4 * Copyright (c) 2003 Fabrice Bellard
5 * Copyright (c) 2005-2007 CodeSourcery
6 * Copyright (c) 2007 OpenedHand, Ltd.
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
23 #include "translate.h"
24 #include "translate-a32.h"
27 #include "semihosting/semihost.h"
29 #include "exec/helper-proto.h"
31 #define HELPER_H "helper.h"
32 #include "exec/helper-info.c.inc"
35 #define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T)
36 #define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5)
37 /* currently all emulated v5 cores are also v5TE, so don't bother */
38 #define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5)
39 #define ENABLE_ARCH_5J dc_isar_feature(aa32_jazelle, s)
40 #define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6)
41 #define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K)
42 #define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2)
43 #define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7)
44 #define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8)
46 /* These are TCG temporaries used only by the legacy iwMMXt decoder */
47 static TCGv_i64 cpu_V0
, cpu_V1
, cpu_M0
;
48 /* These are TCG globals which alias CPUARMState fields */
49 static TCGv_i32 cpu_R
[16];
50 TCGv_i32 cpu_CF
, cpu_NF
, cpu_VF
, cpu_ZF
;
51 TCGv_i64 cpu_exclusive_addr
;
52 TCGv_i64 cpu_exclusive_val
;
54 static const char * const regnames
[] =
55 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
56 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" };
59 /* initialize TCG globals. */
60 void arm_translate_init(void)
64 for (i
= 0; i
< 16; i
++) {
65 cpu_R
[i
] = tcg_global_mem_new_i32(tcg_env
,
66 offsetof(CPUARMState
, regs
[i
]),
69 cpu_CF
= tcg_global_mem_new_i32(tcg_env
, offsetof(CPUARMState
, CF
), "CF");
70 cpu_NF
= tcg_global_mem_new_i32(tcg_env
, offsetof(CPUARMState
, NF
), "NF");
71 cpu_VF
= tcg_global_mem_new_i32(tcg_env
, offsetof(CPUARMState
, VF
), "VF");
72 cpu_ZF
= tcg_global_mem_new_i32(tcg_env
, offsetof(CPUARMState
, ZF
), "ZF");
74 cpu_exclusive_addr
= tcg_global_mem_new_i64(tcg_env
,
75 offsetof(CPUARMState
, exclusive_addr
), "exclusive_addr");
76 cpu_exclusive_val
= tcg_global_mem_new_i64(tcg_env
,
77 offsetof(CPUARMState
, exclusive_val
), "exclusive_val");
82 uint64_t asimd_imm_const(uint32_t imm
, int cmode
, int op
)
84 /* Expand the encoded constant as per AdvSIMDExpandImm pseudocode */
102 imm
= (imm
<< 8) | (imm
<< 24);
105 imm
= (imm
<< 8) | 0xff;
108 imm
= (imm
<< 16) | 0xffff;
113 * This and cmode == 15 op == 1 are the only cases where
114 * the top and bottom 32 bits of the encoded constant differ.
119 for (n
= 0; n
< 8; n
++) {
120 if (imm
& (1 << n
)) {
121 imm64
|= (0xffULL
<< (n
* 8));
126 imm
|= (imm
<< 8) | (imm
<< 16) | (imm
<< 24);
130 /* Reserved encoding for AArch32; valid for AArch64 */
131 uint64_t imm64
= (uint64_t)(imm
& 0x3f) << 48;
133 imm64
|= 0x8000000000000000ULL
;
136 imm64
|= 0x3fc0000000000000ULL
;
138 imm64
|= 0x4000000000000000ULL
;
142 imm
= ((imm
& 0x80) << 24) | ((imm
& 0x3f) << 19)
143 | ((imm
& 0x40) ? (0x1f << 25) : (1 << 30));
149 return dup_const(MO_32
, imm
);
152 /* Generate a label used for skipping this instruction */
153 void arm_gen_condlabel(DisasContext
*s
)
156 s
->condlabel
= gen_disas_label(s
);
161 /* Flags for the disas_set_da_iss info argument:
162 * lower bits hold the Rt register number, higher bits are flags.
164 typedef enum ISSInfo
{
167 ISSInvalid
= (1 << 5),
168 ISSIsAcqRel
= (1 << 6),
169 ISSIsWrite
= (1 << 7),
170 ISSIs16Bit
= (1 << 8),
174 * Store var into env + offset to a member with size bytes.
175 * Free var after use.
177 void store_cpu_offset(TCGv_i32 var
, int offset
, int size
)
181 tcg_gen_st8_i32(var
, tcg_env
, offset
);
184 tcg_gen_st_i32(var
, tcg_env
, offset
);
187 g_assert_not_reached();
191 /* Save the syndrome information for a Data Abort */
192 static void disas_set_da_iss(DisasContext
*s
, MemOp memop
, ISSInfo issinfo
)
195 int sas
= memop
& MO_SIZE
;
196 bool sse
= memop
& MO_SIGN
;
197 bool is_acqrel
= issinfo
& ISSIsAcqRel
;
198 bool is_write
= issinfo
& ISSIsWrite
;
199 bool is_16bit
= issinfo
& ISSIs16Bit
;
200 int srt
= issinfo
& ISSRegMask
;
202 if (issinfo
& ISSInvalid
) {
203 /* Some callsites want to conditionally provide ISS info,
204 * eg "only if this was not a writeback"
210 /* For AArch32, insns where the src/dest is R15 never generate
211 * ISS information. Catching that here saves checking at all
217 syn
= syn_data_abort_with_iss(0, sas
, sse
, srt
, 0, is_acqrel
,
218 0, 0, 0, is_write
, 0, is_16bit
);
219 disas_set_insn_syndrome(s
, syn
);
222 static inline int get_a32_user_mem_index(DisasContext
*s
)
224 /* Return the core mmu_idx to use for A32/T32 "unprivileged load/store"
226 * if PL2, UNPREDICTABLE (we choose to implement as if PL0)
227 * otherwise, access as if at PL0.
229 switch (s
->mmu_idx
) {
231 case ARMMMUIdx_E2
: /* this one is UNPREDICTABLE */
232 case ARMMMUIdx_E10_0
:
233 case ARMMMUIdx_E10_1
:
234 case ARMMMUIdx_E10_1_PAN
:
235 return arm_to_core_mmu_idx(ARMMMUIdx_E10_0
);
236 case ARMMMUIdx_MUser
:
237 case ARMMMUIdx_MPriv
:
238 return arm_to_core_mmu_idx(ARMMMUIdx_MUser
);
239 case ARMMMUIdx_MUserNegPri
:
240 case ARMMMUIdx_MPrivNegPri
:
241 return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri
);
242 case ARMMMUIdx_MSUser
:
243 case ARMMMUIdx_MSPriv
:
244 return arm_to_core_mmu_idx(ARMMMUIdx_MSUser
);
245 case ARMMMUIdx_MSUserNegPri
:
246 case ARMMMUIdx_MSPrivNegPri
:
247 return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri
);
249 g_assert_not_reached();
253 /* The pc_curr difference for an architectural jump. */
254 static target_long
jmp_diff(DisasContext
*s
, target_long diff
)
256 return diff
+ (s
->thumb
? 4 : 8);
259 static void gen_pc_plus_diff(DisasContext
*s
, TCGv_i32 var
, target_long diff
)
261 assert(s
->pc_save
!= -1);
262 if (tb_cflags(s
->base
.tb
) & CF_PCREL
) {
263 tcg_gen_addi_i32(var
, cpu_R
[15], (s
->pc_curr
- s
->pc_save
) + diff
);
265 tcg_gen_movi_i32(var
, s
->pc_curr
+ diff
);
269 /* Set a variable to the value of a CPU register. */
270 void load_reg_var(DisasContext
*s
, TCGv_i32 var
, int reg
)
273 gen_pc_plus_diff(s
, var
, jmp_diff(s
, 0));
275 tcg_gen_mov_i32(var
, cpu_R
[reg
]);
280 * Create a new temp, REG + OFS, except PC is ALIGN(PC, 4).
281 * This is used for load/store for which use of PC implies (literal),
282 * or ADD that implies ADR.
284 TCGv_i32
add_reg_for_lit(DisasContext
*s
, int reg
, int ofs
)
286 TCGv_i32 tmp
= tcg_temp_new_i32();
290 * This address is computed from an aligned PC:
291 * subtract off the low bits.
293 gen_pc_plus_diff(s
, tmp
, jmp_diff(s
, ofs
- (s
->pc_curr
& 3)));
295 tcg_gen_addi_i32(tmp
, cpu_R
[reg
], ofs
);
300 /* Set a CPU register. The source must be a temporary and will be
302 void store_reg(DisasContext
*s
, int reg
, TCGv_i32 var
)
305 /* In Thumb mode, we must ignore bit 0.
306 * In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0]
307 * are not 0b00, but for ARMv6 and above, we must ignore bits [1:0].
308 * We choose to ignore [1:0] in ARM mode for all architecture versions.
310 tcg_gen_andi_i32(var
, var
, s
->thumb
? ~1 : ~3);
311 s
->base
.is_jmp
= DISAS_JUMP
;
313 } else if (reg
== 13 && arm_dc_feature(s
, ARM_FEATURE_M
)) {
314 /* For M-profile SP bits [1:0] are always zero */
315 tcg_gen_andi_i32(var
, var
, ~3);
317 tcg_gen_mov_i32(cpu_R
[reg
], var
);
321 * Variant of store_reg which applies v8M stack-limit checks before updating
322 * SP. If the check fails this will result in an exception being taken.
323 * We disable the stack checks for CONFIG_USER_ONLY because we have
324 * no idea what the stack limits should be in that case.
325 * If stack checking is not being done this just acts like store_reg().
327 static void store_sp_checked(DisasContext
*s
, TCGv_i32 var
)
329 #ifndef CONFIG_USER_ONLY
330 if (s
->v8m_stackcheck
) {
331 gen_helper_v8m_stackcheck(tcg_env
, var
);
334 store_reg(s
, 13, var
);
337 /* Value extensions. */
338 #define gen_uxtb(var) tcg_gen_ext8u_i32(var, var)
339 #define gen_uxth(var) tcg_gen_ext16u_i32(var, var)
340 #define gen_sxtb(var) tcg_gen_ext8s_i32(var, var)
341 #define gen_sxth(var) tcg_gen_ext16s_i32(var, var)
343 #define gen_sxtb16(var) gen_helper_sxtb16(var, var)
344 #define gen_uxtb16(var) gen_helper_uxtb16(var, var)
346 void gen_set_cpsr(TCGv_i32 var
, uint32_t mask
)
348 gen_helper_cpsr_write(tcg_env
, var
, tcg_constant_i32(mask
));
351 static void gen_rebuild_hflags(DisasContext
*s
, bool new_el
)
353 bool m_profile
= arm_dc_feature(s
, ARM_FEATURE_M
);
357 gen_helper_rebuild_hflags_m32_newel(tcg_env
);
359 gen_helper_rebuild_hflags_a32_newel(tcg_env
);
362 TCGv_i32 tcg_el
= tcg_constant_i32(s
->current_el
);
364 gen_helper_rebuild_hflags_m32(tcg_env
, tcg_el
);
366 gen_helper_rebuild_hflags_a32(tcg_env
, tcg_el
);
371 static void gen_exception_internal(int excp
)
373 assert(excp_is_internal(excp
));
374 gen_helper_exception_internal(tcg_env
, tcg_constant_i32(excp
));
377 static void gen_singlestep_exception(DisasContext
*s
)
379 /* We just completed step of an insn. Move from Active-not-pending
380 * to Active-pending, and then also take the swstep exception.
381 * This corresponds to making the (IMPDEF) choice to prioritize
382 * swstep exceptions over asynchronous exceptions taken to an exception
383 * level where debug is disabled. This choice has the advantage that
384 * we do not need to maintain internal state corresponding to the
385 * ISV/EX syndrome bits between completion of the step and generation
386 * of the exception, and our syndrome information is always correct.
389 gen_swstep_exception(s
, 1, s
->is_ldex
);
390 s
->base
.is_jmp
= DISAS_NORETURN
;
393 void clear_eci_state(DisasContext
*s
)
396 * Clear any ECI/ICI state: used when a load multiple/store
397 * multiple insn executes.
400 store_cpu_field_constant(0, condexec_bits
);
405 static void gen_smul_dual(TCGv_i32 a
, TCGv_i32 b
)
407 TCGv_i32 tmp1
= tcg_temp_new_i32();
408 TCGv_i32 tmp2
= tcg_temp_new_i32();
409 tcg_gen_ext16s_i32(tmp1
, a
);
410 tcg_gen_ext16s_i32(tmp2
, b
);
411 tcg_gen_mul_i32(tmp1
, tmp1
, tmp2
);
412 tcg_gen_sari_i32(a
, a
, 16);
413 tcg_gen_sari_i32(b
, b
, 16);
414 tcg_gen_mul_i32(b
, b
, a
);
415 tcg_gen_mov_i32(a
, tmp1
);
418 /* Byteswap each halfword. */
419 void gen_rev16(TCGv_i32 dest
, TCGv_i32 var
)
421 TCGv_i32 tmp
= tcg_temp_new_i32();
422 TCGv_i32 mask
= tcg_constant_i32(0x00ff00ff);
423 tcg_gen_shri_i32(tmp
, var
, 8);
424 tcg_gen_and_i32(tmp
, tmp
, mask
);
425 tcg_gen_and_i32(var
, var
, mask
);
426 tcg_gen_shli_i32(var
, var
, 8);
427 tcg_gen_or_i32(dest
, var
, tmp
);
430 /* Byteswap low halfword and sign extend. */
431 static void gen_revsh(TCGv_i32 dest
, TCGv_i32 var
)
433 tcg_gen_bswap16_i32(var
, var
, TCG_BSWAP_OS
);
436 /* Dual 16-bit add. Result placed in t0 and t1 is marked as dead.
437 tmp = (t0 ^ t1) & 0x8000;
440 t0 = (t0 + t1) ^ tmp;
443 static void gen_add16(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
445 TCGv_i32 tmp
= tcg_temp_new_i32();
446 tcg_gen_xor_i32(tmp
, t0
, t1
);
447 tcg_gen_andi_i32(tmp
, tmp
, 0x8000);
448 tcg_gen_andi_i32(t0
, t0
, ~0x8000);
449 tcg_gen_andi_i32(t1
, t1
, ~0x8000);
450 tcg_gen_add_i32(t0
, t0
, t1
);
451 tcg_gen_xor_i32(dest
, t0
, tmp
);
454 /* Set N and Z flags from var. */
455 static inline void gen_logic_CC(TCGv_i32 var
)
457 tcg_gen_mov_i32(cpu_NF
, var
);
458 tcg_gen_mov_i32(cpu_ZF
, var
);
461 /* dest = T0 + T1 + CF. */
462 static void gen_add_carry(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
464 tcg_gen_add_i32(dest
, t0
, t1
);
465 tcg_gen_add_i32(dest
, dest
, cpu_CF
);
468 /* dest = T0 - T1 + CF - 1. */
469 static void gen_sub_carry(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
471 tcg_gen_sub_i32(dest
, t0
, t1
);
472 tcg_gen_add_i32(dest
, dest
, cpu_CF
);
473 tcg_gen_subi_i32(dest
, dest
, 1);
476 /* dest = T0 + T1. Compute C, N, V and Z flags */
477 static void gen_add_CC(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
479 TCGv_i32 tmp
= tcg_temp_new_i32();
480 tcg_gen_movi_i32(tmp
, 0);
481 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, t0
, tmp
, t1
, tmp
);
482 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
483 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0
);
484 tcg_gen_xor_i32(tmp
, t0
, t1
);
485 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tmp
);
486 tcg_gen_mov_i32(dest
, cpu_NF
);
489 /* dest = T0 + T1 + CF. Compute C, N, V and Z flags */
490 static void gen_adc_CC(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
492 TCGv_i32 tmp
= tcg_temp_new_i32();
493 if (TCG_TARGET_HAS_add2_i32
) {
494 tcg_gen_movi_i32(tmp
, 0);
495 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, t0
, tmp
, cpu_CF
, tmp
);
496 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, cpu_NF
, cpu_CF
, t1
, tmp
);
498 TCGv_i64 q0
= tcg_temp_new_i64();
499 TCGv_i64 q1
= tcg_temp_new_i64();
500 tcg_gen_extu_i32_i64(q0
, t0
);
501 tcg_gen_extu_i32_i64(q1
, t1
);
502 tcg_gen_add_i64(q0
, q0
, q1
);
503 tcg_gen_extu_i32_i64(q1
, cpu_CF
);
504 tcg_gen_add_i64(q0
, q0
, q1
);
505 tcg_gen_extr_i64_i32(cpu_NF
, cpu_CF
, q0
);
507 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
508 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0
);
509 tcg_gen_xor_i32(tmp
, t0
, t1
);
510 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tmp
);
511 tcg_gen_mov_i32(dest
, cpu_NF
);
514 /* dest = T0 - T1. Compute C, N, V and Z flags */
515 static void gen_sub_CC(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
518 tcg_gen_sub_i32(cpu_NF
, t0
, t1
);
519 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
520 tcg_gen_setcond_i32(TCG_COND_GEU
, cpu_CF
, t0
, t1
);
521 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0
);
522 tmp
= tcg_temp_new_i32();
523 tcg_gen_xor_i32(tmp
, t0
, t1
);
524 tcg_gen_and_i32(cpu_VF
, cpu_VF
, tmp
);
525 tcg_gen_mov_i32(dest
, cpu_NF
);
528 /* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */
529 static void gen_sbc_CC(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
531 TCGv_i32 tmp
= tcg_temp_new_i32();
532 tcg_gen_not_i32(tmp
, t1
);
533 gen_adc_CC(dest
, t0
, tmp
);
536 #define GEN_SHIFT(name) \
537 static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \
539 TCGv_i32 tmpd = tcg_temp_new_i32(); \
540 TCGv_i32 tmp1 = tcg_temp_new_i32(); \
541 TCGv_i32 zero = tcg_constant_i32(0); \
542 tcg_gen_andi_i32(tmp1, t1, 0x1f); \
543 tcg_gen_##name##_i32(tmpd, t0, tmp1); \
544 tcg_gen_andi_i32(tmp1, t1, 0xe0); \
545 tcg_gen_movcond_i32(TCG_COND_NE, dest, tmp1, zero, zero, tmpd); \
551 static void gen_sar(TCGv_i32 dest
, TCGv_i32 t0
, TCGv_i32 t1
)
553 TCGv_i32 tmp1
= tcg_temp_new_i32();
555 tcg_gen_andi_i32(tmp1
, t1
, 0xff);
556 tcg_gen_umin_i32(tmp1
, tmp1
, tcg_constant_i32(31));
557 tcg_gen_sar_i32(dest
, t0
, tmp1
);
560 static void shifter_out_im(TCGv_i32 var
, int shift
)
562 tcg_gen_extract_i32(cpu_CF
, var
, shift
, 1);
565 /* Shift by immediate. Includes special handling for shift == 0. */
566 static inline void gen_arm_shift_im(TCGv_i32 var
, int shiftop
,
567 int shift
, int flags
)
573 shifter_out_im(var
, 32 - shift
);
574 tcg_gen_shli_i32(var
, var
, shift
);
580 tcg_gen_shri_i32(cpu_CF
, var
, 31);
582 tcg_gen_movi_i32(var
, 0);
585 shifter_out_im(var
, shift
- 1);
586 tcg_gen_shri_i32(var
, var
, shift
);
593 shifter_out_im(var
, shift
- 1);
596 tcg_gen_sari_i32(var
, var
, shift
);
598 case 3: /* ROR/RRX */
601 shifter_out_im(var
, shift
- 1);
602 tcg_gen_rotri_i32(var
, var
, shift
); break;
604 TCGv_i32 tmp
= tcg_temp_new_i32();
605 tcg_gen_shli_i32(tmp
, cpu_CF
, 31);
607 shifter_out_im(var
, 0);
608 tcg_gen_shri_i32(var
, var
, 1);
609 tcg_gen_or_i32(var
, var
, tmp
);
614 static inline void gen_arm_shift_reg(TCGv_i32 var
, int shiftop
,
615 TCGv_i32 shift
, int flags
)
619 case 0: gen_helper_shl_cc(var
, tcg_env
, var
, shift
); break;
620 case 1: gen_helper_shr_cc(var
, tcg_env
, var
, shift
); break;
621 case 2: gen_helper_sar_cc(var
, tcg_env
, var
, shift
); break;
622 case 3: gen_helper_ror_cc(var
, tcg_env
, var
, shift
); break;
627 gen_shl(var
, var
, shift
);
630 gen_shr(var
, var
, shift
);
633 gen_sar(var
, var
, shift
);
635 case 3: tcg_gen_andi_i32(shift
, shift
, 0x1f);
636 tcg_gen_rotr_i32(var
, var
, shift
); break;
642 * Generate a conditional based on ARM condition code cc.
643 * This is common between ARM and Aarch64 targets.
645 void arm_test_cc(DisasCompare
*cmp
, int cc
)
675 case 8: /* hi: C && !Z */
676 case 9: /* ls: !C || Z -> !(C && !Z) */
678 value
= tcg_temp_new_i32();
679 /* CF is 1 for C, so -CF is an all-bits-set mask for C;
680 ZF is non-zero for !Z; so AND the two subexpressions. */
681 tcg_gen_neg_i32(value
, cpu_CF
);
682 tcg_gen_and_i32(value
, value
, cpu_ZF
);
685 case 10: /* ge: N == V -> N ^ V == 0 */
686 case 11: /* lt: N != V -> N ^ V != 0 */
687 /* Since we're only interested in the sign bit, == 0 is >= 0. */
689 value
= tcg_temp_new_i32();
690 tcg_gen_xor_i32(value
, cpu_VF
, cpu_NF
);
693 case 12: /* gt: !Z && N == V */
694 case 13: /* le: Z || N != V */
696 value
= tcg_temp_new_i32();
697 /* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate
698 * the sign bit then AND with ZF to yield the result. */
699 tcg_gen_xor_i32(value
, cpu_VF
, cpu_NF
);
700 tcg_gen_sari_i32(value
, value
, 31);
701 tcg_gen_andc_i32(value
, cpu_ZF
, value
);
704 case 14: /* always */
705 case 15: /* always */
706 /* Use the ALWAYS condition, which will fold early.
707 * It doesn't matter what we use for the value. */
708 cond
= TCG_COND_ALWAYS
;
713 fprintf(stderr
, "Bad condition code 0x%x\n", cc
);
718 cond
= tcg_invert_cond(cond
);
726 void arm_jump_cc(DisasCompare
*cmp
, TCGLabel
*label
)
728 tcg_gen_brcondi_i32(cmp
->cond
, cmp
->value
, 0, label
);
731 void arm_gen_test_cc(int cc
, TCGLabel
*label
)
734 arm_test_cc(&cmp
, cc
);
735 arm_jump_cc(&cmp
, label
);
738 void gen_set_condexec(DisasContext
*s
)
740 if (s
->condexec_mask
) {
741 uint32_t val
= (s
->condexec_cond
<< 4) | (s
->condexec_mask
>> 1);
743 store_cpu_field_constant(val
, condexec_bits
);
747 void gen_update_pc(DisasContext
*s
, target_long diff
)
749 gen_pc_plus_diff(s
, cpu_R
[15], diff
);
750 s
->pc_save
= s
->pc_curr
+ diff
;
753 /* Set PC and Thumb state from var. var is marked as dead. */
754 static inline void gen_bx(DisasContext
*s
, TCGv_i32 var
)
756 s
->base
.is_jmp
= DISAS_JUMP
;
757 tcg_gen_andi_i32(cpu_R
[15], var
, ~1);
758 tcg_gen_andi_i32(var
, var
, 1);
759 store_cpu_field(var
, thumb
);
764 * Set PC and Thumb state from var. var is marked as dead.
765 * For M-profile CPUs, include logic to detect exception-return
766 * branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC,
767 * and BX reg, and no others, and happens only for code in Handler mode.
768 * The Security Extension also requires us to check for the FNC_RETURN
769 * which signals a function return from non-secure state; this can happen
770 * in both Handler and Thread mode.
771 * To avoid having to do multiple comparisons in inline generated code,
772 * we make the check we do here loose, so it will match for EXC_RETURN
773 * in Thread mode. For system emulation do_v7m_exception_exit() checks
774 * for these spurious cases and returns without doing anything (giving
775 * the same behaviour as for a branch to a non-magic address).
777 * In linux-user mode it is unclear what the right behaviour for an
778 * attempted FNC_RETURN should be, because in real hardware this will go
779 * directly to Secure code (ie not the Linux kernel) which will then treat
780 * the error in any way it chooses. For QEMU we opt to make the FNC_RETURN
781 * attempt behave the way it would on a CPU without the security extension,
782 * which is to say "like a normal branch". That means we can simply treat
783 * all branches as normal with no magic address behaviour.
785 static inline void gen_bx_excret(DisasContext
*s
, TCGv_i32 var
)
787 /* Generate the same code here as for a simple bx, but flag via
788 * s->base.is_jmp that we need to do the rest of the work later.
791 #ifndef CONFIG_USER_ONLY
792 if (arm_dc_feature(s
, ARM_FEATURE_M_SECURITY
) ||
793 (s
->v7m_handler_mode
&& arm_dc_feature(s
, ARM_FEATURE_M
))) {
794 s
->base
.is_jmp
= DISAS_BX_EXCRET
;
799 static inline void gen_bx_excret_final_code(DisasContext
*s
)
801 /* Generate the code to finish possible exception return and end the TB */
802 DisasLabel excret_label
= gen_disas_label(s
);
805 if (arm_dc_feature(s
, ARM_FEATURE_M_SECURITY
)) {
806 /* Covers FNC_RETURN and EXC_RETURN magic */
807 min_magic
= FNC_RETURN_MIN_MAGIC
;
809 /* EXC_RETURN magic only */
810 min_magic
= EXC_RETURN_MIN_MAGIC
;
813 /* Is the new PC value in the magic range indicating exception return? */
814 tcg_gen_brcondi_i32(TCG_COND_GEU
, cpu_R
[15], min_magic
, excret_label
.label
);
815 /* No: end the TB as we would for a DISAS_JMP */
817 gen_singlestep_exception(s
);
819 tcg_gen_exit_tb(NULL
, 0);
821 set_disas_label(s
, excret_label
);
822 /* Yes: this is an exception return.
823 * At this point in runtime env->regs[15] and env->thumb will hold
824 * the exception-return magic number, which do_v7m_exception_exit()
825 * will read. Nothing else will be able to see those values because
826 * the cpu-exec main loop guarantees that we will always go straight
827 * from raising the exception to the exception-handling code.
829 * gen_ss_advance(s) does nothing on M profile currently but
830 * calling it is conceptually the right thing as we have executed
831 * this instruction (compare SWI, HVC, SMC handling).
834 gen_exception_internal(EXCP_EXCEPTION_EXIT
);
837 static inline void gen_bxns(DisasContext
*s
, int rm
)
839 TCGv_i32 var
= load_reg(s
, rm
);
841 /* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory
842 * we need to sync state before calling it, but:
843 * - we don't need to do gen_update_pc() because the bxns helper will
844 * always set the PC itself
845 * - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE
846 * unless it's outside an IT block or the last insn in an IT block,
847 * so we know that condexec == 0 (already set at the top of the TB)
848 * is correct in the non-UNPREDICTABLE cases, and we can choose
849 * "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise.
851 gen_helper_v7m_bxns(tcg_env
, var
);
852 s
->base
.is_jmp
= DISAS_EXIT
;
855 static inline void gen_blxns(DisasContext
*s
, int rm
)
857 TCGv_i32 var
= load_reg(s
, rm
);
859 /* We don't need to sync condexec state, for the same reason as bxns.
860 * We do however need to set the PC, because the blxns helper reads it.
861 * The blxns helper may throw an exception.
863 gen_update_pc(s
, curr_insn_len(s
));
864 gen_helper_v7m_blxns(tcg_env
, var
);
865 s
->base
.is_jmp
= DISAS_EXIT
;
868 /* Variant of store_reg which uses branch&exchange logic when storing
869 to r15 in ARM architecture v7 and above. The source must be a temporary
870 and will be marked as dead. */
871 static inline void store_reg_bx(DisasContext
*s
, int reg
, TCGv_i32 var
)
873 if (reg
== 15 && ENABLE_ARCH_7
) {
876 store_reg(s
, reg
, var
);
880 /* Variant of store_reg which uses branch&exchange logic when storing
881 * to r15 in ARM architecture v5T and above. This is used for storing
882 * the results of a LDR/LDM/POP into r15, and corresponds to the cases
883 * in the ARM ARM which use the LoadWritePC() pseudocode function. */
884 static inline void store_reg_from_load(DisasContext
*s
, int reg
, TCGv_i32 var
)
886 if (reg
== 15 && ENABLE_ARCH_5
) {
887 gen_bx_excret(s
, var
);
889 store_reg(s
, reg
, var
);
893 #ifdef CONFIG_USER_ONLY
894 #define IS_USER_ONLY 1
896 #define IS_USER_ONLY 0
899 MemOp
pow2_align(unsigned i
)
901 static const MemOp mop_align
[] = {
902 0, MO_ALIGN_2
, MO_ALIGN_4
, MO_ALIGN_8
, MO_ALIGN_16
, MO_ALIGN_32
904 g_assert(i
< ARRAY_SIZE(mop_align
));
909 * Abstractions of "generate code to do a guest load/store for
910 * AArch32", where a vaddr is always 32 bits (and is zero
911 * extended if we're a 64 bit core) and data is also
912 * 32 bits unless specifically doing a 64 bit access.
913 * These functions work like tcg_gen_qemu_{ld,st}* except
914 * that the address argument is TCGv_i32 rather than TCGv.
917 static TCGv
gen_aa32_addr(DisasContext
*s
, TCGv_i32 a32
, MemOp op
)
919 TCGv addr
= tcg_temp_new();
920 tcg_gen_extu_i32_tl(addr
, a32
);
922 /* Not needed for user-mode BE32, where we use MO_BE instead. */
923 if (!IS_USER_ONLY
&& s
->sctlr_b
&& (op
& MO_SIZE
) < MO_32
) {
924 tcg_gen_xori_tl(addr
, addr
, 4 - (1 << (op
& MO_SIZE
)));
930 * Internal routines are used for NEON cases where the endianness
931 * and/or alignment has already been taken into account and manipulated.
933 void gen_aa32_ld_internal_i32(DisasContext
*s
, TCGv_i32 val
,
934 TCGv_i32 a32
, int index
, MemOp opc
)
936 TCGv addr
= gen_aa32_addr(s
, a32
, opc
);
937 tcg_gen_qemu_ld_i32(val
, addr
, index
, opc
);
940 void gen_aa32_st_internal_i32(DisasContext
*s
, TCGv_i32 val
,
941 TCGv_i32 a32
, int index
, MemOp opc
)
943 TCGv addr
= gen_aa32_addr(s
, a32
, opc
);
944 tcg_gen_qemu_st_i32(val
, addr
, index
, opc
);
947 void gen_aa32_ld_internal_i64(DisasContext
*s
, TCGv_i64 val
,
948 TCGv_i32 a32
, int index
, MemOp opc
)
950 TCGv addr
= gen_aa32_addr(s
, a32
, opc
);
952 tcg_gen_qemu_ld_i64(val
, addr
, index
, opc
);
954 /* Not needed for user-mode BE32, where we use MO_BE instead. */
955 if (!IS_USER_ONLY
&& s
->sctlr_b
&& (opc
& MO_SIZE
) == MO_64
) {
956 tcg_gen_rotri_i64(val
, val
, 32);
960 void gen_aa32_st_internal_i64(DisasContext
*s
, TCGv_i64 val
,
961 TCGv_i32 a32
, int index
, MemOp opc
)
963 TCGv addr
= gen_aa32_addr(s
, a32
, opc
);
965 /* Not needed for user-mode BE32, where we use MO_BE instead. */
966 if (!IS_USER_ONLY
&& s
->sctlr_b
&& (opc
& MO_SIZE
) == MO_64
) {
967 TCGv_i64 tmp
= tcg_temp_new_i64();
968 tcg_gen_rotri_i64(tmp
, val
, 32);
969 tcg_gen_qemu_st_i64(tmp
, addr
, index
, opc
);
971 tcg_gen_qemu_st_i64(val
, addr
, index
, opc
);
975 void gen_aa32_ld_i32(DisasContext
*s
, TCGv_i32 val
, TCGv_i32 a32
,
976 int index
, MemOp opc
)
978 gen_aa32_ld_internal_i32(s
, val
, a32
, index
, finalize_memop(s
, opc
));
981 void gen_aa32_st_i32(DisasContext
*s
, TCGv_i32 val
, TCGv_i32 a32
,
982 int index
, MemOp opc
)
984 gen_aa32_st_internal_i32(s
, val
, a32
, index
, finalize_memop(s
, opc
));
987 void gen_aa32_ld_i64(DisasContext
*s
, TCGv_i64 val
, TCGv_i32 a32
,
988 int index
, MemOp opc
)
990 gen_aa32_ld_internal_i64(s
, val
, a32
, index
, finalize_memop(s
, opc
));
993 void gen_aa32_st_i64(DisasContext
*s
, TCGv_i64 val
, TCGv_i32 a32
,
994 int index
, MemOp opc
)
996 gen_aa32_st_internal_i64(s
, val
, a32
, index
, finalize_memop(s
, opc
));
999 #define DO_GEN_LD(SUFF, OPC) \
1000 static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \
1001 TCGv_i32 a32, int index) \
1003 gen_aa32_ld_i32(s, val, a32, index, OPC); \
1006 #define DO_GEN_ST(SUFF, OPC) \
1007 static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \
1008 TCGv_i32 a32, int index) \
1010 gen_aa32_st_i32(s, val, a32, index, OPC); \
1013 static inline void gen_hvc(DisasContext
*s
, int imm16
)
1015 /* The pre HVC helper handles cases when HVC gets trapped
1016 * as an undefined insn by runtime configuration (ie before
1017 * the insn really executes).
