Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / i386 / hvf / hvf.c
blob68dc5d9cf755521b6b110f71c835ff7a709d0e4f
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
7 * QEMU Hypervisor.framework support
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
49 #include "qemu/osdep.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "qapi/error.h"
53 #include "migration/blocker.h"
55 #include "sysemu/hvf.h"
56 #include "sysemu/hvf_int.h"
57 #include "sysemu/runstate.h"
58 #include "sysemu/cpus.h"
59 #include "hvf-i386.h"
60 #include "vmcs.h"
61 #include "vmx.h"
62 #include "x86.h"
63 #include "x86_descr.h"
64 #include "x86_mmu.h"
65 #include "x86_decode.h"
66 #include "x86_emu.h"
67 #include "x86_task.h"
68 #include "x86hvf.h"
70 #include <Hypervisor/hv.h>
71 #include <Hypervisor/hv_vmx.h>
72 #include <sys/sysctl.h>
74 #include "hw/i386/apic_internal.h"
75 #include "qemu/main-loop.h"
76 #include "qemu/accel.h"
77 #include "target/i386/cpu.h"
79 static Error *invtsc_mig_blocker;
81 void vmx_update_tpr(CPUState *cpu)
83 /* TODO: need integrate APIC handling */
84 X86CPU *x86_cpu = X86_CPU(cpu);
85 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
86 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
88 wreg(cpu->accel->fd, HV_X86_TPR, tpr);
89 if (irr == -1) {
90 wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
91 } else {
92 wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
93 irr >> 4);
97 static void update_apic_tpr(CPUState *cpu)
99 X86CPU *x86_cpu = X86_CPU(cpu);
100 int tpr = rreg(cpu->accel->fd, HV_X86_TPR) >> 4;
101 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
104 #define VECTORING_INFO_VECTOR_MASK 0xff
106 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
107 int direction, int size, int count)
109 int i;
110 uint8_t *ptr = buffer;
112 for (i = 0; i < count; i++) {
113 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
114 ptr, size,
115 direction);
116 ptr += size;
120 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
122 int read, write;
124 /* EPT fault on an instruction fetch doesn't make sense here */
125 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
126 return false;
129 /* EPT fault must be a read fault or a write fault */
130 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
131 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
132 if ((read | write) == 0) {
133 return false;
136 if (write && slot) {
137 if (slot->flags & HVF_SLOT_LOG) {
138 uint64_t dirty_page_start = gpa & ~(TARGET_PAGE_SIZE - 1u);
139 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
140 hv_vm_protect(dirty_page_start, TARGET_PAGE_SIZE,
141 HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
146 * The EPT violation must have been caused by accessing a
147 * guest-physical address that is a translation of a guest-linear
148 * address.
150 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
151 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
152 return false;
155 if (!slot) {
156 return true;
158 if (!memory_region_is_ram(slot->region) &&
159 !(read && memory_region_is_romd(slot->region))) {
160 return true;
162 return false;
165 void hvf_arch_vcpu_destroy(CPUState *cpu)
167 X86CPU *x86_cpu = X86_CPU(cpu);
168 CPUX86State *env = &x86_cpu->env;
170 g_free(env->hvf_mmio_buf);
173 static void init_tsc_freq(CPUX86State *env)
175 size_t length;
176 uint64_t tsc_freq;
178 if (env->tsc_khz != 0) {
179 return;
182 length = sizeof(uint64_t);
183 if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
184 return;
186 env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
189 static void init_apic_bus_freq(CPUX86State *env)
191 size_t length;
192 uint64_t bus_freq;
194 if (env->apic_bus_freq != 0) {
195 return;
198 length = sizeof(uint64_t);
199 if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
200 return;
202 env->apic_bus_freq = bus_freq;
205 static inline bool tsc_is_known(CPUX86State *env)
207 return env->tsc_khz != 0;
210 static inline bool apic_bus_freq_is_known(CPUX86State *env)
212 return env->apic_bus_freq != 0;
215 void hvf_kick_vcpu_thread(CPUState *cpu)
217 cpus_kick_thread(cpu);
218 hv_vcpu_interrupt(&cpu->accel->fd, 1);
221 int hvf_arch_init(void)
223 return 0;
226 hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
228 return hv_vm_create(HV_VM_DEFAULT);
231 int hvf_arch_init_vcpu(CPUState *cpu)
233 X86CPU *x86cpu = X86_CPU(cpu);
234 CPUX86State *env = &x86cpu->env;
235 Error *local_err = NULL;
236 int r;
237 uint64_t reqCap;
239 init_emu();
240 init_decoder();
