s)) {
1507 vecfn(MO_64, mve_qreg_offset(a->qd), mve_qreg_offset(a->qd),
1508 imm, 16, 16);
1509 } else {
1510 qd = mve_qreg_ptr(a->qd);
1511 fn(tcg_env, qd, tcg_constant_i64(imm));
1513 mve_update_eci(s);
1514 return true;
1517 static void gen_gvec_vmovi(unsigned vece, uint32_t dofs, uint32_t aofs,
1518 int64_t c, uint32_t oprsz, uint32_t maxsz)
1520 tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, c);
1523 static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a)
1525 /* Handle decode of cmode/op here between VORR/VBIC/VMOV */
1526 MVEGenOneOpImmFn *fn;
1527 GVecGen2iFn *vecfn;
1529 if ((a->cmode & 1) && a->cmode < 12) {
1530 if (a->op) {
1532 * For op=1, the immediate will be inverted by asimd_imm_const(),
1533 * so the VBIC becomes a logical AND operation.
1535 fn = gen_helper_mve_vandi;
1536 vecfn = tcg_gen_gvec_andi;
1537 } else {
1538 fn = gen_helper_mve_vorri;
1539 vecfn = tcg_gen_gvec_ori;
1541 } else {
1542 /* There is one unallocated cmode/op combination in this space */
1543 if (a->cmode == 15 && a->op == 1) {
1544 return false;
1546 /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */
1547 fn = gen_helper_mve_vmovi;
1548 vecfn = gen_gvec_vmovi;
1550 return do_1imm(s, a, fn, vecfn);
1553 static bool do_2shift_vec(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1554 bool negateshift, GVecGen2iFn vecfn)
1556 TCGv_ptr qd, qm;
1557 int shift = a->shift;
1559 if (!dc_isar_feature(aa32_mve, s) ||
1560 !mve_check_qreg_bank(s, a->qd | a->qm) ||
1561 !fn) {
1562 return false;
1564 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1565 return true;
1569 * When we handle a right shift insn using a left-shift helper
1570 * which permits a negative shift count to indicate a right-shift,
1571 * we must negate the shift count.
1573 if (negateshift) {
1574 shift = -shift;
1577 if (vecfn && mve_no_predication(s)) {
1578 vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm),
1579 shift, 16, 16);
1580 } else {
1581 qd = mve_qreg_ptr(a->qd);
1582 qm = mve_qreg_ptr(a->qm);
1583 fn(tcg_env, qd, qm, tcg_constant_i32(shift));
1585 mve_update_eci(s);
1586 return true;
1589 static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1590 bool negateshift)
1592 return do_2shift_vec(s, a, fn, negateshift, NULL);
1595 #define DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, VECFN) \
1596 static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
1598 static MVEGenTwoOpShiftFn * const fns[] = { \
1599 gen_helper_mve_##FN##b, \
1600 gen_helper_mve_##FN##h, \
1601 gen_helper_mve_##FN##w, \
1602 NULL, \
1603 }; \
1604 return do_2shift_vec(s, a, fns[a->size], NEGATESHIFT, VECFN); \
1607 #define DO_2SHIFT(INSN, FN, NEGATESHIFT) \
1608 DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, NULL)
1610 static void do_gvec_shri_s(unsigned vece, uint32_t dofs, uint32_t aofs,
1611 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1614 * We get here with a negated shift count, and we must handle
1615 * shifts by the element size, which tcg_gen_gvec_sari() does not do.
1617 shift = -shift;
1618 if (shift == (8 << vece)) {
1619 shift--;
1621 tcg_gen_gvec_sari(vece, dofs, aofs, shift, oprsz, maxsz);
1624 static void do_gvec_shri_u(unsigned vece, uint32_t dofs, uint32_t aofs,
1625 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1628 * We get here with a negated shift count, and we must handle
1629 * shifts by the element size, which tcg_gen_gvec_shri() does not do.