1019 gen_update_pc(s
, 0);
1020 gen_helper_pre_hvc(tcg_env
);
1021 /* Otherwise we will treat this as a real exception which
1022 * happens after execution of the insn. (The distinction matters
1023 * for the PC value reported to the exception handler and also
1024 * for single stepping.)
1027 gen_update_pc(s
, curr_insn_len(s
));
1028 s
->base
.is_jmp
= DISAS_HVC
;
1031 static inline void gen_smc(DisasContext
*s
)
1033 /* As with HVC, we may take an exception either before or after
1034 * the insn executes.
1036 gen_update_pc(s
, 0);
1037 gen_helper_pre_smc(tcg_env
, tcg_constant_i32(syn_aa32_smc()));
1038 gen_update_pc(s
, curr_insn_len(s
));
1039 s
->base
.is_jmp
= DISAS_SMC
;
1042 static void gen_exception_internal_insn(DisasContext
*s
, int excp
)
1044 gen_set_condexec(s
);
1045 gen_update_pc(s
, 0);
1046 gen_exception_internal(excp
);
1047 s
->base
.is_jmp
= DISAS_NORETURN
;
1050 static void gen_exception_el_v(int excp
, uint32_t syndrome
, TCGv_i32 tcg_el
)
1052 gen_helper_exception_with_syndrome_el(tcg_env
, tcg_constant_i32(excp
),
1053 tcg_constant_i32(syndrome
), tcg_el
);
1056 static void gen_exception_el(int excp
, uint32_t syndrome
, uint32_t target_el
)
1058 gen_exception_el_v(excp
, syndrome
, tcg_constant_i32(target_el
));
1061 static void gen_exception(int excp
, uint32_t syndrome
)
1063 gen_helper_exception_with_syndrome(tcg_env
, tcg_constant_i32(excp
),
1064 tcg_constant_i32(syndrome
));
1067 static void gen_exception_insn_el_v(DisasContext
*s
, target_long pc_diff
,
1068 int excp
, uint32_t syn
, TCGv_i32 tcg_el
)
1071 gen_a64_update_pc(s
, pc_diff
);
1073 gen_set_condexec(s
);
1074 gen_update_pc(s
, pc_diff
);
1076 gen_exception_el_v(excp
, syn
, tcg_el
);
1077 s
->base
.is_jmp
= DISAS_NORETURN
;
1080 void gen_exception_insn_el(DisasContext
*s
, target_long pc_diff
, int excp
,
1081 uint32_t syn
, uint32_t target_el
)
1083 gen_exception_insn_el_v(s
, pc_diff
, excp
, syn
,
1084 tcg_constant_i32(target_el
));
1087 void gen_exception_insn(DisasContext
*s
, target_long pc_diff
,
1088 int excp
, uint32_t syn
)
1091 gen_a64_update_pc(s
, pc_diff
);
1093 gen_set_condexec(s
);
1094 gen_update_pc(s
, pc_diff
);
1096 gen_exception(excp
, syn
);
1097 s
->base
.is_jmp
= DISAS_NORETURN
;
1100 static void gen_exception_bkpt_insn(DisasContext
*s
, uint32_t syn
)
1102 gen_set_condexec(s
);
1103 gen_update_pc(s
, 0);
1104 gen_helper_exception_bkpt_insn(tcg_env
, tcg_constant_i32(syn
));
1105 s
->base
.is_jmp
= DISAS_NORETURN
;
1108 void unallocated_encoding(DisasContext
*s
)
1110 /* Unallocated and reserved encodings are uncategorized */
1111 gen_exception_insn(s
, 0, EXCP_UDEF
, syn_uncategorized());
1114 /* Force a TB lookup after an instruction that changes the CPU state. */
1115 void gen_lookup_tb(DisasContext
*s
)
1117 gen_pc_plus_diff(s
, cpu_R
[15], curr_insn_len(s
));
1118 s
->base
.is_jmp
= DISAS_EXIT
;
1121 static inline void gen_hlt(DisasContext
*s
, int imm
)
1123 /* HLT. This has two purposes.
1124 * Architecturally, it is an external halting debug instruction.
1125 * Since QEMU doesn't implement external debug, we treat this as
1126 * it is required for halting debug disabled: it will UNDEF.
1127 * Secondly, "HLT 0x3C" is a T32 semihosting trap instruction,
1128 * and "HLT 0xF000" is an A32 semihosting syscall. These traps
1129 * must trigger semihosting even for ARMv7 and earlier, where
1130 * HLT was an undefined encoding.
1131 * In system mode, we don't allow userspace access to
1132 * semihosting, to provide some semblance of security
1133 * (and for consistency with our 32-bit semihosting).
1135 if (semihosting_enabled(s
->current_el
== 0) &&
1136 (imm
== (s
->thumb
? 0x3c : 0xf000))) {
1137 gen_exception_internal_insn(s
, EXCP_SEMIHOST
);
1141 unallocated_encoding(s
);
1145 * Return the offset of a "full" NEON Dreg.
1147 long neon_full_reg_offset(unsigned reg
)
1149 return offsetof(CPUARMState
, vfp
.zregs
[reg
>> 1].d
[reg
& 1]);
1153 * Return the offset of a 2**SIZE piece of a NEON register, at index ELE,
1154 * where 0 is the least significant end of the register.
1156 long neon_element_offset(int reg
, int element
, MemOp memop
)
1158 int element_size
= 1 << (memop
& MO_SIZE
);
1159 int ofs
= element
* element_size
;
1162 * Calculate the offset assuming fully little-endian,
1163 * then XOR to account for the order of the 8-byte units.
1165 if (element_size
< 8) {
1166 ofs
^= 8 - element_size
;
1169 return neon_full_reg_offset(reg
) + ofs
;
1172 /* Return the offset of a VFP Dreg (dp = true) or VFP Sreg (dp = false). */
1173 long vfp_reg_offset(bool dp
, unsigned reg
)
1176 return neon_element_offset(reg
, 0, MO_64
);
1178 return neon_element_offset(reg
>> 1, reg
& 1, MO_32
);
1182 void read_neon_element32(TCGv_i32 dest
, int reg
, int ele
, MemOp memop
)
1184 long off
= neon_element_offset(reg
, ele
, memop
);
1188 tcg_gen_ld8s_i32(dest
, tcg_env
, off
);
1191 tcg_gen_ld8u_i32(dest
, tcg_env
, off
);
1194 tcg_gen_ld16s_i32(dest
, tcg_env
, off
);
1197 tcg_gen_ld16u_i32(dest
, tcg_env
, off
);
1201 tcg_gen_ld_i32(dest
, tcg_env
, off
);
1204 g_assert_not_reached();
1208 void read_neon_element64(TCGv_i64 dest
, int reg
, int ele
, MemOp memop
)
1210 long off
= neon_element_offset(reg
, ele
, memop
);
1214 tcg_gen_ld32s_i64(dest
, tcg_env
, off
);
1217 tcg_gen_ld32u_i64(dest
, tcg_env
, off
);
1220 tcg_gen_ld_i64(dest
, tcg_env
, off
);
1223 g_assert_not_reached();
1227 void write_neon_element32(TCGv_i32 src
, int reg
, int ele
, MemOp memop
)
1229 long off
= neon_element_offset(reg
, ele
, memop
);
1233 tcg_gen_st8_i32(src
, tcg_env
, off
);
1236 tcg_gen_st16_i32(src
, tcg_env
, off
);
1239 tcg_gen_st_i32(src
, tcg_env
, off
);
1242 g_assert_not_reached();
1246 void write_neon_element64(TCGv_i64 src
, int reg
, int ele
, MemOp memop
)
1248 long off
= neon_element_offset(reg
, ele
, memop
);
1252 tcg_gen_st32_i64(src
, tcg_env
, off
);
1255 tcg_gen_st_i64(src
, tcg_env
, off
);
1258 g_assert_not_reached();
1262 #define ARM_CP_RW_BIT (1 << 20)
1264 static inline void iwmmxt_load_reg(TCGv_i64 var
, int reg
)
1266 tcg_gen_ld_i64(var
, tcg_env
, offsetof(CPUARMState
, iwmmxt
.regs
[reg
]));
1269 static inline void iwmmxt_store_reg(TCGv_i64 var
, int reg
)
1271 tcg_gen_st_i64(var
, tcg_env
, offsetof(CPUARMState
, iwmmxt
.regs
[reg
]));
1274 static inline TCGv_i32
iwmmxt_load_creg(int reg
)
1276 TCGv_i32 var
= tcg_temp_new_i32();
1277 tcg_gen_ld_i32(var
, tcg_env
, offsetof(CPUARMState
, iwmmxt
.cregs
[reg
]));
1281 static inline void iwmmxt_store_creg(int reg
, TCGv_i32 var
)
1283 tcg_gen_st_i32(var
, tcg_env
, offsetof(CPUARMState
, iwmmxt
.cregs
[reg
]));
1286 static inline void gen_op_iwmmxt_movq_wRn_M0(int rn
)
1288 iwmmxt_store_reg(cpu_M0
, rn
);
1291 static inline void gen_op_iwmmxt_movq_M0_wRn(int rn
)
1293 iwmmxt_load_reg(cpu_M0
, rn
);
1296 static inline void gen_op_iwmmxt_orq_M0_wRn(int rn
)
1298 iwmmxt_load_reg(cpu_V1
, rn
);
1299 tcg_gen_or_i64(cpu_M0
, cpu_M0
, cpu_V1
);
1302 static inline void gen_op_iwmmxt_andq_M0_wRn(int rn
)
1304 iwmmxt_load_reg(cpu_V1
, rn
);
1305 tcg_gen_and_i64(cpu_M0
, cpu_M0
, cpu_V1
);
1308 static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn
)
1310 iwmmxt_load_reg(cpu_V1
, rn
);
1311 tcg_gen_xor_i64(cpu_M0
, cpu_M0
, cpu_V1
);
1314 #define IWMMXT_OP(name) \
1315 static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
1317 iwmmxt_load_reg(cpu_V1, rn); \
1318 gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \
1321 #define IWMMXT_OP_ENV(name) \
1322 static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
1324 iwmmxt_load_reg(cpu_V1, rn); \
1325 gen_helper_iwmmxt_##name(cpu_M0, tcg_env, cpu_M0, cpu_V1); \
1328 #define IWMMXT_OP_ENV_SIZE(name) \
1329 IWMMXT_OP_ENV(name##b) \
1330 IWMMXT_OP_ENV(name##w) \
1331 IWMMXT_OP_ENV(name##l)
1333 #define IWMMXT_OP_ENV1(name) \
1334 static inline void gen_op_iwmmxt_##name##_M0(void) \
1336 gen_helper_iwmmxt_##name(cpu_M0, tcg_env, cpu_M0); \
1350 IWMMXT_OP_ENV_SIZE(unpackl
)
1351 IWMMXT_OP_ENV_SIZE(unpackh
)
1353 IWMMXT_OP_ENV1(unpacklub
)
1354 IWMMXT_OP_ENV1(unpackluw
)
1355 IWMMXT_OP_ENV1(unpacklul
)
1356 IWMMXT_OP_ENV1(unpackhub
)
1357 IWMMXT_OP_ENV1(unpackhuw
)
1358 IWMMXT_OP_ENV1(unpackhul
)
1359 IWMMXT_OP_ENV1(unpacklsb
)
1360 IWMMXT_OP_ENV1(unpacklsw
)
1361 IWMMXT_OP_ENV1(unpacklsl
)
1362 IWMMXT_OP_ENV1(unpackhsb
)
1363 IWMMXT_OP_ENV1(unpackhsw
)
1364 IWMMXT_OP_ENV1(unpackhsl
)
1366 IWMMXT_OP_ENV_SIZE(cmpeq
)
1367 IWMMXT_OP_ENV_SIZE(cmpgtu
)
1368 IWMMXT_OP_ENV_SIZE(cmpgts
)
1370 IWMMXT_OP_ENV_SIZE(mins
)
1371 IWMMXT_OP_ENV_SIZE(minu
)
1372 IWMMXT_OP_ENV_SIZE(maxs
)
1373 IWMMXT_OP_ENV_SIZE(maxu
)
1375 IWMMXT_OP_ENV_SIZE(subn
)
1376 IWMMXT_OP_ENV_SIZE(addn
)
1377 IWMMXT_OP_ENV_SIZE(subu
)
1378 IWMMXT_OP_ENV_SIZE(addu
)
1379 IWMMXT_OP_ENV_SIZE(subs
)
1380 IWMMXT_OP_ENV_SIZE(adds
)
1382 IWMMXT_OP_ENV(avgb0
)
1383 IWMMXT_OP_ENV(avgb1
)
1384 IWMMXT_OP_ENV(avgw0
)
1385 IWMMXT_OP_ENV(avgw1
)
1387 IWMMXT_OP_ENV(packuw
)
1388 IWMMXT_OP_ENV(packul
)
1389 IWMMXT_OP_ENV(packuq
)
1390 IWMMXT_OP_ENV(packsw
)
1391 IWMMXT_OP_ENV(packsl
)
1392 IWMMXT_OP_ENV(packsq
)
1394 static void gen_op_iwmmxt_set_mup(void)
1397 tmp
= load_cpu_field(iwmmxt
.cregs
[ARM_IWMMXT_wCon
]);
1398 tcg_gen_ori_i32(tmp
, tmp
, 2);
1399 store_cpu_field(tmp
, iwmmxt
.cregs
[ARM_IWMMXT_wCon
]);
1402 static void gen_op_iwmmxt_set_cup(void)
1405 tmp
= load_cpu_field(iwmmxt
.cregs
[ARM_IWMMXT_wCon
]);
1406 tcg_gen_ori_i32(tmp
, tmp
, 1);
1407 store_cpu_field(tmp
, iwmmxt
.cregs
[ARM_IWMMXT_wCon
]);
1410 static void gen_op_iwmmxt_setpsr_nz(void)
1412 TCGv_i32 tmp
= tcg_temp_new_i32();
1413 gen_helper_iwmmxt_setpsr_nz(tmp
, cpu_M0
);
1414 store_cpu_field(tmp
, iwmmxt
.cregs
[ARM_IWMMXT_wCASF
]);
1417 static inline void gen_op_iwmmxt_addl_M0_wRn(int rn
)
1419 iwmmxt_load_reg(cpu_V1
, rn
);
1420 tcg_gen_ext32u_i64(cpu_V1
, cpu_V1
);
1421 tcg_gen_add_i64(cpu_M0
, cpu_M0
, cpu_V1
);
1424 static inline int gen_iwmmxt_address(DisasContext
*s
, uint32_t insn
,
1431 rd
= (insn
>> 16) & 0xf;
1432 tmp
= load_reg(s
, rd
);
1434 offset
= (insn
& 0xff) << ((insn
>> 7) & 2);
1435 if (insn
& (1 << 24)) {
1437 if (insn
& (1 << 23))
1438 tcg_gen_addi_i32(tmp
, tmp
, offset
);
1440 tcg_gen_addi_i32(tmp
, tmp
, -offset
);
1441 tcg_gen_mov_i32(dest
, tmp
);
1442 if (insn
& (1 << 21)) {
1443 store_reg(s
, rd
, tmp
);
1445 } else if (insn
& (1 << 21)) {
1447 tcg_gen_mov_i32(dest
, tmp
);
1448 if (insn
& (1 << 23))
1449 tcg_gen_addi_i32(tmp
, tmp
, offset
);
1451 tcg_gen_addi_i32(tmp
, tmp
, -offset
);
1452 store_reg(s
, rd
, tmp
);
1453 } else if (!(insn
& (1 << 23)))
1458 static inline int gen_iwmmxt_shift(uint32_t insn
, uint32_t mask
, TCGv_i32 dest
)
1460 int rd
= (insn
>> 0) & 0xf;
1463 if (insn
& (1 << 8)) {
1464 if (rd
< ARM_IWMMXT_wCGR0
|| rd
> ARM_IWMMXT_wCGR3
) {
1467 tmp
= iwmmxt_load_creg(rd
);
1470 tmp
= tcg_temp_new_i32();
1471 iwmmxt_load_reg(cpu_V0
, rd
);
1472 tcg_gen_extrl_i64_i32(tmp
, cpu_V0
);
1474 tcg_gen_andi_i32(tmp
, tmp
, mask
);
1475 tcg_gen_mov_i32(dest
, tmp
);
1479 /* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred
1480 (ie. an undefined instruction). */
1481 static int disas_iwmmxt_insn(DisasContext
*s
, uint32_t insn
)
1484 int rdhi
, rdlo
, rd0
, rd1
, i
;
1486 TCGv_i32 tmp
, tmp2
, tmp3
;
1488 if ((insn
& 0x0e000e00) == 0x0c000000) {
1489 if ((insn
& 0x0fe00ff0) == 0x0c400000) {
1491 rdlo
= (insn
>> 12) & 0xf;
1492 rdhi
= (insn
>> 16) & 0xf;
1493 if (insn
& ARM_CP_RW_BIT
) { /* TMRRC */
1494 iwmmxt_load_reg(cpu_V0
, wrd
);
1495 tcg_gen_extrl_i64_i32(cpu_R
[rdlo
], cpu_V0
);
1496 tcg_gen_extrh_i64_i32(cpu_R
[rdhi
], cpu_V0
);
1497 } else { /* TMCRR */
1498 tcg_gen_concat_i32_i64(cpu_V0
, cpu_R
[rdlo
], cpu_R
[rdhi
]);
1499 iwmmxt_store_reg(cpu_V0
, wrd
);
1500 gen_op_iwmmxt_set_mup();
1505 wrd
= (insn
>> 12) & 0xf;
1506 addr
= tcg_temp_new_i32();
1507 if (gen_iwmmxt_address(s
, insn
, addr
)) {
1510 if (insn
& ARM_CP_RW_BIT
) {
1511 if ((insn
>> 28) == 0xf) { /* WLDRW wCx */
1512 tmp
= tcg_temp_new_i32();
1513 gen_aa32_ld32u(s
, tmp
, addr
, get_mem_index(s
));
1514 iwmmxt_store_creg(wrd
, tmp
);
1517 if (insn
& (1 << 8)) {
1518 if (insn
& (1 << 22)) { /* WLDRD */
1519 gen_aa32_ld64(s
, cpu_M0
, addr
, get_mem_index(s
));
1521 } else { /* WLDRW wRd */
1522 tmp
= tcg_temp_new_i32();
1523 gen_aa32_ld32u(s
, tmp
, addr
, get_mem_index(s
));
1526 tmp
= tcg_temp_new_i32();
1527 if (insn
& (1 << 22)) { /* WLDRH */
1528 gen_aa32_ld16u(s
, tmp
, addr
, get_mem_index(s
));
1529 } else { /* WLDRB */
1530 gen_aa32_ld8u(s
, tmp
, addr
, get_mem_index(s
));
1534 tcg_gen_extu_i32_i64(cpu_M0
, tmp
);
1536 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1539 if ((insn
>> 28) == 0xf) { /* WSTRW wCx */
1540 tmp
= iwmmxt_load_creg(wrd
);
1541 gen_aa32_st32(s
, tmp
, addr
, get_mem_index(s
));
1543 gen_op_iwmmxt_movq_M0_wRn(wrd
);
1544 tmp
= tcg_temp_new_i32();
1545 if (insn
& (1 << 8)) {
1546 if (insn
& (1 << 22)) { /* WSTRD */
1547 gen_aa32_st64(s
, cpu_M0
, addr
, get_mem_index(s
));
1548 } else { /* WSTRW wRd */
1549 tcg_gen_extrl_i64_i32(tmp
, cpu_M0
);
1550 gen_aa32_st32(s
, tmp
, addr
, get_mem_index(s
));
1553 if (insn
& (1 << 22)) { /* WSTRH */
1554 tcg_gen_extrl_i64_i32(tmp
, cpu_M0
);
1555 gen_aa32_st16(s
, tmp
, addr
, get_mem_index(s
));
1556 } else { /* WSTRB */
1557 tcg_gen_extrl_i64_i32(tmp
, cpu_M0
);
1558 gen_aa32_st8(s
, tmp
, addr
, get_mem_index(s
));
1566 if ((insn
& 0x0f000000) != 0x0e000000)
1569 switch (((insn
>> 12) & 0xf00) | ((insn
>> 4) & 0xff)) {
1570 case 0x000: /* WOR */
1571 wrd
= (insn
>> 12) & 0xf;
1572 rd0
= (insn
>> 0) & 0xf;
1573 rd1
= (insn
>> 16) & 0xf;
1574 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1575 gen_op_iwmmxt_orq_M0_wRn(rd1
);
1576 gen_op_iwmmxt_setpsr_nz();
1577 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1578 gen_op_iwmmxt_set_mup();
1579 gen_op_iwmmxt_set_cup();
1581 case 0x011: /* TMCR */
1584 rd
= (insn
>> 12) & 0xf;
1585 wrd
= (insn
>> 16) & 0xf;
1587 case ARM_IWMMXT_wCID
:
1588 case ARM_IWMMXT_wCASF
:
1590 case ARM_IWMMXT_wCon
:
1591 gen_op_iwmmxt_set_cup();
1593 case ARM_IWMMXT_wCSSF
:
1594 tmp
= iwmmxt_load_creg(wrd
);
1595 tmp2
= load_reg(s
, rd
);
1596 tcg_gen_andc_i32(tmp
, tmp
, tmp2
);
1597 iwmmxt_store_creg(wrd
, tmp
);
1599 case ARM_IWMMXT_wCGR0
:
1600 case ARM_IWMMXT_wCGR1
:
1601 case ARM_IWMMXT_wCGR2
:
1602 case ARM_IWMMXT_wCGR3
:
1603 gen_op_iwmmxt_set_cup();
1604 tmp
= load_reg(s
, rd
);
1605 iwmmxt_store_creg(wrd
, tmp
);
1611 case 0x100: /* WXOR */
1612 wrd
= (insn
>> 12) & 0xf;
1613 rd0
= (insn
>> 0) & 0xf;
1614 rd1
= (insn
>> 16) & 0xf;
1615 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1616 gen_op_iwmmxt_xorq_M0_wRn(rd1
);
1617 gen_op_iwmmxt_setpsr_nz();
1618 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1619 gen_op_iwmmxt_set_mup();
1620 gen_op_iwmmxt_set_cup();
1622 case 0x111: /* TMRC */
1625 rd
= (insn
>> 12) & 0xf;
1626 wrd
= (insn
>> 16) & 0xf;
1627 tmp
= iwmmxt_load_creg(wrd
);
1628 store_reg(s
, rd
, tmp
);
1630 case 0x300: /* WANDN */
1631 wrd
= (insn
>> 12) & 0xf;
1632 rd0
= (insn
>> 0) & 0xf;
1633 rd1
= (insn
>> 16) & 0xf;
1634 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1635 tcg_gen_neg_i64(cpu_M0
, cpu_M0
);
1636 gen_op_iwmmxt_andq_M0_wRn(rd1
);
1637 gen_op_iwmmxt_setpsr_nz();
1638 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1639 gen_op_iwmmxt_set_mup();
1640 gen_op_iwmmxt_set_cup();
1642 case 0x200: /* WAND */
1643 wrd
= (insn
>> 12) & 0xf;
1644 rd0
= (insn
>> 0) & 0xf;
1645 rd1
= (insn
>> 16) & 0xf;
1646 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1647 gen_op_iwmmxt_andq_M0_wRn(rd1
);
1648 gen_op_iwmmxt_setpsr_nz();
1649 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1650 gen_op_iwmmxt_set_mup();
1651 gen_op_iwmmxt_set_cup();
1653 case 0x810: case 0xa10: /* WMADD */
1654 wrd
= (insn
>> 12) & 0xf;
1655 rd0
= (insn
>> 0) & 0xf;
1656 rd1
= (insn
>> 16) & 0xf;
1657 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1658 if (insn
& (1 << 21))
1659 gen_op_iwmmxt_maddsq_M0_wRn(rd1
);
1661 gen_op_iwmmxt_madduq_M0_wRn(rd1
);
1662 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1663 gen_op_iwmmxt_set_mup();
1665 case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */
1666 wrd
= (insn
>> 12) & 0xf;
1667 rd0
= (insn
>> 16) & 0xf;
1668 rd1
= (insn
>> 0) & 0xf;
1669 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1670 switch ((insn
>> 22) & 3) {
1672 gen_op_iwmmxt_unpacklb_M0_wRn(rd1
);
1675 gen_op_iwmmxt_unpacklw_M0_wRn(rd1
);
1678 gen_op_iwmmxt_unpackll_M0_wRn(rd1
);
1683 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1684 gen_op_iwmmxt_set_mup();
1685 gen_op_iwmmxt_set_cup();
1687 case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */
1688 wrd
= (insn
>> 12) & 0xf;
1689 rd0
= (insn
>> 16) & 0xf;
1690 rd1
= (insn
>> 0) & 0xf;
1691 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1692 switch ((insn
>> 22) & 3) {
1694 gen_op_iwmmxt_unpackhb_M0_wRn(rd1
);
1697 gen_op_iwmmxt_unpackhw_M0_wRn(rd1
);
1700 gen_op_iwmmxt_unpackhl_M0_wRn(rd1
);
1705 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1706 gen_op_iwmmxt_set_mup();
1707 gen_op_iwmmxt_set_cup();
1709 case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */
1710 wrd
= (insn
>> 12) & 0xf;
1711 rd0
= (insn
>> 16) & 0xf;
1712 rd1
= (insn
>> 0) & 0xf;
1713 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1714 if (insn
& (1 << 22))
1715 gen_op_iwmmxt_sadw_M0_wRn(rd1
);
1717 gen_op_iwmmxt_sadb_M0_wRn(rd1
);
1718 if (!(insn
& (1 << 20)))
1719 gen_op_iwmmxt_addl_M0_wRn(wrd
);
1720 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1721 gen_op_iwmmxt_set_mup();
1723 case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */
1724 wrd
= (insn
>> 12) & 0xf;
1725 rd0
= (insn
>> 16) & 0xf;
1726 rd1
= (insn
>> 0) & 0xf;
1727 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1728 if (insn
& (1 << 21)) {
1729 if (insn
& (1 << 20))
1730 gen_op_iwmmxt_mulshw_M0_wRn(rd1
);
1732 gen_op_iwmmxt_mulslw_M0_wRn(rd1
);
1734 if (insn
& (1 << 20))
1735 gen_op_iwmmxt_muluhw_M0_wRn(rd1
);
1737 gen_op_iwmmxt_mululw_M0_wRn(rd1
);
1739 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1740 gen_op_iwmmxt_set_mup();
1742 case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */
1743 wrd
= (insn
>> 12) & 0xf;
1744 rd0
= (insn
>> 16) & 0xf;
1745 rd1
= (insn
>> 0) & 0xf;
1746 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1747 if (insn
& (1 << 21))
1748 gen_op_iwmmxt_macsw_M0_wRn(rd1
);
1750 gen_op_iwmmxt_macuw_M0_wRn(rd1
);
1751 if (!(insn
& (1 << 20))) {
1752 iwmmxt_load_reg(cpu_V1
, wrd
);
1753 tcg_gen_add_i64(cpu_M0
, cpu_M0
, cpu_V1
);
1755 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1756 gen_op_iwmmxt_set_mup();
1758 case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */
1759 wrd
= (insn
>> 12) & 0xf;
1760 rd0
= (insn
>> 16) & 0xf;
1761 rd1
= (insn
>> 0) & 0xf;
1762 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1763 switch ((insn
>> 22) & 3) {
1765 gen_op_iwmmxt_cmpeqb_M0_wRn(rd1
);
1768 gen_op_iwmmxt_cmpeqw_M0_wRn(rd1
);
1771 gen_op_iwmmxt_cmpeql_M0_wRn(rd1
);
1776 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1777 gen_op_iwmmxt_set_mup();
1778 gen_op_iwmmxt_set_cup();
1780 case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */
1781 wrd
= (insn
>> 12) & 0xf;
1782 rd0
= (insn
>> 16) & 0xf;
1783 rd1
= (insn
>> 0) & 0xf;
1784 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1785 if (insn
& (1 << 22)) {
1786 if (insn
& (1 << 20))
1787 gen_op_iwmmxt_avgw1_M0_wRn(rd1
);
1789 gen_op_iwmmxt_avgw0_M0_wRn(rd1
);
1791 if (insn
& (1 << 20))
1792 gen_op_iwmmxt_avgb1_M0_wRn(rd1
);
1794 gen_op_iwmmxt_avgb0_M0_wRn(rd1
);
1796 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1797 gen_op_iwmmxt_set_mup();
1798 gen_op_iwmmxt_set_cup();
1800 case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */
1801 wrd
= (insn
>> 12) & 0xf;
1802 rd0
= (insn
>> 16) & 0xf;
1803 rd1
= (insn
>> 0) & 0xf;
1804 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1805 tmp
= iwmmxt_load_creg(ARM_IWMMXT_wCGR0
+ ((insn
>> 20) & 3));
1806 tcg_gen_andi_i32(tmp
, tmp
, 7);
1807 iwmmxt_load_reg(cpu_V1
, rd1
);
1808 gen_helper_iwmmxt_align(cpu_M0
, cpu_M0
, cpu_V1
, tmp
);
1809 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1810 gen_op_iwmmxt_set_mup();
1812 case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */
1813 if (((insn
>> 6) & 3) == 3)
1815 rd
= (insn
>> 12) & 0xf;
1816 wrd
= (insn
>> 16) & 0xf;
1817 tmp
= load_reg(s
, rd
);
1818 gen_op_iwmmxt_movq_M0_wRn(wrd
);
1819 switch ((insn
>> 6) & 3) {
1821 tmp2
= tcg_constant_i32(0xff);
1822 tmp3
= tcg_constant_i32((insn
& 7) << 3);
1825 tmp2
= tcg_constant_i32(0xffff);
1826 tmp3
= tcg_constant_i32((insn
& 3) << 4);
1829 tmp2
= tcg_constant_i32(0xffffffff);
1830 tmp3
= tcg_constant_i32((insn
& 1) << 5);
1833 g_assert_not_reached();
1835 gen_helper_iwmmxt_insr(cpu_M0
, cpu_M0
, tmp
, tmp2
, tmp3
);
1836 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1837 gen_op_iwmmxt_set_mup();
1839 case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */
1840 rd
= (insn
>> 12) & 0xf;
1841 wrd
= (insn
>> 16) & 0xf;
1842 if (rd
== 15 || ((insn
>> 22) & 3) == 3)
1844 gen_op_iwmmxt_movq_M0_wRn(wrd
);
1845 tmp
= tcg_temp_new_i32();
1846 switch ((insn
>> 22) & 3) {
1848 tcg_gen_shri_i64(cpu_M0
, cpu_M0
, (insn
& 7) << 3);
1849 tcg_gen_extrl_i64_i32(tmp
, cpu_M0
);
1851 tcg_gen_ext8s_i32(tmp
, tmp
);
1853 tcg_gen_andi_i32(tmp
, tmp
, 0xff);
1857 tcg_gen_shri_i64(cpu_M0
, cpu_M0
, (insn
& 3) << 4);
1858 tcg_gen_extrl_i64_i32(tmp
, cpu_M0
);
1860 tcg_gen_ext16s_i32(tmp
, tmp
);
1862 tcg_gen_andi_i32(tmp
, tmp
, 0xffff);
1866 tcg_gen_shri_i64(cpu_M0
, cpu_M0
, (insn
& 1) << 5);
1867 tcg_gen_extrl_i64_i32(tmp
, cpu_M0
);
1870 store_reg(s
, rd
, tmp
);
1872 case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */
1873 if ((insn
& 0x000ff008) != 0x0003f000 || ((insn
>> 22) & 3) == 3)
1875 tmp
= iwmmxt_load_creg(ARM_IWMMXT_wCASF
);
1876 switch ((insn
>> 22) & 3) {
1878 tcg_gen_shri_i32(tmp
, tmp
, ((insn
& 7) << 2) + 0);
1881 tcg_gen_shri_i32(tmp
, tmp
, ((insn
& 3) << 3) + 4);
1884 tcg_gen_shri_i32(tmp
, tmp
, ((insn
& 1) << 4) + 12);
1887 tcg_gen_shli_i32(tmp
, tmp
, 28);
1890 case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */
1891 if (((insn
>> 6) & 3) == 3)
1893 rd
= (insn
>> 12) & 0xf;
1894 wrd
= (insn
>> 16) & 0xf;
1895 tmp
= load_reg(s
, rd
);
1896 switch ((insn
>> 6) & 3) {
1898 gen_helper_iwmmxt_bcstb(cpu_M0
, tmp
);
1901 gen_helper_iwmmxt_bcstw(cpu_M0
, tmp
);
1904 gen_helper_iwmmxt_bcstl(cpu_M0
, tmp
);
1907 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1908 gen_op_iwmmxt_set_mup();
1910 case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */
1911 if ((insn
& 0x000ff00f) != 0x0003f000 || ((insn
>> 22) & 3) == 3)
1913 tmp
= iwmmxt_load_creg(ARM_IWMMXT_wCASF
);
1914 tmp2
= tcg_temp_new_i32();
1915 tcg_gen_mov_i32(tmp2
, tmp
);
1916 switch ((insn
>> 22) & 3) {
1918 for (i
= 0; i
< 7; i
++) {
1919 tcg_gen_shli_i32(tmp2
, tmp2
, 4);
1920 tcg_gen_and_i32(tmp
, tmp
, tmp2
);
1924 for (i
= 0; i
< 3; i
++) {
1925 tcg_gen_shli_i32(tmp2
, tmp2
, 8);
1926 tcg_gen_and_i32(tmp
, tmp
, tmp2
);
1930 tcg_gen_shli_i32(tmp2
, tmp2
, 16);
1931 tcg_gen_and_i32(tmp
, tmp
, tmp2
);
1936 case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */
1937 wrd
= (insn
>> 12) & 0xf;
1938 rd0
= (insn
>> 16) & 0xf;
1939 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1940 switch ((insn
>> 22) & 3) {
1942 gen_helper_iwmmxt_addcb(cpu_M0
, cpu_M0
);
1945 gen_helper_iwmmxt_addcw(cpu_M0
, cpu_M0
);
1948 gen_helper_iwmmxt_addcl(cpu_M0
, cpu_M0
);
1953 gen_op_iwmmxt_movq_wRn_M0(wrd
);
1954 gen_op_iwmmxt_set_mup();
1956 case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */
1957 if ((insn
& 0x000ff00f) != 0x0003f000 || ((insn
>> 22) & 3) == 3)
1959 tmp
= iwmmxt_load_creg(ARM_IWMMXT_wCASF
);
1960 tmp2
= tcg_temp_new_i32();
1961 tcg_gen_mov_i32(tmp2
, tmp
);
1962 switch ((insn
>> 22) & 3) {
1964 for (i
= 0; i
< 7; i
++) {
1965 tcg_gen_shli_i32(tmp2
, tmp2
, 4);
1966 tcg_gen_or_i32(tmp
, tmp
, tmp2
);
1970 for (i
= 0; i
< 3; i
++) {
1971 tcg_gen_shli_i32(tmp2
, tmp2
, 8);
1972 tcg_gen_or_i32(tmp
, tmp
, tmp2
);
1976 tcg_gen_shli_i32(tmp2
, tmp2
, 16);
1977 tcg_gen_or_i32(tmp
, tmp
, tmp2
);
1982 case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */
1983 rd
= (insn
>> 12) & 0xf;
1984 rd0
= (insn
>> 16) & 0xf;
1985 if ((insn
& 0xf) != 0 || ((insn
>> 22) & 3) == 3)
1987 gen_op_iwmmxt_movq_M0_wRn(rd0
);
1988 tmp
= tcg_temp_new_i32();
1989 switch ((insn
>> 22) & 3) {
1991 gen_helper_iwmmxt_msbb(tmp
, cpu_M0
);
1994 gen_helper_iwmmxt_msbw(tmp
, cpu_M0
);
1997 gen_helper_iwmmxt_msbl(tmp
