Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / tcg / translate.h
blob5a2e10d64d58076312c53a4f8bcd3d7e8e4ed5a6
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 #include "cpu-features.h"
13 /* internal defines */
16 * Save pc_save across a branch, so that we may restore the value from
17 * before the branch at the point the label is emitted.
19 typedef struct DisasLabel {
20 TCGLabel *label;
21 target_ulong pc_save;
22 } DisasLabel;
24 typedef struct DisasContext {
25 DisasContextBase base;
26 const ARMISARegisters *isar;
28 /* The address of the current instruction being translated. */
29 target_ulong pc_curr;
31 * For CF_PCREL, the full value of cpu_pc is not known
32 * (although the page offset is known). For convenience, the
33 * translation loop uses the full virtual address that triggered
34 * the translation, from base.pc_start through pc_curr.
35 * For efficiency, we do not update cpu_pc for every instruction.
36 * Instead, pc_save has the value of pc_curr at the time of the
37 * last update to cpu_pc, which allows us to compute the addend
38 * needed to bring cpu_pc current: pc_curr - pc_save.
39 * If cpu_pc now contains the destination of an indirect branch,
40 * pc_save contains -1 to indicate that relative updates are no
41 * longer possible.
43 target_ulong pc_save;
44 target_ulong page_start;
45 uint32_t insn;
46 /* Nonzero if this instruction has been conditionally skipped. */
47 int condjmp;
48 /* The label that will be jumped to when the instruction is skipped. */
49 DisasLabel condlabel;
50 /* Thumb-2 conditional execution bits. */
51 int condexec_mask;
52 int condexec_cond;
53 /* M-profile ECI/ICI exception-continuable instruction state */
54 int eci;
56 * trans_ functions for insns which are continuable should set this true
57 * after decode (ie after any UNDEF checks)
59 bool eci_handled;
60 int sctlr_b;
61 MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63 int user;
64 #endif
65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66 uint8_t tbii; /* TBI1|TBI0 for insns */
67 uint8_t tbid; /* TBI1|TBI0 for data */
68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */
69 bool ns; /* Use non-secure CPREG bank on access */
70 int fp_excp_el; /* FP exception EL or 0 if enabled */
71 int sve_excp_el; /* SVE exception EL or 0 if enabled */
72 int sme_excp_el; /* SME exception EL or 0 if enabled */
73 int vl; /* current vector length in bytes */
74 int svl; /* current streaming vector length in bytes */
75 bool vfp_enabled; /* FP enabled via FPSCR.EN */
76 int vec_len;
77 int vec_stride;
78 bool v7m_handler_mode;
79 bool v8m_secure; /* true if v8M and we're in Secure mode */
80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83 bool v7m_lspact; /* FPCCR.LSPACT set */
84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85 * so that top level loop can generate correct syndrome information.
87 uint32_t svc_imm;
88 int current_el;
89 GHashTable *cp_regs;
90 uint64_t features; /* CPU features bits */
91 bool aarch64;
92 bool thumb;
93 bool lse2;
94 /* Because unallocated encodings generate different exception syndrome
95 * information from traps due to FP being disabled, we can't do a single
96 * "is fp access disabled" check at a high level in the decode tree.
97 * To help in catching bugs where the access check was forgotten in some
98 * code path, we set this flag when the access check is done, and assert
99 * that it is set at the point where we actually touch the FP regs.
101 bool fp_access_checked;
102 bool sve_access_checked;
103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104 * single-step support).