1631 shift = -shift;
1632 if (shift == (8 << vece)) {
1633 tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, 0);
1634 } else {
1635 tcg_gen_gvec_shri(vece, dofs, aofs, shift, oprsz, maxsz);
1639 DO_2SHIFT_VEC(VSHLI, vshli_u, false, tcg_gen_gvec_shli)
1640 DO_2SHIFT(VQSHLI_S, vqshli_s, false)
1641 DO_2SHIFT(VQSHLI_U, vqshli_u, false)
1642 DO_2SHIFT(VQSHLUI, vqshlui_s, false)
1643 /* These right shifts use a left-shift helper with negated shift count */
1644 DO_2SHIFT_VEC(VSHRI_S, vshli_s, true, do_gvec_shri_s)
1645 DO_2SHIFT_VEC(VSHRI_U, vshli_u, true, do_gvec_shri_u)
1646 DO_2SHIFT(VRSHRI_S, vrshli_s, true)
1647 DO_2SHIFT(VRSHRI_U, vrshli_u, true)
1649 DO_2SHIFT_VEC(VSRI, vsri, false, gen_gvec_sri)
1650 DO_2SHIFT_VEC(VSLI, vsli, false, gen_gvec_sli)
1652 #define DO_2SHIFT_FP(INSN, FN) \
1653 static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
1655 if (!dc_isar_feature(aa32_mve_fp, s)) { \
1656 return false; \
1658 return do_2shift(s, a, gen_helper_mve_##FN, false); \
1661 DO_2SHIFT_FP(VCVT_SH_fixed, vcvt_sh)
1662 DO_2SHIFT_FP(VCVT_UH_fixed, vcvt_uh)
1663 DO_2SHIFT_FP(VCVT_HS_fixed, vcvt_hs)
1664 DO_2SHIFT_FP(VCVT_HU_fixed, vcvt_hu)
1665 DO_2SHIFT_FP(VCVT_SF_fixed, vcvt_sf)
1666 DO_2SHIFT_FP(VCVT_UF_fixed, vcvt_uf)
1667 DO_2SHIFT_FP(VCVT_FS_fixed, vcvt_fs)
1668 DO_2SHIFT_FP(VCVT_FU_fixed, vcvt_fu)
1670 static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a,
1671 MVEGenTwoOpShiftFn *fn)
1673 TCGv_ptr qda;
1674 TCGv_i32 rm;
1676 if (!dc_isar_feature(aa32_mve, s) ||
1677 !mve_check_qreg_bank(s, a->qda) ||
1678 a->rm == 13 || a->rm == 15 || !fn) {
1679 /* Rm cases are UNPREDICTABLE */
1680 return false;
1682 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1683 return true;
1686 qda = mve_qreg_ptr(a->qda);
1687 rm = load_reg(s, a->rm);
1688 fn(tcg_env, qda, qda, rm);
1689 mve_update_eci(s);
1690 return true;
1693 #define DO_2SHIFT_SCALAR(INSN, FN) \
1694 static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a) \
1696 static MVEGenTwoOpShiftFn * const fns[] = { \
1697 gen_helper_mve_##FN##b, \
1698 gen_helper_mve_##FN##h, \
1699 gen_helper_mve_##FN##w, \
1700 NULL, \
1701 }; \
1702 return do_2shift_scalar(s, a, fns[a->size]); \
1705 DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s)
1706 DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u)
1707 DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s)
1708 DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u)
1709 DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s)
1710 DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u)
1711 DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s)
1712 DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u)
1714 #define DO_VSHLL(INSN, FN) \
1715 static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
1717 static MVEGenTwoOpShiftFn * const fns[] = { \
1718 gen_helper_mve_##FN##b, \
1719 gen_helper_mve_##FN##h, \
1720 }; \
1721 return do_2shift_vec(s, a, fns[a->size], false, do_gvec_##FN); \
1725 * For the VSHLL vector helpers, the vece is the size of the input
1726 * (ie MO_8 or MO_16); the helpers want to work in the output size.
1727 * The shift count can be 0..<input size>, inclusive. (0 is VMOVL.)