, cpu_M0
);
2000 store_reg(s
, rd
, tmp
);
2002 case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */
2003 case 0x906: case 0xb06: case 0xd06: case 0xf06:
2004 wrd
= (insn
>> 12) & 0xf;
2005 rd0
= (insn
>> 16) & 0xf;
2006 rd1
= (insn
>> 0) & 0xf;
2007 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2008 switch ((insn
>> 22) & 3) {
2010 if (insn
& (1 << 21))
2011 gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1
);
2013 gen_op_iwmmxt_cmpgtub_M0_wRn(rd1
);
2016 if (insn
& (1 << 21))
2017 gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1
);
2019 gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1
);
2022 if (insn
& (1 << 21))
2023 gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1
);
2025 gen_op_iwmmxt_cmpgtul_M0_wRn(rd1
);
2030 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2031 gen_op_iwmmxt_set_mup();
2032 gen_op_iwmmxt_set_cup();
2034 case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */
2035 case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e:
2036 wrd
= (insn
>> 12) & 0xf;
2037 rd0
= (insn
>> 16) & 0xf;
2038 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2039 switch ((insn
>> 22) & 3) {
2041 if (insn
& (1 << 21))
2042 gen_op_iwmmxt_unpacklsb_M0();
2044 gen_op_iwmmxt_unpacklub_M0();
2047 if (insn
& (1 << 21))
2048 gen_op_iwmmxt_unpacklsw_M0();
2050 gen_op_iwmmxt_unpackluw_M0();
2053 if (insn
& (1 << 21))
2054 gen_op_iwmmxt_unpacklsl_M0();
2056 gen_op_iwmmxt_unpacklul_M0();
2061 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2062 gen_op_iwmmxt_set_mup();
2063 gen_op_iwmmxt_set_cup();
2065 case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */
2066 case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c:
2067 wrd
= (insn
>> 12) & 0xf;
2068 rd0
= (insn
>> 16) & 0xf;
2069 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2070 switch ((insn
>> 22) & 3) {
2072 if (insn
& (1 << 21))
2073 gen_op_iwmmxt_unpackhsb_M0();
2075 gen_op_iwmmxt_unpackhub_M0();
2078 if (insn
& (1 << 21))
2079 gen_op_iwmmxt_unpackhsw_M0();
2081 gen_op_iwmmxt_unpackhuw_M0();
2084 if (insn
& (1 << 21))
2085 gen_op_iwmmxt_unpackhsl_M0();
2087 gen_op_iwmmxt_unpackhul_M0();
2092 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2093 gen_op_iwmmxt_set_mup();
2094 gen_op_iwmmxt_set_cup();
2096 case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */
2097 case 0x214: case 0x614: case 0xa14: case 0xe14:
2098 if (((insn
>> 22) & 3) == 0)
2100 wrd
= (insn
>> 12) & 0xf;
2101 rd0
= (insn
>> 16) & 0xf;
2102 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2103 tmp
= tcg_temp_new_i32();
2104 if (gen_iwmmxt_shift(insn
, 0xff, tmp
)) {
2107 switch ((insn
>> 22) & 3) {
2109 gen_helper_iwmmxt_srlw(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2112 gen_helper_iwmmxt_srll(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2115 gen_helper_iwmmxt_srlq(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2118 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2119 gen_op_iwmmxt_set_mup();
2120 gen_op_iwmmxt_set_cup();
2122 case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */
2123 case 0x014: case 0x414: case 0x814: case 0xc14:
2124 if (((insn
>> 22) & 3) == 0)
2126 wrd
= (insn
>> 12) & 0xf;
2127 rd0
= (insn
>> 16) & 0xf;
2128 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2129 tmp
= tcg_temp_new_i32();
2130 if (gen_iwmmxt_shift(insn
, 0xff, tmp
)) {
2133 switch ((insn
>> 22) & 3) {
2135 gen_helper_iwmmxt_sraw(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2138 gen_helper_iwmmxt_sral(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2141 gen_helper_iwmmxt_sraq(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2144 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2145 gen_op_iwmmxt_set_mup();
2146 gen_op_iwmmxt_set_cup();
2148 case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */
2149 case 0x114: case 0x514: case 0x914: case 0xd14:
2150 if (((insn
>> 22) & 3) == 0)
2152 wrd
= (insn
>> 12) & 0xf;
2153 rd0
= (insn
>> 16) & 0xf;
2154 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2155 tmp
= tcg_temp_new_i32();
2156 if (gen_iwmmxt_shift(insn
, 0xff, tmp
)) {
2159 switch ((insn
>> 22) & 3) {
2161 gen_helper_iwmmxt_sllw(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2164 gen_helper_iwmmxt_slll(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2167 gen_helper_iwmmxt_sllq(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2170 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2171 gen_op_iwmmxt_set_mup();
2172 gen_op_iwmmxt_set_cup();
2174 case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */
2175 case 0x314: case 0x714: case 0xb14: case 0xf14:
2176 if (((insn
>> 22) & 3) == 0)
2178 wrd
= (insn
>> 12) & 0xf;
2179 rd0
= (insn
>> 16) & 0xf;
2180 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2181 tmp
= tcg_temp_new_i32();
2182 switch ((insn
>> 22) & 3) {
2184 if (gen_iwmmxt_shift(insn
, 0xf, tmp
)) {
2187 gen_helper_iwmmxt_rorw(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2190 if (gen_iwmmxt_shift(insn
, 0x1f, tmp
)) {
2193 gen_helper_iwmmxt_rorl(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2196 if (gen_iwmmxt_shift(insn
, 0x3f, tmp
)) {
2199 gen_helper_iwmmxt_rorq(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2202 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2203 gen_op_iwmmxt_set_mup();
2204 gen_op_iwmmxt_set_cup();
2206 case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */
2207 case 0x916: case 0xb16: case 0xd16: case 0xf16:
2208 wrd
= (insn
>> 12) & 0xf;
2209 rd0
= (insn
>> 16) & 0xf;
2210 rd1
= (insn
>> 0) & 0xf;
2211 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2212 switch ((insn
>> 22) & 3) {
2214 if (insn
& (1 << 21))
2215 gen_op_iwmmxt_minsb_M0_wRn(rd1
);
2217 gen_op_iwmmxt_minub_M0_wRn(rd1
);
2220 if (insn
& (1 << 21))
2221 gen_op_iwmmxt_minsw_M0_wRn(rd1
);
2223 gen_op_iwmmxt_minuw_M0_wRn(rd1
);
2226 if (insn
& (1 << 21))
2227 gen_op_iwmmxt_minsl_M0_wRn(rd1
);
2229 gen_op_iwmmxt_minul_M0_wRn(rd1
);
2234 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2235 gen_op_iwmmxt_set_mup();
2237 case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */
2238 case 0x816: case 0xa16: case 0xc16: case 0xe16:
2239 wrd
= (insn
>> 12) & 0xf;
2240 rd0
= (insn
>> 16) & 0xf;
2241 rd1
= (insn
>> 0) & 0xf;
2242 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2243 switch ((insn
>> 22) & 3) {
2245 if (insn
& (1 << 21))
2246 gen_op_iwmmxt_maxsb_M0_wRn(rd1
);
2248 gen_op_iwmmxt_maxub_M0_wRn(rd1
);
2251 if (insn
& (1 << 21))
2252 gen_op_iwmmxt_maxsw_M0_wRn(rd1
);
2254 gen_op_iwmmxt_maxuw_M0_wRn(rd1
);
2257 if (insn
& (1 << 21))
2258 gen_op_iwmmxt_maxsl_M0_wRn(rd1
);
2260 gen_op_iwmmxt_maxul_M0_wRn(rd1
);
2265 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2266 gen_op_iwmmxt_set_mup();
2268 case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */
2269 case 0x402: case 0x502: case 0x602: case 0x702:
2270 wrd
= (insn
>> 12) & 0xf;
2271 rd0
= (insn
>> 16) & 0xf;
2272 rd1
= (insn
>> 0) & 0xf;
2273 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2274 iwmmxt_load_reg(cpu_V1
, rd1
);
2275 gen_helper_iwmmxt_align(cpu_M0
, cpu_M0
, cpu_V1
,
2276 tcg_constant_i32((insn
>> 20) & 3));
2277 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2278 gen_op_iwmmxt_set_mup();
2280 case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */
2281 case 0x41a: case 0x51a: case 0x61a: case 0x71a:
2282 case 0x81a: case 0x91a: case 0xa1a: case 0xb1a:
2283 case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a:
2284 wrd
= (insn
>> 12) & 0xf;
2285 rd0
= (insn
>> 16) & 0xf;
2286 rd1
= (insn
>> 0) & 0xf;
2287 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2288 switch ((insn
>> 20) & 0xf) {
2290 gen_op_iwmmxt_subnb_M0_wRn(rd1
);
2293 gen_op_iwmmxt_subub_M0_wRn(rd1
);
2296 gen_op_iwmmxt_subsb_M0_wRn(rd1
);
2299 gen_op_iwmmxt_subnw_M0_wRn(rd1
);
2302 gen_op_iwmmxt_subuw_M0_wRn(rd1
);
2305 gen_op_iwmmxt_subsw_M0_wRn(rd1
);
2308 gen_op_iwmmxt_subnl_M0_wRn(rd1
);
2311 gen_op_iwmmxt_subul_M0_wRn(rd1
);
2314 gen_op_iwmmxt_subsl_M0_wRn(rd1
);
2319 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2320 gen_op_iwmmxt_set_mup();
2321 gen_op_iwmmxt_set_cup();
2323 case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */
2324 case 0x41e: case 0x51e: case 0x61e: case 0x71e:
2325 case 0x81e: case 0x91e: case 0xa1e: case 0xb1e:
2326 case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e:
2327 wrd
= (insn
>> 12) & 0xf;
2328 rd0
= (insn
>> 16) & 0xf;
2329 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2330 tmp
= tcg_constant_i32(((insn
>> 16) & 0xf0) | (insn
& 0x0f));
2331 gen_helper_iwmmxt_shufh(cpu_M0
, tcg_env
, cpu_M0
, tmp
);
2332 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2333 gen_op_iwmmxt_set_mup();
2334 gen_op_iwmmxt_set_cup();
2336 case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */
2337 case 0x418: case 0x518: case 0x618: case 0x718:
2338 case 0x818: case 0x918: case 0xa18: case 0xb18:
2339 case 0xc18: case 0xd18: case 0xe18: case 0xf18:
2340 wrd
= (insn
>> 12) & 0xf;
2341 rd0
= (insn
>> 16) & 0xf;
2342 rd1
= (insn
>> 0) & 0xf;
2343 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2344 switch ((insn
>> 20) & 0xf) {
2346 gen_op_iwmmxt_addnb_M0_wRn(rd1
);
2349 gen_op_iwmmxt_addub_M0_wRn(rd1
);
2352 gen_op_iwmmxt_addsb_M0_wRn(rd1
);
2355 gen_op_iwmmxt_addnw_M0_wRn(rd1
);
2358 gen_op_iwmmxt_adduw_M0_wRn(rd1
);
2361 gen_op_iwmmxt_addsw_M0_wRn(rd1
);
2364 gen_op_iwmmxt_addnl_M0_wRn(rd1
);
2367 gen_op_iwmmxt_addul_M0_wRn(rd1
);
2370 gen_op_iwmmxt_addsl_M0_wRn(rd1
);
2375 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2376 gen_op_iwmmxt_set_mup();
2377 gen_op_iwmmxt_set_cup();
2379 case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */
2380 case 0x408: case 0x508: case 0x608: case 0x708:
2381 case 0x808: case 0x908: case 0xa08: case 0xb08:
2382 case 0xc08: case 0xd08: case 0xe08: case 0xf08:
2383 if (!(insn
& (1 << 20)) || ((insn
>> 22) & 3) == 0)
2385 wrd
= (insn
>> 12) & 0xf;
2386 rd0
= (insn
>> 16) & 0xf;
2387 rd1
= (insn
>> 0) & 0xf;
2388 gen_op_iwmmxt_movq_M0_wRn(rd0
);
2389 switch ((insn
>> 22) & 3) {
2391 if (insn
& (1 << 21))
2392 gen_op_iwmmxt_packsw_M0_wRn(rd1
);
2394 gen_op_iwmmxt_packuw_M0_wRn(rd1
);
2397 if (insn
& (1 << 21))
2398 gen_op_iwmmxt_packsl_M0_wRn(rd1
);
2400 gen_op_iwmmxt_packul_M0_wRn(rd1
);
2403 if (insn
& (1 << 21))
2404 gen_op_iwmmxt_packsq_M0_wRn(rd1
);
2406 gen_op_iwmmxt_packuq_M0_wRn(rd1
);
2409 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2410 gen_op_iwmmxt_set_mup();
2411 gen_op_iwmmxt_set_cup();
2413 case 0x201: case 0x203: case 0x205: case 0x207:
2414 case 0x209: case 0x20b: case 0x20d: case 0x20f:
2415 case 0x211: case 0x213: case 0x215: case 0x217:
2416 case 0x219: case 0x21b: case 0x21d: case 0x21f:
2417 wrd
= (insn
>> 5) & 0xf;
2418 rd0
= (insn
>> 12) & 0xf;
2419 rd1
= (insn
>> 0) & 0xf;
2420 if (rd0
== 0xf || rd1
== 0xf)
2422 gen_op_iwmmxt_movq_M0_wRn(wrd
);
2423 tmp
= load_reg(s
, rd0
);
2424 tmp2
= load_reg(s
, rd1
);
2425 switch ((insn
>> 16) & 0xf) {
2426 case 0x0: /* TMIA */
2427 gen_helper_iwmmxt_muladdsl(cpu_M0
, cpu_M0
, tmp
, tmp2
);
2429 case 0x8: /* TMIAPH */
2430 gen_helper_iwmmxt_muladdsw(cpu_M0
, cpu_M0
, tmp
, tmp2
);
2432 case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */
2433 if (insn
& (1 << 16))
2434 tcg_gen_shri_i32(tmp
, tmp
, 16);
2435 if (insn
& (1 << 17))
2436 tcg_gen_shri_i32(tmp2
, tmp2
, 16);
2437 gen_helper_iwmmxt_muladdswl(cpu_M0
, cpu_M0
, tmp
, tmp2
);
2442 gen_op_iwmmxt_movq_wRn_M0(wrd
);
2443 gen_op_iwmmxt_set_mup();
2452 /* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred
2453 (ie. an undefined instruction). */
2454 static int disas_dsp_insn(DisasContext
*s
, uint32_t insn
)
2456 int acc
, rd0
, rd1
, rdhi
, rdlo
;
2459 if ((insn
& 0x0ff00f10) == 0x0e200010) {
2460 /* Multiply with Internal Accumulate Format */
2461 rd0
= (insn
>> 12) & 0xf;
2463 acc
= (insn
>> 5) & 7;
2468 tmp
= load_reg(s
, rd0
);
2469 tmp2
= load_reg(s
, rd1
);
2470 switch ((insn
>> 16) & 0xf) {
2472 gen_helper_iwmmxt_muladdsl(cpu_M0
, cpu_M0
, tmp
, tmp2
);
2474 case 0x8: /* MIAPH */
2475 gen_helper_iwmmxt_muladdsw(cpu_M0
, cpu_M0
, tmp
, tmp2
);
2477 case 0xc: /* MIABB */
2478 case 0xd: /* MIABT */
2479 case 0xe: /* MIATB */
2480 case 0xf: /* MIATT */
2481 if (insn
& (1 << 16))
2482 tcg_gen_shri_i32(tmp
, tmp
, 16);
2483 if (insn
& (1 << 17))
2484 tcg_gen_shri_i32(tmp2
, tmp2
, 16);
2485 gen_helper_iwmmxt_muladdswl(cpu_M0
, cpu_M0
, tmp
, tmp2
);
2491 gen_op_iwmmxt_movq_wRn_M0(acc
);
2495 if ((insn
& 0x0fe00ff8) == 0x0c400000) {
2496 /* Internal Accumulator Access Format */
2497 rdhi
= (insn
>> 16) & 0xf;
2498 rdlo
= (insn
>> 12) & 0xf;
2504 if (insn
& ARM_CP_RW_BIT
) { /* MRA */
2505 iwmmxt_load_reg(cpu_V0
, acc
);
2506 tcg_gen_extrl_i64_i32(cpu_R
[rdlo
], cpu_V0
);
2507 tcg_gen_extrh_i64_i32(cpu_R
[rdhi
], cpu_V0
);
2508 tcg_gen_andi_i32(cpu_R
[rdhi
], cpu_R
[rdhi
], (1 << (40 - 32)) - 1);
2510 tcg_gen_concat_i32_i64(cpu_V0
, cpu_R
[rdlo
], cpu_R
[rdhi
]);
2511 iwmmxt_store_reg(cpu_V0
, acc
);
2519 static void gen_goto_ptr(void)
2521 tcg_gen_lookup_and_goto_ptr();
2524 /* This will end the TB but doesn't guarantee we'll return to
2525 * cpu_loop_exec. Any live exit_requests will be processed as we
2526 * enter the next TB.
2528 static void gen_goto_tb(DisasContext
*s
, int n
, target_long diff
)
2530 if (translator_use_goto_tb(&s
->base
, s
->pc_curr
+ diff
)) {
2532 * For pcrel, the pc must always be up-to-date on entry to
2533 * the linked TB, so that it can use simple additions for all
2534 * further adjustments. For !pcrel, the linked TB is compiled
2535 * to know its full virtual address, so we can delay the
2536 * update to pc to the unlinked path. A long chain of links
2537 * can thus avoid many updates to the PC.
2539 if (tb_cflags(s
->base
.tb
) & CF_PCREL
) {
2540 gen_update_pc(s
, diff
);
2544 gen_update_pc(s
, diff
);
2546 tcg_gen_exit_tb(s
->base
.tb
, n
);
2548 gen_update_pc(s
, diff
);
2551 s
->base
.is_jmp
= DISAS_NORETURN
;
2554 /* Jump, specifying which TB number to use if we gen_goto_tb() */
2555 static void gen_jmp_tb(DisasContext
*s
, target_long diff
, int tbno
)
2557 if (unlikely(s
->ss_active
)) {
2558 /* An indirect jump so that we still trigger the debug exception. */
2559 gen_update_pc(s
, diff
);
2560 s
->base
.is_jmp
= DISAS_JUMP
;
2563 switch (s
->base
.is_jmp
) {
2565 case DISAS_TOO_MANY
:
2566 case DISAS_NORETURN
:
2568 * The normal case: just go to the destination TB.
2569 * NB: NORETURN happens if we generate code like
2574 * on the second call to gen_jmp().
2576 gen_goto_tb(s
, tbno
, diff
);
2578 case DISAS_UPDATE_NOCHAIN
:
2579 case DISAS_UPDATE_EXIT
:
2581 * We already decided we're leaving the TB for some other reason.
2582 * Avoid using goto_tb so we really do exit back to the main loop
2583 * and don't chain to another TB.
2585 gen_update_pc(s
, diff
);
2587 s
->base
.is_jmp
= DISAS_NORETURN
;
2591 * We shouldn't be emitting code for a jump and also have
2592 * is_jmp set to one of the special cases like DISAS_SWI.
2594 g_assert_not_reached();
2598 static inline void gen_jmp(DisasContext
*s
, target_long diff
)
2600 gen_jmp_tb(s
, diff
, 0);
2603 static inline void gen_mulxy(TCGv_i32 t0
, TCGv_i32 t1
, int x
, int y
)
2606 tcg_gen_sari_i32(t0
, t0
, 16);
2610 tcg_gen_sari_i32(t1
, t1
, 16);
2613 tcg_gen_mul_i32(t0
, t0
, t1
);
2616 /* Return the mask of PSR bits set by a MSR instruction. */
2617 static uint32_t msr_mask(DisasContext
*s
, int flags
, int spsr
)
2621 if (flags
& (1 << 0)) {
2624 if (flags
& (1 << 1)) {
2627 if (flags
& (1 << 2)) {
2630 if (flags
& (1 << 3)) {
2634 /* Mask out undefined and reserved bits. */
2635 mask
&= aarch32_cpsr_valid_mask(s
->features
, s
->isar
);
2637 /* Mask out execution state. */
2642 /* Mask out privileged bits. */
2649 /* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
2650 static int gen_set_psr(DisasContext
*s
, uint32_t mask
, int spsr
, TCGv_i32 t0
)
2654 /* ??? This is also undefined in system mode. */
2658 tmp
= load_cpu_field(spsr
);
2659 tcg_gen_andi_i32(tmp
, tmp
, ~mask
);
2660 tcg_gen_andi_i32(t0
, t0
, mask
);
2661 tcg_gen_or_i32(tmp
, tmp
, t0
);
2662 store_cpu_field(tmp
, spsr
);
2664 gen_set_cpsr(t0
, mask
);
2670 /* Returns nonzero if access to the PSR is not permitted. */
2671 static int gen_set_psr_im(DisasContext
*s
, uint32_t mask
, int spsr
, uint32_t val
)
2674 tmp
= tcg_temp_new_i32();
2675 tcg_gen_movi_i32(tmp
, val
);
2676 return gen_set_psr(s
, mask
, spsr
, tmp
);
2679 static bool msr_banked_access_decode(DisasContext
*s
, int r
, int sysm
, int rn
,
2680 int *tgtmode
, int *regno
)
2682 /* Decode the r and sysm fields of MSR/MRS banked accesses into
2683 * the target mode and register number, and identify the various
2684 * unpredictable cases.
2685 * MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if:
2686 * + executed in user mode
2687 * + using R15 as the src/dest register
2688 * + accessing an unimplemented register
2689 * + accessing a register that's inaccessible at current PL/security state*
2690 * + accessing a register that you could access with a different insn
2691 * We choose to UNDEF in all these cases.
2692 * Since we don't know which of the various AArch32 modes we are in
2693 * we have to defer some checks to runtime.
2694 * Accesses to Monitor mode registers from Secure EL1 (which implies
2695 * that EL3 is AArch64) must trap to EL3.
2697 * If the access checks fail this function will emit code to take
2698 * an exception and return false. Otherwise it will return true,
2699 * and set *tgtmode and *regno appropriately.
2701 /* These instructions are present only in ARMv8, or in ARMv7 with the
2702 * Virtualization Extensions.
2704 if (!arm_dc_feature(s
, ARM_FEATURE_V8
) &&
2705 !arm_dc_feature(s
, ARM_FEATURE_EL2
)) {
2709 if (IS_USER(s
) || rn
== 15) {
2713 /* The table in the v8 ARM ARM section F5.2.3 describes the encoding
2714 * of registers into (r, sysm).
2717 /* SPSRs for other modes */
2719 case 0xe: /* SPSR_fiq */
2720 *tgtmode
= ARM_CPU_MODE_FIQ
;
2722 case 0x10: /* SPSR_irq */
2723 *tgtmode
= ARM_CPU_MODE_IRQ
;
2725 case 0x12: /* SPSR_svc */
2726 *tgtmode
= ARM_CPU_MODE_SVC
;
2728 case 0x14: /* SPSR_abt */
2729 *tgtmode
= ARM_CPU_MODE_ABT
;
2731 case 0x16: /* SPSR_und */
2732 *tgtmode
= ARM_CPU_MODE_UND
;
2734 case 0x1c: /* SPSR_mon */
2735 *tgtmode
= ARM_CPU_MODE_MON
;
2737 case 0x1e: /* SPSR_hyp */
2738 *tgtmode
= ARM_CPU_MODE_HYP
;
2740 default: /* unallocated */
2743 /* We arbitrarily assign SPSR a register number of 16. */
2746 /* general purpose registers for other modes */
2748 case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */
2749 *tgtmode
= ARM_CPU_MODE_USR
;
2752 case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */
2753 *tgtmode
= ARM_CPU_MODE_FIQ
;
2756 case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */
2757 *tgtmode
= ARM_CPU_MODE_IRQ
;
2758 *regno
= sysm
& 1 ? 13 : 14;
2760 case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */
2761 *tgtmode
= ARM_CPU_MODE_SVC
;
2762 *regno
= sysm
& 1 ? 13 : 14;
2764 case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */
2765 *tgtmode
= ARM_CPU_MODE_ABT
;
2766 *regno
= sysm
& 1 ? 13 : 14;
2768 case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */
2769 *tgtmode
= ARM_CPU_MODE_UND
;
2770 *regno
= sysm
& 1 ? 13 : 14;
2772 case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */
2773 *tgtmode
= ARM_CPU_MODE_MON
;
2774 *regno
= sysm
& 1 ? 13 : 14;
2776 case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */
2777 *tgtmode
= ARM_CPU_MODE_HYP
;
2778 /* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */
2779 *regno
= sysm
& 1 ? 13 : 17;
2781 default: /* unallocated */
2786 /* Catch the 'accessing inaccessible register' cases we can detect
2787 * at translate time.
2790 case ARM_CPU_MODE_MON
:
2791 if (!arm_dc_feature(s
, ARM_FEATURE_EL3
) || s
->ns
) {
2794 if (s
->current_el
== 1) {
2795 /* If we're in Secure EL1 (which implies that EL3 is AArch64)
2796 * then accesses to Mon registers trap to Secure EL2, if it exists,
2801 if (arm_dc_feature(s
, ARM_FEATURE_AARCH64
) &&
2802 dc_isar_feature(aa64_sel2
, s
)) {
2803 /* Target EL is EL<3 minus SCR_EL3.EEL2> */
2804 tcg_el
= load_cpu_field_low32(cp15
.scr_el3
);
2805 tcg_gen_sextract_i32(tcg_el
, tcg_el
, ctz32(SCR_EEL2
), 1);
2806 tcg_gen_addi_i32(tcg_el
, tcg_el
, 3);
2808 tcg_el
= tcg_constant_i32(3);
2811 gen_exception_insn_el_v(s
, 0, EXCP_UDEF
,
2812 syn_uncategorized(), tcg_el
);
2816 case ARM_CPU_MODE_HYP
:
2818 * r13_hyp can only be accessed from Monitor mode, and so we
2819 * can forbid accesses from EL2 or below.
2820 * elr_hyp can be accessed also from Hyp mode, so forbid
2821 * accesses from EL0 or EL1.
2822 * SPSR_hyp is supposed to be in the same category as r13_hyp
2823 * and UNPREDICTABLE if accessed from anything except Monitor
2824 * mode. However there is some real-world code that will do
2825 * it because at least some hardware happens to permit the
2826 * access. (Notably a standard Cortex-R52 startup code fragment
2827 * does this.) So we permit SPSR_hyp from Hyp mode also, to allow
2828 * this (incorrect) guest code to run.
2830 if (!arm_dc_feature(s
, ARM_FEATURE_EL2
) || s
->current_el
< 2
2831 || (s
->current_el
< 3 && *regno
!= 16 && *regno
!= 17)) {
2842 /* If we get here then some access check did not pass */
2843 gen_exception_insn(s
, 0, EXCP_UDEF
, syn_uncategorized());
2847 static void gen_msr_banked(DisasContext
*s
, int r
, int sysm
, int rn
)
2850 int tgtmode
= 0, regno
= 0;
2852 if (!msr_banked_access_decode(s
, r
, sysm
, rn
, &tgtmode
, ®no
)) {
2856 /* Sync state because msr_banked() can raise exceptions */
2857 gen_set_condexec(s
);
2858 gen_update_pc(s
, 0);
2859 tcg_reg
= load_reg(s
, rn
);
2860 gen_helper_msr_banked(tcg_env
, tcg_reg
,
2861 tcg_constant_i32(tgtmode
),
2862 tcg_constant_i32(regno
));
2863 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
2866 static void gen_mrs_banked(DisasContext
*s
, int r
, int sysm
, int rn
)
2869 int tgtmode
= 0, regno
= 0;
2871 if (!msr_banked_access_decode(s
, r
, sysm
, rn
, &tgtmode
, ®no
)) {
2875 /* Sync state because mrs_banked() can raise exceptions */
2876 gen_set_condexec(s
);
2877 gen_update_pc(s
, 0);
2878 tcg_reg
= tcg_temp_new_i32();
2879 gen_helper_mrs_banked(tcg_reg
, tcg_env
,
2880 tcg_constant_i32(tgtmode
),
2881 tcg_constant_i32(regno
));
2882 store_reg(s
, rn
, tcg_reg
);
2883 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
2886 /* Store value to PC as for an exception return (ie don't
2887 * mask bits). The subsequent call to gen_helper_cpsr_write_eret()
2888 * will do the masking based on the new value of the Thumb bit.
2890 static void store_pc_exc_ret(DisasContext
*s
, TCGv_i32 pc
)
2892 tcg_gen_mov_i32(cpu_R
[15], pc
);
2895 /* Generate a v6 exception return. Marks both values as dead. */
2896 static void gen_rfe(DisasContext
*s
, TCGv_i32 pc
, TCGv_i32 cpsr
)
2898 store_pc_exc_ret(s
, pc
);
2899 /* The cpsr_write_eret helper will mask the low bits of PC
2900 * appropriately depending on the new Thumb bit, so it must
2901 * be called after storing the new PC.
2903 translator_io_start(&s
->base
);
2904 gen_helper_cpsr_write_eret(tcg_env
, cpsr
);
2905 /* Must exit loop to check un-masked IRQs */
2906 s
->base
.is_jmp
= DISAS_EXIT
;
2909 /* Generate an old-style exception return. Marks pc as dead. */
2910 static void gen_exception_return(DisasContext
*s
, TCGv_i32 pc
)
2912 gen_rfe(s
, pc
, load_cpu_field(spsr
));
2915 static bool aa32_cpreg_encoding_in_impdef_space(uint8_t crn
, uint8_t crm
)
2917 static const uint16_t mask
[3] = {
2918 0b0000000111100111, /* crn == 9, crm == {c0-c2, c5-c8} */
2919 0b0000000100010011, /* crn == 10, crm == {c0, c1, c4, c8} */
2920 0b1000000111111111, /* crn == 11, crm == {c0-c8, c15} */
2923 if (crn
>= 9 && crn
<= 11) {
2924 return (mask
[crn
- 9] >> crm
) & 1;
2929 static void do_coproc_insn(DisasContext
*s
, int cpnum
, int is64
,
2930 int opc1
, int crn
, int crm
, int opc2
,
2931 bool isread
, int rt
, int rt2
)
2933 uint32_t key
= ENCODE_CP_REG(cpnum
, is64
, s
->ns
, crn
, crm
, opc1
, opc2
);
2934 const ARMCPRegInfo
*ri
= get_arm_cp_reginfo(s
->cp_regs
, key
);
2935 TCGv_ptr tcg_ri
= NULL
;
2936 bool need_exit_tb
= false;
2940 * Note that since we are an implementation which takes an
2941 * exception on a trapped conditional instruction only if the
2942 * instruction passes its condition code check, we can take
2943 * advantage of the clause in the ARM ARM that allows us to set
2944 * the COND field in the instruction to 0xE in all cases.