106 bool ss_active;
107 bool pstate_ss;
108 /* True if the insn just emitted was a load-exclusive instruction
109 * (necessary for syndrome information for single step exceptions),
110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
112 bool is_ldex;
113 /* True if AccType_UNPRIV should be used for LDTR et al */
114 bool unpriv;
115 /* True if v8.3-PAuth is active. */
116 bool pauth_active;
117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */
118 bool ata[2];
119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
120 bool mte_active[2];
121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */
122 bool bt;
123 /* True if any CP15 access is trapped by HSTR_EL2 */
124 bool hstr_active;
125 /* True if memory operations require alignment */
126 bool align_mem;
127 /* True if PSTATE.IL is set */
128 bool pstate_il;
129 /* True if PSTATE.SM is set. */
130 bool pstate_sm;
131 /* True if PSTATE.ZA is set. */
132 bool pstate_za;
133 /* True if non-streaming insns should raise an SME Streaming exception. */
134 bool sme_trap_nonstreaming;
135 /* True if the current instruction is non-streaming. */
136 bool is_nonstreaming;
137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138 bool mve_no_pred;
139 /* True if fine-grained traps are active */
140 bool fgt_active;
141 /* True if fine-grained trap on SVC is enabled */
142 bool fgt_svc;
143 /* True if a trap on ERET is enabled (FGT or NV) */
144 bool trap_eret;
145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146 bool naa;
147 /* True if FEAT_NV HCR_EL2.NV is enabled */
148 bool nv;
149 /* True if NV enabled and HCR_EL2.NV1 is set */
150 bool nv1;
151 /* True if NV enabled and HCR_EL2.NV2 is set */
152 bool nv2;
153 /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
154 bool nv2_mem_e20;
155 /* True if NV2 enabled and NV2 RAM accesses are big-endian */
156 bool nv2_mem_be;
158 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
159 * < 0, set by the current instruction.
161 int8_t btype;
162 /* A copy of cpu->dcz_blocksize. */
163 uint8_t dcz_blocksize;
164 /* A copy of cpu->gm_blocksize. */
165 uint8_t gm_blocksize;
166 /* True if the current insn_start has been updated. */
167 bool insn_start_updated;
168 /* True if this is the AArch32 Secure PL1&0 translation regime */
169 bool s_pl1_0;
170 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
171 int c15_cpar;
172 /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
173 uint32_t nv2_redirect_offset;
174 } DisasContext;
176 typedef struct DisasCompare {
177 TCGCond cond;
178 TCGv_i32 value;
179 } DisasCompare;
181 /* Share the TCG temporaries common between 32 and 64 bit modes. */
182 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
183 extern TCGv_i64 cpu_exclusive_addr;
184 extern TCGv_i64 cpu_exclusive_val;
187 * Constant expanders for the decoders.
190 static inline int negate(DisasContext *s, int x)
192 return -x;
195 static inline int plus_1(DisasContext *s, int x)
197 return x + 1;
200 static inline int plus_2(DisasContext *s, int x)
202 return x + 2;
205 static inline int plus_12(DisasContext *s, int x)
207 return x + 12;
210 static inline int times_2(DisasContext *s, int x)
212 return x * 2;
215 static inline int times_4(DisasContext *s, int x)
217 return x * 4;
220 static inline int times_8(DisasContext *s, int x)
222 return x * 8;
225 static inline int times_2_plus_1(DisasContext *s, int x)
227 return x * 2 + 1;
230 static inline int rsub_64(DisasContext *s, int x)
232 return 64 - x;
235 static inline int rsub_32(DisasContext *s, int x)
237 return 32 - x;
240 static inline int rsub_16(DisasContext *s, int x)
242 return 16 - x;
245 static inline int rsub_8(DisasContext *s, int x)
247 return 8 - x;
250 static inline int shl_12(DisasContext *s, int x)
252 return x << 12;
255 static inline int xor_2(DisasContext *s, int x)
257 return x ^ 2;
260 static inline int neon_3same_fp_size(DisasContext *s, int x)
262 /* Convert 0==fp32, 1==fp16 into a MO_* value */
263 return MO_32 - x;
266 static inline int arm_dc_feature(DisasContext *dc, int feature)
268 return (dc->features & (1ULL << feature)) != 0;
271 static inline int get_mem_index(DisasContext *s)
273 return arm_to_core_mmu_idx(s->mmu_idx);
276 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
278 /* We don't need to save all of the syndrome so we mask and shift
279 * out unneeded bits to help the sleb128 encoder do a better job.