242 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
243 env->hvf_mmio_buf = g_new(char, 4096);
245 if (x86cpu->vmware_cpuid_freq) {
246 init_tsc_freq(env);
247 init_apic_bus_freq(env);
249 if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
250 error_report("vmware-cpuid-freq: feature couldn't be enabled");
254 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
255 invtsc_mig_blocker == NULL) {
256 error_setg(&invtsc_mig_blocker,
257 "State blocked by non-migratable CPU device (invtsc flag)");
258 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
259 if (r < 0) {
260 error_report_err(local_err);
261 return r;
266 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
267 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
268 abort();
270 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
271 &hvf_state->hvf_caps->vmx_cap_procbased)) {
272 abort();
274 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
275 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
276 abort();
278 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
279 &hvf_state->hvf_caps->vmx_cap_entry)) {
280 abort();
283 /* set VMCS control fields */
284 wvmcs(cpu->accel->fd, VMCS_PIN_BASED_CTLS,
285 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
286 VMCS_PIN_BASED_CTLS_EXTINT |
287 VMCS_PIN_BASED_CTLS_NMI |
288 VMCS_PIN_BASED_CTLS_VNMI));
289 wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS,
290 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
291 VMCS_PRI_PROC_BASED_CTLS_HLT |
292 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
293 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
294 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
295 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
297 reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;
299 /* Is RDTSCP support in CPUID? If so, enable it in the VMCS. */
300 if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
301 reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
304 wvmcs(cpu->accel->fd, VMCS_SEC_PROC_BASED_CTLS,
305 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
307 wvmcs(cpu->accel->fd, VMCS_ENTRY_CTLS,
308 cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0));
309 wvmcs(cpu->accel->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
311 wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
313 x86cpu = X86_CPU(cpu);
314 x86cpu->env.xsave_buf_len = 4096;
315 x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
318 * The allocated storage must be large enough for all of the
319 * possible XSAVE state components.
321 assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
323 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_STAR, 1);
324 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_LSTAR, 1);
325 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_CSTAR, 1);
326 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FMASK, 1);
327 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FSBASE, 1);
328 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_GSBASE, 1);
329 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_KERNELGSBASE, 1);
330 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_TSC_AUX, 1);
331 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_TSC, 1);
332 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_CS, 1);
333 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_EIP, 1);
334 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_ESP, 1);
336 return 0;
339 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
341 X86CPU *x86_cpu = X86_CPU(cpu);
342 CPUX86State *env = &x86_cpu->env;
344 env->exception_nr = -1;
345 env->exception_pending = 0;
346 env->exception_injected = 0;
347 env->interrupt_injected = -1;
348 env->nmi_injected = false;
349 env->ins_len = 0;
350 env->has_error_code = false;
351 if (idtvec_info & VMCS_IDT_VEC_VALID) {
352 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
353 case VMCS_IDT_VEC_HWINTR:
354 case VMCS_IDT_VEC_SWINTR:
355 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
356 break;
357 case VMCS_IDT_VEC_NMI:
358 env->nmi_injected = true;
359 break;
360 case VMCS_IDT_VEC_HWEXCEPTION:
361 case VMCS_IDT_VEC_SWEXCEPTION:
362 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
363 env->exception_injected = 1;
364 break;
365 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
366 default:
367 abort();
369 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
370 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
371 env->ins_len = ins_len;