2945 * We could fish the actual condition out of the insn (ARM)
2946 * or the condexec bits (Thumb) but it isn't necessary.
2951 syndrome
= syn_cp14_rrt_trap(1, 0xe, opc1
, crm
, rt
, rt2
,
2954 syndrome
= syn_cp14_rt_trap(1, 0xe, opc1
, opc2
, crn
, crm
,
2960 syndrome
= syn_cp15_rrt_trap(1, 0xe, opc1
, crm
, rt
, rt2
,
2963 syndrome
= syn_cp15_rt_trap(1, 0xe, opc1
, opc2
, crn
, crm
,
2969 * ARMv8 defines that only coprocessors 14 and 15 exist,
2970 * so this can only happen if this is an ARMv7 or earlier CPU,
2971 * in which case the syndrome information won't actually be
2974 assert(!arm_dc_feature(s
, ARM_FEATURE_V8
));
2975 syndrome
= syn_uncategorized();
2979 if (s
->hstr_active
&& cpnum
== 15 && s
->current_el
== 1) {
2981 * At EL1, check for a HSTR_EL2 trap, which must take precedence
2982 * over the UNDEF for "no such register" or the UNDEF for "access
2983 * permissions forbid this EL1 access". HSTR_EL2 traps from EL0
2984 * only happen if the cpreg doesn't UNDEF at EL0, so we do those in
2985 * access_check_cp_reg(), after the checks for whether the access
2986 * configurably trapped to EL1.
2988 uint32_t maskbit
= is64
? crm
: crn
;
2990 if (maskbit
!= 4 && maskbit
!= 14) {
2991 /* T4 and T14 are RES0 so never cause traps */
2993 DisasLabel over
= gen_disas_label(s
);
2995 t
= load_cpu_offset(offsetoflow32(CPUARMState
, cp15
.hstr_el2
));
2996 tcg_gen_andi_i32(t
, t
, 1u << maskbit
);
2997 tcg_gen_brcondi_i32(TCG_COND_EQ
, t
, 0, over
.label
);
2999 gen_exception_insn_el(s
, 0, EXCP_UDEF
, syndrome
, 2);
3001 * gen_exception_insn() will set is_jmp to DISAS_NORETURN,
3002 * but since we're conditionally branching over it, we want
3003 * to assume continue-to-next-instruction.
3005 s
->base
.is_jmp
= DISAS_NEXT
;
3006 set_disas_label(s
, over
);
3010 if (cpnum
== 15 && aa32_cpreg_encoding_in_impdef_space(crn
, crm
)) {
3012 * Check for TIDCP trap, which must take precedence over the UNDEF
3013 * for "no such register" etc. It shares precedence with HSTR,
3014 * but raises the same exception, so order doesn't matter.
3016 switch (s
->current_el
) {
3018 if (arm_dc_feature(s
, ARM_FEATURE_AARCH64
)
3019 && dc_isar_feature(aa64_tidcp1
, s
)) {
3020 gen_helper_tidcp_el0(tcg_env
, tcg_constant_i32(syndrome
));
3024 gen_helper_tidcp_el1(tcg_env
, tcg_constant_i32(syndrome
));
3031 * Unknown register; this might be a guest error or a QEMU
3032 * unimplemented feature.
3035 qemu_log_mask(LOG_UNIMP
, "%s access to unsupported AArch32 "
3036 "64 bit system register cp:%d opc1: %d crm:%d "
3038 isread
? "read" : "write", cpnum
, opc1
, crm
,
3039 s
->ns
? "non-secure" : "secure");
3041 qemu_log_mask(LOG_UNIMP
, "%s access to unsupported AArch32 "
3042 "system register cp:%d opc1:%d crn:%d crm:%d "
3044 isread
? "read" : "write", cpnum
, opc1
, crn
,
3045 crm
, opc2
, s
->ns
? "non-secure" : "secure");
3047 unallocated_encoding(s
);
3051 /* Check access permissions */
3052 if (!cp_access_ok(s
->current_el
, ri
, isread
)) {
3053 unallocated_encoding(s
);
3057 if ((s
->hstr_active
&& s
->current_el
== 0) || ri
->accessfn
||
3058 (ri
->fgt
&& s
->fgt_active
) ||
3059 (arm_dc_feature(s
, ARM_FEATURE_XSCALE
) && cpnum
< 14)) {
3061 * Emit code to perform further access permissions checks at
3062 * runtime; this may result in an exception.
3063 * Note that on XScale all cp0..c13 registers do an access check
3064 * call in order to handle c15_cpar.
3066 gen_set_condexec(s
);
3067 gen_update_pc(s
, 0);
3068 tcg_ri
= tcg_temp_new_ptr();
3069 gen_helper_access_check_cp_reg(tcg_ri
, tcg_env
,
3070 tcg_constant_i32(key
),
3071 tcg_constant_i32(syndrome
),
3072 tcg_constant_i32(isread
));
3073 } else if (ri
->type
& ARM_CP_RAISES_EXC
) {
3075 * The readfn or writefn might raise an exception;
3076 * synchronize the CPU state in case it does.
3078 gen_set_condexec(s
);
3079 gen_update_pc(s
, 0);
3082 /* Handle special cases first */
3083 switch (ri
->type
& ARM_CP_SPECIAL_MASK
) {
3090 unallocated_encoding(s
);
3092 gen_update_pc(s
, curr_insn_len(s
));
3093 s
->base
.is_jmp
= DISAS_WFI
;
3097 g_assert_not_reached();
3100 if (ri
->type
& ARM_CP_IO
) {
3101 /* I/O operations must end the TB here (whether read or write) */
3102 need_exit_tb
= translator_io_start(&s
->base
);
3110 if (ri
->type
& ARM_CP_CONST
) {
3111 tmp64
= tcg_constant_i64(ri
->resetvalue
);
3112 } else if (ri
->readfn
) {
3114 tcg_ri
= gen_lookup_cp_reg(key
);
3116 tmp64
= tcg_temp_new_i64();
3117 gen_helper_get_cp_reg64(tmp64
, tcg_env
, tcg_ri
);
3119 tmp64
= tcg_temp_new_i64();
3120 tcg_gen_ld_i64(tmp64
, tcg_env
, ri
->fieldoffset
);
3122 tmp
= tcg_temp_new_i32();
3123 tcg_gen_extrl_i64_i32(tmp
, tmp64
);
3124 store_reg(s
, rt
, tmp
);
3125 tmp
= tcg_temp_new_i32();
3126 tcg_gen_extrh_i64_i32(tmp
, tmp64
);
3127 store_reg(s
, rt2
, tmp
);
3130 if (ri
->type
& ARM_CP_CONST
) {
3131 tmp
= tcg_constant_i32(ri
->resetvalue
);
3132 } else if (ri
->readfn
) {
3134 tcg_ri
= gen_lookup_cp_reg(key
);
3136 tmp
= tcg_temp_new_i32();
3137 gen_helper_get_cp_reg(tmp
, tcg_env
, tcg_ri
);
3139 tmp
= load_cpu_offset(ri
->fieldoffset
);
3142 /* Destination register of r15 for 32 bit loads sets
3143 * the condition codes from the high 4 bits of the value
3147 store_reg(s
, rt
, tmp
);
3152 if (ri
->type
& ARM_CP_CONST
) {
3153 /* If not forbidden by access permissions, treat as WI */
3158 TCGv_i32 tmplo
, tmphi
;
3159 TCGv_i64 tmp64
= tcg_temp_new_i64();
3160 tmplo
= load_reg(s
, rt
);
3161 tmphi
= load_reg(s
, rt2
);
3162 tcg_gen_concat_i32_i64(tmp64
, tmplo
, tmphi
);
3165 tcg_ri
= gen_lookup_cp_reg(key
);
3167 gen_helper_set_cp_reg64(tcg_env
, tcg_ri
, tmp64
);
3169 tcg_gen_st_i64(tmp64
, tcg_env
, ri
->fieldoffset
);
3172 TCGv_i32 tmp
= load_reg(s
, rt
);
3175 tcg_ri
= gen_lookup_cp_reg(key
);
3177 gen_helper_set_cp_reg(tcg_env
, tcg_ri
, tmp
);
3179 store_cpu_offset(tmp
, ri
->fieldoffset
, 4);
3184 if (!isread
&& !(ri
->type
& ARM_CP_SUPPRESS_TB_END
)) {
3186 * A write to any coprocessor register that ends a TB
3187 * must rebuild the hflags for the next TB.
3189 gen_rebuild_hflags(s
, ri
->type
& ARM_CP_NEWEL
);
3191 * We default to ending the TB on a coprocessor register write,
3192 * but allow this to be suppressed by the register definition
3193 * (usually only necessary to work around guest bugs).
3195 need_exit_tb
= true;
3202 /* Decode XScale DSP or iWMMXt insn (in the copro space, cp=0 or 1) */
3203 static void disas_xscale_insn(DisasContext
*s
, uint32_t insn
)
3205 int cpnum
= (insn
>> 8) & 0xf;
3207 if (extract32(s
->c15_cpar
, cpnum
, 1) == 0) {
3208 unallocated_encoding(s
);
3209 } else if (arm_dc_feature(s
, ARM_FEATURE_IWMMXT
)) {
3210 if (disas_iwmmxt_insn(s
, insn
)) {
3211 unallocated_encoding(s
);
3213 } else if (arm_dc_feature(s
, ARM_FEATURE_XSCALE
)) {
3214 if (disas_dsp_insn(s
, insn
)) {
3215 unallocated_encoding(s
);
3220 /* Store a 64-bit value to a register pair. Clobbers val. */
3221 static void gen_storeq_reg(DisasContext
*s
, int rlow
, int rhigh
, TCGv_i64 val
)
3224 tmp
= tcg_temp_new_i32();
3225 tcg_gen_extrl_i64_i32(tmp
, val
);
3226 store_reg(s
, rlow
, tmp
);
3227 tmp
= tcg_temp_new_i32();
3228 tcg_gen_extrh_i64_i32(tmp
, val
);
3229 store_reg(s
, rhigh
, tmp
);
3232 /* load and add a 64-bit value from a register pair. */
3233 static void gen_addq(DisasContext
*s
, TCGv_i64 val
, int rlow
, int rhigh
)
3239 /* Load 64-bit value rd:rn. */
3240 tmpl
= load_reg(s
, rlow
);
3241 tmph
= load_reg(s
, rhigh
);
3242 tmp
= tcg_temp_new_i64();
3243 tcg_gen_concat_i32_i64(tmp
, tmpl
, tmph
);
3244 tcg_gen_add_i64(val
, val
, tmp
);
3247 /* Set N and Z flags from hi|lo. */
3248 static void gen_logicq_cc(TCGv_i32 lo
, TCGv_i32 hi
)
3250 tcg_gen_mov_i32(cpu_NF
, hi
);
3251 tcg_gen_or_i32(cpu_ZF
, lo
, hi
);
3254 /* Load/Store exclusive instructions are implemented by remembering
3255 the value/address loaded, and seeing if these are the same
3256 when the store is performed. This should be sufficient to implement
3257 the architecturally mandated semantics, and avoids having to monitor
3258 regular stores. The compare vs the remembered value is done during
3259 the cmpxchg operation, but we must compare the addresses manually. */
3260 static void gen_load_exclusive(DisasContext
*s
, int rt
, int rt2
,
3261 TCGv_i32 addr
, int size
)
3263 TCGv_i32 tmp
= tcg_temp_new_i32();
3264 MemOp opc
= size
| MO_ALIGN
| s
->be_data
;
3269 TCGv_i32 tmp2
= tcg_temp_new_i32();
3270 TCGv_i64 t64
= tcg_temp_new_i64();
3273 * For AArch32, architecturally the 32-bit word at the lowest
3274 * address is always Rt and the one at addr+4 is Rt2, even if
3275 * the CPU is big-endian. That means we don't want to do a
3276 * gen_aa32_ld_i64(), which checks SCTLR_B as if for an
3277 * architecturally 64-bit access, but instead do a 64-bit access
3278 * using MO_BE if appropriate and then split the two halves.
3280 TCGv taddr
= gen_aa32_addr(s
, addr
, opc
);
3282 tcg_gen_qemu_ld_i64(t64
, taddr
, get_mem_index(s
), opc
);
3283 tcg_gen_mov_i64(cpu_exclusive_val
, t64
);
3284 if (s
->be_data
== MO_BE
) {
3285 tcg_gen_extr_i64_i32(tmp2
, tmp
, t64
);
3287 tcg_gen_extr_i64_i32(tmp
, tmp2
, t64
);
3289 store_reg(s
, rt2
, tmp2
);
3291 gen_aa32_ld_i32(s
, tmp
, addr
, get_mem_index(s
), opc
);
3292 tcg_gen_extu_i32_i64(cpu_exclusive_val
, tmp
);
3295 store_reg(s
, rt
, tmp
);
3296 tcg_gen_extu_i32_i64(cpu_exclusive_addr
, addr
);
3299 static void gen_clrex(DisasContext
*s
)
3301 tcg_gen_movi_i64(cpu_exclusive_addr
, -1);
3304 static void gen_store_exclusive(DisasContext
*s
, int rd
, int rt
, int rt2
,
3305 TCGv_i32 addr
, int size
)
3307 TCGv_i32 t0
, t1
, t2
;
3310 TCGLabel
*done_label
;
3311 TCGLabel
*fail_label
;
3312 MemOp opc
= size
| MO_ALIGN
| s
->be_data
;
3314 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) {
3320 fail_label
= gen_new_label();
3321 done_label
= gen_new_label();
3322 extaddr
= tcg_temp_new_i64();
3323 tcg_gen_extu_i32_i64(extaddr
, addr
);
3324 tcg_gen_brcond_i64(TCG_COND_NE
, extaddr
, cpu_exclusive_addr
, fail_label
);
3326 taddr
= gen_aa32_addr(s
, addr
, opc
);
3327 t0
= tcg_temp_new_i32();
3328 t1
= load_reg(s
, rt
);
3330 TCGv_i64 o64
= tcg_temp_new_i64();
3331 TCGv_i64 n64
= tcg_temp_new_i64();
3333 t2
= load_reg(s
, rt2
);
3336 * For AArch32, architecturally the 32-bit word at the lowest
3337 * address is always Rt and the one at addr+4 is Rt2, even if
3338 * the CPU is big-endian. Since we're going to treat this as a
3339 * single 64-bit BE store, we need to put the two halves in the
3340 * opposite order for BE to LE, so that they end up in the right
3341 * places. We don't want gen_aa32_st_i64, because that checks
3342 * SCTLR_B as if for an architectural 64-bit access.
3344 if (s
->be_data
== MO_BE
) {
3345 tcg_gen_concat_i32_i64(n64
, t2
, t1
);
3347 tcg_gen_concat_i32_i64(n64
, t1
, t2
);
3350 tcg_gen_atomic_cmpxchg_i64(o64
, taddr
, cpu_exclusive_val
, n64
,
3351 get_mem_index(s
), opc
);
3353 tcg_gen_setcond_i64(TCG_COND_NE
, o64
, o64
, cpu_exclusive_val
);
3354 tcg_gen_extrl_i64_i32(t0
, o64
);
3356 t2
= tcg_temp_new_i32();
3357 tcg_gen_extrl_i64_i32(t2
, cpu_exclusive_val
);
3358 tcg_gen_atomic_cmpxchg_i32(t0
, taddr
, t2
, t1
, get_mem_index(s
), opc
);
3359 tcg_gen_setcond_i32(TCG_COND_NE
, t0
, t0
, t2
);
3361 tcg_gen_mov_i32(cpu_R
[rd
], t0
);
3362 tcg_gen_br(done_label
);
3364 gen_set_label(fail_label
);
3365 tcg_gen_movi_i32(cpu_R
[rd
], 1);
3366 gen_set_label(done_label
);
3367 tcg_gen_movi_i64(cpu_exclusive_addr
, -1);
3373 * @mode: mode field from insn (which stack to store to)
3374 * @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn
3375 * @writeback: true if writeback bit set
3377 * Generate code for the SRS (Store Return State) insn.
3379 static void gen_srs(DisasContext
*s
,
3380 uint32_t mode
, uint32_t amode
, bool writeback
)
3387 * - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1
3388 * and specified mode is monitor mode
3389 * - UNDEFINED in Hyp mode
3390 * - UNPREDICTABLE in User or System mode
3391 * - UNPREDICTABLE if the specified mode is:
3392 * -- not implemented
3393 * -- not a valid mode number
3394 * -- a mode that's at a higher exception level
3395 * -- Monitor, if we are Non-secure
3396 * For the UNPREDICTABLE cases we choose to UNDEF.
3398 if (s
->current_el
== 1 && !s
->ns
&& mode
== ARM_CPU_MODE_MON
) {
3399 gen_exception_insn_el(s
, 0, EXCP_UDEF
, syn_uncategorized(), 3);
3403 if (s
->current_el
== 0 || s
->current_el
== 2) {
3408 case ARM_CPU_MODE_USR
:
3409 case ARM_CPU_MODE_FIQ
:
3410 case ARM_CPU_MODE_IRQ
:
3411 case ARM_CPU_MODE_SVC
:
3412 case ARM_CPU_MODE_ABT
:
3413 case ARM_CPU_MODE_UND
:
3414 case ARM_CPU_MODE_SYS
:
3416 case ARM_CPU_MODE_HYP
:
3417 if (s
->current_el
== 1 || !arm_dc_feature(s
, ARM_FEATURE_EL2
)) {
3421 case ARM_CPU_MODE_MON
:
3422 /* No need to check specifically for "are we non-secure" because
3423 * we've already made EL0 UNDEF and handled the trap for S-EL1;
3424 * so if this isn't EL3 then we must be non-secure.
3426 if (s
->current_el
!= 3) {
3435 unallocated_encoding(s
);
3439 addr
= tcg_temp_new_i32();
3440 /* get_r13_banked() will raise an exception if called from System mode */
3441 gen_set_condexec(s
);
3442 gen_update_pc(s
, 0);
3443 gen_helper_get_r13_banked(addr
, tcg_env
, tcg_constant_i32(mode
));
3458 g_assert_not_reached();
3460 tcg_gen_addi_i32(addr
, addr
, offset
);
3461 tmp
= load_reg(s
, 14);
3462 gen_aa32_st_i32(s
, tmp
, addr
, get_mem_index(s
), MO_UL
| MO_ALIGN
);
3463 tmp
= load_cpu_field(spsr
);
3464 tcg_gen_addi_i32(addr
, addr
, 4);
3465 gen_aa32_st_i32(s
, tmp
, addr
, get_mem_index(s
), MO_UL
| MO_ALIGN
);
3481 g_assert_not_reached();
3483 tcg_gen_addi_i32(addr
, addr
, offset
);
3484 gen_helper_set_r13_banked(tcg_env
, tcg_constant_i32(mode
), addr
);
3486 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
3489 /* Skip this instruction if the ARM condition is false */
3490 static void arm_skip_unless(DisasContext
*s
, uint32_t cond
)
3492 arm_gen_condlabel(s
);
3493 arm_gen_test_cc(cond
^ 1, s
->condlabel
.label
);
3498 * Constant expanders used by T16/T32 decode
3501 /* Return only the rotation part of T32ExpandImm. */
3502 static int t32_expandimm_rot(DisasContext
*s
, int x
)
3504 return x
& 0xc00 ? extract32(x
, 7, 5) : 0;
3507 /* Return the unrotated immediate from T32ExpandImm. */
3508 static int t32_expandimm_imm(DisasContext
*s
, int x
)
3510 int imm
= extract32(x
, 0, 8);
3512 switch (extract32(x
, 8, 4)) {
3514 /* Nothing to do. */
3516 case 1: /* 00XY00XY */
3519 case 2: /* XY00XY00 */
3522 case 3: /* XYXYXYXY */
3526 /* Rotated constant. */
3533 static int t32_branch24(DisasContext
*s
, int x
)
3535 /* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */
3536 x
^= !(x
< 0) * (3 << 21);
3537 /* Append the final zero. */
3541 static int t16_setflags(DisasContext
*s
)
3543 return s
->condexec_mask
== 0;
3546 static int t16_push_list(DisasContext
*s
, int x
)
3548 return (x
& 0xff) | (x
& 0x100) << (14 - 8);
3551 static int t16_pop_list(DisasContext
*s
, int x
)
3553 return (x
& 0xff) | (x
& 0x100) << (15 - 8);
3557 * Include the generated decoders.
3560 #include "decode-a32.c.inc"
3561 #include "decode-a32-uncond.c.inc"
3562 #include "decode-t32.c.inc"
3563 #include "decode-t16.c.inc"
3565 static bool valid_cp(DisasContext
*s
, int cp
)
3568 * Return true if this coprocessor field indicates something
3569 * that's really a possible coprocessor.
3570 * For v7 and earlier, coprocessors 8..15 were reserved for Arm use,
3571 * and of those only cp14 and cp15 were used for registers.
3572 * cp10 and cp11 were used for VFP and Neon, whose decode is
3573 * dealt with elsewhere. With the advent of fp16, cp9 is also
3575 * For v8A and later, the encoding has been tightened so that
3576 * only cp14 and cp15 are valid, and other values aren't considered
3577 * to be in the coprocessor-instruction space at all. v8M still
3578 * permits coprocessors 0..7.
3579 * For XScale, we must not decode the XScale cp0, cp1 space as
3580 * a standard coprocessor insn, because we want to fall through to
3581 * the legacy disas_xscale_insn() decoder after decodetree is done.
3583 if (arm_dc_feature(s
, ARM_FEATURE_XSCALE
) && (cp
== 0 || cp
== 1)) {
3587 if (arm_dc_feature(s
, ARM_FEATURE_V8
) &&
3588 !arm_dc_feature(s
, ARM_FEATURE_M
)) {
3591 return cp
< 8 || cp
>= 14;
3594 static bool trans_MCR(DisasContext
*s
, arg_MCR
*a
)
3596 if (!valid_cp(s
, a
->cp
)) {
3599 do_coproc_insn(s
, a
->cp
, false, a
->opc1
, a
->crn
, a
->crm
, a
->opc2
,
3604 static bool trans_MRC(DisasContext
*s
, arg_MRC
*a
)
3606 if (!valid_cp(s
, a
->cp
)) {
3609 do_coproc_insn(s
, a
->cp
, false, a
->opc1
, a
->crn
, a
->crm
, a
->opc2
,
3614 static bool trans_MCRR(DisasContext
*s
, arg_MCRR
*a
)
3616 if (!valid_cp(s
, a
->cp
)) {
3619 do_coproc_insn(s
, a
->cp
, true, a
->opc1
, 0, a
->crm
, 0,
3620 false, a
->rt
, a
->rt2
);
3624 static bool trans_MRRC(DisasContext
*s
, arg_MRRC
*a
)
3626 if (!valid_cp(s
, a
->cp
)) {
3629 do_coproc_insn(s
, a
->cp
, true, a
->opc1
, 0, a
->crm
, 0,
3630 true, a
->rt
, a
->rt2
);
3634 /* Helpers to swap operands for reverse-subtract. */
3635 static void gen_rsb(TCGv_i32 dst
, TCGv_i32 a
, TCGv_i32 b
)
3637 tcg_gen_sub_i32(dst
, b
, a
);
3640 static void gen_rsb_CC(TCGv_i32 dst
, TCGv_i32 a
, TCGv_i32 b
)
3642 gen_sub_CC(dst
, b
, a
);
3645 static void gen_rsc(TCGv_i32 dest
, TCGv_i32 a
, TCGv_i32 b
)
3647 gen_sub_carry(dest
, b
, a
);
3650 static void gen_rsc_CC(TCGv_i32 dest
, TCGv_i32 a
, TCGv_i32 b
)
3652 gen_sbc_CC(dest
, b
, a
);
3656 * Helpers for the data processing routines.
3658 * After the computation store the results back.
3659 * This may be suppressed altogether (STREG_NONE), require a runtime
3660 * check against the stack limits (STREG_SP_CHECK), or generate an
3661 * exception return. Oh, or store into a register.
3663 * Always return true, indicating success for a trans_* function.
3672 static bool store_reg_kind(DisasContext
*s
, int rd
,
3673 TCGv_i32 val
, StoreRegKind kind
)
3679 /* See ALUWritePC: Interworking only from a32 mode. */
3681 store_reg(s
, rd
, val
);
3683 store_reg_bx(s
, rd
, val
);
3686 case STREG_SP_CHECK
:
3687 store_sp_checked(s
, val
);
3690 gen_exception_return(s
, val
);
3693 g_assert_not_reached();
3697 * Data Processing (register)
3699 * Operate, with set flags, one register source,
3700 * one immediate shifted register source, and a destination.
3702 static bool op_s_rrr_shi(DisasContext
*s
, arg_s_rrr_shi
*a
,
3703 void (*gen
)(TCGv_i32
, TCGv_i32
, TCGv_i32
),
3704 int logic_cc
, StoreRegKind kind
)
3706 TCGv_i32 tmp1
, tmp2
;
3708 tmp2
= load_reg(s
, a
->rm
);
3709 gen_arm_shift_im(tmp2
, a
->shty
, a
->shim
, logic_cc
);
3710 tmp1
= load_reg(s
, a
->rn
);
3712 gen(tmp1
, tmp1
, tmp2
);
3717 return store_reg_kind(s
, a
->rd
, tmp1
, kind
);
3720 static bool op_s_rxr_shi(DisasContext
*s
, arg_s_rrr_shi
*a
,
3721 void (*gen
)(TCGv_i32
, TCGv_i32
),
3722 int logic_cc
, StoreRegKind kind
)
3726 tmp
= load_reg(s
, a
->rm
);
3727 gen_arm_shift_im(tmp
, a
->shty
, a
->shim
, logic_cc
);
3733 return store_reg_kind(s
, a
->rd
, tmp
, kind
);
3737 * Data-processing (register-shifted register)
3739 * Operate, with set flags, one register source,
3740 * one register shifted register source, and a destination.
3742 static bool op_s_rrr_shr(DisasContext
*s
, arg_s_rrr_shr
*a
,
3743 void (*gen
)(TCGv_i32
, TCGv_i32
, TCGv_i32
),
3744 int logic_cc
, StoreRegKind kind
)
3746 TCGv_i32 tmp1
, tmp2
;
3748 tmp1
= load_reg(s
, a
->rs
);
3749 tmp2
= load_reg(s
, a
->rm
);
3750 gen_arm_shift_reg(tmp2
, a
->shty
, tmp1
, logic_cc
);
3751 tmp1
= load_reg(s
, a
->rn
);
3753 gen(tmp1
, tmp1
, tmp2
);
3758 return store_reg_kind(s
, a
->rd
, tmp1
, kind
);
3761 static bool op_s_rxr_shr(DisasContext
*s
, arg_s_rrr_shr
*a
,
3762 void (*gen
)(TCGv_i32
, TCGv_i32
),
3763 int logic_cc
, StoreRegKind kind
)
3765 TCGv_i32 tmp1
, tmp2
;
3767 tmp1
= load_reg(s
, a
->rs
);
3768 tmp2
= load_reg(s
, a
->rm
);
3769 gen_arm_shift_reg(tmp2
, a
->shty
, tmp1
, logic_cc
);
3775 return store_reg_kind(s
, a
->rd
, tmp2
, kind
);
3779 * Data-processing (immediate)
3781 * Operate, with set flags, one register source,
3782 * one rotated immediate, and a destination.
3784 * Note that logic_cc && a->rot setting CF based on the msb of the
3785 * immediate is the reason why we must pass in the unrotated form
3788 static bool op_s_rri_rot(DisasContext
*s
, arg_s_rri_rot
*a
,
3789 void (*gen
)(TCGv_i32
, TCGv_i32
, TCGv_i32
),
3790 int logic_cc
, StoreRegKind kind
)
3795 imm
= ror32(a
->imm
, a
->rot
);
3796 if (logic_cc
&& a
->rot
) {
3797 tcg_gen_movi_i32(cpu_CF
, imm
>> 31);
3799 tmp1
= load_reg(s
, a
->rn
);
3801 gen(tmp1
, tmp1
, tcg_constant_i32(imm
));
3806 return store_reg_kind(s
, a
->rd
, tmp1
, kind
);
3809 static bool op_s_rxi_rot(DisasContext
*s
, arg_s_rri_rot
*a
,
3810 void (*gen
)(TCGv_i32
, TCGv_i32
),
3811 int logic_cc
, StoreRegKind kind
)
3816 imm
= ror32(a
->imm
, a
->rot
);
3817 if (logic_cc
&& a
->rot
) {
3818 tcg_gen_movi_i32(cpu_CF
, imm
>> 31);
3821 tmp
= tcg_temp_new_i32();
3822 gen(tmp
, tcg_constant_i32(imm
));
3827 return store_reg_kind(s
, a
->rd
, tmp
, kind
);
3830 #define DO_ANY3(NAME, OP, L, K) \
3831 static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \
3832 { StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \
3833 static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \
3834 { StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \
3835 static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \
3836 { StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); }
3838 #define DO_ANY2(NAME, OP, L, K) \
3839 static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \
3840 { StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \
3841 static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \
3842 { StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \
3843 static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \
3844 { StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); }
3846 #define DO_CMP2(NAME, OP, L) \
3847 static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \
3848 { return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \
3849 static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \
3850 { return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \
3851 static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \
3852 { return op_s_rri_rot(s, a, OP, L, STREG_NONE); }
3854 DO_ANY3(AND
, tcg_gen_and_i32
, a
->s
, STREG_NORMAL
)
3855 DO_ANY3(EOR
, tcg_gen_xor_i32
, a
->s
, STREG_NORMAL
)
3856 DO_ANY3(ORR
, tcg_gen_or_i32
, a
->s
, STREG_NORMAL
)
3857 DO_ANY3(BIC
, tcg_gen_andc_i32
, a
->s
, STREG_NORMAL
)
3859 DO_ANY3(RSB
, a
->s
? gen_rsb_CC
: gen_rsb
, false, STREG_NORMAL
)
3860 DO_ANY3(ADC
, a
->s
? gen_adc_CC
: gen_add_carry
, false, STREG_NORMAL
)
3861 DO_ANY3(SBC
, a
->s
? gen_sbc_CC
: gen_sub_carry
, false, STREG_NORMAL
)
3862 DO_ANY3(RSC
, a
->s
? gen_rsc_CC
: gen_rsc
, false, STREG_NORMAL
)
3864 DO_CMP2(TST
, tcg_gen_and_i32
, true)
3865 DO_CMP2(TEQ
, tcg_gen_xor_i32
, true)
3866 DO_CMP2(CMN
, gen_add_CC
, false)
3867 DO_CMP2(CMP
, gen_sub_CC
, false)
3869 DO_ANY3(ADD
, a
->s
? gen_add_CC
: tcg_gen_add_i32
, false,
3870 a
->rd
== 13 && a
->rn
== 13 ? STREG_SP_CHECK
: STREG_NORMAL
)
3873 * Note for the computation of StoreRegKind we return out of the
3874 * middle of the functions that are expanded by DO_ANY3, and that
3875 * we modify a->s via that parameter before it is used by OP.
3877 DO_ANY3(SUB
, a
->s
? gen_sub_CC
: tcg_gen_sub_i32
, false,
3879 StoreRegKind ret
= STREG_NORMAL
;
3880 if (a
->rd
== 15 && a
->s
) {
3882 * See ALUExceptionReturn:
3883 * In User mode, UNPREDICTABLE; we choose UNDEF.
3884 * In Hyp mode, UNDEFINED.
3886 if (IS_USER(s
) || s
->current_el
== 2) {
3887 unallocated_encoding(s
);
3890 /* There is no writeback of nzcv to PSTATE. */
3892 ret
= STREG_EXC_RET
;
3893 } else if (a
->rd
== 13 && a
->rn
== 13) {
3894 ret
= STREG_SP_CHECK
;
3899 DO_ANY2(MOV
, tcg_gen_mov_i32
, a
->s
,
3901 StoreRegKind ret
= STREG_NORMAL
;
3902 if (a
->rd
== 15 && a
->s
) {
3904 * See ALUExceptionReturn:
3905 * In User mode, UNPREDICTABLE; we choose UNDEF.
3906 * In Hyp mode, UNDEFINED.
3908 if (IS_USER(s
) || s
->current_el
== 2) {
3909 unallocated_encoding(s
);
3912 /* There is no writeback of nzcv to PSTATE. */
3914 ret
= STREG_EXC_RET
;
3915 } else if (a
->rd
== 13) {
3916 ret
= STREG_SP_CHECK
;
3921 DO_ANY2(MVN
, tcg_gen_not_i32
, a
->s
, STREG_NORMAL
)
3924 * ORN is only available with T32, so there is no register-shifted-register
3925 * form of the insn. Using the DO_ANY3 macro would create an unused function.