1729 static void do_gvec_vshllbs(unsigned vece, uint32_t dofs, uint32_t aofs,
1730 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1732 unsigned ovece = vece + 1;
1733 unsigned ibits = vece == MO_8 ? 8 : 16;
1734 tcg_gen_gvec_shli(ovece, dofs, aofs, ibits, oprsz, maxsz);
1735 tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1738 static void do_gvec_vshllbu(unsigned vece, uint32_t dofs, uint32_t aofs,
1739 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1741 unsigned ovece = vece + 1;
1742 tcg_gen_gvec_andi(ovece, dofs, aofs,
1743 ovece == MO_16 ? 0xff : 0xffff, oprsz, maxsz);
1744 tcg_gen_gvec_shli(ovece, dofs, dofs, shift, oprsz, maxsz);
1747 static void do_gvec_vshllts(unsigned vece, uint32_t dofs, uint32_t aofs,
1748 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1750 unsigned ovece = vece + 1;
1751 unsigned ibits = vece == MO_8 ? 8 : 16;
1752 if (shift == 0) {
1753 tcg_gen_gvec_sari(ovece, dofs, aofs, ibits, oprsz, maxsz);
1754 } else {
1755 tcg_gen_gvec_andi(ovece, dofs, aofs,
1756 ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1757 tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1761 static void do_gvec_vshlltu(unsigned vece, uint32_t dofs, uint32_t aofs,
1762 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1764 unsigned ovece = vece + 1;
1765 unsigned ibits = vece == MO_8 ? 8 : 16;
1766 if (shift == 0) {
1767 tcg_gen_gvec_shri(ovece, dofs, aofs, ibits, oprsz, maxsz);
1768 } else {
1769 tcg_gen_gvec_andi(ovece, dofs, aofs,
1770 ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1771 tcg_gen_gvec_shri(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1775 DO_VSHLL(VSHLL_BS, vshllbs)
1776 DO_VSHLL(VSHLL_BU, vshllbu)
1777 DO_VSHLL(VSHLL_TS, vshllts)
1778 DO_VSHLL(VSHLL_TU, vshlltu)
1780 #define DO_2SHIFT_N(INSN, FN) \
1781 static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
1783 static MVEGenTwoOpShiftFn * const fns[] = { \
1784 gen_helper_mve_##FN##b, \
1785 gen_helper_mve_##FN##h, \
1786 }; \
1787 return do_2shift(s, a, fns[a->size], false); \
1790 DO_2SHIFT_N(VSHRNB, vshrnb)
1791 DO_2SHIFT_N(VSHRNT, vshrnt)
1792 DO_2SHIFT_N(VRSHRNB, vrshrnb)
1793 DO_2SHIFT_N(VRSHRNT, vrshrnt)
1794 DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s)
1795 DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s)
1796 DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u)
1797 DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u)
1798 DO_2SHIFT_N(VQSHRUNB, vqshrunb)
1799 DO_2SHIFT_N(VQSHRUNT, vqshrunt)
1800 DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s)
1801 DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s)
1802 DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u)
1803 DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u)
1804 DO_2SHIFT_N(VQRSHRUNB, vqrshrunb)
1805 DO_2SHIFT_N(VQRSHRUNT, vqrshrunt)
1807 static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a)
1810 * Whole Vector Left Shift with Carry. The carry is taken
1811 * from a general purpose register and written back there.
1812 * An imm of 0 means "shift by 32".
1814 TCGv_ptr qd;
1815 TCGv_i32 rdm;
1817 if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1818 return false;
1820 if (a->rdm == 13 || a->rdm == 15) {
1821 /* CONSTRAINED UNPREDICTABLE: we UNDEF */
1822 return false;
1824 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1825 return true;
1828 qd = mve_qreg_ptr(a->qd);
1829 rdm = load_reg(s, a->rdm);
1830 gen_helper_mve_vshlc(rdm, tcg_env, qd, rdm, tcg_constant_i32(a->imm));
1831 store_reg(s, a->rdm, rdm);
1832 mve_update_eci(s);
1833 return true;
1836 static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn)
1838 TCGv_ptr qd;
1839 TCGv_i32 rn;
1842 * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP).
1843 * This fills the vector with elements of successively increasing
1844 * or decreasing values, starting from Rn.
1846 if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1847 return false;
1849 if (a->size == MO_64) {
1850 /* size 0b11 is another encoding */
1851 return false;
1853 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1854 return true;
1857 qd = mve_qreg_ptr(a->qd);
1858 rn = load_reg(s, a->rn);
1859 fn(rn, tcg_env, qd, rn, tcg_constant_i32(a->imm));
1860 store_reg(s, a->rn, rn);
1861 mve_update_eci(s);
1862 return true;
1865 static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn)
1867 TCGv_ptr qd;
1868 TCGv_i32 rn, rm;
1871 * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP)
1872 * This fills the vector with elements of successively increasing
1873 * or decreasing values, starting from Rn. Rm specifies a point where
1874 * the count wraps back around to 0. The updated offset is written back
1875 * to Rn.