281 syn &= ARM_INSN_START_WORD2_MASK;
282 syn >>= ARM_INSN_START_WORD2_SHIFT;
284 /* Check for multiple updates. */
285 assert(!s->insn_start_updated);
286 s->insn_start_updated = true;
287 tcg_set_insn_start_param(s->base.insn_start, 2, syn);
290 static inline int curr_insn_len(DisasContext *s)
292 return s->base.pc_next - s->pc_curr;
295 /* is_jmp field values */
296 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
297 /* CPU state was modified dynamically; exit to main loop for interrupts. */
298 #define DISAS_UPDATE_EXIT DISAS_TARGET_1
299 /* These instructions trap after executing, so the A32/T32 decoder must
300 * defer them until after the conditional execution state has been updated.
301 * WFI also needs special handling when single-stepping.
303 #define DISAS_WFI DISAS_TARGET_2
304 #define DISAS_SWI DISAS_TARGET_3
305 /* WFE */
306 #define DISAS_WFE DISAS_TARGET_4
307 #define DISAS_HVC DISAS_TARGET_5
308 #define DISAS_SMC DISAS_TARGET_6
309 #define DISAS_YIELD DISAS_TARGET_7
310 /* M profile branch which might be an exception return (and so needs
311 * custom end-of-TB code)
313 #define DISAS_BX_EXCRET DISAS_TARGET_8
315 * For instructions which want an immediate exit to the main loop, as opposed
316 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
317 * doesn't write the PC on exiting the translation loop so you need to ensure
318 * something (gen_a64_update_pc or runtime helper) has done so before we reach
319 * return from cpu_tb_exec.
321 #define DISAS_EXIT DISAS_TARGET_9
322 /* CPU state was modified dynamically; no need to exit, but do not chain. */
323 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
325 #ifdef TARGET_AARCH64
326 void a64_translate_init(void);
327 void gen_a64_update_pc(DisasContext *s, target_long diff);
328 extern const TranslatorOps aarch64_translator_ops;
329 #else
330 static inline void a64_translate_init(void)
334 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
337 #endif
339 void arm_test_cc(DisasCompare *cmp, int cc);
340 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
341 void arm_gen_test_cc(int cc, TCGLabel *label);
342 MemOp pow2_align(unsigned i);
343 void unallocated_encoding(DisasContext *s);
344 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
345 uint32_t syn, uint32_t target_el);
346 void gen_exception_insn(DisasContext *s, target_long pc_diff,
347 int excp, uint32_t syn);
349 /* Return state of Alternate Half-precision flag, caller frees result */
350 static inline TCGv_i32 get_ahp_flag(void)
352 TCGv_i32 ret = tcg_temp_new_i32();
354 tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr));
355 tcg_gen_extract_i32(ret, ret, 26, 1);
357 return ret;
360 /* Set bits within PSTATE. */
361 static inline void set_pstate_bits(uint32_t bits)
363 TCGv_i32 p = tcg_temp_new_i32();
365 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
367 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
368 tcg_gen_ori_i32(p, p, bits);
369 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
372 /* Clear bits within PSTATE. */
373 static inline void clear_pstate_bits(uint32_t bits)
375 TCGv_i32 p = tcg_temp_new_i32();
377 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
379 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
380 tcg_gen_andi_i32(p, p, ~bits);
381 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
384 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
385 static inline void gen_ss_advance(DisasContext *s)
387 if (s->ss_active) {
388 s->pstate_ss = 0;
389 clear_pstate_bits(PSTATE_SS);
393 /* Generate an architectural singlestep exception */
394 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
396 /* Fill in the same_el field of the syndrome in the helper. */
397 uint32_t syn = syn_swstep(false, isv, ex);
398 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
402 * Given a VFP floating point constant encoded into an 8 bit immediate in an
403 * instruction, expand it to the actual constant value of the specified
404 * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
406 uint64_t vfp_expand_imm(int size, uint8_t imm8);
408 static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s)
410 tcg_gen_andi_i32(d, s, INT16_MAX);
413 static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s)
415 tcg_gen_andi_i32(d, s, INT32_MAX);
418 static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s)
420 tcg_gen_andi_i64(d, s, INT64_MAX);
423 static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s)
425 tcg_gen_xori_i32(d, s, 1u << 15);
428 static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s)
430 tcg_gen_xori_i32(d, s, 1u << 31);
433 static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s)
435 tcg_gen_xori_i64(d, s, 1ull << 63);
438 /* Vector operations shared between ARM and AArch64. */
439 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
440 uint32_t opr_sz, uint32_t max_sz);
441 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
442 uint32_t opr_sz, uint32_t max_sz);
443 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
444 uint32_t opr_sz, uint32_t max_sz);
445 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
446 uint32_t opr_sz, uint32_t max_sz);
447 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
448 uint32_t opr_sz, uint32_t max_sz);
450 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
453 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
455 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
460 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
461 void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
462 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
463 void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
464 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
465 void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
466 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
467 void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
468 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
469 void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
470 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
471 void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
472 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
474 void gen_neon_sqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
475 int64_t c, uint32_t opr_sz, uint32_t max_sz);
476 void gen_neon_uqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
477 int64_t c, uint32_t opr_sz, uint32_t max_sz);
478 void gen_neon_sqshlui(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
479 int64_t c, uint32_t opr_sz, uint32_t max_sz);
481 void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
482 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
483 void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
484 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
485 void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
486 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
487 void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
488 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
489 void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
490 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
