2 * QTest testcase for the MC146818 real-time clock
4 * Copyright IBM, Corp. 2012
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
16 #include "libqtest-single.h"
17 #include "qemu/timer.h"
18 #include "hw/rtc/mc146818rtc.h"
19 #include "hw/rtc/mc146818rtc_regs.h"
21 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
23 static uint8_t base
= 0x70;
25 static int bcd2dec(int value
)
27 return (((value
>> 4) & 0x0F) * 10) + (value
& 0x0F);
30 static uint8_t cmos_read(uint8_t reg
)
36 static void cmos_write(uint8_t reg
, uint8_t val
)
42 static int tm_cmp(struct tm
*lhs
, struct tm
*rhs
)
47 memcpy(&d1
, lhs
, sizeof(d1
));
48 memcpy(&d2
, rhs
, sizeof(d2
));
63 static void print_tm(struct tm
*tm
)
65 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
66 tm
->tm_year
+ 1900, tm
->tm_mon
+ 1, tm
->tm_mday
,
67 tm
->tm_hour
, tm
->tm_min
, tm
->tm_sec
, tm
->tm_gmtoff
);
71 static void cmos_get_date_time(struct tm
*date
)
73 int base_year
= 2000, hour_offset
;
74 int sec
, min
, hour
, mday
, mon
, year
;
78 sec
= cmos_read(RTC_SECONDS
);
79 min
= cmos_read(RTC_MINUTES
);
80 hour
= cmos_read(RTC_HOURS
);
81 mday
= cmos_read(RTC_DAY_OF_MONTH
);
82 mon
= cmos_read(RTC_MONTH
);
83 year
= cmos_read(RTC_YEAR
);
85 if ((cmos_read(RTC_REG_B
) & REG_B_DM
) == 0) {
97 if ((cmos_read(0x0B) & REG_B_24H
) == 0) {
98 if (hour
>= hour_offset
) {
105 localtime_r(&ts
, &dummy
);
107 date
->tm_isdst
= dummy
.tm_isdst
;
110 date
->tm_hour
= hour
;
111 date
->tm_mday
= mday
;
112 date
->tm_mon
= mon
- 1;
113 date
->tm_year
= base_year
+ year
- 1900;
114 #if !defined(__sun__) && !defined(_WIN32)
121 static void check_time(int wiggle
)
123 struct tm start
, date
[4], end
;
128 * This check assumes a few things. First, we cannot guarantee that we get
129 * a consistent reading from the wall clock because we may hit an edge of
130 * the clock while reading. To work around this, we read four clock readings
131 * such that at least two of them should match. We need to assume that one
132 * reading is corrupt so we need four readings to ensure that we have at
133 * least two consecutive identical readings
135 * It's also possible that we'll cross an edge reading the host clock so
136 * simply check to make sure that the clock reading is within the period of
137 * when we expect it to be.
141 gmtime_r(&ts
, &start
);
143 cmos_get_date_time(&date
[0]);
144 cmos_get_date_time(&date
[1]);
145 cmos_get_date_time(&date
[2]);
146 cmos_get_date_time(&date
[3]);
151 if (tm_cmp(&date
[0], &date
[1]) == 0) {
153 } else if (tm_cmp(&date
[1], &date
[2]) == 0) {
155 } else if (tm_cmp(&date
[2], &date
[3]) == 0) {
158 g_assert_not_reached();
161 if (!(tm_cmp(&start
, datep
) <= 0 && tm_cmp(datep
, &end
) <= 0)) {
164 start
.tm_isdst
= datep
->tm_isdst
;
166 t
= (long)mktime(datep
);
167 s
= (long)mktime(&start
);
169 g_test_message("RTC is %ld second(s) behind wall-clock", (s
- t
));
171 g_test_message("RTC is %ld second(s) ahead of wall-clock", (t
- s
));
174 g_assert_cmpint(ABS(t
- s
), <=, wiggle
);
178 static int wiggle
= 2;
180 static void set_year_20xx(void)
183 cmos_write(RTC_REG_B
, REG_B_24H
);
184 cmos_write(RTC_REG_A
, 0x76);
185 cmos_write(RTC_YEAR
, 0x11);
186 cmos_write(RTC_CENTURY
, 0x20);
187 cmos_write(RTC_MONTH
, 0x02);
188 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
189 cmos_write(RTC_HOURS
, 0x02);
190 cmos_write(RTC_MINUTES
, 0x04);
191 cmos_write(RTC_SECONDS
, 0x58);
192 cmos_write(RTC_REG_A
, 0x26);
194 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
195 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
196 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
197 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
198 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