1877 if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1878 return false;
1880 if (!fn || a->rm == 13 || a->rm == 15) {
1882 * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE;
1883 * Rm == 13 is VIWDUP, VDWDUP.
1885 return false;
1887 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1888 return true;
1891 qd = mve_qreg_ptr(a->qd);
1892 rn = load_reg(s, a->rn);
1893 rm = load_reg(s, a->rm);
1894 fn(rn, tcg_env, qd, rn, rm, tcg_constant_i32(a->imm));
1895 store_reg(s, a->rn, rn);
1896 mve_update_eci(s);
1897 return true;
1900 static bool trans_VIDUP(DisasContext *s, arg_vidup *a)
1902 static MVEGenVIDUPFn * const fns[] = {
1903 gen_helper_mve_vidupb,
1904 gen_helper_mve_viduph,
1905 gen_helper_mve_vidupw,
1906 NULL,
1908 return do_vidup(s, a, fns[a->size]);
1911 static bool trans_VDDUP(DisasContext *s, arg_vidup *a)
1913 static MVEGenVIDUPFn * const fns[] = {
1914 gen_helper_mve_vidupb,
1915 gen_helper_mve_viduph,
1916 gen_helper_mve_vidupw,
1917 NULL,
1919 /* VDDUP is just like VIDUP but with a negative immediate */
1920 a->imm = -a->imm;
1921 return do_vidup(s, a, fns[a->size]);
1924 static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a)
1926 static MVEGenVIWDUPFn * const fns[] = {
1927 gen_helper_mve_viwdupb,
1928 gen_helper_mve_viwduph,
1929 gen_helper_mve_viwdupw,
1930 NULL,
1932 return do_viwdup(s, a, fns[a->size]);
1935 static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a)
1937 static MVEGenVIWDUPFn * const fns[] = {
1938 gen_helper_mve_vdwdupb,
1939 gen_helper_mve_vdwduph,
1940 gen_helper_mve_vdwdupw,
1941 NULL,
1943 return do_viwdup(s, a, fns[a->size]);
1946 static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn)
1948 TCGv_ptr qn, qm;
1950 if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
1951 !fn) {
1952 return false;
1954 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1955 return true;
1958 qn = mve_qreg_ptr(a->qn);
1959 qm = mve_qreg_ptr(a->qm);
1960 fn(tcg_env, qn, qm);
1961 if (a->mask) {
1962 /* VPT */
1963 gen_vpst(s, a->mask);
1965 /* This insn updates predication bits */
1966 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1967 mve_update_eci(s);
1968 return true;
1971 static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a,
1972 MVEGenScalarCmpFn *fn)
1974 TCGv_ptr qn;
1975 TCGv_i32 rm;
1977 if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) {
1978 return false;
1980 if (!mve_eci_check(s) || !vfp_access_check(s)) {
1981 return true;
1984 qn = mve_qreg_ptr(a->qn);
1985 if (a->rm == 15) {
1986 /* Encoding Rm=0b1111 means "constant zero" */
1987 rm = tcg_constant_i32(0);
1988 } else {
1989 rm = load_reg(s, a->rm);
1991 fn(tcg_env, qn, rm);
1992 if (a->mask) {
1993 /* VPT */
1994 gen_vpst(s, a->mask);
1996 /* This insn updates predication bits */
1997 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1998 mve_update_eci(s);
1999 return true;
2002 #define DO_VCMP(INSN, FN) \
2003 static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \
2005 static MVEGenCmpFn * const fns[] = { \
2006 gen_helper_mve_##FN##b, \
2007 gen_helper_mve_##FN##h, \
2008 gen_helper_mve_##FN##w, \
2009 NULL, \
2010 }; \
2011 return do_vcmp(s, a, fns[a->size]); \
2013 static bool trans_##INSN##_scalar(DisasContext *s, \
2014 arg_vcmp_scalar *a) \
2016 static MVEGenScalarCmpFn * const fns[] = { \
2017 gen_helper_mve_##FN##_scalarb, \
2018 gen_helper_mve_##FN##_scalarh, \