491 void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
492 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
494 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
495 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
496 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
497 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
498 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
500 void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
501 TCGv_i64 a, TCGv_i64 b, MemOp esz);
502 void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
503 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
504 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
506 void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
507 TCGv_i64 a, TCGv_i64 b, MemOp esz);
508 void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
509 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
510 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
512 void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
513 TCGv_i64 a, TCGv_i64 b, MemOp esz);
514 void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
515 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
516 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
518 void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
519 TCGv_i64 a, TCGv_i64 b, MemOp esz);
520 void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
521 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
522 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
524 void gen_gvec_sshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
525 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
526 void gen_gvec_ushr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
527 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
529 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
530 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
531 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
532 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
534 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
535 void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
536 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
537 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
539 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
540 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
541 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
542 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
543 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
544 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
545 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
546 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
548 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
549 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
550 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
551 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
553 void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
554 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
555 void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
556 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
557 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
558 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
559 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
560 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
562 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
563 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
564 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
565 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
567 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
568 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
569 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
570 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
572 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
573 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
574 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
575 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
576 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
577 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
578 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
579 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
580 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
581 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
584 * Forward to the isar_feature_* tests given a DisasContext pointer.
586 #define dc_isar_feature(name, ctx) \
587 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
589 /* Note that the gvec expanders operate on offsets + sizes. */
590 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
591 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
592 uint32_t, uint32_t);
593 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
594 uint32_t, uint32_t, uint32_t);
595 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
596 uint32_t, uint32_t, uint32_t);
598 /* Function prototype for gen_ functions for calling Neon helpers */
599 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
600 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
601 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
602 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
603 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
604 TCGv_i32, TCGv_i32);
605 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
606 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
607 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
608 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
609 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
610 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
611 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
612 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
613 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
614 typedef void NeonGenOne64OpEnvFn(TCGv_i64, TCGv_env, TCGv_i64);
615 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
616 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
617 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
618 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
619 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
620 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
621 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
622 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
625 * arm_tbflags_from_tb:
626 * @tb: the TranslationBlock
628 * Extract the flag values from @tb.
630 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
632 return (CPUARMTBFlags){ tb->flags, tb->cs_base };
636 * Enum for argument to fpstatus_ptr().
638 typedef enum ARMFPStatusFlavour {
639 FPST_FPCR,
640 FPST_FPCR_F16,
641 FPST_STD,
642 FPST_STD_F16,
643 } ARMFPStatusFlavour;
646 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
648 * We have multiple softfloat float_status fields in the Arm CPU state struct
649 * (see the comment in cpu.h for details). Return a TCGv_ptr which has
650 * been set up to point to the requested field in the CPU state struct.