3927 static bool trans_ORN_rrri(DisasContext
*s
, arg_s_rrr_shi
*a
)
3929 return op_s_rrr_shi(s
, a
, tcg_gen_orc_i32
, a
->s
, STREG_NORMAL
);
3932 static bool trans_ORN_rri(DisasContext
*s
, arg_s_rri_rot
*a
)
3934 return op_s_rri_rot(s
, a
, tcg_gen_orc_i32
, a
->s
, STREG_NORMAL
);
3941 static bool trans_ADR(DisasContext
*s
, arg_ri
*a
)
3943 store_reg_bx(s
, a
->rd
, add_reg_for_lit(s
, 15, a
->imm
));
3947 static bool trans_MOVW(DisasContext
*s
, arg_MOVW
*a
)
3949 if (!ENABLE_ARCH_6T2
) {
3953 store_reg(s
, a
->rd
, tcg_constant_i32(a
->imm
));
3957 static bool trans_MOVT(DisasContext
*s
, arg_MOVW
*a
)
3961 if (!ENABLE_ARCH_6T2
) {
3965 tmp
= load_reg(s
, a
->rd
);
3966 tcg_gen_ext16u_i32(tmp
, tmp
);
3967 tcg_gen_ori_i32(tmp
, tmp
, a
->imm
<< 16);
3968 store_reg(s
, a
->rd
, tmp
);
3973 * v8.1M MVE wide-shifts
3975 static bool do_mve_shl_ri(DisasContext
*s
, arg_mve_shl_ri
*a
,
3979 TCGv_i32 rdalo
, rdahi
;
3981 if (!arm_dc_feature(s
, ARM_FEATURE_V8_1M
)) {
3982 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */
3985 if (a
->rdahi
== 15) {
3986 /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */
3989 if (!dc_isar_feature(aa32_mve
, s
) ||
3990 !arm_dc_feature(s
, ARM_FEATURE_M_MAIN
) ||
3992 /* RdaHi == 13 is UNPREDICTABLE; we choose to UNDEF */
3993 unallocated_encoding(s
);
4001 rda
= tcg_temp_new_i64();
4002 rdalo
= load_reg(s
, a
->rdalo
);
4003 rdahi
= load_reg(s
, a
->rdahi
);
4004 tcg_gen_concat_i32_i64(rda
, rdalo
, rdahi
);
4006 fn(rda
, rda
, a
->shim
);
4008 tcg_gen_extrl_i64_i32(rdalo
, rda
);
4009 tcg_gen_extrh_i64_i32(rdahi
, rda
);
4010 store_reg(s
, a
->rdalo
, rdalo
);
4011 store_reg(s
, a
->rdahi
, rdahi
);
4016 static bool trans_ASRL_ri(DisasContext
*s
, arg_mve_shl_ri
*a
)
4018 return do_mve_shl_ri(s
, a
, tcg_gen_sari_i64
);
4021 static bool trans_LSLL_ri(DisasContext
*s
, arg_mve_shl_ri
*a
)
4023 return do_mve_shl_ri(s
, a
, tcg_gen_shli_i64
);
4026 static bool trans_LSRL_ri(DisasContext
*s
, arg_mve_shl_ri
*a
)
4028 return do_mve_shl_ri(s
, a
, tcg_gen_shri_i64
);
4031 static void gen_mve_sqshll(TCGv_i64 r
, TCGv_i64 n
, int64_t shift
)
4033 gen_helper_mve_sqshll(r
, tcg_env
, n
, tcg_constant_i32(shift
));
4036 static bool trans_SQSHLL_ri(DisasContext
*s
, arg_mve_shl_ri
*a
)
4038 return do_mve_shl_ri(s
, a
, gen_mve_sqshll
);
4041 static void gen_mve_uqshll(TCGv_i64 r
, TCGv_i64 n
, int64_t shift
)
4043 gen_helper_mve_uqshll(r
, tcg_env
, n
, tcg_constant_i32(shift
));
4046 static bool trans_UQSHLL_ri(DisasContext
*s
, arg_mve_shl_ri
*a
)
4048 return do_mve_shl_ri(s
, a
, gen_mve_uqshll
);
4051 static bool trans_SRSHRL_ri(DisasContext
*s
, arg_mve_shl_ri
*a
)
4053 return do_mve_shl_ri(s
, a
, gen_srshr64_i64
);
4056 static bool trans_URSHRL_ri(DisasContext
*s
, arg_mve_shl_ri
*a
)
4058 return do_mve_shl_ri(s
, a
, gen_urshr64_i64
);
4061 static bool do_mve_shl_rr(DisasContext
*s
, arg_mve_shl_rr
*a
, WideShiftFn
*fn
)
4064 TCGv_i32 rdalo
, rdahi
;
4066 if (!arm_dc_feature(s
, ARM_FEATURE_V8_1M
)) {
4067 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */
4070 if (a
->rdahi
== 15) {
4071 /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */
4074 if (!dc_isar_feature(aa32_mve
, s
) ||
4075 !arm_dc_feature(s
, ARM_FEATURE_M_MAIN
) ||
4076 a
->rdahi
== 13 || a
->rm
== 13 || a
->rm
== 15 ||
4077 a
->rm
== a
->rdahi
|| a
->rm
== a
->rdalo
) {
4078 /* These rdahi/rdalo/rm cases are UNPREDICTABLE; we choose to UNDEF */
4079 unallocated_encoding(s
);
4083 rda
= tcg_temp_new_i64();
4084 rdalo
= load_reg(s
, a
->rdalo
);
4085 rdahi
= load_reg(s
, a
->rdahi
);
4086 tcg_gen_concat_i32_i64(rda
, rdalo
, rdahi
);
4088 /* The helper takes care of the sign-extension of the low 8 bits of Rm */
4089 fn(rda
, tcg_env
, rda
, cpu_R
[a
->rm
]);
4091 tcg_gen_extrl_i64_i32(rdalo
, rda
);
4092 tcg_gen_extrh_i64_i32(rdahi
, rda
);
4093 store_reg(s
, a
->rdalo
, rdalo
);
4094 store_reg(s
, a
->rdahi
, rdahi
);
4099 static bool trans_LSLL_rr(DisasContext
*s
, arg_mve_shl_rr
*a
)
4101 return do_mve_shl_rr(s
, a
, gen_helper_mve_ushll
);
4104 static bool trans_ASRL_rr(DisasContext
*s
, arg_mve_shl_rr
*a
)
4106 return do_mve_shl_rr(s
, a
, gen_helper_mve_sshrl
);
4109 static bool trans_UQRSHLL64_rr(DisasContext
*s
, arg_mve_shl_rr
*a
)
4111 return do_mve_shl_rr(s
, a
, gen_helper_mve_uqrshll
);
4114 static bool trans_SQRSHRL64_rr(DisasContext
*s
, arg_mve_shl_rr
*a
)
4116 return do_mve_shl_rr(s
, a
, gen_helper_mve_sqrshrl
);
4119 static bool trans_UQRSHLL48_rr(DisasContext
*s
, arg_mve_shl_rr
*a
)
4121 return do_mve_shl_rr(s
, a
, gen_helper_mve_uqrshll48
);
4124 static bool trans_SQRSHRL48_rr(DisasContext
*s
, arg_mve_shl_rr
*a
)
4126 return do_mve_shl_rr(s
, a
, gen_helper_mve_sqrshrl48
);
4129 static bool do_mve_sh_ri(DisasContext
*s
, arg_mve_sh_ri
*a
, ShiftImmFn
*fn
)
4131 if (!arm_dc_feature(s
, ARM_FEATURE_V8_1M
)) {
4132 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */
4135 if (!dc_isar_feature(aa32_mve
, s
) ||
4136 !arm_dc_feature(s
, ARM_FEATURE_M_MAIN
) ||
4137 a
->rda
== 13 || a
->rda
== 15) {
4138 /* These rda cases are UNPREDICTABLE; we choose to UNDEF */
4139 unallocated_encoding(s
);
4146 fn(cpu_R
[a
->rda
], cpu_R
[a
->rda
], a
->shim
);
4151 static bool trans_URSHR_ri(DisasContext
*s
, arg_mve_sh_ri
*a
)
4153 return do_mve_sh_ri(s
, a
, gen_urshr32_i32
);
4156 static bool trans_SRSHR_ri(DisasContext
*s
, arg_mve_sh_ri
*a
)
4158 return do_mve_sh_ri(s
, a
, gen_srshr32_i32
);
4161 static void gen_mve_sqshl(TCGv_i32 r
, TCGv_i32 n
, int32_t shift
)
4163 gen_helper_mve_sqshl(r
, tcg_env
, n
, tcg_constant_i32(shift
));
4166 static bool trans_SQSHL_ri(DisasContext
*s
, arg_mve_sh_ri
*a
)
4168 return do_mve_sh_ri(s
, a
, gen_mve_sqshl
);
4171 static void gen_mve_uqshl(TCGv_i32 r
, TCGv_i32 n
, int32_t shift
)
4173 gen_helper_mve_uqshl(r
, tcg_env
, n
, tcg_constant_i32(shift
));
4176 static bool trans_UQSHL_ri(DisasContext
*s
, arg_mve_sh_ri
*a
)
4178 return do_mve_sh_ri(s
, a
, gen_mve_uqshl
);
4181 static bool do_mve_sh_rr(DisasContext
*s
, arg_mve_sh_rr
*a
, ShiftFn
*fn
)
4183 if (!arm_dc_feature(s
, ARM_FEATURE_V8_1M
)) {
4184 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */
4187 if (!dc_isar_feature(aa32_mve
, s
) ||
4188 !arm_dc_feature(s
, ARM_FEATURE_M_MAIN
) ||
4189 a
->rda
== 13 || a
->rda
== 15 || a
->rm
== 13 || a
->rm
== 15 ||
4191 /* These rda/rm cases are UNPREDICTABLE; we choose to UNDEF */
4192 unallocated_encoding(s
);
4196 /* The helper takes care of the sign-extension of the low 8 bits of Rm */
4197 fn(cpu_R
[a
->rda
], tcg_env
, cpu_R
[a
->rda
], cpu_R
[a
->rm
]);
4201 static bool trans_SQRSHR_rr(DisasContext
*s
, arg_mve_sh_rr
*a
)
4203 return do_mve_sh_rr(s
, a
, gen_helper_mve_sqrshr
);
4206 static bool trans_UQRSHL_rr(DisasContext
*s
, arg_mve_sh_rr
*a
)
4208 return do_mve_sh_rr(s
, a
, gen_helper_mve_uqrshl
);
4212 * Multiply and multiply accumulate
4215 static bool op_mla(DisasContext
*s
, arg_s_rrrr
*a
, bool add
)
4219 t1
= load_reg(s
, a
->rn
);
4220 t2
= load_reg(s
, a
->rm
);
4221 tcg_gen_mul_i32(t1
, t1
, t2
);
4223 t2
= load_reg(s
, a
->ra
);
4224 tcg_gen_add_i32(t1
, t1
, t2
);
4229 store_reg(s
, a
->rd
, t1
);
4233 static bool trans_MUL(DisasContext
*s
, arg_MUL
*a
)
4235 return op_mla(s
, a
, false);
4238 static bool trans_MLA(DisasContext
*s
, arg_MLA
*a
)
4240 return op_mla(s
, a
, true);
4243 static bool trans_MLS(DisasContext
*s
, arg_MLS
*a
)
4247 if (!ENABLE_ARCH_6T2
) {
4250 t1
= load_reg(s
, a
->rn
);
4251 t2
= load_reg(s
, a
->rm
);
4252 tcg_gen_mul_i32(t1
, t1
, t2
);
4253 t2
= load_reg(s
, a
->ra
);
4254 tcg_gen_sub_i32(t1
, t2
, t1
);
4255 store_reg(s
, a
->rd
, t1
);
4259 static bool op_mlal(DisasContext
*s
, arg_s_rrrr
*a
, bool uns
, bool add
)
4261 TCGv_i32 t0
, t1
, t2
, t3
;
4263 t0
= load_reg(s
, a
->rm
);
4264 t1
= load_reg(s
, a
->rn
);
4266 tcg_gen_mulu2_i32(t0
, t1
, t0
, t1
);
4268 tcg_gen_muls2_i32(t0
, t1
, t0
, t1
);
4271 t2
= load_reg(s
, a
->ra
);
4272 t3
= load_reg(s
, a
->rd
);
4273 tcg_gen_add2_i32(t0
, t1
, t0
, t1
, t2
, t3
);
4276 gen_logicq_cc(t0
, t1
);
4278 store_reg(s
, a
->ra
, t0
);
4279 store_reg(s
, a
->rd
, t1
);
4283 static bool trans_UMULL(DisasContext
*s
, arg_UMULL
*a
)
4285 return op_mlal(s
, a
, true, false);
4288 static bool trans_SMULL(DisasContext
*s
, arg_SMULL
*a
)
4290 return op_mlal(s
, a
, false, false);
4293 static bool trans_UMLAL(DisasContext
*s
, arg_UMLAL
*a
)
4295 return op_mlal(s
, a
, true, true);
4298 static bool trans_SMLAL(DisasContext
*s
, arg_SMLAL
*a
)
4300 return op_mlal(s
, a
, false, true);
4303 static bool trans_UMAAL(DisasContext
*s
, arg_UMAAL
*a
)
4305 TCGv_i32 t0
, t1
, t2
, zero
;
4308 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
4313 t0
= load_reg(s
, a
->rm
);
4314 t1
= load_reg(s
, a
->rn
);
4315 tcg_gen_mulu2_i32(t0
, t1
, t0
, t1
);
4316 zero
= tcg_constant_i32(0);
4317 t2
= load_reg(s
, a
->ra
);
4318 tcg_gen_add2_i32(t0
, t1
, t0
, t1
, t2
, zero
);
4319 t2
= load_reg(s
, a
->rd
);
4320 tcg_gen_add2_i32(t0
, t1
, t0
, t1
, t2
, zero
);
4321 store_reg(s
, a
->ra
, t0
);
4322 store_reg(s
, a
->rd
, t1
);
4327 * Saturating addition and subtraction
4330 static bool op_qaddsub(DisasContext
*s
, arg_rrr
*a
, bool add
, bool doub
)
4335 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
4336 : !ENABLE_ARCH_5TE
) {
4340 t0
= load_reg(s
, a
->rm
);
4341 t1
= load_reg(s
, a
->rn
);
4343 gen_helper_add_saturate(t1
, tcg_env
, t1
, t1
);
4346 gen_helper_add_saturate(t0
, tcg_env
, t0
, t1
);
4348 gen_helper_sub_saturate(t0
, tcg_env
, t0
, t1
);
4350 store_reg(s
, a
->rd
, t0
);
4354 #define DO_QADDSUB(NAME, ADD, DOUB) \
4355 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
4357 return op_qaddsub(s, a, ADD, DOUB); \
4360 DO_QADDSUB(QADD
, true, false)
4361 DO_QADDSUB(QSUB
, false, false)
4362 DO_QADDSUB(QDADD
, true, true)
4363 DO_QADDSUB(QDSUB
, false, true)
4368 * Halfword multiply and multiply accumulate
4371 static bool op_smlaxxx(DisasContext
*s
, arg_rrrr
*a
,
4372 int add_long
, bool nt
, bool mt
)
4374 TCGv_i32 t0
, t1
, tl
, th
;
4377 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
4378 : !ENABLE_ARCH_5TE
) {
4382 t0
= load_reg(s
, a
->rn
);
4383 t1
= load_reg(s
, a
->rm
);
4384 gen_mulxy(t0
, t1
, nt
, mt
);
4388 store_reg(s
, a
->rd
, t0
);
4391 t1
= load_reg(s
, a
->ra
);
4392 gen_helper_add_setq(t0
, tcg_env
, t0
, t1
);
4393 store_reg(s
, a
->rd
, t0
);
4396 tl
= load_reg(s
, a
->ra
);
4397 th
= load_reg(s
, a
->rd
);
4398 /* Sign-extend the 32-bit product to 64 bits. */
4399 t1
= tcg_temp_new_i32();
4400 tcg_gen_sari_i32(t1
, t0
, 31);
4401 tcg_gen_add2_i32(tl
, th
, tl
, th
, t0
, t1
);
4402 store_reg(s
, a
->ra
, tl
);
4403 store_reg(s
, a
->rd
, th
);
4406 g_assert_not_reached();
4411 #define DO_SMLAX(NAME, add, nt, mt) \
4412 static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \
4414 return op_smlaxxx(s, a, add, nt, mt); \
4417 DO_SMLAX(SMULBB
, 0, 0, 0)
4418 DO_SMLAX(SMULBT
, 0, 0, 1)
4419 DO_SMLAX(SMULTB
, 0, 1, 0)
4420 DO_SMLAX(SMULTT
, 0, 1, 1)
4422 DO_SMLAX(SMLABB
, 1, 0, 0)
4423 DO_SMLAX(SMLABT
, 1, 0, 1)
4424 DO_SMLAX(SMLATB
, 1, 1, 0)
4425 DO_SMLAX(SMLATT
, 1, 1, 1)
4427 DO_SMLAX(SMLALBB
, 2, 0, 0)
4428 DO_SMLAX(SMLALBT
, 2, 0, 1)
4429 DO_SMLAX(SMLALTB
, 2, 1, 0)
4430 DO_SMLAX(SMLALTT
, 2, 1, 1)
4434 static bool op_smlawx(DisasContext
*s
, arg_rrrr
*a
, bool add
, bool mt
)
4438 if (!ENABLE_ARCH_5TE
) {
4442 t0
= load_reg(s
, a
->rn
);
4443 t1
= load_reg(s
, a
->rm
);
4445 * Since the nominal result is product<47:16>, shift the 16-bit
4446 * input up by 16 bits, so that the result is at product<63:32>.
4449 tcg_gen_andi_i32(t1
, t1
, 0xffff0000);
4451 tcg_gen_shli_i32(t1
, t1
, 16);
4453 tcg_gen_muls2_i32(t0
, t1
, t0
, t1
);
4455 t0
= load_reg(s
, a
->ra
);
4456 gen_helper_add_setq(t1
, tcg_env
, t1
, t0
);
4458 store_reg(s
, a
->rd
, t1
);
4462 #define DO_SMLAWX(NAME, add, mt) \
4463 static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \
4465 return op_smlawx(s, a, add, mt); \
4468 DO_SMLAWX(SMULWB
, 0, 0)
4469 DO_SMLAWX(SMULWT
, 0, 1)
4470 DO_SMLAWX(SMLAWB
, 1, 0)
4471 DO_SMLAWX(SMLAWT
, 1, 1)
4476 * MSR (immediate) and hints
4479 static bool trans_YIELD(DisasContext
*s
, arg_YIELD
*a
)
4482 * When running single-threaded TCG code, use the helper to ensure that
4483 * the next round-robin scheduled vCPU gets a crack. When running in
4484 * MTTCG we don't generate jumps to the helper as it won't affect the
4485 * scheduling of other vCPUs.
4487 if (!(tb_cflags(s
->base
.tb
) & CF_PARALLEL
)) {
4488 gen_update_pc(s
, curr_insn_len(s
));
4489 s
->base
.is_jmp
= DISAS_YIELD
;
4494 static bool trans_WFE(DisasContext
*s
, arg_WFE
*a
)
4497 * When running single-threaded TCG code, use the helper to ensure that
4498 * the next round-robin scheduled vCPU gets a crack. In MTTCG mode we
4499 * just skip this instruction. Currently the SEV/SEVL instructions,
4500 * which are *one* of many ways to wake the CPU from WFE, are not
4501 * implemented so we can't sleep like WFI does.
4503 if (!(tb_cflags(s
->base
.tb
) & CF_PARALLEL
)) {
4504 gen_update_pc(s
, curr_insn_len(s
));
4505 s
->base
.is_jmp
= DISAS_WFE
;
4510 static bool trans_WFI(DisasContext
*s
, arg_WFI
*a
)
4512 /* For WFI, halt the vCPU until an IRQ. */
4513 gen_update_pc(s
, curr_insn_len(s
));
4514 s
->base
.is_jmp
= DISAS_WFI
;
4518 static bool trans_ESB(DisasContext
*s
, arg_ESB
*a
)
4521 * For M-profile, minimal-RAS ESB can be a NOP.
4522 * Without RAS, we must implement this as NOP.
4524 if (!arm_dc_feature(s
, ARM_FEATURE_M
) && dc_isar_feature(aa32_ras
, s
)) {
4526 * QEMU does not have a source of physical SErrors,
4527 * so we are only concerned with virtual SErrors.
4528 * The pseudocode in the ARM for this case is
4529 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
4530 * AArch32.vESBOperation();
4531 * Most of the condition can be evaluated at translation time.
4532 * Test for EL2 present, and defer test for SEL2 to runtime.
4534 if (s
->current_el
<= 1 && arm_dc_feature(s
, ARM_FEATURE_EL2
)) {
4535 gen_helper_vesb(tcg_env
);
4541 static bool trans_NOP(DisasContext
*s
, arg_NOP
*a
)
4546 static bool trans_MSR_imm(DisasContext
*s
, arg_MSR_imm
*a
)
4548 uint32_t val
= ror32(a
->imm
, a
->rot
* 2);
4549 uint32_t mask
= msr_mask(s
, a
->mask
, a
->r
);
4551 if (gen_set_psr_im(s
, mask
, a
->r
, val
)) {
4552 unallocated_encoding(s
);
4558 * Cyclic Redundancy Check
4561 static bool op_crc32(DisasContext
*s
, arg_rrr
*a
, bool c
, MemOp sz
)
4563 TCGv_i32 t1
, t2
, t3
;
4565 if (!dc_isar_feature(aa32_crc32
, s
)) {
4569 t1
= load_reg(s
, a
->rn
);
4570 t2
= load_reg(s
, a
->rm
);
4581 g_assert_not_reached();
4583 t3
= tcg_constant_i32(1 << sz
);
4585 gen_helper_crc32c(t1
, t1
, t2
, t3
);
4587 gen_helper_crc32(t1
, t1
, t2
, t3
);
4589 store_reg(s
, a
->rd
, t1
);
4593 #define DO_CRC32(NAME, c, sz) \
4594 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
4595 { return op_crc32(s, a, c, sz); }
4597 DO_CRC32(CRC32B
, false, MO_8
)
4598 DO_CRC32(CRC32H
, false, MO_16
)
4599 DO_CRC32(CRC32W
, false, MO_32
)
4600 DO_CRC32(CRC32CB
, true, MO_8
)
4601 DO_CRC32(CRC32CH
, true, MO_16
)
4602 DO_CRC32(CRC32CW
, true, MO_32
)
4607 * Miscellaneous instructions
4610 static bool trans_MRS_bank(DisasContext
*s
, arg_MRS_bank
*a
)
4612 if (arm_dc_feature(s
, ARM_FEATURE_M
)) {
4615 gen_mrs_banked(s
, a
->r
, a
->sysm
, a
->rd
);
4619 static bool trans_MSR_bank(DisasContext
*s
, arg_MSR_bank
*a
)
4621 if (arm_dc_feature(s
, ARM_FEATURE_M
)) {
4624 gen_msr_banked(s
, a
->r
, a
->sysm
, a
->rn
);
4628 static bool trans_MRS_reg(DisasContext
*s
, arg_MRS_reg
*a
)
4632 if (arm_dc_feature(s
, ARM_FEATURE_M
)) {
4637 unallocated_encoding(s
);
4640 tmp
= load_cpu_field(spsr
);
4642 tmp
= tcg_temp_new_i32();
4643 gen_helper_cpsr_read(tmp
, tcg_env
);
4645 store_reg(s
, a
->rd
, tmp
);
4649 static bool trans_MSR_reg(DisasContext
*s
, arg_MSR_reg
*a
)
4652 uint32_t mask
= msr_mask(s
, a
->mask
, a
->r
);
4654 if (arm_dc_feature(s
, ARM_FEATURE_M
)) {
4657 tmp
= load_reg(s
, a
->rn
);
4658 if (gen_set_psr(s
, mask
, a
->r
, tmp
)) {
4659 unallocated_encoding(s
);
4664 static bool trans_MRS_v7m(DisasContext
*s
, arg_MRS_v7m
*a
)
4668 if (!arm_dc_feature(s
, ARM_FEATURE_M
)) {
4671 tmp
= tcg_temp_new_i32();
4672 gen_helper_v7m_mrs(tmp
, tcg_env
, tcg_constant_i32(a
->sysm
));
4673 store_reg(s
, a
->rd
, tmp
);
4677 static bool trans_MSR_v7m(DisasContext
*s
, arg_MSR_v7m
*a
)
4681 if (!arm_dc_feature(s
, ARM_FEATURE_M
)) {
4684 addr
= tcg_constant_i32((a
->mask
<< 10) | a
->sysm
);
4685 reg
= load_reg(s
, a
->rn
);
4686 gen_helper_v7m_msr(tcg_env
, addr
, reg
);
4687 /* If we wrote to CONTROL, the EL might have changed */
4688 gen_rebuild_hflags(s
, true);
4693 static bool trans_BX(DisasContext
*s
, arg_BX
*a
)
4695 if (!ENABLE_ARCH_4T
) {
4698 gen_bx_excret(s
, load_reg(s
, a
->rm
));
4702 static bool trans_BXJ(DisasContext
*s
, arg_BXJ
*a
)
4704 if (!ENABLE_ARCH_5J
|| arm_dc_feature(s
, ARM_FEATURE_M
)) {
4708 * v7A allows BXJ to be trapped via HSTR.TJDBX. We don't waste a
4709 * TBFLAGS bit on a basically-never-happens case, so call a helper
4710 * function to check for the trap and raise the exception if needed
4711 * (passing it the register number for the syndrome value).
4712 * v8A doesn't have this HSTR bit.
4714 if (!arm_dc_feature(s
, ARM_FEATURE_V8
) &&
4715 arm_dc_feature(s
, ARM_FEATURE_EL2
) &&
4716 s
->current_el
< 2 && s
->ns
) {
4717 gen_helper_check_bxj_trap(tcg_env
, tcg_constant_i32(a
->rm
));
4719 /* Trivial implementation equivalent to bx. */
4720 gen_bx(s
, load_reg(s
, a
->rm
));
4724 static bool trans_BLX_r(DisasContext
*s
, arg_BLX_r
*a
)
4728 if (!ENABLE_ARCH_5
) {
4731 tmp
= load_reg(s
, a
->rm
);
4732 gen_pc_plus_diff(s
, cpu_R
[14], curr_insn_len(s
) | s
->thumb
);
4738 * BXNS/BLXNS: only exist for v8M with the security extensions,
4739 * and always UNDEF if NonSecure. We don't implement these in
4740 * the user-only mode either (in theory you can use them from
4741 * Secure User mode but they are too tied in to system emulation).
4743 static bool trans_BXNS(DisasContext
*s
, arg_BXNS
*a
)
4745 if (!s
->v8m_secure
|| IS_USER_ONLY
) {
4746 unallocated_encoding(s
);
4753 static bool trans_BLXNS(DisasContext
*s
, arg_BLXNS
*a
)
4755 if (!s
->v8m_secure
|| IS_USER_ONLY
) {
4756 unallocated_encoding(s
);
4758 gen_blxns(s
, a
->rm
);
4763 static bool trans_CLZ(DisasContext
*s
, arg_CLZ
*a
)
4767 if (!ENABLE_ARCH_5
) {
4770 tmp
= load_reg(s
, a
->rm
);
4771 tcg_gen_clzi_i32(tmp
, tmp
, 32);
4772 store_reg(s
, a
->rd
, tmp
);
4776 static bool trans_ERET(DisasContext
*s
, arg_ERET
*a
)
4780 if (!arm_dc_feature(s
, ARM_FEATURE_V7VE
)) {
4784 unallocated_encoding(s
);
4787 if (s
->current_el
== 2) {
4788 /* ERET from Hyp uses ELR_Hyp, not LR */
4789 tmp
= load_cpu_field_low32(elr_el
[2]);
4791 tmp
= load_reg(s
, 14);
4793 gen_exception_return(s
, tmp
);
4797 static bool trans_HLT(DisasContext
*s
, arg_HLT
*a
)
4803 static bool trans_BKPT(DisasContext
*s
, arg_BKPT
*a
)
4805 if (!ENABLE_ARCH_5
) {
4808 /* BKPT is OK with ECI set and leaves it untouched */
4809 s
->eci_handled
= true;
4810 if (arm_dc_feature(s
, ARM_FEATURE_M
) &&
4811 semihosting_enabled(s
->current_el
== 0) &&
4813 gen_exception_internal_insn(s
, EXCP_SEMIHOST
);
4815 gen_exception_bkpt_insn(s
, syn_aa32_bkpt(a
->imm
, false));
4820 static bool trans_HVC(DisasContext
*s
, arg_HVC
*a
)
4822 if (!ENABLE_ARCH_7
|| arm_dc_feature(s
, ARM_FEATURE_M
)) {
4826 unallocated_encoding(s
);
4833 static bool trans_SMC(DisasContext
*s
, arg_SMC
*a
)
4835 if (!ENABLE_ARCH_6K
|| arm_dc_feature(s
, ARM_FEATURE_M
)) {
4839 unallocated_encoding(s
);
4846 static bool trans_SG(DisasContext
*s
, arg_SG
*a
)
4848 if (!arm_dc_feature(s
, ARM_FEATURE_M
) ||
4849 !arm_dc_feature(s
, ARM_FEATURE_V8
)) {
4854 * The bulk of the behaviour for this instruction is implemented
4855 * in v7m_handle_execute_nsc(), which deals with the insn when
4856 * it is executed by a CPU in non-secure state from memory
4857 * which is Secure & NonSecure-Callable.
4858 * Here we only need to handle the remaining cases:
4859 * * in NS memory (including the "security extension not
4860 * implemented" case) : NOP
4861 * * in S memory but CPU already secure (clear IT bits)
4862 * We know that the attribute for the memory this insn is
4863 * in must match the current CPU state, because otherwise
4864 * get_phys_addr_pmsav8 would have generated an exception.
4866 if (s
->v8m_secure
) {
4867 /* Like the IT insn, we don't need to generate any code */
4868 s
->condexec_cond
= 0;
4869 s
->condexec_mask
= 0;
4874 static bool trans_TT(DisasContext
*s
, arg_TT
*a
)
4878 if (!arm_dc_feature(s
, ARM_FEATURE_M
) ||
4879 !arm_dc_feature(s
, ARM_FEATURE_V8
)) {
4882 if (a
->rd
== 13 || a
->rd
== 15 || a
->rn
== 15) {
4883 /* We UNDEF for these UNPREDICTABLE cases */
4884 unallocated_encoding(s
);
4887 if (a
->A
&& !s
->v8m_secure
) {
4888 /* This case is UNDEFINED. */
4889 unallocated_encoding(s
);
4893 addr
= load_reg(s
, a
->rn
);
4894 tmp
= tcg_temp_new_i32();
4895 gen_helper_v7m_tt(tmp
, tcg_env
, addr
, tcg_constant_i32((a
->A
<< 1) | a
->T
));
4896 store_reg(s
, a
->rd
, tmp
);
4901 * Load/store register index
4904 static ISSInfo
make_issinfo(DisasContext
*s
, int rd
, bool p
, bool w
)
4908 /* ISS not valid if writeback */
4911 if (curr_insn_len(s
) == 2) {
4920 static TCGv_i32
op_addr_rr_pre(DisasContext
*s
, arg_ldst_rr
*a
)
4922 TCGv_i32 addr
= load_reg(s
, a
->rn
);
4924 if (s
->v8m_stackcheck
&& a
->rn
== 13 && a
->w
) {
4925 gen_helper_v8m_stackcheck(tcg_env
, addr
);
4929 TCGv_i32 ofs
= load_reg(s
, a
->rm
);
4930 gen_arm_shift_im(ofs
, a
->shtype
, a
->shimm
, 0);
4932 tcg_gen_add_i32(addr
, addr
, ofs
);
4934 tcg_gen_sub_i32(addr
, addr
, ofs
);
4940 static void op_addr_rr_post(DisasContext
*s
, arg_ldst_rr
*a
,
4941 TCGv_i32 addr
, int address_offset
)
4944 TCGv_i32 ofs
= load_reg(s
, a
->rm
);
4945 gen_arm_shift_im(ofs
, a
->shtype
, a
->shimm
, 0);
4947 tcg_gen_add_i32(addr
, addr
, ofs
);
4949 tcg_gen_sub_i32(addr
, addr
, ofs
);
4954 tcg_gen_addi_i32(addr
, addr
, address_offset
);
4955 store_reg(s
, a
->rn
, addr
);
4958 static bool op_load_rr(DisasContext
*s
, arg_ldst_rr
*a
,
4959 MemOp mop
, int mem_idx
)
4961 ISSInfo issinfo
= make_issinfo(s
, a
->rt
, a
->p
, a
->w
);
4964 addr
= op_addr_rr_pre(s
, a
);
4966 tmp
= tcg_temp_new_i32();
4967 gen_aa32_ld_i32(s
, tmp
, addr
, mem_idx
, mop
);
4968 disas_set_da_iss(s
, mop
, issinfo
);
4971 * Perform base writeback before the loaded value to
4972 * ensure correct behavior with overlapping index registers.