373 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
374 env->has_error_code = true;
375 env->error_code = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_ERROR);
378 if ((rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
379 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
380 env->hflags2 |= HF2_NMI_MASK;
381 } else {
382 env->hflags2 &= ~HF2_NMI_MASK;
384 if (rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
385 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
386 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
387 env->hflags |= HF_INHIBIT_IRQ_MASK;
388 } else {
389 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
393 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
394 uint32_t *eax, uint32_t *ebx,
395 uint32_t *ecx, uint32_t *edx)
398 * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
399 * leafs 0x40000001-0x4000000F are filled with zeros
400 * Provides vmware-cpuid-freq support to hvf
402 * Note: leaf 0x40000000 not exposes HVF,
403 * leaving hypervisor signature empty
406 if (index < 0x40000000 || index > 0x40000010 ||
407 !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
409 cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
410 return;
413 switch (index) {
414 case 0x40000000:
415 *eax = 0x40000010; /* Max available cpuid leaf */
416 *ebx = 0; /* Leave signature empty */
417 *ecx = 0;
418 *edx = 0;
419 break;
420 case 0x40000010:
421 *eax = env->tsc_khz;
422 *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
423 *ecx = 0;
424 *edx = 0;
425 break;
426 default:
427 *eax = 0;
428 *ebx = 0;
429 *ecx = 0;
430 *edx = 0;
431 break;
435 int hvf_vcpu_exec(CPUState *cpu)
437 X86CPU *x86_cpu = X86_CPU(cpu);
438 CPUX86State *env = &x86_cpu->env;
439 int ret = 0;
440 uint64_t rip = 0;
442 if (hvf_process_events(cpu)) {
443 return EXCP_HLT;
446 do {
447 if (cpu->accel->dirty) {
448 hvf_put_registers(cpu);
449 cpu->accel->dirty = false;
452 if (hvf_inject_interrupts(cpu)) {
453 return EXCP_INTERRUPT;
455 vmx_update_tpr(cpu);
457 bql_unlock();
458 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
459 bql_lock();
460 return EXCP_HLT;
463 hv_return_t r = hv_vcpu_run_until(cpu->accel->fd, HV_DEADLINE_FOREVER);
464 assert_hvf_ok(r);
466 /* handle VMEXIT */
467 uint64_t exit_reason = rvmcs(cpu->accel->fd, VMCS_EXIT_REASON);
468 uint64_t exit_qual = rvmcs(cpu->accel->fd, VMCS_EXIT_QUALIFICATION);
469 uint32_t ins_len = (uint32_t)rvmcs(cpu->accel->fd,
470 VMCS_EXIT_INSTRUCTION_LENGTH);
472 uint64_t idtvec_info = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
474 hvf_store_events(cpu, ins_len, idtvec_info);
475 rip = rreg(cpu->accel->fd, HV_X86_RIP);
476 env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
478 bql_lock();
480 update_apic_tpr(cpu);
481 current_cpu = cpu;
483 ret = 0;
484 switch (exit_reason) {
485 case EXIT_REASON_HLT: {
486 macvm_set_rip(cpu, rip + ins_len);
487 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
488 (env->eflags & IF_MASK))
489 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
490 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
491 cpu->halted = 1;
492 ret = EXCP_HLT;
493 break;
495 ret = EXCP_INTERRUPT;
496 break;
498 case EXIT_REASON_MWAIT: {
499 ret = EXCP_INTERRUPT;
500 break;
502 /* Need to check if MMIO or unmapped fault */
503 case EXIT_REASON_EPT_FAULT:
505 hvf_slot *slot;
506 uint64_t gpa = rvmcs(cpu->accel->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
508 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
509 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
510 vmx_set_nmi_blocking(cpu);
513 slot = hvf_find_overlap_slot(gpa, 1);
514 /* mmio */
515 if (ept_emulation_fault(slot, gpa, exit_qual)) {
516 struct x86_decode decode;
518 load_regs(cpu);
519 decode_instruction(env, &decode);
520 exec_instruction(env, &decode);
521 store_regs(cpu);
522 break;
524 break;
526 case EXIT_REASON_INOUT:
528 uint32_t in = (exit_qual & 8) != 0;
529 uint32_t size = (exit_qual & 7) + 1;
530 uint32_t string = (exit_qual & 16) != 0;
531 uint32_t port = exit_qual >> 16;
532 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
534 if (!string && in) {
535 uint64_t val = 0;
536 load_regs(cpu);
537 hvf_handle_io(env, port, &val, 0, size, 1);
538 if (size == 1) {
539 AL(env) = val;
540 } else if (size == 2) {
541 AX(env) = val;
542 } else if (size == 4) {
543 RAX(env) = (uint32_t)val;
544 } else {
545 RAX(env) = (uint64_t)val;
547 env->eip += ins_len;
548 store_regs(cpu);
549 break;
550 } else if (!string && !in) {