2019 gen_helper_mve_##FN##_scalarw, \
2020 NULL, \
2021 }; \
2022 return do_vcmp_scalar(s, a, fns[a->size]); \
2025 DO_VCMP(VCMPEQ, vcmpeq)
2026 DO_VCMP(VCMPNE, vcmpne)
2027 DO_VCMP(VCMPCS, vcmpcs)
2028 DO_VCMP(VCMPHI, vcmphi)
2029 DO_VCMP(VCMPGE, vcmpge)
2030 DO_VCMP(VCMPLT, vcmplt)
2031 DO_VCMP(VCMPGT, vcmpgt)
2032 DO_VCMP(VCMPLE, vcmple)
2034 #define DO_VCMP_FP(INSN, FN) \
2035 static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \
2037 static MVEGenCmpFn * const fns[] = { \
2038 NULL, \
2039 gen_helper_mve_##FN##h, \
2040 gen_helper_mve_##FN##s, \
2041 NULL, \
2042 }; \
2043 if (!dc_isar_feature(aa32_mve_fp, s)) { \
2044 return false; \
2046 return do_vcmp(s, a, fns[a->size]); \
2048 static bool trans_##INSN##_scalar(DisasContext *s, \
2049 arg_vcmp_scalar *a) \
2051 static MVEGenScalarCmpFn * const fns[] = { \
2052 NULL, \
2053 gen_helper_mve_##FN##_scalarh, \
2054 gen_helper_mve_##FN##_scalars, \
2055 NULL, \
2056 }; \
2057 if (!dc_isar_feature(aa32_mve_fp, s)) { \
2058 return false; \
2060 return do_vcmp_scalar(s, a, fns[a->size]); \
2063 DO_VCMP_FP(VCMPEQ_fp, vfcmpeq)
2064 DO_VCMP_FP(VCMPNE_fp, vfcmpne)
2065 DO_VCMP_FP(VCMPGE_fp, vfcmpge)
2066 DO_VCMP_FP(VCMPLT_fp, vfcmplt)
2067 DO_VCMP_FP(VCMPGT_fp, vfcmpgt)
2068 DO_VCMP_FP(VCMPLE_fp, vfcmple)
2070 static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn)
2073 * MIN/MAX operations across a vector: compute the min or
2074 * max of the initial value in a general purpose register
2075 * and all the elements in the vector, and store it back
2076 * into the general purpose register.
2078 TCGv_ptr qm;
2079 TCGv_i32 rda;
2081 if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
2082 !fn || a->rda == 13 || a->rda == 15) {
2083 /* Rda cases are UNPREDICTABLE */
2084 return false;
2086 if (!mve_eci_check(s) || !vfp_access_check(s)) {
2087 return true;
2090 qm = mve_qreg_ptr(a->qm);
2091 rda = load_reg(s, a->rda);
2092 fn(rda, tcg_env, qm, rda);
2093 store_reg(s, a->rda, rda);
2094 mve_update_eci(s);
2095 return true;
2098 #define DO_VMAXV(INSN, FN) \
2099 static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \
2101 static MVEGenVADDVFn * const fns[] = { \
2102 gen_helper_mve_##FN##b, \
2103 gen_helper_mve_##FN##h, \
2104 gen_helper_mve_##FN##w, \
2105 NULL, \
2106 }; \
2107 return do_vmaxv(s, a, fns[a->size]); \
2110 DO_VMAXV(VMAXV_S, vmaxvs)
2111 DO_VMAXV(VMAXV_U, vmaxvu)
2112 DO_VMAXV(VMAXAV, vmaxav)
2113 DO_VMAXV(VMINV_S, vminvs)
2114 DO_VMAXV(VMINV_U, vminvu)
2115 DO_VMAXV(VMINAV, vminav)
2117 #define DO_VMAXV_FP(INSN, FN) \
2118 static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \
2120 static MVEGenVADDVFn * const fns[] = { \
2121 NULL, \
2122 gen_helper_mve_##FN##h, \
2123 gen_helper_mve_##FN##s, \
2124 NULL, \
2125 }; \
2126 if (!dc_isar_feature(aa32_mve_fp, s)) { \
2127 return false; \
2129 return do_vmaxv(s, a, fns[a->size]); \
2132 DO_VMAXV_FP(VMAXNMV, vmaxnmv)
2133 DO_VMAXV_FP(VMINNMV, vminnmv)
2134 DO_VMAXV_FP(VMAXNMAV, vmaxnmav)
2135 DO_VMAXV_FP(VMINNMAV, vminnmav)
2137 static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn)
2139 /* Absolute difference accumulated across vector */
2140 TCGv_ptr qn, qm;
2141 TCGv_i32 rda;
2143 if (!dc_isar_feature(aa32_mve, s) ||
2144 !mve_check_qreg_bank(s, a->qm | a->qn) ||
2145 !fn || a->rda == 13 || a->rda == 15) {
2146 /* Rda cases are UNPREDICTABLE */
2147 return false;