651 * The options are:
653 * FPST_FPCR
654 * for non-FP16 operations controlled by the FPCR
655 * FPST_FPCR_F16
656 * for operations controlled by the FPCR where FPCR.FZ16 is to be used
657 * FPST_STD
658 * for A32/T32 Neon operations using the "standard FPSCR value"
659 * FPST_STD_F16
660 * as FPST_STD, but where FPCR.FZ16 is to be used
662 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
664 TCGv_ptr statusptr = tcg_temp_new_ptr();
665 int offset;
667 switch (flavour) {
668 case FPST_FPCR:
669 offset = offsetof(CPUARMState, vfp.fp_status);
670 break;
671 case FPST_FPCR_F16:
672 offset = offsetof(CPUARMState, vfp.fp_status_f16);
673 break;
674 case FPST_STD:
675 offset = offsetof(CPUARMState, vfp.standard_fp_status);
676 break;
677 case FPST_STD_F16:
678 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
679 break;
680 default:
681 g_assert_not_reached();
683 tcg_gen_addi_ptr(statusptr, tcg_env, offset);
684 return statusptr;
688 * finalize_memop_atom:
689 * @s: DisasContext
690 * @opc: size+sign+align of the memory operation
691 * @atom: atomicity of the memory operation
693 * Build the complete MemOp for a memory operation, including alignment,
694 * endianness, and atomicity.
696 * If (op & MO_AMASK) then the operation already contains the required
697 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally
698 * unaligned operation, e.g. for AccType_NORMAL.
700 * In the latter case, there are configuration bits that require alignment,
701 * and this is applied here. Note that there is no way to indicate that
702 * no alignment should ever be enforced; this must be handled manually.
704 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
706 if (s->align_mem && !(opc & MO_AMASK)) {
707 opc |= MO_ALIGN;
709 return opc | atom | s->be_data;
713 * finalize_memop:
714 * @s: DisasContext
715 * @opc: size+sign+align of the memory operation
717 * Like finalize_memop_atom, but with default atomicity.
719 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
721 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
722 return finalize_memop_atom(s, opc, atom);
726 * finalize_memop_pair:
727 * @s: DisasContext
728 * @opc: size+sign+align of the memory operation
730 * Like finalize_memop_atom, but with atomicity for a pair.
731 * C.f. Pseudocode for Mem[], operand ispair.
733 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
735 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
736 return finalize_memop_atom(s, opc, atom);
740 * finalize_memop_asimd:
741 * @s: DisasContext
742 * @opc: size+sign+align of the memory operation
744 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
746 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
749 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
750 * if IsAligned(8), the first case provides separate atomicity for
751 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases
752 * do not apply, and we're left with the final case of no atomicity.
753 * Thus MO_ATOM_IFALIGN_PAIR.
755 * For other sizes, normal LSE2 rules apply.
757 if ((opc & MO_SIZE) == MO_128) {
758 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
760 return finalize_memop(s, opc);
764 * asimd_imm_const: Expand an encoded SIMD constant value
766 * Expand a SIMD constant value. This is essentially the pseudocode
767 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
768 * VMVN and VBIC (when cmode < 14 && op == 1).
770 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
771 * callers must catch this; we return the 64-bit constant value defined
772 * for AArch64.
774 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
775 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
776 * we produce an immediate constant value of 0 in these cases.
778 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
781 * gen_disas_label:
782 * Create a label and cache a copy of pc_save.
784 static inline DisasLabel gen_disas_label(DisasContext *s)
786 return (DisasLabel){
787 .label = gen_new_label(),
788 .pc_save = s->pc_save,
793 * set_disas_label:
794 * Emit a label and restore the cached copy of pc_save.
796 static inline void set_disas_label(DisasContext *s, DisasLabel l)
798 gen_set_label(l.label);
799 s->pc_save = l.pc_save;
802 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
804 TCGv_ptr ret = tcg_temp_new_ptr();
805 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
806 return ret;
810 * Set and reset rounding mode around another operation.
812 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
814 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
815 TCGv_i32 old = tcg_temp_new_i32();
817 gen_helper_set_rmode(old, new, fpst);
818 return old;
821 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
823 gen_helper_set_rmode(old, old, fpst);
827 * Helpers for implementing sets of trans_* functions.
828 * Defer the implementation of NAME to FUNC, with optional extra arguments.
830 #define TRANS(NAME, FUNC, ...) \
831 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
832 { return FUNC(s, __VA_ARGS__); }
833 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
834 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
835 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
837 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \
838 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
840 s->is_nonstreaming = true; \
841 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \
844 #endif /* TARGET_ARM_TRANSLATE_H */