551 RAX(env) = rreg(cpu->accel->fd, HV_X86_RAX);
552 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
553 macvm_set_rip(cpu, rip + ins_len);
554 break;
556 struct x86_decode decode;
558 load_regs(cpu);
559 decode_instruction(env, &decode);
560 assert(ins_len == decode.len);
561 exec_instruction(env, &decode);
562 store_regs(cpu);
564 break;
566 case EXIT_REASON_CPUID: {
567 uint32_t rax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
568 uint32_t rbx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RBX);
569 uint32_t rcx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
570 uint32_t rdx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
572 if (rax == 1) {
573 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
574 env->cr[4] = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
576 hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
578 wreg(cpu->accel->fd, HV_X86_RAX, rax);
579 wreg(cpu->accel->fd, HV_X86_RBX, rbx);
580 wreg(cpu->accel->fd, HV_X86_RCX, rcx);
581 wreg(cpu->accel->fd, HV_X86_RDX, rdx);
583 macvm_set_rip(cpu, rip + ins_len);
584 break;
586 case EXIT_REASON_XSETBV: {
587 X86CPU *x86_cpu = X86_CPU(cpu);
588 CPUX86State *env = &x86_cpu->env;
589 uint32_t eax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
590 uint32_t ecx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
591 uint32_t edx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
593 if (ecx) {
594 macvm_set_rip(cpu, rip + ins_len);
595 break;
597 env->xcr0 = ((uint64_t)edx << 32) | eax;
598 wreg(cpu->accel->fd, HV_X86_XCR0, env->xcr0 | 1);
599 macvm_set_rip(cpu, rip + ins_len);
600 break;
602 case EXIT_REASON_INTR_WINDOW:
603 vmx_clear_int_window_exiting(cpu);
604 ret = EXCP_INTERRUPT;
605 break;
606 case EXIT_REASON_NMI_WINDOW:
607 vmx_clear_nmi_window_exiting(cpu);
608 ret = EXCP_INTERRUPT;
609 break;
610 case EXIT_REASON_EXT_INTR:
611 /* force exit and allow io handling */
612 ret = EXCP_INTERRUPT;
613 break;
614 case EXIT_REASON_RDMSR:
615 case EXIT_REASON_WRMSR:
617 load_regs(cpu);
618 if (exit_reason == EXIT_REASON_RDMSR) {
619 simulate_rdmsr(env);
620 } else {
621 simulate_wrmsr(env);
623 env->eip += ins_len;
624 store_regs(cpu);
625 break;
627 case EXIT_REASON_CR_ACCESS: {
628 int cr;
629 int reg;
631 load_regs(cpu);
632 cr = exit_qual & 15;
633 reg = (exit_qual >> 8) & 15;
635 switch (cr) {
636 case 0x0: {
637 macvm_set_cr0(cpu->accel->fd, RRX(env, reg));
638 break;
640 case 4: {
641 macvm_set_cr4(cpu->accel->fd, RRX(env, reg));
642 break;
644 case 8: {
645 X86CPU *x86_cpu = X86_CPU(cpu);
646 if (exit_qual & 0x10) {
647 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
648 } else {
649 int tpr = RRX(env, reg);
650 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
651 ret = EXCP_INTERRUPT;
653 break;
655 default:
656 error_report("Unrecognized CR %d", cr);
657 abort();
659 env->eip += ins_len;
660 store_regs(cpu);
661 break;
663 case EXIT_REASON_APIC_ACCESS: { /* TODO */
664 struct x86_decode decode;
666 load_regs(cpu);
667 decode_instruction(env, &decode);
668 exec_instruction(env, &decode);
669 store_regs(cpu);
670 break;
672 case EXIT_REASON_TPR: {
673 ret = 1;
674 break;
676 case EXIT_REASON_TASK_SWITCH: {
677 uint64_t vinfo = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
678 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
679 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
680 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
681 & VMCS_INTR_T_MASK);
682 break;
684 case EXIT_REASON_TRIPLE_FAULT: {
685 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
686 ret = EXCP_INTERRUPT;
687 break;
689 case EXIT_REASON_RDPMC:
690 wreg(cpu->accel->fd, HV_X86_RAX, 0);
691 wreg(cpu->accel->fd, HV_X86_RDX, 0);
692 macvm_set_rip(cpu, rip + ins_len);
693 break;
694 case VMX_REASON_VMCALL:
695 env->exception_nr = EXCP0D_GPF;
696 env->exception_injected = 1;
697 env->has_error_code = true;
698 env->error_code = 0;
699 break;
700 default:
701 error_report("%llx: unhandled exit %llx", rip, exit_reason);
703 } while (ret == 0);
705 return ret;
708 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
710 return -ENOSYS;
713 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
715 return -ENOSYS;
718 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
720 return -ENOSYS;
723 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
725 return -ENOSYS;
728 void hvf_arch_remove_all_hw_breakpoints(void)
732 void hvf_arch_update_guest_debug(CPUState *cpu)
736 bool hvf_arch_supports_guest_debug(void)
738 return false;