4974 op_addr_rr_post(s
, a
, addr
, 0);
4975 store_reg_from_load(s
, a
->rt
, tmp
);
4979 static bool op_store_rr(DisasContext
*s
, arg_ldst_rr
*a
,
4980 MemOp mop
, int mem_idx
)
4982 ISSInfo issinfo
= make_issinfo(s
, a
->rt
, a
->p
, a
->w
) | ISSIsWrite
;
4986 * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it
4987 * is either UNPREDICTABLE or has defined behaviour
4989 if (s
->thumb
&& a
->rn
== 15) {
4993 addr
= op_addr_rr_pre(s
, a
);
4995 tmp
= load_reg(s
, a
->rt
);
4996 gen_aa32_st_i32(s
, tmp
, addr
, mem_idx
, mop
);
4997 disas_set_da_iss(s
, mop
, issinfo
);
4999 op_addr_rr_post(s
, a
, addr
, 0);
5003 static bool trans_LDRD_rr(DisasContext
*s
, arg_ldst_rr
*a
)
5005 int mem_idx
= get_mem_index(s
);
5008 if (!ENABLE_ARCH_5TE
) {
5012 unallocated_encoding(s
);
5015 addr
= op_addr_rr_pre(s
, a
);
5017 tmp
= tcg_temp_new_i32();
5018 gen_aa32_ld_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5019 store_reg(s
, a
->rt
, tmp
);
5021 tcg_gen_addi_i32(addr
, addr
, 4);
5023 tmp
= tcg_temp_new_i32();
5024 gen_aa32_ld_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5025 store_reg(s
, a
->rt
+ 1, tmp
);
5027 /* LDRD w/ base writeback is undefined if the registers overlap. */
5028 op_addr_rr_post(s
, a
, addr
, -4);
5032 static bool trans_STRD_rr(DisasContext
*s
, arg_ldst_rr
*a
)
5034 int mem_idx
= get_mem_index(s
);
5037 if (!ENABLE_ARCH_5TE
) {
5041 unallocated_encoding(s
);
5044 addr
= op_addr_rr_pre(s
, a
);
5046 tmp
= load_reg(s
, a
->rt
);
5047 gen_aa32_st_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5049 tcg_gen_addi_i32(addr
, addr
, 4);
5051 tmp
= load_reg(s
, a
->rt
+ 1);
5052 gen_aa32_st_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5054 op_addr_rr_post(s
, a
, addr
, -4);
5059 * Load/store immediate index
5062 static TCGv_i32
op_addr_ri_pre(DisasContext
*s
, arg_ldst_ri
*a
)
5070 if (s
->v8m_stackcheck
&& a
->rn
== 13 && a
->w
) {
5072 * Stackcheck. Here we know 'addr' is the current SP;
5073 * U is set if we're moving SP up, else down. It is
5074 * UNKNOWN whether the limit check triggers when SP starts
5075 * below the limit and ends up above it; we chose to do so.
5078 TCGv_i32 newsp
= tcg_temp_new_i32();
5079 tcg_gen_addi_i32(newsp
, cpu_R
[13], ofs
);
5080 gen_helper_v8m_stackcheck(tcg_env
, newsp
);
5082 gen_helper_v8m_stackcheck(tcg_env
, cpu_R
[13]);
5086 return add_reg_for_lit(s
, a
->rn
, a
->p
? ofs
: 0);
5089 static void op_addr_ri_post(DisasContext
*s
, arg_ldst_ri
*a
,
5090 TCGv_i32 addr
, int address_offset
)
5094 address_offset
+= a
->imm
;
5096 address_offset
-= a
->imm
;
5101 tcg_gen_addi_i32(addr
, addr
, address_offset
);
5102 store_reg(s
, a
->rn
, addr
);
5105 static bool op_load_ri(DisasContext
*s
, arg_ldst_ri
*a
,
5106 MemOp mop
, int mem_idx
)
5108 ISSInfo issinfo
= make_issinfo(s
, a
->rt
, a
->p
, a
->w
);
5111 addr
= op_addr_ri_pre(s
, a
);
5113 tmp
= tcg_temp_new_i32();
5114 gen_aa32_ld_i32(s
, tmp
, addr
, mem_idx
, mop
);
5115 disas_set_da_iss(s
, mop
, issinfo
);
5118 * Perform base writeback before the loaded value to
5119 * ensure correct behavior with overlapping index registers.
5121 op_addr_ri_post(s
, a
, addr
, 0);
5122 store_reg_from_load(s
, a
->rt
, tmp
);
5126 static bool op_store_ri(DisasContext
*s
, arg_ldst_ri
*a
,
5127 MemOp mop
, int mem_idx
)
5129 ISSInfo issinfo
= make_issinfo(s
, a
->rt
, a
->p
, a
->w
) | ISSIsWrite
;
5133 * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it
5134 * is either UNPREDICTABLE or has defined behaviour
5136 if (s
->thumb
&& a
->rn
== 15) {
5140 addr
= op_addr_ri_pre(s
, a
);
5142 tmp
= load_reg(s
, a
->rt
);
5143 gen_aa32_st_i32(s
, tmp
, addr
, mem_idx
, mop
);
5144 disas_set_da_iss(s
, mop
, issinfo
);
5146 op_addr_ri_post(s
, a
, addr
, 0);
5150 static bool op_ldrd_ri(DisasContext
*s
, arg_ldst_ri
*a
, int rt2
)
5152 int mem_idx
= get_mem_index(s
);
5155 addr
= op_addr_ri_pre(s
, a
);
5157 tmp
= tcg_temp_new_i32();
5158 gen_aa32_ld_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5159 store_reg(s
, a
->rt
, tmp
);
5161 tcg_gen_addi_i32(addr
, addr
, 4);
5163 tmp
= tcg_temp_new_i32();
5164 gen_aa32_ld_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5165 store_reg(s
, rt2
, tmp
);
5167 /* LDRD w/ base writeback is undefined if the registers overlap. */
5168 op_addr_ri_post(s
, a
, addr
, -4);
5172 static bool trans_LDRD_ri_a32(DisasContext
*s
, arg_ldst_ri
*a
)
5174 if (!ENABLE_ARCH_5TE
|| (a
->rt
& 1)) {
5177 return op_ldrd_ri(s
, a
, a
->rt
+ 1);
5180 static bool trans_LDRD_ri_t32(DisasContext
*s
, arg_ldst_ri2
*a
)
5183 .u
= a
->u
, .w
= a
->w
, .p
= a
->p
,
5184 .rn
= a
->rn
, .rt
= a
->rt
, .imm
= a
->imm
5186 return op_ldrd_ri(s
, &b
, a
->rt2
);
5189 static bool op_strd_ri(DisasContext
*s
, arg_ldst_ri
*a
, int rt2
)
5191 int mem_idx
= get_mem_index(s
);
5194 addr
= op_addr_ri_pre(s
, a
);
5196 tmp
= load_reg(s
, a
->rt
);
5197 gen_aa32_st_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5199 tcg_gen_addi_i32(addr
, addr
, 4);
5201 tmp
= load_reg(s
, rt2
);
5202 gen_aa32_st_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
5204 op_addr_ri_post(s
, a
, addr
, -4);
5208 static bool trans_STRD_ri_a32(DisasContext
*s
, arg_ldst_ri
*a
)
5210 if (!ENABLE_ARCH_5TE
|| (a
->rt
& 1)) {
5213 return op_strd_ri(s
, a
, a
->rt
+ 1);
5216 static bool trans_STRD_ri_t32(DisasContext
*s
, arg_ldst_ri2
*a
)
5219 .u
= a
->u
, .w
= a
->w
, .p
= a
->p
,
5220 .rn
= a
->rn
, .rt
= a
->rt
, .imm
= a
->imm
5222 return op_strd_ri(s
, &b
, a
->rt2
);
5225 #define DO_LDST(NAME, WHICH, MEMOP) \
5226 static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \
5228 return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \
5230 static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \
5232 return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \
5234 static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \
5236 return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \
5238 static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \
5240 return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \
5243 DO_LDST(LDR
, load
, MO_UL
)
5244 DO_LDST(LDRB
, load
, MO_UB
)
5245 DO_LDST(LDRH
, load
, MO_UW
)
5246 DO_LDST(LDRSB
, load
, MO_SB
)
5247 DO_LDST(LDRSH
, load
, MO_SW
)
5249 DO_LDST(STR
, store
, MO_UL
)
5250 DO_LDST(STRB
, store
, MO_UB
)
5251 DO_LDST(STRH
, store
, MO_UW
)
5256 * Synchronization primitives
5259 static bool op_swp(DisasContext
*s
, arg_SWP
*a
, MemOp opc
)
5265 addr
= load_reg(s
, a
->rn
);
5266 taddr
= gen_aa32_addr(s
, addr
, opc
);
5268 tmp
= load_reg(s
, a
->rt2
);
5269 tcg_gen_atomic_xchg_i32(tmp
, taddr
, tmp
, get_mem_index(s
), opc
);
5271 store_reg(s
, a
->rt
, tmp
);
5275 static bool trans_SWP(DisasContext
*s
, arg_SWP
*a
)
5277 return op_swp(s
, a
, MO_UL
| MO_ALIGN
);
5280 static bool trans_SWPB(DisasContext
*s
, arg_SWP
*a
)
5282 return op_swp(s
, a
, MO_UB
);
5286 * Load/Store Exclusive and Load-Acquire/Store-Release
5289 static bool op_strex(DisasContext
*s
, arg_STREX
*a
, MemOp mop
, bool rel
)
5292 /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */
5293 bool v8a
= ENABLE_ARCH_8
&& !arm_dc_feature(s
, ARM_FEATURE_M
);
5295 /* We UNDEF for these UNPREDICTABLE cases. */
5296 if (a
->rd
== 15 || a
->rn
== 15 || a
->rt
== 15
5297 || a
->rd
== a
->rn
|| a
->rd
== a
->rt
5298 || (!v8a
&& s
->thumb
&& (a
->rd
== 13 || a
->rt
== 13))
5302 || (!v8a
&& s
->thumb
&& a
->rt2
== 13)))) {
5303 unallocated_encoding(s
);
5308 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
5311 addr
= tcg_temp_new_i32();
5312 load_reg_var(s
, addr
, a
->rn
);
5313 tcg_gen_addi_i32(addr
, addr
, a
->imm
);
5315 gen_store_exclusive(s
, a
->rd
, a
->rt
, a
->rt2
, addr
, mop
);
5319 static bool trans_STREX(DisasContext
*s
, arg_STREX
*a
)
5321 if (!ENABLE_ARCH_6
) {
5324 return op_strex(s
, a
, MO_32
, false);
5327 static bool trans_STREXD_a32(DisasContext
*s
, arg_STREX
*a
)
5329 if (!ENABLE_ARCH_6K
) {
5332 /* We UNDEF for these UNPREDICTABLE cases. */
5334 unallocated_encoding(s
);
5338 return op_strex(s
, a
, MO_64
, false);
5341 static bool trans_STREXD_t32(DisasContext
*s
, arg_STREX
*a
)
5343 return op_strex(s
, a
, MO_64
, false);
5346 static bool trans_STREXB(DisasContext
*s
, arg_STREX
*a
)
5348 if (s
->thumb
? !ENABLE_ARCH_7
: !ENABLE_ARCH_6K
) {
5351 return op_strex(s
, a
, MO_8
, false);
5354 static bool trans_STREXH(DisasContext
*s
, arg_STREX
*a
)
5356 if (s
->thumb
? !ENABLE_ARCH_7
: !ENABLE_ARCH_6K
) {
5359 return op_strex(s
, a
, MO_16
, false);
5362 static bool trans_STLEX(DisasContext
*s
, arg_STREX
*a
)
5364 if (!ENABLE_ARCH_8
) {
5367 return op_strex(s
, a
, MO_32
, true);
5370 static bool trans_STLEXD_a32(DisasContext
*s
, arg_STREX
*a
)
5372 if (!ENABLE_ARCH_8
) {
5375 /* We UNDEF for these UNPREDICTABLE cases. */
5377 unallocated_encoding(s
);
5381 return op_strex(s
, a
, MO_64
, true);
5384 static bool trans_STLEXD_t32(DisasContext
*s
, arg_STREX
*a
)
5386 if (!ENABLE_ARCH_8
) {
5389 return op_strex(s
, a
, MO_64
, true);
5392 static bool trans_STLEXB(DisasContext
*s
, arg_STREX
*a
)
5394 if (!ENABLE_ARCH_8
) {
5397 return op_strex(s
, a
, MO_8
, true);
5400 static bool trans_STLEXH(DisasContext
*s
, arg_STREX
*a
)
5402 if (!ENABLE_ARCH_8
) {
5405 return op_strex(s
, a
, MO_16
, true);
5408 static bool op_stl(DisasContext
*s
, arg_STL
*a
, MemOp mop
)
5412 if (!ENABLE_ARCH_8
) {
5415 /* We UNDEF for these UNPREDICTABLE cases. */
5416 if (a
->rn
== 15 || a
->rt
== 15) {
5417 unallocated_encoding(s
);
5421 addr
= load_reg(s
, a
->rn
);
5422 tmp
= load_reg(s
, a
->rt
);
5423 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
5424 gen_aa32_st_i32(s
, tmp
, addr
, get_mem_index(s
), mop
| MO_ALIGN
);
5425 disas_set_da_iss(s
, mop
, a
->rt
| ISSIsAcqRel
| ISSIsWrite
);
5430 static bool trans_STL(DisasContext
*s
, arg_STL
*a
)
5432 return op_stl(s
, a
, MO_UL
);
5435 static bool trans_STLB(DisasContext
*s
, arg_STL
*a
)
5437 return op_stl(s
, a
, MO_UB
);
5440 static bool trans_STLH(DisasContext
*s
, arg_STL
*a
)
5442 return op_stl(s
, a
, MO_UW
);
5445 static bool op_ldrex(DisasContext
*s
, arg_LDREX
*a
, MemOp mop
, bool acq
)
5448 /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */
5449 bool v8a
= ENABLE_ARCH_8
&& !arm_dc_feature(s
, ARM_FEATURE_M
);
5451 /* We UNDEF for these UNPREDICTABLE cases. */
5452 if (a
->rn
== 15 || a
->rt
== 15
5453 || (!v8a
&& s
->thumb
&& a
->rt
== 13)
5455 && (a
->rt2
== 15 || a
->rt
== a
->rt2
5456 || (!v8a
&& s
->thumb
&& a
->rt2
== 13)))) {
5457 unallocated_encoding(s
);
5461 addr
= tcg_temp_new_i32();
5462 load_reg_var(s
, addr
, a
->rn
);
5463 tcg_gen_addi_i32(addr
, addr
, a
->imm
);
5465 gen_load_exclusive(s
, a
->rt
, a
->rt2
, addr
, mop
);
5468 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
5473 static bool trans_LDREX(DisasContext
*s
, arg_LDREX
*a
)
5475 if (!ENABLE_ARCH_6
) {
5478 return op_ldrex(s
, a
, MO_32
, false);
5481 static bool trans_LDREXD_a32(DisasContext
*s
, arg_LDREX
*a
)
5483 if (!ENABLE_ARCH_6K
) {
5486 /* We UNDEF for these UNPREDICTABLE cases. */
5488 unallocated_encoding(s
);
5492 return op_ldrex(s
, a
, MO_64
, false);
5495 static bool trans_LDREXD_t32(DisasContext
*s
, arg_LDREX
*a
)
5497 return op_ldrex(s
, a
, MO_64
, false);
5500 static bool trans_LDREXB(DisasContext
*s
, arg_LDREX
*a
)
5502 if (s
->thumb
? !ENABLE_ARCH_7
: !ENABLE_ARCH_6K
) {
5505 return op_ldrex(s
, a
, MO_8
, false);
5508 static bool trans_LDREXH(DisasContext
*s
, arg_LDREX
*a
)
5510 if (s
->thumb
? !ENABLE_ARCH_7
: !ENABLE_ARCH_6K
) {
5513 return op_ldrex(s
, a
, MO_16
, false);
5516 static bool trans_LDAEX(DisasContext
*s
, arg_LDREX
*a
)
5518 if (!ENABLE_ARCH_8
) {
5521 return op_ldrex(s
, a
, MO_32
, true);
5524 static bool trans_LDAEXD_a32(DisasContext
*s
, arg_LDREX
*a
)
5526 if (!ENABLE_ARCH_8
) {
5529 /* We UNDEF for these UNPREDICTABLE cases. */
5531 unallocated_encoding(s
);
5535 return op_ldrex(s
, a
, MO_64
, true);
5538 static bool trans_LDAEXD_t32(DisasContext
*s
, arg_LDREX
*a
)
5540 if (!ENABLE_ARCH_8
) {
5543 return op_ldrex(s
, a
, MO_64
, true);
5546 static bool trans_LDAEXB(DisasContext
*s
, arg_LDREX
*a
)
5548 if (!ENABLE_ARCH_8
) {
5551 return op_ldrex(s
, a
, MO_8
, true);
5554 static bool trans_LDAEXH(DisasContext
*s
, arg_LDREX
*a
)
5556 if (!ENABLE_ARCH_8
) {
5559 return op_ldrex(s
, a
, MO_16
, true);
5562 static bool op_lda(DisasContext
*s
, arg_LDA
*a
, MemOp mop
)
5566 if (!ENABLE_ARCH_8
) {
5569 /* We UNDEF for these UNPREDICTABLE cases. */
5570 if (a
->rn
== 15 || a
->rt
== 15) {
5571 unallocated_encoding(s
);
5575 addr
= load_reg(s
, a
->rn
);
5576 tmp
= tcg_temp_new_i32();
5577 gen_aa32_ld_i32(s
, tmp
, addr
, get_mem_index(s
), mop
| MO_ALIGN
);
5578 disas_set_da_iss(s
, mop
, a
->rt
| ISSIsAcqRel
);
5580 store_reg(s
, a
->rt
, tmp
);
5581 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
5585 static bool trans_LDA(DisasContext
*s
, arg_LDA
*a
)
5587 return op_lda(s
, a
, MO_UL
);
5590 static bool trans_LDAB(DisasContext
*s
, arg_LDA
*a
)
5592 return op_lda(s
, a
, MO_UB
);
5595 static bool trans_LDAH(DisasContext
*s
, arg_LDA
*a
)
5597 return op_lda(s
, a
, MO_UW
);
5601 * Media instructions
5604 static bool trans_USADA8(DisasContext
*s
, arg_USADA8
*a
)
5608 if (!ENABLE_ARCH_6
) {
5612 t1
= load_reg(s
, a
->rn
);
5613 t2
= load_reg(s
, a
->rm
);
5614 gen_helper_usad8(t1
, t1
, t2
);
5616 t2
= load_reg(s
, a
->ra
);
5617 tcg_gen_add_i32(t1
, t1
, t2
);
5619 store_reg(s
, a
->rd
, t1
);
5623 static bool op_bfx(DisasContext
*s
, arg_UBFX
*a
, bool u
)
5626 int width
= a
->widthm1
+ 1;
5629 if (!ENABLE_ARCH_6T2
) {
5632 if (shift
+ width
> 32) {
5633 /* UNPREDICTABLE; we choose to UNDEF */
5634 unallocated_encoding(s
);
5638 tmp
= load_reg(s
, a
->rn
);
5640 tcg_gen_extract_i32(tmp
, tmp
, shift
, width
);
5642 tcg_gen_sextract_i32(tmp
, tmp
, shift
, width
);
5644 store_reg(s
, a
->rd
, tmp
);
5648 static bool trans_SBFX(DisasContext
*s
, arg_SBFX
*a
)
5650 return op_bfx(s
, a
, false);
5653 static bool trans_UBFX(DisasContext
*s
, arg_UBFX
*a
)
5655 return op_bfx(s
, a
, true);
5658 static bool trans_BFCI(DisasContext
*s
, arg_BFCI
*a
)
5660 int msb
= a
->msb
, lsb
= a
->lsb
;
5661 TCGv_i32 t_in
, t_rd
;
5664 if (!ENABLE_ARCH_6T2
) {
5668 /* UNPREDICTABLE; we choose to UNDEF */
5669 unallocated_encoding(s
);
5673 width
= msb
+ 1 - lsb
;
5676 t_in
= tcg_constant_i32(0);
5679 t_in
= load_reg(s
, a
->rn
);
5681 t_rd
= load_reg(s
, a
->rd
);
5682 tcg_gen_deposit_i32(t_rd
, t_rd
, t_in
, lsb
, width
);
5683 store_reg(s
, a
->rd
, t_rd
);
5687 static bool trans_UDF(DisasContext
*s
, arg_UDF
*a
)
5689 unallocated_encoding(s
);
5694 * Parallel addition and subtraction
5697 static bool op_par_addsub(DisasContext
*s
, arg_rrr
*a
,
5698 void (*gen
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
5703 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
5708 t0
= load_reg(s
, a
->rn
);
5709 t1
= load_reg(s
, a
->rm
);
5713 store_reg(s
, a
->rd
, t0
);
5717 static bool op_par_addsub_ge(DisasContext
*s
, arg_rrr
*a
,
5718 void (*gen
)(TCGv_i32
, TCGv_i32
,
5719 TCGv_i32
, TCGv_ptr
))
5725 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
5730 t0
= load_reg(s
, a
->rn
);
5731 t1
= load_reg(s
, a
->rm
);
5733 ge
= tcg_temp_new_ptr();
5734 tcg_gen_addi_ptr(ge
, tcg_env
, offsetof(CPUARMState
, GE
));
5735 gen(t0
, t0
, t1
, ge
);
5737 store_reg(s
, a
->rd
, t0
);
5741 #define DO_PAR_ADDSUB(NAME, helper) \
5742 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
5744 return op_par_addsub(s, a, helper); \
5747 #define DO_PAR_ADDSUB_GE(NAME, helper) \
5748 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
5750 return op_par_addsub_ge(s, a, helper); \
5753 DO_PAR_ADDSUB_GE(SADD16
, gen_helper_sadd16
)
5754 DO_PAR_ADDSUB_GE(SASX
, gen_helper_saddsubx
)
5755 DO_PAR_ADDSUB_GE(SSAX
, gen_helper_ssubaddx
)
5756 DO_PAR_ADDSUB_GE(SSUB16
, gen_helper_ssub16
)
5757 DO_PAR_ADDSUB_GE(SADD8
, gen_helper_sadd8
)
5758 DO_PAR_ADDSUB_GE(SSUB8
, gen_helper_ssub8
)
5760 DO_PAR_ADDSUB_GE(UADD16
, gen_helper_uadd16
)
5761 DO_PAR_ADDSUB_GE(UASX
, gen_helper_uaddsubx
)
5762 DO_PAR_ADDSUB_GE(USAX
, gen_helper_usubaddx
)
5763 DO_PAR_ADDSUB_GE(USUB16
, gen_helper_usub16
)
5764 DO_PAR_ADDSUB_GE(UADD8
, gen_helper_uadd8
)
5765 DO_PAR_ADDSUB_GE(USUB8
, gen_helper_usub8
)
5767 DO_PAR_ADDSUB(QADD16
, gen_helper_qadd16
)
5768 DO_PAR_ADDSUB(QASX
, gen_helper_qaddsubx
)
5769 DO_PAR_ADDSUB(QSAX
, gen_helper_qsubaddx
)
5770 DO_PAR_ADDSUB(QSUB16
, gen_helper_qsub16
)
5771 DO_PAR_ADDSUB(QADD8
, gen_helper_qadd8
)
5772 DO_PAR_ADDSUB(QSUB8
, gen_helper_qsub8
)
5774 DO_PAR_ADDSUB(UQADD16
, gen_helper_uqadd16
)
5775 DO_PAR_ADDSUB(UQASX
, gen_helper_uqaddsubx
)
5776 DO_PAR_ADDSUB(UQSAX
, gen_helper_uqsubaddx
)
5777 DO_PAR_ADDSUB(UQSUB16
, gen_helper_uqsub16
)
5778 DO_PAR_ADDSUB(UQADD8
, gen_helper_uqadd8
)
5779 DO_PAR_ADDSUB(UQSUB8
, gen_helper_uqsub8
)
5781 DO_PAR_ADDSUB(SHADD16
, gen_helper_shadd16
)
5782 DO_PAR_ADDSUB(SHASX
, gen_helper_shaddsubx
)
5783 DO_PAR_ADDSUB(SHSAX
, gen_helper_shsubaddx
)
5784 DO_PAR_ADDSUB(SHSUB16
, gen_helper_shsub16
)
5785 DO_PAR_ADDSUB(SHADD8
, gen_helper_shadd8
)
5786 DO_PAR_ADDSUB(SHSUB8
, gen_helper_shsub8
)
5788 DO_PAR_ADDSUB(UHADD16
, gen_helper_uhadd16
)
5789 DO_PAR_ADDSUB(UHASX
, gen_helper_uhaddsubx
)
5790 DO_PAR_ADDSUB(UHSAX
, gen_helper_uhsubaddx
)
5791 DO_PAR_ADDSUB(UHSUB16
, gen_helper_uhsub16
)
5792 DO_PAR_ADDSUB(UHADD8
, gen_helper_uhadd8
)
5793 DO_PAR_ADDSUB(UHSUB8
, gen_helper_uhsub8
)
5795 #undef DO_PAR_ADDSUB
5796 #undef DO_PAR_ADDSUB_GE
5799 * Packing, unpacking, saturation, and reversal
5802 static bool trans_PKH(DisasContext
*s
, arg_PKH
*a
)
5808 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
5813 tn
= load_reg(s
, a
->rn
);
5814 tm
= load_reg(s
, a
->rm
);
5820 tcg_gen_sari_i32(tm
, tm
, shift
);
5821 tcg_gen_deposit_i32(tn
, tn
, tm
, 0, 16);
5824 tcg_gen_shli_i32(tm
, tm
, shift
);
5825 tcg_gen_deposit_i32(tn
, tm
, tn
, 0, 16);
5827 store_reg(s
, a
->rd
, tn
);
5831 static bool op_sat(DisasContext
*s
, arg_sat
*a
,
5832 void (*gen
)(TCGv_i32
, TCGv_env
, TCGv_i32
, TCGv_i32
))
5837 if (!ENABLE_ARCH_6
) {
5841 tmp
= load_reg(s
, a
->rn
);
5843 tcg_gen_sari_i32(tmp
, tmp
, shift
? shift
: 31);
5845 tcg_gen_shli_i32(tmp
, tmp
, shift
);
5848 gen(tmp
, tcg_env
, tmp
, tcg_constant_i32(a
->satimm
));
5850 store_reg(s
, a
->rd
, tmp
);
5854 static bool trans_SSAT(DisasContext
*s
, arg_sat
*a
)
5856 return op_sat(s
, a
, gen_helper_ssat
);
5859 static bool trans_USAT(DisasContext
*s
, arg_sat
*a
)
5861 return op_sat(s
, a
, gen_helper_usat
);
5864 static bool trans_SSAT16(DisasContext
*s
, arg_sat
*a
)
5866 if (s
->thumb
&& !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)) {
5869 return op_sat(s
, a
, gen_helper_ssat16
);
5872 static bool trans_USAT16(DisasContext
*s
, arg_sat
*a
)
5874 if (s
->thumb
&& !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)) {
5877 return op_sat(s
, a
, gen_helper_usat16
);
5880 static bool op_xta(DisasContext
*s
, arg_rrr_rot
*a
,
5881 void (*gen_extract
)(TCGv_i32
, TCGv_i32
),
5882 void (*gen_add
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
5886 if (!ENABLE_ARCH_6
) {
5890 tmp
= load_reg(s
, a
->rm
);
5892 * TODO: In many cases we could do a shift instead of a rotate.
5893 * Combined with a simple extend, that becomes an extract.
5895 tcg_gen_rotri_i32(tmp
, tmp
, a
->rot
* 8);
5896 gen_extract(tmp
, tmp
);
5899 TCGv_i32 tmp2
= load_reg(s
, a
->rn
);
5900 gen_add(tmp
, tmp
, tmp2
);
5902 store_reg(s
, a
->rd
, tmp
);
5906 static bool trans_SXTAB(DisasContext
*s
, arg_rrr_rot
*a
)
5908 return op_xta(s
, a
, tcg_gen_ext8s_i32
, tcg_gen_add_i32
);
5911 static bool trans_SXTAH(DisasContext
*s
, arg_rrr_rot
*a
)
5913 return op_xta(s
, a
, tcg_gen_ext16s_i32
, tcg_gen_add_i32
);
5916 static bool trans_SXTAB16(DisasContext
*s
, arg_rrr_rot
*a
)
5918 if (s
->thumb
&& !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)) {
5921 return op_xta(s
, a
, gen_helper_sxtb16
, gen_add16
);
5924 static bool trans_UXTAB(DisasContext
*s
, arg_rrr_rot
*a
)
5926 return op_xta(s
, a
, tcg_gen_ext8u_i32
, tcg_gen_add_i32
);
5929 static bool trans_UXTAH(DisasContext
*s
, arg_rrr_rot
*a
)
5931 return op_xta(s
, a
, tcg_gen_ext16u_i32
, tcg_gen_add_i32
);
5934 static bool trans_UXTAB16(DisasContext
*s
, arg_rrr_rot
*a
)
5936 if (s
->thumb
&& !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)) {
5939 return op_xta(s
, a
, gen_helper_uxtb16
, gen_add16
);
5942 static bool trans_SEL(DisasContext
*s
, arg_rrr
*a
)
5944 TCGv_i32 t1
, t2
, t3
;
5947 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
5952 t1
= load_reg(s
, a
->rn
);
5953 t2
= load_reg(s
, a
->rm
);
5954 t3
= tcg_temp_new_i32();
5955 tcg_gen_ld_i32(t3
, tcg_env
, offsetof(CPUARMState
, GE
));
5956 gen_helper_sel_flags(t1
, t3
, t1
, t2
);
5957 store_reg(s
, a
->rd
, t1
);
5961 static bool op_rr(DisasContext
*s
, arg_rr
*a
,
5962 void (*gen
)(TCGv_i32
, TCGv_i32
))
5966 tmp
= load_reg(s
, a
->rm
);
5968 store_reg(s
, a
->rd
, tmp
);
5972 static bool trans_REV(DisasContext
*s
, arg_rr
*a
)
5974 if (!ENABLE_ARCH_6
) {
5977 return op_rr(s
, a
, tcg_gen_bswap32_i32
);
5980 static bool trans_REV16(DisasContext
*s
, arg_rr
*a
)
5982 if (!ENABLE_ARCH_6
) {
5985 return op_rr(s
, a
, gen_rev16
);
5988 static bool trans_REVSH(DisasContext
*s
, arg_rr
*a
)
5990 if (!ENABLE_ARCH_6
) {
5993 return op_rr(s
, a
, gen_revsh
);
5996 static bool trans_RBIT(DisasContext
*s
, arg_rr
*a
)
5998 if (!ENABLE_ARCH_6T2
) {
6001 return op_rr(s
, a
, gen_helper_rbit
);
6005 * Signed multiply, signed and unsigned divide
6008 static bool op_smlad(DisasContext
*s
, arg_rrrr
*a
, bool m_swap
, bool sub
)
6012 if (!ENABLE_ARCH_6
) {
6016 t1
= load_reg(s
, a
->rn
);
6017 t2
= load_reg(s
, a
->rm
);
6019 gen_swap_half(t2
, t2
);
6021 gen_smul_dual(t1
, t2
);
6025 * This subtraction cannot overflow, so we can do a simple
6026 * 32-bit subtraction and then a possible 32-bit saturating
6029 tcg_gen_sub_i32(t1
, t1
, t2
);
6032 t2
= load_reg(s
, a
->ra
);
6033 gen_helper_add_setq(t1
, tcg_env
, t1
, t2
);
6035 } else if (a
->ra
== 15) {
6036 /* Single saturation-checking addition */
6037 gen_helper_add_setq(t1
, tcg_env
, t1
, t2
);
6040 * We need to add the products and Ra together and then
6041 * determine whether the final result overflowed. Doing
6042 * this as two separate add-and-check-overflow steps incorrectly
6043 * sets Q for cases like (-32768 * -32768) + (-32768 * -32768) + -1.
6044 * Do all the arithmetic at 64-bits and then check for overflow.
6047 TCGv_i32 t3
, qf
, one
;
6049 p64
= tcg_temp_new_i64();
6050 q64
= tcg_temp_new_i64();
6051 tcg_gen_ext_i32_i64(p64
, t1
);
6052 tcg_gen_ext_i32_i64(q64
, t2
);
6053 tcg_gen_add_i64(p64
, p64
, q64
);
6054 load_reg_var(s
, t2
, a
->ra
);
6055 tcg_gen_ext_i32_i64(q64
, t2
);
6056 tcg_gen_add_i64(p64
, p64
, q64
);
6058 tcg_gen_extr_i64_i32(t1
, t2
, p64
);
6060 * t1 is the low half of the result which goes into Rd.
6061 * We have overflow and must set Q if the high half (t2)
6062 * is different from the sign-extension of t1.