199 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
200 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
202 if (sizeof(time_t) == 4) {
206 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
207 cmos_write(RTC_REG_A
, 0x76);
208 cmos_write(RTC_YEAR
, 0x80);
209 cmos_write(RTC_REG_A
, 0x26);
211 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
212 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
213 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
214 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
215 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
216 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
217 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
219 cmos_write(RTC_REG_A
, 0x76);
220 cmos_write(RTC_YEAR
, 0x11);
221 cmos_write(RTC_REG_A
, 0x26);
223 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
224 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
225 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
226 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
227 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
228 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
229 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
232 static void set_year_1980(void)
235 cmos_write(RTC_REG_B
, REG_B_24H
);
236 cmos_write(RTC_REG_A
, 0x76);
237 cmos_write(RTC_YEAR
, 0x80);
238 cmos_write(RTC_CENTURY
, 0x19);
239 cmos_write(RTC_MONTH
, 0x02);
240 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
241 cmos_write(RTC_HOURS
, 0x02);
242 cmos_write(RTC_MINUTES
, 0x04);
243 cmos_write(RTC_SECONDS
, 0x58);
244 cmos_write(RTC_REG_A
, 0x26);
246 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
247 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
248 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
249 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
250 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
251 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
252 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x19);
255 static void bcd_check_time(void)
258 cmos_write(RTC_REG_B
, REG_B_24H
);
262 static void dec_check_time(void)
265 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
269 static void alarm_time(void)
279 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
281 g_assert(!get_irq(RTC_ISA_IRQ
));
282 cmos_read(RTC_REG_C
);
284 now
.tm_sec
= (now
.tm_sec
+ 2) % 60;
285 cmos_write(RTC_SECONDS_ALARM
, now
.tm_sec
);
286 cmos_write(RTC_MINUTES_ALARM
, RTC_ALARM_DONT_CARE
);
287 cmos_write(RTC_HOURS_ALARM
, RTC_ALARM_DONT_CARE
);
288 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) | REG_B_AIE
);
290 for (i
= 0; i
< 2 + wiggle
; i
++) {
291 if (get_irq(RTC_ISA_IRQ
)) {
295 clock_step(NANOSECONDS_PER_SECOND
);
298 g_assert(get_irq(RTC_ISA_IRQ
));
299 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
300 g_assert(cmos_read(RTC_REG_C
) == 0);
303 static void set_time_regs(int h
, int m
, int s
)
305 cmos_write(RTC_HOURS
, h
);
306 cmos_write(RTC_MINUTES
, m
);
307 cmos_write(RTC_SECONDS
, s
);
310 static void set_time(int mode
, int h
, int m
, int s
)
312 cmos_write(RTC_REG_B
, mode
);
313 cmos_write(RTC_REG_A
, 0x76);
314 set_time_regs(h
, m
, s
);
315 cmos_write(RTC_REG_A
, 0x26);
318 static void set_datetime_bcd(int h
, int min
, int s
, int d
, int m
, int y
)
320 cmos_write(RTC_HOURS
, h
);
321 cmos_write(RTC_MINUTES
, min
);
322 cmos_write(RTC_SECONDS
, s
);
323 cmos_write(RTC_YEAR
, y
& 0xFF);
324 cmos_write(RTC_CENTURY
, y
>> 8);
325 cmos_write(RTC_MONTH
, m
);
326 cmos_write(RTC_DAY_OF_MONTH
, d
);
329 static void set_datetime_dec(int h
, int min
, int s
, int d
, int m
, int y
)
331 cmos_write(RTC_HOURS
, h
);
332 cmos_write(RTC_MINUTES