2149 if (!mve_eci_check(s) || !vfp_access_check(s)) {
2150 return true;
2153 qm = mve_qreg_ptr(a->qm);
2154 qn = mve_qreg_ptr(a->qn);
2155 rda = load_reg(s, a->rda);
2156 fn(rda, tcg_env, qn, qm, rda);
2157 store_reg(s, a->rda, rda);
2158 mve_update_eci(s);
2159 return true;
2162 #define DO_VABAV(INSN, FN) \
2163 static bool trans_##INSN(DisasContext *s, arg_vabav *a) \
2165 static MVEGenVABAVFn * const fns[] = { \
2166 gen_helper_mve_##FN##b, \
2167 gen_helper_mve_##FN##h, \
2168 gen_helper_mve_##FN##w, \
2169 NULL, \
2170 }; \
2171 return do_vabav(s, a, fns[a->size]); \
2174 DO_VABAV(VABAV_S, vabavs)
2175 DO_VABAV(VABAV_U, vabavu)
2177 static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2180 * VMOV two 32-bit vector lanes to two general-purpose registers.
2181 * This insn is not predicated but it is subject to beat-wise
2182 * execution if it is not in an IT block. For us this means
2183 * only that if PSR.ECI says we should not be executing the beat
2184 * corresponding to the lane of the vector register being accessed
2185 * then we should skip performing the move, and that we need to do
2186 * the usual check for bad ECI state and advance of ECI state.
2187 * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2189 TCGv_i32 tmp;
2190 int vd;
2192 if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2193 a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 ||
2194 a->rt == a->rt2) {
2195 /* Rt/Rt2 cases are UNPREDICTABLE */
2196 return false;
2198 if (!mve_eci_check(s) || !vfp_access_check(s)) {
2199 return true;
2202 /* Convert Qreg index to Dreg for read_neon_element32() etc */
2203 vd = a->qd * 2;
2205 if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2206 tmp = tcg_temp_new_i32();
2207 read_neon_element32(tmp, vd, a->idx, MO_32);
2208 store_reg(s, a->rt, tmp);
2210 if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2211 tmp = tcg_temp_new_i32();
2212 read_neon_element32(tmp, vd + 1, a->idx, MO_32);
2213 store_reg(s, a->rt2, tmp);
2216 mve_update_and_store_eci(s);
2217 return true;
2220 static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2223 * VMOV two general-purpose registers to two 32-bit vector lanes.
2224 * This insn is not predicated but it is subject to beat-wise
2225 * execution if it is not in an IT block. For us this means
2226 * only that if PSR.ECI says we should not be executing the beat
2227 * corresponding to the lane of the vector register being accessed
2228 * then we should skip performing the move, and that we need to do
2229 * the usual check for bad ECI state and advance of ECI state.
2230 * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2232 TCGv_i32 tmp;
2233 int vd;
2235 if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2236 a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) {
2237 /* Rt/Rt2 cases are UNPREDICTABLE */
2238 return false;
2240 if (!mve_eci_check(s) || !vfp_access_check(s)) {
2241 return true;
2244 /* Convert Qreg idx to Dreg for read_neon_element32() etc */
2245 vd = a->qd * 2;
2247 if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2248 tmp = load_reg(s, a->rt);
2249 write_neon_element32(tmp, vd, a->idx, MO_32);
2251 if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2252 tmp = load_reg(s, a->rt2);
2253 write_neon_element32(tmp, vd + 1, a->idx, MO_32);
2256 mve_update_and_store_eci(s);
2257 return true;