6064 t3
= tcg_temp_new_i32();
6065 tcg_gen_sari_i32(t3
, t1
, 31);
6066 qf
= load_cpu_field(QF
);
6067 one
= tcg_constant_i32(1);
6068 tcg_gen_movcond_i32(TCG_COND_NE
, qf
, t2
, t3
, one
, qf
);
6069 store_cpu_field(qf
, QF
);
6071 store_reg(s
, a
->rd
, t1
);
6075 static bool trans_SMLAD(DisasContext
*s
, arg_rrrr
*a
)
6077 return op_smlad(s
, a
, false, false);
6080 static bool trans_SMLADX(DisasContext
*s
, arg_rrrr
*a
)
6082 return op_smlad(s
, a
, true, false);
6085 static bool trans_SMLSD(DisasContext
*s
, arg_rrrr
*a
)
6087 return op_smlad(s
, a
, false, true);
6090 static bool trans_SMLSDX(DisasContext
*s
, arg_rrrr
*a
)
6092 return op_smlad(s
, a
, true, true);
6095 static bool op_smlald(DisasContext
*s
, arg_rrrr
*a
, bool m_swap
, bool sub
)
6100 if (!ENABLE_ARCH_6
) {
6104 t1
= load_reg(s
, a
->rn
);
6105 t2
= load_reg(s
, a
->rm
);
6107 gen_swap_half(t2
, t2
);
6109 gen_smul_dual(t1
, t2
);
6111 l1
= tcg_temp_new_i64();
6112 l2
= tcg_temp_new_i64();
6113 tcg_gen_ext_i32_i64(l1
, t1
);
6114 tcg_gen_ext_i32_i64(l2
, t2
);
6117 tcg_gen_sub_i64(l1
, l1
, l2
);
6119 tcg_gen_add_i64(l1
, l1
, l2
);
6122 gen_addq(s
, l1
, a
->ra
, a
->rd
);
6123 gen_storeq_reg(s
, a
->ra
, a
->rd
, l1
);
6127 static bool trans_SMLALD(DisasContext
*s
, arg_rrrr
*a
)
6129 return op_smlald(s
, a
, false, false);
6132 static bool trans_SMLALDX(DisasContext
*s
, arg_rrrr
*a
)
6134 return op_smlald(s
, a
, true, false);
6137 static bool trans_SMLSLD(DisasContext
*s
, arg_rrrr
*a
)
6139 return op_smlald(s
, a
, false, true);
6142 static bool trans_SMLSLDX(DisasContext
*s
, arg_rrrr
*a
)
6144 return op_smlald(s
, a
, true, true);
6147 static bool op_smmla(DisasContext
*s
, arg_rrrr
*a
, bool round
, bool sub
)
6152 ? !arm_dc_feature(s
, ARM_FEATURE_THUMB_DSP
)
6157 t1
= load_reg(s
, a
->rn
);
6158 t2
= load_reg(s
, a
->rm
);
6159 tcg_gen_muls2_i32(t2
, t1
, t1
, t2
);
6162 TCGv_i32 t3
= load_reg(s
, a
->ra
);
6165 * For SMMLS, we need a 64-bit subtract. Borrow caused by
6166 * a non-zero multiplicand lowpart, and the correct result
6167 * lowpart for rounding.
6169 tcg_gen_sub2_i32(t2
, t1
, tcg_constant_i32(0), t3
, t2
, t1
);
6171 tcg_gen_add_i32(t1
, t1
, t3
);
6176 * Adding 0x80000000 to the 64-bit quantity means that we have
6177 * carry in to the high word when the low word has the msb set.
6179 tcg_gen_shri_i32(t2
, t2
, 31);
6180 tcg_gen_add_i32(t1
, t1
, t2
);
6182 store_reg(s
, a
->rd
, t1
);
6186 static bool trans_SMMLA(DisasContext
*s
, arg_rrrr
*a
)
6188 return op_smmla(s
, a
, false, false);
6191 static bool trans_SMMLAR(DisasContext
*s
, arg_rrrr
*a
)
6193 return op_smmla(s
, a
, true, false);
6196 static bool trans_SMMLS(DisasContext
*s
, arg_rrrr
*a
)
6198 return op_smmla(s
, a
, false, true);
6201 static bool trans_SMMLSR(DisasContext
*s
, arg_rrrr
*a
)
6203 return op_smmla(s
, a
, true, true);
6206 static bool op_div(DisasContext
*s
, arg_rrr
*a
, bool u
)
6211 ? !dc_isar_feature(aa32_thumb_div
, s
)
6212 : !dc_isar_feature(aa32_arm_div
, s
)) {
6216 t1
= load_reg(s
, a
->rn
);
6217 t2
= load_reg(s
, a
->rm
);
6219 gen_helper_udiv(t1
, tcg_env
, t1
, t2
);
6221 gen_helper_sdiv(t1
, tcg_env
, t1
, t2
);
6223 store_reg(s
, a
->rd
, t1
);
6227 static bool trans_SDIV(DisasContext
*s
, arg_rrr
*a
)
6229 return op_div(s
, a
, false);
6232 static bool trans_UDIV(DisasContext
*s
, arg_rrr
*a
)
6234 return op_div(s
, a
, true);
6238 * Block data transfer
6241 static TCGv_i32
op_addr_block_pre(DisasContext
*s
, arg_ldst_block
*a
, int n
)
6243 TCGv_i32 addr
= load_reg(s
, a
->rn
);
6248 tcg_gen_addi_i32(addr
, addr
, 4);
6251 tcg_gen_addi_i32(addr
, addr
, -(n
* 4));
6253 } else if (!a
->i
&& n
!= 1) {
6254 /* post decrement */
6255 tcg_gen_addi_i32(addr
, addr
, -((n
- 1) * 4));
6258 if (s
->v8m_stackcheck
&& a
->rn
== 13 && a
->w
) {
6260 * If the writeback is incrementing SP rather than
6261 * decrementing it, and the initial SP is below the
6262 * stack limit but the final written-back SP would
6263 * be above, then we must not perform any memory
6264 * accesses, but it is IMPDEF whether we generate
6265 * an exception. We choose to do so in this case.
6266 * At this point 'addr' is the lowest address, so
6267 * either the original SP (if incrementing) or our
6268 * final SP (if decrementing), so that's what we check.
6270 gen_helper_v8m_stackcheck(tcg_env
, addr
);
6276 static void op_addr_block_post(DisasContext
*s
, arg_ldst_block
*a
,
6277 TCGv_i32 addr
, int n
)
6283 /* post increment */
6284 tcg_gen_addi_i32(addr
, addr
, 4);
6286 /* post decrement */
6287 tcg_gen_addi_i32(addr
, addr
, -(n
* 4));
6289 } else if (!a
->i
&& n
!= 1) {
6291 tcg_gen_addi_i32(addr
, addr
, -((n
- 1) * 4));
6293 store_reg(s
, a
->rn
, addr
);
6297 static bool op_stm(DisasContext
*s
, arg_ldst_block
*a
)
6299 int i
, j
, n
, list
, mem_idx
;
6306 /* Only usable in supervisor mode. */
6307 unallocated_encoding(s
);
6315 * This is UNPREDICTABLE for n < 1 in all encodings, and we choose
6316 * to UNDEF. In the T32 STM encoding n == 1 is also UNPREDICTABLE,
6317 * but hardware treats it like the A32 version and implements the
6318 * single-register-store, and some in-the-wild (buggy) software
6319 * assumes that, so we don't UNDEF on that case.
6321 if (n
< 1 || a
->rn
== 15) {
6322 unallocated_encoding(s
);
6326 s
->eci_handled
= true;
6328 addr
= op_addr_block_pre(s
, a
, n
);
6329 mem_idx
= get_mem_index(s
);
6331 for (i
= j
= 0; i
< 16; i
++) {
6332 if (!(list
& (1 << i
))) {
6336 if (user
&& i
!= 15) {
6337 tmp
= tcg_temp_new_i32();
6338 gen_helper_get_user_reg(tmp
, tcg_env
, tcg_constant_i32(i
));
6340 tmp
= load_reg(s
, i
);
6342 gen_aa32_st_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
6344 /* No need to add after the last transfer. */
6346 tcg_gen_addi_i32(addr
, addr
, 4);
6350 op_addr_block_post(s
, a
, addr
, n
);
6355 static bool trans_STM(DisasContext
*s
, arg_ldst_block
*a
)
6357 return op_stm(s
, a
);
6360 static bool trans_STM_t32(DisasContext
*s
, arg_ldst_block
*a
)
6362 /* Writeback register in register list is UNPREDICTABLE for T32. */
6363 if (a
->w
&& (a
->list
& (1 << a
->rn
))) {
6364 unallocated_encoding(s
);
6367 return op_stm(s
, a
);
6370 static bool do_ldm(DisasContext
*s
, arg_ldst_block
*a
)
6372 int i
, j
, n
, list
, mem_idx
;
6375 bool exc_return
= false;
6376 TCGv_i32 addr
, tmp
, loaded_var
;
6379 /* LDM (user), LDM (exception return) */
6381 /* Only usable in supervisor mode. */
6382 unallocated_encoding(s
);
6385 if (extract32(a
->list
, 15, 1)) {
6389 /* LDM (user) does not allow writeback. */
6391 unallocated_encoding(s
);
6400 * This is UNPREDICTABLE for n < 1 in all encodings, and we choose
6401 * to UNDEF. In the T32 LDM encoding n == 1 is also UNPREDICTABLE,
6402 * but hardware treats it like the A32 version and implements the
6403 * single-register-load, and some in-the-wild (buggy) software
6404 * assumes that, so we don't UNDEF on that case.
6406 if (n
< 1 || a
->rn
== 15) {
6407 unallocated_encoding(s
);
6411 s
->eci_handled
= true;
6413 addr
= op_addr_block_pre(s
, a
, n
);
6414 mem_idx
= get_mem_index(s
);
6415 loaded_base
= false;
6418 for (i
= j
= 0; i
< 16; i
++) {
6419 if (!(list
& (1 << i
))) {
6423 tmp
= tcg_temp_new_i32();
6424 gen_aa32_ld_i32(s
, tmp
, addr
, mem_idx
, MO_UL
| MO_ALIGN
);
6426 gen_helper_set_user_reg(tcg_env
, tcg_constant_i32(i
), tmp
);
6427 } else if (i
== a
->rn
) {
6430 } else if (i
== 15 && exc_return
) {
6431 store_pc_exc_ret(s
, tmp
);
6433 store_reg_from_load(s
, i
, tmp
);
6436 /* No need to add after the last transfer. */
6438 tcg_gen_addi_i32(addr
, addr
, 4);
6442 op_addr_block_post(s
, a
, addr
, n
);
6445 /* Note that we reject base == pc above. */
6446 store_reg(s
, a
->rn
, loaded_var
);
6450 /* Restore CPSR from SPSR. */
6451 tmp
= load_cpu_field(spsr
);
6452 translator_io_start(&s
->base
);
6453 gen_helper_cpsr_write_eret(tcg_env
, tmp
);
6454 /* Must exit loop to check un-masked IRQs */
6455 s
->base
.is_jmp
= DISAS_EXIT
;
6461 static bool trans_LDM_a32(DisasContext
*s
, arg_ldst_block
*a
)
6464 * Writeback register in register list is UNPREDICTABLE
6465 * for ArchVersion() >= 7. Prior to v7, A32 would write
6466 * an UNKNOWN value to the base register.
6468 if (ENABLE_ARCH_7
&& a
->w
&& (a
->list
& (1 << a
->rn
))) {
6469 unallocated_encoding(s
);
6472 return do_ldm(s
, a
);
6475 static bool trans_LDM_t32(DisasContext
*s
, arg_ldst_block
*a
)
6477 /* Writeback register in register list is UNPREDICTABLE for T32. */
6478 if (a
->w
&& (a
->list
& (1 << a
->rn
))) {
6479 unallocated_encoding(s
);
6482 return do_ldm(s
, a
);
6485 static bool trans_LDM_t16(DisasContext
*s
, arg_ldst_block
*a
)
6487 /* Writeback is conditional on the base register not being loaded. */
6488 a
->w
= !(a
->list
& (1 << a
->rn
));
6489 return do_ldm(s
, a
);
6492 static bool trans_CLRM(DisasContext
*s
, arg_CLRM
*a
)
6497 if (!dc_isar_feature(aa32_m_sec_state
, s
)) {
6501 if (extract32(a
->list
, 13, 1)) {
6506 /* UNPREDICTABLE; we choose to UNDEF */
6510 s
->eci_handled
= true;
6512 zero
= tcg_constant_i32(0);
6513 for (i
= 0; i
< 15; i
++) {
6514 if (extract32(a
->list
, i
, 1)) {
6516 tcg_gen_mov_i32(cpu_R
[i
], zero
);
6519 if (extract32(a
->list
, 15, 1)) {
6521 * Clear APSR (by calling the MSR helper with the same argument
6522 * as for "MSR APSR_nzcvqg, Rn": mask = 0b1100, SYSM=0)
6524 gen_helper_v7m_msr(tcg_env
, tcg_constant_i32(0xc00), zero
);
6531 * Branch, branch with link
6534 static bool trans_B(DisasContext
*s
, arg_i
*a
)
6536 gen_jmp(s
, jmp_diff(s
, a
->imm
));
6540 static bool trans_B_cond_thumb(DisasContext
*s
, arg_ci
*a
)
6542 /* This has cond from encoding, required to be outside IT block. */
6543 if (a
->cond
>= 0xe) {
6546 if (s
->condexec_mask
) {
6547 unallocated_encoding(s
);
6550 arm_skip_unless(s
, a
->cond
);
6551 gen_jmp(s
, jmp_diff(s
, a
->imm
));
6555 static bool trans_BL(DisasContext
*s
, arg_i
*a
)
6557 gen_pc_plus_diff(s
, cpu_R
[14], curr_insn_len(s
) | s
->thumb
);
6558 gen_jmp(s
, jmp_diff(s
, a
->imm
));
6562 static bool trans_BLX_i(DisasContext
*s
, arg_BLX_i
*a
)
6565 * BLX <imm> would be useless on M-profile; the encoding space
6566 * is used for other insns from v8.1M onward, and UNDEFs before that.
6568 if (arm_dc_feature(s
, ARM_FEATURE_M
)) {
6572 /* For A32, ARM_FEATURE_V5 is checked near the start of the uncond block. */
6573 if (s
->thumb
&& (a
->imm
& 2)) {
6576 gen_pc_plus_diff(s
, cpu_R
[14], curr_insn_len(s
) | s
->thumb
);
6577 store_cpu_field_constant(!s
->thumb
, thumb
);
6578 /* This jump is computed from an aligned PC: subtract off the low bits. */
6579 gen_jmp(s
, jmp_diff(s
, a
->imm
- (s
->pc_curr
& 3)));
6583 static bool trans_BL_BLX_prefix(DisasContext
*s
, arg_BL_BLX_prefix
*a
)
6585 assert(!arm_dc_feature(s
, ARM_FEATURE_THUMB2
));
6586 gen_pc_plus_diff(s
, cpu_R
[14], jmp_diff(s
, a
->imm
<< 12));
6590 static bool trans_BL_suffix(DisasContext
*s
, arg_BL_suffix
*a
)
6592 TCGv_i32 tmp
= tcg_temp_new_i32();
6594 assert(!arm_dc_feature(s
, ARM_FEATURE_THUMB2
));
6595 tcg_gen_addi_i32(tmp
, cpu_R
[14], (a
->imm
<< 1) | 1);
6596 gen_pc_plus_diff(s
, cpu_R
[14], curr_insn_len(s
) | 1);
6601 static bool trans_BLX_suffix(DisasContext
*s
, arg_BLX_suffix
*a
)
6605 assert(!arm_dc_feature(s
, ARM_FEATURE_THUMB2
));
6606 if (!ENABLE_ARCH_5
) {
6609 tmp
= tcg_temp_new_i32();
6610 tcg_gen_addi_i32(tmp
, cpu_R
[14], a
->imm
<< 1);
6611 tcg_gen_andi_i32(tmp
, tmp
, 0xfffffffc);
6612 gen_pc_plus_diff(s
, cpu_R
[14], curr_insn_len(s
) | 1);
6617 static bool trans_BF(DisasContext
*s
, arg_BF
*a
)
6620 * M-profile branch future insns. The architecture permits an
6621 * implementation to implement these as NOPs (equivalent to
6622 * discarding the LO_BRANCH_INFO cache immediately), and we
6623 * take that IMPDEF option because for QEMU a "real" implementation
6624 * would be complicated and wouldn't execute any faster.
6626 if (!dc_isar_feature(aa32_lob
, s
)) {
6630 /* SEE "Related encodings" (loop insns) */
6637 static bool trans_DLS(DisasContext
*s
, arg_DLS
*a
)
6639 /* M-profile low-overhead loop start */
6642 if (!dc_isar_feature(aa32_lob
, s
)) {
6645 if (a
->rn
== 13 || a
->rn
== 15) {
6647 * For DLSTP rn == 15 is a related encoding (LCTP); the
6648 * other cases caught by this condition are all
6649 * CONSTRAINED UNPREDICTABLE: we choose to UNDEF
6656 if (!dc_isar_feature(aa32_mve
, s
)) {
6659 if (!vfp_access_check(s
)) {
6664 /* Not a while loop: set LR to the count, and set LTPSIZE for DLSTP */
6665 tmp
= load_reg(s
, a
->rn
);
6666 store_reg(s
, 14, tmp
);
6668 /* DLSTP: set FPSCR.LTPSIZE */
6669 store_cpu_field(tcg_constant_i32(a
->size
), v7m
.ltpsize
);
6670 s
->base
.is_jmp
= DISAS_UPDATE_NOCHAIN
;
6675 static bool trans_WLS(DisasContext
*s
, arg_WLS
*a
)
6677 /* M-profile low-overhead while-loop start */
6679 DisasLabel nextlabel
;
6681 if (!dc_isar_feature(aa32_lob
, s
)) {
6684 if (a
->rn
== 13 || a
->rn
== 15) {
6686 * For WLSTP rn == 15 is a related encoding (LE); the
6687 * other cases caught by this condition are all
6688 * CONSTRAINED UNPREDICTABLE: we choose to UNDEF
6692 if (s
->condexec_mask
) {
6694 * WLS in an IT block is CONSTRAINED UNPREDICTABLE;
6695 * we choose to UNDEF, because otherwise our use of
6696 * gen_goto_tb(1) would clash with the use of TB exit 1
6697 * in the dc->condjmp condition-failed codepath in
6698 * arm_tr_tb_stop() and we'd get an assertion.
6704 if (!dc_isar_feature(aa32_mve
, s
)) {
6708 * We need to check that the FPU is enabled here, but mustn't
6709 * call vfp_access_check() to do that because we don't want to
6710 * do the lazy state preservation in the "loop count is zero" case.
6711 * Do the check-and-raise-exception by hand.
6713 if (s
->fp_excp_el
) {
6714 gen_exception_insn_el(s
, 0, EXCP_NOCP
,
6715 syn_uncategorized(), s
->fp_excp_el
);
6720 nextlabel
= gen_disas_label(s
);
6721 tcg_gen_brcondi_i32(TCG_COND_EQ
, cpu_R
[a
->rn
], 0, nextlabel
.label
);
6722 tmp
= load_reg(s
, a
->rn
);
6723 store_reg(s
, 14, tmp
);
6726 * WLSTP: set FPSCR.LTPSIZE. This requires that we do the
6727 * lazy state preservation, new FP context creation, etc,
6728 * that vfp_access_check() does. We know that the actual
6729 * access check will succeed (ie it won't generate code that
6730 * throws an exception) because we did that check by hand earlier.
6732 bool ok
= vfp_access_check(s
);
6734 store_cpu_field(tcg_constant_i32(a
->size
), v7m
.ltpsize
);
6736 * LTPSIZE updated, but MVE_NO_PRED will always be the same thing (0)
6737 * when we take this upcoming exit from this TB, so gen_jmp_tb() is OK.
6740 gen_jmp_tb(s
, curr_insn_len(s
), 1);
6742 set_disas_label(s
, nextlabel
);
6743 gen_jmp(s
, jmp_diff(s
, a
->imm
));
6747 static bool trans_LE(DisasContext
*s
, arg_LE
*a
)
6750 * M-profile low-overhead loop end. The architecture permits an
6751 * implementation to discard the LO_BRANCH_INFO cache at any time,
6752 * and we take the IMPDEF option to never set it in the first place
6753 * (equivalent to always discarding it immediately), because for QEMU
6754 * a "real" implementation would be complicated and wouldn't execute
6761 if (!dc_isar_feature(aa32_lob
, s
)) {
6764 if (a
->f
&& a
->tp
) {
6767 if (s
->condexec_mask
) {
6769 * LE in an IT block is CONSTRAINED UNPREDICTABLE;
6770 * we choose to UNDEF, because otherwise our use of
6771 * gen_goto_tb(1) would clash with the use of TB exit 1
6772 * in the dc->condjmp condition-failed codepath in
6773 * arm_tr_tb_stop() and we'd get an assertion.
6779 if (!dc_isar_feature(aa32_mve
, s
)) {
6782 if (!vfp_access_check(s
)) {
6783 s
->eci_handled
= true;
6788 /* LE/LETP is OK with ECI set and leaves it untouched */
6789 s
->eci_handled
= true;
6792 * With MVE, LTPSIZE might not be 4, and we must emit an INVSTATE
6793 * UsageFault exception for the LE insn in that case. Note that we
6794 * are not directly checking FPSCR.LTPSIZE but instead check the
6795 * pseudocode LTPSIZE() function, which returns 4 if the FPU is
6796 * not currently active (ie ActiveFPState() returns false). We
6797 * can identify not-active purely from our TB state flags, as the
6798 * FPU is active only if:
6799 * the FPU is enabled
6800 * AND lazy state preservation is not active
6801 * AND we do not need a new fp context (this is the ASPEN/FPCA check)
6803 * Usually we don't need to care about this distinction between
6804 * LTPSIZE and FPSCR.LTPSIZE, because the code in vfp_access_check()
6805 * will either take an exception or clear the conditions that make
6806 * the FPU not active. But LE is an unusual case of a non-FP insn
6807 * that looks at LTPSIZE.
6809 fpu_active
= !s
->fp_excp_el
&& !s
->v7m_lspact
&& !s
->v7m_new_fp_ctxt_needed
;
6811 if (!a
->tp
&& dc_isar_feature(aa32_mve
, s
) && fpu_active
) {
6812 /* Need to do a runtime check for LTPSIZE != 4 */
6813 DisasLabel skipexc
= gen_disas_label(s
);
6814 tmp
= load_cpu_field(v7m
.ltpsize
);
6815 tcg_gen_brcondi_i32(TCG_COND_EQ
, tmp
, 4, skipexc
.label
);
6816 gen_exception_insn(s
, 0, EXCP_INVSTATE
, syn_uncategorized());
6817 set_disas_label(s
, skipexc
);
6821 /* Loop-forever: just jump back to the loop start */
6822 gen_jmp(s
, jmp_diff(s
, -a
->imm
));
6827 * Not loop-forever. If LR <= loop-decrement-value this is the last loop.
6828 * For LE, we know at this point that LTPSIZE must be 4 and the
6829 * loop decrement value is 1. For LETP we need to calculate the decrement
6830 * value from LTPSIZE.
6832 loopend
= gen_disas_label(s
);
6834 tcg_gen_brcondi_i32(TCG_COND_LEU
, cpu_R
[14], 1, loopend
.label
);
6835 tcg_gen_addi_i32(cpu_R
[14], cpu_R
[14], -1);
6838 * Decrement by 1 << (4 - LTPSIZE). We need to use a TCG local
6839 * so that decr stays live after the brcondi.
6841 TCGv_i32 decr
= tcg_temp_new_i32();
6842 TCGv_i32 ltpsize
= load_cpu_field(v7m
.ltpsize
);
6843 tcg_gen_sub_i32(decr
, tcg_constant_i32(4), ltpsize
);
6844 tcg_gen_shl_i32(decr
, tcg_constant_i32(1), decr
);
6846 tcg_gen_brcond_i32(TCG_COND_LEU
, cpu_R
[14], decr
, loopend
.label
);
6848 tcg_gen_sub_i32(cpu_R
[14], cpu_R
[14], decr
);
6850 /* Jump back to the loop start */
6851 gen_jmp(s
, jmp_diff(s
, -a
->imm
));
6853 set_disas_label(s
, loopend
);
6855 /* Exits from tail-pred loops must reset LTPSIZE to 4 */
6856 store_cpu_field(tcg_constant_i32(4), v7m
.ltpsize
);
6858 /* End TB, continuing to following insn */
6859 gen_jmp_tb(s
, curr_insn_len(s
), 1);
6863 static bool trans_LCTP(DisasContext
*s
, arg_LCTP
*a
)
6866 * M-profile Loop Clear with Tail Predication. Since our implementation
6867 * doesn't cache branch information, all we need to do is reset
6868 * FPSCR.LTPSIZE to 4.
6871 if (!dc_isar_feature(aa32_lob
, s
) ||
6872 !dc_isar_feature(aa32_mve
, s
)) {
6876 if (!vfp_access_check(s
)) {
6880 store_cpu_field_constant(4, v7m
.ltpsize
);
6884 static bool trans_VCTP(DisasContext
*s
, arg_VCTP
*a
)
6887 * M-profile Create Vector Tail Predicate. This insn is itself
6888 * predicated and is subject to beatwise execution.
6890 TCGv_i32 rn_shifted
, masklen
;
6892 if (!dc_isar_feature(aa32_mve
, s
) || a
->rn
== 13 || a
->rn
== 15) {
6896 if (!mve_eci_check(s
) || !vfp_access_check(s
)) {
6901 * We pre-calculate the mask length here to avoid having
6902 * to have multiple helpers specialized for size.
6903 * We pass the helper "rn <= (1 << (4 - size)) ? (rn << size) : 16".
6905 rn_shifted
= tcg_temp_new_i32();
6906 masklen
= load_reg(s
, a
->rn
);
6907 tcg_gen_shli_i32(rn_shifted
, masklen
, a
->size
);
6908 tcg_gen_movcond_i32(TCG_COND_LEU
, masklen
,
6909 masklen
, tcg_constant_i32(1 << (4 - a
->size
)),
6910 rn_shifted
, tcg_constant_i32(16));
6911 gen_helper_mve_vctp(tcg_env
, masklen
);
6912 /* This insn updates predication bits */
6913 s
->base
.is_jmp
= DISAS_UPDATE_NOCHAIN
;
6918 static bool op_tbranch(DisasContext
*s
, arg_tbranch
*a
, bool half
)
6922 tmp
= load_reg(s
, a
->rm
);
6924 tcg_gen_add_i32(tmp
, tmp
, tmp
);
6926 addr
= load_reg(s
, a
->rn
);
6927 tcg_gen_add_i32(addr
, addr
, tmp
);
6929 gen_aa32_ld_i32(s
, tmp
, addr
, get_mem_index(s
), half
? MO_UW
: MO_UB
);
6931 tcg_gen_add_i32(tmp
, tmp
, tmp
);
6932 gen_pc_plus_diff(s
, addr
, jmp_diff(s
, 0));
6933 tcg_gen_add_i32(tmp
, tmp
, addr
);
6934 store_reg(s
, 15, tmp
);
6938 static bool trans_TBB(DisasContext
*s
, arg_tbranch
*a
)
6940 return op_tbranch(s
, a
, false);
6943 static bool trans_TBH(DisasContext
*s
, arg_tbranch
*a
)
6945 return op_tbranch(s
, a
, true);
6948 static bool trans_CBZ(DisasContext
*s
, arg_CBZ
*a
)
6950 TCGv_i32 tmp
= load_reg(s
, a
->rn
);
6952 arm_gen_condlabel(s
);
6953 tcg_gen_brcondi_i32(a
->nz
? TCG_COND_EQ
: TCG_COND_NE
,
6954 tmp
, 0, s
->condlabel
.label
);
6955 gen_jmp(s
, jmp_diff(s
, a
->imm
));
6960 * Supervisor call - both T32 & A32 come here so we need to check
6961 * which mode we are in when checking for semihosting.
6964 static bool trans_SVC(DisasContext
*s
, arg_SVC
*a
)
6966 const uint32_t semihost_imm
= s
->thumb
? 0xab : 0x123456;
6968 if (!arm_dc_feature(s
, ARM_FEATURE_M
) &&
6969 semihosting_enabled(s
->current_el
== 0) &&
6970 (a
->imm
== semihost_imm
)) {
6971 gen_exception_internal_insn(s
, EXCP_SEMIHOST
);
6974 uint32_t syndrome
= syn_aa32_svc(a
->imm
, s
->thumb
);
6975 gen_exception_insn_el(s
, 0, EXCP_UDEF
, syndrome
, 2);
6977 gen_update_pc(s
, curr_insn_len(s
));
6978 s
->svc_imm
= a
->imm
;
6979 s
->base
.is_jmp
= DISAS_SWI
;
6986 * Unconditional system instructions
6989 static bool trans_RFE(DisasContext
*s
, arg_RFE
*a
)
6991 static const int8_t pre_offset
[4] = {
6992 /* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4
6994 static const int8_t post_offset
[4] = {
6995 /* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0
6997 TCGv_i32 addr
, t1
, t2
;
6999 if (!ENABLE_ARCH_6
|| arm_dc_feature(s
, ARM_FEATURE_M
)) {
7003 unallocated_encoding(s
);
7007 addr
= load_reg(s
, a
->rn
);
7008 tcg_gen_addi_i32(addr
, addr
, pre_offset
[a
->pu
]);
7010 /* Load PC into tmp and CPSR into tmp2. */
7011 t1
= tcg_temp_new_i32();
7012 gen_aa32_ld_i32(s
, t1
, addr
, get_mem_index(s
), MO_UL
| MO_ALIGN
);
7013 tcg_gen_addi_i32(addr
, addr
, 4);
7014 t2
= tcg_temp_new_i32();
7015 gen_aa32_ld_i32(s
, t2
, addr
, get_mem_index(s
), MO_UL
| MO_ALIGN
);
7018 /* Base writeback. */
7019 tcg_gen_addi_i32(addr
, addr
, post_offset
[a
->pu
]);
7020 store_reg(s
, a
->rn
, addr
);
7026 static bool trans_SRS(DisasContext
*s
, arg_SRS
*a
)
7028 if (!ENABLE_ARCH_6
|| arm_dc_feature(s
, ARM_FEATURE_M
)) {
7031 gen_srs(s
, a
->mode
, a
->pu
, a
->w
);
7035 static bool trans_CPS(DisasContext
*s
, arg_CPS
*a
)
7039 if (!ENABLE_ARCH_6
|| arm_dc_feature(s
, ARM_FEATURE_M
)) {
7043 /* Implemented as NOP in user mode. */
7046 /* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */
7068 gen_set_psr_im(s
, mask
, 0, val
);
7073 static bool trans_CPS_v7m(DisasContext
*s
, arg_CPS_v7m
*a
)
7077 if (!arm_dc_feature(s
, ARM_FEATURE_M
)) {
7081 /* Implemented as NOP in user mode. */
7085 tmp
= tcg_constant_i32(a
->im
);
7088 addr
= tcg_constant_i32(19);
7089 gen_helper_v7m_msr(tcg_env
, addr
, tmp
);
7093 addr
= tcg_constant_i32(16);
7094 gen_helper_v7m_msr(tcg_env
, addr
, tmp
);
7096 gen_rebuild_hflags(s
, false);
7102 * Clear-Exclusive, Barriers
7105 static bool trans_CLREX(DisasContext
*s
, arg_CLREX
*a
)
7108 ? !ENABLE_ARCH_7
&& !arm_dc_feature(s
, ARM_FEATURE_M
)
7109 : !ENABLE_ARCH_6K
) {
7116 static bool trans_DSB(DisasContext
*s
, arg_DSB
*a
)
7118 if (!ENABLE_ARCH_7
&& !arm_dc_feature(s
, ARM_FEATURE_M
)) {
7121 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_SC
);
7125 static bool trans_DMB(DisasContext
*s
, arg_DMB
*a
)
7127 return trans_DSB(s
, NULL
);
7130 static bool trans_ISB(DisasContext
*s
, arg_ISB
*a
)
7132 if (!ENABLE_ARCH_7
&& !arm_dc_feature(s
, ARM_FEATURE_M
)) {
7136 * We need to break the TB after this insn to execute
7137 * self-modifying code correctly and also to take
7138 * any pending interrupts immediately.
7140 s
->base
.is_jmp
= DISAS_TOO_MANY
;
7144 static bool trans_SB(DisasContext
*s
, arg_SB
*a
)
7146 if (!dc_isar_feature(aa32_sb
, s
)) {
7150 * TODO: There is no speculation barrier opcode
7151 * for TCG; MB and end the TB instead.
7153 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_SC
);
7154 s
->base
.is_jmp
= DISAS_TOO_MANY
;
7158 static bool trans_SETEND(DisasContext
*s
, arg_SETEND
*a
)
7160 if (!ENABLE_ARCH_6
) {
7163 if (a
->E
!= (s
->be_data
== MO_BE
)) {
7164 gen_helper_setend(tcg_env
);
7165 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
7171 * Preload instructions
7172 * All are nops, contingent on the appropriate arch level.
7175 static bool trans_PLD(DisasContext
*s
, arg_PLD
*a
)
7177 return ENABLE_ARCH_5TE
;
7180 static bool trans_PLDW(DisasContext
*s
, arg_PLDW
*a
)
7182 return arm_dc_feature(s
, ARM_FEATURE_V7MP
);
7185 static bool trans_PLI(DisasContext
*s
, arg_PLI
*a
)
7187 return ENABLE_ARCH_7
;
7194 static bool trans_IT(DisasContext
*s
, arg_IT
*a
)
7196 int cond_mask
= a
->cond_mask
;
7199 * No actual code generated for this insn, just setup state.
7201 * Combinations of firstcond and mask which set up an 0b1111
7202 * condition are UNPREDICTABLE; we take the CONSTRAINED
7203 * UNPREDICTABLE choice to treat 0b1111 the same as 0b1110,
7204 * i.e. both meaning "execute always".