, min
);
333 cmos_write(RTC_SECONDS
, s
);
334 cmos_write(RTC_YEAR
, y
% 100);
335 cmos_write(RTC_CENTURY
, y
/ 100);
336 cmos_write(RTC_MONTH
, m
);
337 cmos_write(RTC_DAY_OF_MONTH
, d
);
340 static void set_datetime(int mode
, int h
, int min
, int s
, int d
, int m
, int y
)
342 cmos_write(RTC_REG_B
, mode
);
344 cmos_write(RTC_REG_A
, 0x76);
345 if (mode
& REG_B_DM
) {
346 set_datetime_dec(h
, min
, s
, d
, m
, y
);
348 set_datetime_bcd(h
, min
, s
, d
, m
, y
);
350 cmos_write(RTC_REG_A
, 0x26);
353 #define assert_time(h, m, s) \
355 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
356 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
357 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
360 #define assert_datetime_bcd(h, min, s, d, m, y) \
362 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
363 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
364 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
365 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
366 g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
367 g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
368 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
371 static void basic_12h_bcd(void)
373 /* set BCD 12 hour mode */
374 set_time(0, 0x81, 0x59, 0x00);
375 clock_step(1000000000LL);
376 assert_time(0x81, 0x59, 0x01);
377 clock_step(59000000000LL);
378 assert_time(0x82, 0x00, 0x00);
380 /* test BCD wraparound */
381 set_time(0, 0x09, 0x59, 0x59);
382 clock_step(60000000000LL);
383 assert_time(0x10, 0x00, 0x59);
386 set_time(0, 0x12, 0x59, 0x59);
387 clock_step(1000000000LL);
388 assert_time(0x01, 0x00, 0x00);
391 set_time(0, 0x92, 0x59, 0x59);
392 clock_step(1000000000LL);
393 assert_time(0x81, 0x00, 0x00);
396 set_time(0, 0x11, 0x59, 0x59);
397 clock_step(1000000000LL);
398 assert_time(0x92, 0x00, 0x00);
399 /* TODO: test day wraparound */
402 set_time(0, 0x91, 0x59, 0x59);
403 clock_step(1000000000LL);
404 assert_time(0x12, 0x00, 0x00);
405 /* TODO: test day wraparound */
408 static void basic_12h_dec(void)
410 /* set decimal 12 hour mode */
411 set_time(REG_B_DM
, 0x81, 59, 0);
412 clock_step(1000000000LL);
413 assert_time(0x81, 59, 1);
414 clock_step(59000000000LL);
415 assert_time(0x82, 0, 0);
418 set_time(REG_B_DM
, 0x8c, 59, 59);
419 clock_step(1000000000LL);
420 assert_time(0x81, 0, 0);
423 set_time(REG_B_DM
, 0x0c, 59, 59);
424 clock_step(1000000000LL);
425 assert_time(0x01, 0, 0);
428 set_time(REG_B_DM
, 0x0b, 59, 59);
429 clock_step(1000000000LL);
430 assert_time(0x8c, 0, 0);
433 set_time(REG_B_DM
, 0x8b, 59, 59);
434 clock_step(1000000000LL);
435 assert_time(0x0c, 0, 0);
436 /* TODO: test day wraparound */
439 static void basic_24h_bcd(void)
441 /* set BCD 24 hour mode */
442 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
443 clock_step(1000000000LL);
444 assert_time(0x09, 0x59, 0x01);
445 clock_step(59000000000LL);
446 assert_time(0x10, 0x00, 0x00);
448 /* test BCD wraparound */
449 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
450 clock_step(60000000000LL);
451 assert_time(0x10, 0x00, 0x00);
453 /* TODO: test day wraparound */
454 set_time(REG_B_24H
, 0x23, 0x59, 0x00);
455 clock_step(60000000000LL);
456 assert_time(0x00, 0x00, 0x00);
459 static void basic_24h_dec(void)
461 /* set decimal 24 hour mode */
462 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
463 clock_step(1000000000LL);
464 assert_time(9, 59, 1);
465 clock_step(59000000000LL);
466 assert_time(10, 0, 0);
468 /* test BCD wraparound */
469 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
470 clock_step(60000000000LL);
471 assert_time(10, 0, 0);
473 /* TODO: test day wraparound */
474 set_time(REG_B_24H
| REG_B_DM
, 23, 59, 0);
475 clock_step(60000000000LL);