7206 s
->condexec_cond
= (cond_mask
>> 4) & 0xe;
7207 s
->condexec_mask
= cond_mask
& 0x1f;
7211 /* v8.1M CSEL/CSINC/CSNEG/CSINV */
7212 static bool trans_CSEL(DisasContext
*s
, arg_CSEL
*a
)
7217 if (!arm_dc_feature(s
, ARM_FEATURE_V8_1M
)) {
7222 /* SEE "Related encodings" (MVE shifts) */
7226 if (a
->rd
== 13 || a
->rd
== 15 || a
->rn
== 13 || a
->fcond
>= 14) {
7227 /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
7231 /* In this insn input reg fields of 0b1111 mean "zero", not "PC" */
7232 rn
= tcg_temp_new_i32();
7233 rm
= tcg_temp_new_i32();
7235 tcg_gen_movi_i32(rn
, 0);
7237 load_reg_var(s
, rn
, a
->rn
);
7240 tcg_gen_movi_i32(rm
, 0);
7242 load_reg_var(s
, rm
, a
->rm
);
7249 tcg_gen_addi_i32(rm
, rm
, 1);
7252 tcg_gen_not_i32(rm
, rm
);
7255 tcg_gen_neg_i32(rm
, rm
);
7258 g_assert_not_reached();
7261 arm_test_cc(&c
, a
->fcond
);
7262 tcg_gen_movcond_i32(c
.cond
, rn
, c
.value
, tcg_constant_i32(0), rn
, rm
);
7264 store_reg(s
, a
->rd
, rn
);
7272 static void disas_arm_insn(DisasContext
*s
, unsigned int insn
)
7274 unsigned int cond
= insn
>> 28;
7276 /* M variants do not implement ARM mode; this must raise the INVSTATE
7277 * UsageFault exception.
7279 if (arm_dc_feature(s
, ARM_FEATURE_M
)) {
7280 gen_exception_insn(s
, 0, EXCP_INVSTATE
, syn_uncategorized());
7286 * Illegal execution state. This has priority over BTI
7287 * exceptions, but comes after instruction abort exceptions.
7289 gen_exception_insn(s
, 0, EXCP_UDEF
, syn_illegalstate());
7294 /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we
7295 * choose to UNDEF. In ARMv5 and above the space is used
7296 * for miscellaneous unconditional instructions.
7298 if (!arm_dc_feature(s
, ARM_FEATURE_V5
)) {
7299 unallocated_encoding(s
);
7303 /* Unconditional instructions. */
7304 /* TODO: Perhaps merge these into one decodetree output file. */
7305 if (disas_a32_uncond(s
, insn
) ||
7306 disas_vfp_uncond(s
, insn
) ||
7307 disas_neon_dp(s
, insn
) ||
7308 disas_neon_ls(s
, insn
) ||
7309 disas_neon_shared(s
, insn
)) {
7312 /* fall back to legacy decoder */
7314 if ((insn
& 0x0e000f00) == 0x0c000100) {
7315 if (arm_dc_feature(s
, ARM_FEATURE_IWMMXT
)) {
7316 /* iWMMXt register transfer. */
7317 if (extract32(s
->c15_cpar
, 1, 1)) {
7318 if (!disas_iwmmxt_insn(s
, insn
)) {
7327 /* if not always execute, we generate a conditional jump to
7329 arm_skip_unless(s
, cond
);
7332 /* TODO: Perhaps merge these into one decodetree output file. */
7333 if (disas_a32(s
, insn
) ||
7334 disas_vfp(s
, insn
)) {
7337 /* fall back to legacy decoder */
7338 /* TODO: convert xscale/iwmmxt decoder to decodetree ?? */
7339 if (arm_dc_feature(s
, ARM_FEATURE_XSCALE
)) {
7340 if (((insn
& 0x0c000e00) == 0x0c000000)
7341 && ((insn
& 0x03000000) != 0x03000000)) {
7342 /* Coprocessor insn, coprocessor 0 or 1 */
7343 disas_xscale_insn(s
, insn
);
7349 unallocated_encoding(s
);
7352 static bool thumb_insn_is_16bit(DisasContext
*s
, uint32_t pc
, uint32_t insn
)
7355 * Return true if this is a 16 bit instruction. We must be precise
7356 * about this (matching the decode).
7358 if ((insn
>> 11) < 0x1d) {
7359 /* Definitely a 16-bit instruction */
7363 /* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the
7364 * first half of a 32-bit Thumb insn. Thumb-1 cores might
7365 * end up actually treating this as two 16-bit insns, though,
7366 * if it's half of a bl/blx pair that might span a page boundary.
7368 if (arm_dc_feature(s
, ARM_FEATURE_THUMB2
) ||
7369 arm_dc_feature(s
, ARM_FEATURE_M
)) {
7370 /* Thumb2 cores (including all M profile ones) always treat
7371 * 32-bit insns as 32-bit.
7376 if ((insn
>> 11) == 0x1e && pc
- s
->page_start
< TARGET_PAGE_SIZE
- 3) {
7377 /* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix
7378 * is not on the next page; we merge this into a 32-bit
7383 /* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF);
7384 * 0b1111_1xxx_xxxx_xxxx : BL suffix;
7385 * 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page
7386 * -- handle as single 16 bit insn
7391 /* Translate a 32-bit thumb instruction. */
7392 static void disas_thumb2_insn(DisasContext
*s
, uint32_t insn
)
7395 * ARMv6-M supports a limited subset of Thumb2 instructions.
7396 * Other Thumb1 architectures allow only 32-bit
7397 * combined BL/BLX prefix and suffix.
7399 if (arm_dc_feature(s
, ARM_FEATURE_M
) &&
7400 !arm_dc_feature(s
, ARM_FEATURE_V7
)) {
7403 static const uint32_t armv6m_insn
[] = {0xf3808000 /* msr */,
7404 0xf3b08040 /* dsb */,
7405 0xf3b08050 /* dmb */,
7406 0xf3b08060 /* isb */,
7407 0xf3e08000 /* mrs */,
7408 0xf000d000 /* bl */};
7409 static const uint32_t armv6m_mask
[] = {0xffe0d000,
7416 for (i
= 0; i
< ARRAY_SIZE(armv6m_insn
); i
++) {
7417 if ((insn
& armv6m_mask
[i
]) == armv6m_insn
[i
]) {
7425 } else if ((insn
& 0xf800e800) != 0xf000e800) {
7426 if (!arm_dc_feature(s
, ARM_FEATURE_THUMB2
)) {
7427 unallocated_encoding(s
);
7432 if (arm_dc_feature(s
, ARM_FEATURE_M
)) {
7434 * NOCP takes precedence over any UNDEF for (almost) the
7435 * entire wide range of coprocessor-space encodings, so check
7436 * for it first before proceeding to actually decode eg VFP
7437 * insns. This decode also handles the few insns which are
7438 * in copro space but do not have NOCP checks (eg VLLDM, VLSTM).
7440 if (disas_m_nocp(s
, insn
)) {
7445 if ((insn
& 0xef000000) == 0xef000000) {
7447 * T32 encodings 0b111p_1111_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq
7449 * A32 encodings 0b1111_001p_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq
7451 uint32_t a32_insn
= (insn
& 0xe2ffffff) |
7452 ((insn
& (1 << 28)) >> 4) | (1 << 28);
7454 if (disas_neon_dp(s
, a32_insn
)) {
7459 if ((insn
& 0xff100000) == 0xf9000000) {
7461 * T32 encodings 0b1111_1001_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq
7463 * A32 encodings 0b1111_0100_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq
7465 uint32_t a32_insn
= (insn
& 0x00ffffff) | 0xf4000000;
7467 if (disas_neon_ls(s
, a32_insn
)) {
7473 * TODO: Perhaps merge these into one decodetree output file.
7474 * Note disas_vfp is written for a32 with cond field in the
7475 * top nibble. The t32 encoding requires 0xe in the top nibble.
7477 if (disas_t32(s
, insn
) ||
7478 disas_vfp_uncond(s
, insn
) ||
7479 disas_neon_shared(s
, insn
) ||
7480 disas_mve(s
, insn
) ||
7481 ((insn
>> 28) == 0xe && disas_vfp(s
, insn
))) {
7486 unallocated_encoding(s
);
7489 static void disas_thumb_insn(DisasContext
*s
, uint32_t insn
)
7491 if (!disas_t16(s
, insn
)) {
7492 unallocated_encoding(s
);
7496 static bool insn_crosses_page(CPUARMState
*env
, DisasContext
*s
)
7498 /* Return true if the insn at dc->base.pc_next might cross a page boundary.
7499 * (False positives are OK, false negatives are not.)
7500 * We know this is a Thumb insn, and our caller ensures we are
7501 * only called if dc->base.pc_next is less than 4 bytes from the page
7502 * boundary, so we cross the page if the first 16 bits indicate
7503 * that this is a 32 bit insn.
7505 uint16_t insn
= arm_lduw_code(env
, &s
->base
, s
->base
.pc_next
, s
->sctlr_b
);
7507 return !thumb_insn_is_16bit(s
, s
->base
.pc_next
, insn
);
7510 static void arm_tr_init_disas_context(DisasContextBase
*dcbase
, CPUState
*cs
)
7512 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
7513 CPUARMState
*env
= cpu_env(cs
);
7514 ARMCPU
*cpu
= env_archcpu(env
);
7515 CPUARMTBFlags tb_flags
= arm_tbflags_from_tb(dc
->base
.tb
);
7516 uint32_t condexec
, core_mmu_idx
;
7518 dc
->isar
= &cpu
->isar
;
7520 dc
->pc_save
= dc
->base
.pc_first
;
7521 dc
->aarch64
= false;
7522 dc
->thumb
= EX_TBFLAG_AM32(tb_flags
, THUMB
);
7523 dc
->be_data
= EX_TBFLAG_ANY(tb_flags
, BE_DATA
) ? MO_BE
: MO_LE
;
7524 condexec
= EX_TBFLAG_AM32(tb_flags
, CONDEXEC
);
7526 * the CONDEXEC TB flags are CPSR bits [15:10][26:25]. On A-profile this
7527 * is always the IT bits. On M-profile, some of the reserved encodings
7528 * of IT are used instead to indicate either ICI or ECI, which
7529 * indicate partial progress of a restartable insn that was interrupted
7530 * partway through by an exception:
7531 * * if CONDEXEC[3:0] != 0b0000 : CONDEXEC is IT bits
7532 * * if CONDEXEC[3:0] == 0b0000 : CONDEXEC is ICI or ECI bits
7533 * In all cases CONDEXEC == 0 means "not in IT block or restartable
7534 * insn, behave normally".
7536 dc
->eci
= dc
->condexec_mask
= dc
->condexec_cond
= 0;
7537 dc
->eci_handled
= false;
7538 if (condexec
& 0xf) {
7539 dc
->condexec_mask
= (condexec
& 0xf) << 1;
7540 dc
->condexec_cond
= condexec
>> 4;
7542 if (arm_feature(env
, ARM_FEATURE_M
)) {
7543 dc
->eci
= condexec
>> 4;
7547 core_mmu_idx
= EX_TBFLAG_ANY(tb_flags
, MMUIDX
);
7548 dc
->mmu_idx
= core_to_arm_mmu_idx(env
, core_mmu_idx
);
7549 dc
->fp_excp_el
= EX_TBFLAG_ANY(tb_flags
, FPEXC_EL
);
7550 dc
->align_mem
= EX_TBFLAG_ANY(tb_flags
, ALIGN_MEM
);
7551 dc
->pstate_il
= EX_TBFLAG_ANY(tb_flags
, PSTATE__IL
);
7552 dc
->fgt_active
= EX_TBFLAG_ANY(tb_flags
, FGT_ACTIVE
);
7553 dc
->fgt_svc
= EX_TBFLAG_ANY(tb_flags
, FGT_SVC
);
7555 if (arm_feature(env
, ARM_FEATURE_M
)) {
7556 dc
->vfp_enabled
= 1;
7557 dc
->be_data
= MO_TE
;
7558 dc
->v7m_handler_mode
= EX_TBFLAG_M32(tb_flags
, HANDLER
);
7559 dc
->v8m_secure
= EX_TBFLAG_M32(tb_flags
, SECURE
);
7560 dc
->v8m_stackcheck
= EX_TBFLAG_M32(tb_flags
, STACKCHECK
);
7561 dc
->v8m_fpccr_s_wrong
= EX_TBFLAG_M32(tb_flags
, FPCCR_S_WRONG
);
7562 dc
->v7m_new_fp_ctxt_needed
=
7563 EX_TBFLAG_M32(tb_flags
, NEW_FP_CTXT_NEEDED
);
7564 dc
->v7m_lspact
= EX_TBFLAG_M32(tb_flags
, LSPACT
);
7565 dc
->mve_no_pred
= EX_TBFLAG_M32(tb_flags
, MVE_NO_PRED
);
7567 dc
->sctlr_b
= EX_TBFLAG_A32(tb_flags
, SCTLR__B
);
7568 dc
->hstr_active
= EX_TBFLAG_A32(tb_flags
, HSTR_ACTIVE
);
7569 dc
->ns
= EX_TBFLAG_A32(tb_flags
, NS
);
7570 dc
->vfp_enabled
= EX_TBFLAG_A32(tb_flags
, VFPEN
);
7571 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
7572 dc
->c15_cpar
= EX_TBFLAG_A32(tb_flags
, XSCALE_CPAR
);
7574 dc
->vec_len
= EX_TBFLAG_A32(tb_flags
, VECLEN
);
7575 dc
->vec_stride
= EX_TBFLAG_A32(tb_flags
, VECSTRIDE
);
7577 dc
->sme_trap_nonstreaming
=
7578 EX_TBFLAG_A32(tb_flags
, SME_TRAP_NONSTREAMING
);
7579 dc
->s_pl1_0
= EX_TBFLAG_A32(tb_flags
, S_PL1_0
);
7581 dc
->current_el
= arm_mmu_idx_to_el(dc
->mmu_idx
, dc
->s_pl1_0
);
7582 #if !defined(CONFIG_USER_ONLY)
7583 dc
->user
= (dc
->current_el
== 0);
7585 dc
->lse2
= false; /* applies only to aarch64 */
7586 dc
->cp_regs
= cpu
->cp_regs
;
7587 dc
->features
= env
->features
;
7589 /* Single step state. The code-generation logic here is:
7591 * generate code with no special handling for single-stepping (except
7592 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
7593 * this happens anyway because those changes are all system register or
7595 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
7596 * emit code for one insn
7597 * emit code to clear PSTATE.SS
7598 * emit code to generate software step exception for completed step
7599 * end TB (as usual for having generated an exception)
7600 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
7601 * emit code to generate a software step exception
7604 dc
->ss_active
= EX_TBFLAG_ANY(tb_flags
, SS_ACTIVE
);
7605 dc
->pstate_ss
= EX_TBFLAG_ANY(tb_flags
, PSTATE__SS
);
7606 dc
->is_ldex
= false;
7608 dc
->page_start
= dc
->base
.pc_first
& TARGET_PAGE_MASK
;
7610 /* If architectural single step active, limit to 1. */
7611 if (dc
->ss_active
) {
7612 dc
->base
.max_insns
= 1;
7615 /* ARM is a fixed-length ISA. Bound the number of insns to execute
7616 to those left on the page. */
7618 int bound
= -(dc
->base
.pc_first
| TARGET_PAGE_MASK
) / 4;
7619 dc
->base
.max_insns
= MIN(dc
->base
.max_insns
, bound
);
7622 cpu_V0
= tcg_temp_new_i64();
7623 cpu_V1
= tcg_temp_new_i64();
7624 cpu_M0
= tcg_temp_new_i64();
7627 static void arm_tr_tb_start(DisasContextBase
*dcbase
, CPUState
*cpu
)
7629 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
7631 /* A note on handling of the condexec (IT) bits:
7633 * We want to avoid the overhead of having to write the updated condexec
7634 * bits back to the CPUARMState for every instruction in an IT block. So:
7635 * (1) if the condexec bits are not already zero then we write
7636 * zero back into the CPUARMState now. This avoids complications trying
7637 * to do it at the end of the block. (For example if we don't do this
7638 * it's hard to identify whether we can safely skip writing condexec
7639 * at the end of the TB, which we definitely want to do for the case
7640 * where a TB doesn't do anything with the IT state at all.)
7641 * (2) if we are going to leave the TB then we call gen_set_condexec()
7642 * which will write the correct value into CPUARMState if zero is wrong.
7643 * This is done both for leaving the TB at the end, and for leaving
7644 * it because of an exception we know will happen, which is done in
7645 * gen_exception_insn(). The latter is necessary because we need to
7646 * leave the TB with the PC/IT state just prior to execution of the
7647 * instruction which caused the exception.
7648 * (3) if we leave the TB unexpectedly (eg a data abort on a load)
7649 * then the CPUARMState will be wrong and we need to reset it.
7650 * This is handled in the same way as restoration of the
7651 * PC in these situations; we save the value of the condexec bits
7652 * for each PC via tcg_gen_insn_start(), and restore_state_to_opc()
7653 * then uses this to restore them after an exception.
7655 * Note that there are no instructions which can read the condexec
7656 * bits, and none which can write non-static values to them, so
7657 * we don't need to care about whether CPUARMState is correct in the
7661 /* Reset the conditional execution bits immediately. This avoids
7662 complications trying to do it at the end of the block. */
7663 if (dc
->condexec_mask
|| dc
->condexec_cond
) {
7664 store_cpu_field_constant(0, condexec_bits
);
7668 static void arm_tr_insn_start(DisasContextBase
*dcbase
, CPUState
*cpu
)
7670 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
7672 * The ECI/ICI bits share PSR bits with the IT bits, so we
7673 * need to reconstitute the bits from the split-out DisasContext
7676 uint32_t condexec_bits
;
7677 target_ulong pc_arg
= dc
->base
.pc_next
;
7679 if (tb_cflags(dcbase
->tb
) & CF_PCREL
) {
7680 pc_arg
&= ~TARGET_PAGE_MASK
;
7683 condexec_bits
= dc
->eci
<< 4;
7685 condexec_bits
= (dc
->condexec_cond
<< 4) | (dc
->condexec_mask
>> 1);
7687 tcg_gen_insn_start(pc_arg
, condexec_bits
, 0);
7688 dc
->insn_start_updated
= false;
7691 static bool arm_check_kernelpage(DisasContext
*dc
)
7693 #ifdef CONFIG_USER_ONLY
7694 /* Intercept jump to the magic kernel page. */
7695 if (dc
->base
.pc_next
>= 0xffff0000) {
7696 /* We always get here via a jump, so know we are not in a
7697 conditional execution block. */
7698 gen_exception_internal(EXCP_KERNEL_TRAP
);
7699 dc
->base
.is_jmp
= DISAS_NORETURN
;
7706 static bool arm_check_ss_active(DisasContext
*dc
)
7708 if (dc
->ss_active
&& !dc
->pstate_ss
) {
7709 /* Singlestep state is Active-pending.
7710 * If we're in this state at the start of a TB then either
7711 * a) we just took an exception to an EL which is being debugged
7712 * and this is the first insn in the exception handler
7713 * b) debug exceptions were masked and we just unmasked them
7714 * without changing EL (eg by clearing PSTATE.D)
7715 * In either case we're going to take a swstep exception in the
7716 * "did not step an insn" case, and so the syndrome ISV and EX
7717 * bits should be zero.
7719 assert(dc
->base
.num_insns
== 1);
7720 gen_swstep_exception(dc
, 0, 0);
7721 dc
->base
.is_jmp
= DISAS_NORETURN
;
7728 static void arm_post_translate_insn(DisasContext
*dc
)
7730 if (dc
->condjmp
&& dc
->base
.is_jmp
== DISAS_NEXT
) {
7731 if (dc
->pc_save
!= dc
->condlabel
.pc_save
) {
7732 gen_update_pc(dc
, dc
->condlabel
.pc_save
- dc
->pc_save
);
7734 gen_set_label(dc
->condlabel
.label
);
7739 static void arm_tr_translate_insn(DisasContextBase
*dcbase
, CPUState
*cpu
)
7741 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
7742 CPUARMState
*env
= cpu_env(cpu
);
7743 uint32_t pc
= dc
->base
.pc_next
;
7746 /* Singlestep exceptions have the highest priority. */
7747 if (arm_check_ss_active(dc
)) {
7748 dc
->base
.pc_next
= pc
+ 4;
7754 * PC alignment fault. This has priority over the instruction abort
7755 * that we would receive from a translation fault via arm_ldl_code
7756 * (or the execution of the kernelpage entrypoint). This should only
7757 * be possible after an indirect branch, at the start of the TB.
7759 assert(dc
->base
.num_insns
== 1);
7760 gen_helper_exception_pc_alignment(tcg_env
, tcg_constant_tl(pc
));
7761 dc
->base
.is_jmp
= DISAS_NORETURN
;
7762 dc
->base
.pc_next
= QEMU_ALIGN_UP(pc
, 4);
7766 if (arm_check_kernelpage(dc
)) {
7767 dc
->base
.pc_next
= pc
+ 4;
7772 insn
= arm_ldl_code(env
, &dc
->base
, pc
, dc
->sctlr_b
);
7774 dc
->base
.pc_next
= pc
+ 4;
7775 disas_arm_insn(dc
, insn
);
7777 arm_post_translate_insn(dc
);
7779 /* ARM is a fixed-length ISA. We performed the cross-page check
7780 in init_disas_context by adjusting max_insns. */
7783 static bool thumb_insn_is_unconditional(DisasContext
*s
, uint32_t insn
)
7785 /* Return true if this Thumb insn is always unconditional,
7786 * even inside an IT block. This is true of only a very few
7787 * instructions: BKPT, HLT, and SG.
7789 * A larger class of instructions are UNPREDICTABLE if used
7790 * inside an IT block; we do not need to detect those here, because
7791 * what we do by default (perform the cc check and update the IT
7792 * bits state machine) is a permitted CONSTRAINED UNPREDICTABLE
7793 * choice for those situations.
7795 * insn is either a 16-bit or a 32-bit instruction; the two are
7796 * distinguishable because for the 16-bit case the top 16 bits
7797 * are zeroes, and that isn't a valid 32-bit encoding.
7799 if ((insn
& 0xffffff00) == 0xbe00) {
7804 if ((insn
& 0xffffffc0) == 0xba80 && arm_dc_feature(s
, ARM_FEATURE_V8
) &&
7805 !arm_dc_feature(s
, ARM_FEATURE_M
)) {
7806 /* HLT: v8A only. This is unconditional even when it is going to
7807 * UNDEF; see the v8A ARM ARM DDI0487B.a H3.3.
7808 * For v7 cores this was a plain old undefined encoding and so
7809 * honours its cc check. (We might be using the encoding as
7810 * a semihosting trap, but we don't change the cc check behaviour
7811 * on that account, because a debugger connected to a real v7A
7812 * core and emulating semihosting traps by catching the UNDEF
7813 * exception would also only see cases where the cc check passed.
7814 * No guest code should be trying to do a HLT semihosting trap
7815 * in an IT block anyway.
7820 if (insn
== 0xe97fe97f && arm_dc_feature(s
, ARM_FEATURE_V8
) &&
7821 arm_dc_feature(s
, ARM_FEATURE_M
)) {
7829 static void thumb_tr_translate_insn(DisasContextBase
*dcbase
, CPUState
*cpu
)
7831 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
7832 CPUARMState
*env
= cpu_env(cpu
);
7833 uint32_t pc
= dc
->base
.pc_next
;
7836 /* TCG op to rewind to if this turns out to be an invalid ECI state */
7837 TCGOp
*insn_eci_rewind
= NULL
;
7838 target_ulong insn_eci_pc_save
= -1;
7840 /* Misaligned thumb PC is architecturally impossible. */
7841 assert((dc
->base
.pc_next
& 1) == 0);
7843 if (arm_check_ss_active(dc
) || arm_check_kernelpage(dc
)) {
7844 dc
->base
.pc_next
= pc
+ 2;
7849 insn
= arm_lduw_code(env
, &dc
->base
, pc
, dc
->sctlr_b
);
7850 is_16bit
= thumb_insn_is_16bit(dc
, dc
->base
.pc_next
, insn
);
7853 uint32_t insn2
= arm_lduw_code(env
, &dc
->base
, pc
, dc
->sctlr_b
);
7854 insn
= insn
<< 16 | insn2
;
7857 dc
->base
.pc_next
= pc
;
7860 if (dc
->pstate_il
) {
7862 * Illegal execution state. This has priority over BTI
7863 * exceptions, but comes after instruction abort exceptions.
7865 gen_exception_insn(dc
, 0, EXCP_UDEF
, syn_illegalstate());
7871 * For M-profile continuable instructions, ECI/ICI handling
7872 * falls into these cases:
7873 * - interrupt-continuable instructions
7874 * These are the various load/store multiple insns (both
7875 * integer and fp). The ICI bits indicate the register
7876 * where the load/store can resume. We make the IMPDEF
7877 * choice to always do "instruction restart", ie ignore
7878 * the ICI value and always execute the ldm/stm from the
7879 * start. So all we need to do is zero PSR.ICI if the
7881 * - MVE instructions subject to beat-wise execution
7882 * Here the ECI bits indicate which beats have already been
7883 * executed, and we must honour this. Each insn of this
7884 * type will handle it correctly. We will update PSR.ECI
7885 * in the helper function for the insn (some ECI values
7886 * mean that the following insn also has been partially
7888 * - Special cases which don't advance ECI
7889 * The insns LE, LETP and BKPT leave the ECI/ICI state
7891 * - all other insns (the common case)
7892 * Non-zero ECI/ICI means an INVSTATE UsageFault.
7893 * We place a rewind-marker here. Insns in the previous
7894 * three categories will set a flag in the DisasContext.
7895 * If the flag isn't set after we call disas_thumb_insn()
7896 * or disas_thumb2_insn() then we know we have a "some other
7897 * insn" case. We will rewind to the marker (ie throwing away
7898 * all the generated code) and instead emit "take exception".
7900 insn_eci_rewind
= tcg_last_op();
7901 insn_eci_pc_save
= dc
->pc_save
;
7904 if (dc
->condexec_mask
&& !thumb_insn_is_unconditional(dc
, insn
)) {
7905 uint32_t cond
= dc
->condexec_cond
;
7908 * Conditionally skip the insn. Note that both 0xe and 0xf mean
7909 * "always"; 0xf is not "never".
7912 arm_skip_unless(dc
, cond
);
7917 disas_thumb_insn(dc
, insn
);
7919 disas_thumb2_insn(dc
, insn
);
7922 /* Advance the Thumb condexec condition. */
7923 if (dc
->condexec_mask
) {
7924 dc
->condexec_cond
= ((dc
->condexec_cond
& 0xe) |
7925 ((dc
->condexec_mask
>> 4) & 1));
7926 dc
->condexec_mask
= (dc
->condexec_mask
<< 1) & 0x1f;
7927 if (dc
->condexec_mask
== 0) {
7928 dc
->condexec_cond
= 0;
7932 if (dc
->eci
&& !dc
->eci_handled
) {
7934 * Insn wasn't valid for ECI/ICI at all: undo what we
7935 * just generated and instead emit an exception
7937 tcg_remove_ops_after(insn_eci_rewind
);
7938 dc
->pc_save
= insn_eci_pc_save
;
7940 gen_exception_insn(dc
, 0, EXCP_INVSTATE
, syn_uncategorized());
7943 arm_post_translate_insn(dc
);
7945 /* Thumb is a variable-length ISA. Stop translation when the next insn
7946 * will touch a new page. This ensures that prefetch aborts occur at
7949 * We want to stop the TB if the next insn starts in a new page,
7950 * or if it spans between this page and the next. This means that
7951 * if we're looking at the last halfword in the page we need to
7952 * see if it's a 16-bit Thumb insn (which will fit in this TB)
7953 * or a 32-bit Thumb insn (which won't).
7954 * This is to avoid generating a silly TB with a single 16-bit insn
7955 * in it at the end of this page (which would execute correctly
7956 * but isn't very efficient).
7958 if (dc
->base
.is_jmp
== DISAS_NEXT
7959 && (dc
->base
.pc_next
- dc
->page_start
>= TARGET_PAGE_SIZE
7960 || (dc
->base
.pc_next
- dc
->page_start
>= TARGET_PAGE_SIZE
- 3
7961 && insn_crosses_page(env
, dc
)))) {
7962 dc
->base
.is_jmp
= DISAS_TOO_MANY
;
7966 static void arm_tr_tb_stop(DisasContextBase
*dcbase
, CPUState
*cpu
)
7968 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
7970 /* At this stage dc->condjmp will only be set when the skipped
7971 instruction was a conditional branch or trap, and the PC has
7972 already been written. */
7973 gen_set_condexec(dc
);
7974 if (dc
->base
.is_jmp
== DISAS_BX_EXCRET
) {
7975 /* Exception return branches need some special case code at the
7976 * end of the TB, which is complex enough that it has to
7977 * handle the single-step vs not and the condition-failed
7978 * insn codepath itself.
7980 gen_bx_excret_final_code(dc
);
7981 } else if (unlikely(dc
->ss_active
)) {
7982 /* Unconditional and "condition passed" instruction codepath. */
7983 switch (dc
->base
.is_jmp
) {
7986 gen_exception(EXCP_SWI
, syn_aa32_svc(dc
->svc_imm
, dc
->thumb
));
7990 gen_exception_el(EXCP_HVC
, syn_aa32_hvc(dc
->svc_imm
), 2);
7994 gen_exception_el(EXCP_SMC
, syn_aa32_smc(), 3);
7997 case DISAS_TOO_MANY
:
7998 case DISAS_UPDATE_EXIT
:
7999 case DISAS_UPDATE_NOCHAIN
:
8000 gen_update_pc(dc
, curr_insn_len(dc
));
8003 /* FIXME: Single stepping a WFI insn will not halt the CPU. */
8004 gen_singlestep_exception(dc
);
8006 case DISAS_NORETURN
:
8010 /* While branches must always occur at the end of an IT block,
8011 there are a few other things that can cause us to terminate
8012 the TB in the middle of an IT block:
8013 - Exception generating instructions (bkpt, swi, undefined).
8015 - Hardware watchpoints.
8016 Hardware breakpoints have already been handled and skip this code.
8018 switch (dc
->base
.is_jmp
) {
8020 case DISAS_TOO_MANY
:
8021 gen_goto_tb(dc
, 1, curr_insn_len(dc
));
8023 case DISAS_UPDATE_NOCHAIN
:
8024 gen_update_pc(dc
, curr_insn_len(dc
));
8029 case DISAS_UPDATE_EXIT
:
8030 gen_update_pc(dc
, curr_insn_len(dc
));
8033 /* indicate that the hash table must be used to find the next TB */
8034 tcg_gen_exit_tb(NULL
, 0);
8036 case DISAS_NORETURN
:
8037 /* nothing more to generate */
8040 gen_helper_wfi(tcg_env
, tcg_constant_i32(curr_insn_len(dc
)));
8042 * The helper doesn't necessarily throw an exception, but we
8043 * must go back to the main loop to check for interrupts anyway.
8045 tcg_gen_exit_tb(NULL
, 0);
8048 gen_helper_wfe(tcg_env
);
8051 gen_helper_yield(tcg_env
);
8054 gen_exception(EXCP_SWI
, syn_aa32_svc(dc
->svc_imm
, dc
->thumb
));
8057 gen_exception_el(EXCP_HVC
, syn_aa32_hvc(dc
->svc_imm
), 2);
8060 gen_exception_el(EXCP_SMC
, syn_aa32_smc(), 3);
8066 /* "Condition failed" instruction codepath for the branch/trap insn */
8067 set_disas_label(dc
, dc
->condlabel
);
8068 gen_set_condexec(dc
);
8069 if (unlikely(dc
->ss_active
)) {
8070 gen_update_pc(dc
, curr_insn_len(dc
));
8071 gen_singlestep_exception(dc
);
8073 gen_goto_tb(dc
, 1, curr_insn_len(dc
));
8078 static const TranslatorOps arm_translator_ops
= {
8079 .init_disas_context
= arm_tr_init_disas_context
,
8080 .tb_start
= arm_tr_tb_start
,
8081 .insn_start
= arm_tr_insn_start
,
8082 .translate_insn
= arm_tr_translate_insn
,
8083 .tb_stop
= arm_tr_tb_stop
,
8086 static const TranslatorOps thumb_translator_ops
= {
8087 .init_disas_context
= arm_tr_init_disas_context
,
8088 .tb_start
= arm_tr_tb_start
,
8089 .insn_start
= arm_tr_insn_start
,
8090 .translate_insn
= thumb_tr_translate_insn
,
8091 .tb_stop
= arm_tr_tb_stop
,
8094 /* generate intermediate code for basic block 'tb'. */
8095 void gen_intermediate_code(CPUState
*cpu
, TranslationBlock
*tb
, int *max_insns
,
8096 vaddr pc
, void *host_pc
)
8098 DisasContext dc
= { };
8099 const TranslatorOps
*ops
= &arm_translator_ops
;
8100 CPUARMTBFlags tb_flags
= arm_tbflags_from_tb(tb
);
8102 if (EX_TBFLAG_AM32(tb_flags
, THUMB
)) {
8103 ops
= &thumb_translator_ops
;
8105 #ifdef TARGET_AARCH64
8106 if (EX_TBFLAG_ANY(tb_flags
, AARCH64_STATE
)) {
8107 ops
= &aarch64_translator_ops
;
8111 translator_loop(cpu
, tb
, max_insns
, pc
, host_pc
, ops
, &dc
.base
);