476 assert_time(0, 0, 0);
479 static void am_pm_alarm(void)
481 cmos_write(RTC_MINUTES_ALARM
, 0xC0);
482 cmos_write(RTC_SECONDS_ALARM
, 0xC0);
484 /* set BCD 12 hour mode */
485 cmos_write(RTC_REG_B
, 0);
487 /* Set time and alarm hour. */
488 cmos_write(RTC_REG_A
, 0x76);
489 cmos_write(RTC_HOURS_ALARM
, 0x82);
490 cmos_write(RTC_HOURS
, 0x81);
491 cmos_write(RTC_MINUTES
, 0x59);
492 cmos_write(RTC_SECONDS
, 0x00);
493 cmos_read(RTC_REG_C
);
494 cmos_write(RTC_REG_A
, 0x26);
496 /* Check that alarm triggers when AM/PM is set. */
497 clock_step(60000000000LL);
498 g_assert(cmos_read(RTC_HOURS
) == 0x82);
499 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
502 * Each of the following two tests takes over 60 seconds due to the time
503 * needed to report the PIT interrupts. Unfortunately, our PIT device
504 * model keeps counting even when GATE=0, so we cannot simply disable
507 if (g_test_quick()) {
511 /* set DEC 12 hour mode */
512 cmos_write(RTC_REG_B
, REG_B_DM
);
514 /* Set time and alarm hour. */
515 cmos_write(RTC_REG_A
, 0x76);
516 cmos_write(RTC_HOURS_ALARM
, 0x82);
517 cmos_write(RTC_HOURS
, 3);
518 cmos_write(RTC_MINUTES
, 0);
519 cmos_write(RTC_SECONDS
, 0);
520 cmos_read(RTC_REG_C
);
521 cmos_write(RTC_REG_A
, 0x26);
523 /* Check that alarm triggers. */
524 clock_step(3600 * 11 * 1000000000LL);
525 g_assert(cmos_read(RTC_HOURS
) == 0x82);
526 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
528 /* Same as above, with inverted HOURS and HOURS_ALARM. */
529 cmos_write(RTC_REG_A
, 0x76);
530 cmos_write(RTC_HOURS_ALARM
, 2);
531 cmos_write(RTC_HOURS
, 3);
532 cmos_write(RTC_MINUTES
, 0);
533 cmos_write(RTC_SECONDS
, 0);
534 cmos_read(RTC_REG_C
);
535 cmos_write(RTC_REG_A
, 0x26);
537 /* Check that alarm does not trigger if hours differ only by AM/PM. */
538 clock_step(3600 * 11 * 1000000000LL);
539 g_assert(cmos_read(RTC_HOURS
) == 0x82);
540 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) == 0);
543 /* success if no crash or abort */
544 static void fuzz_registers(void)
548 for (i
= 0; i
< 1000; i
++) {
551 reg
= (uint8_t)g_test_rand_int_range(0, 16);
552 val
= (uint8_t)g_test_rand_int_range(0, 256);
554 cmos_write(reg
, val
);
559 static void register_b_set_flag(void)
561 if (cmos_read(RTC_REG_A
) & REG_A_UIP
) {
562 clock_step(UIP_HOLD_LENGTH
+ NANOSECONDS_PER_SECOND
/ 5);
564 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
566 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
567 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_SET
);
569 set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
571 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
573 /* Since SET flag is still enabled, time does not advance. */
574 clock_step(1000000000LL);
575 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
577 /* Disable SET flag in Register B */
578 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) & ~REG_B_SET
);
580 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
582 /* Since SET flag is disabled, the clock now advances. */
583 clock_step(1000000000LL);
584 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
587 static void divider_reset(void)
589 /* Enable binary-coded decimal (BCD) mode in Register B*/
590 cmos_write(RTC_REG_B
, REG_B_24H
);
592 /* Enter divider reset */
593 cmos_write(RTC_REG_A
, 0x76);
594 set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
596 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
598 /* Since divider reset flag is still enabled, these are equality checks. */
599 clock_step(1000000000LL);
600 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
602 /* The first update ends 500 ms after divider reset */
603 cmos_write(RTC_REG_A
, 0x26);
604 clock_step(500000000LL - UIP_HOLD_LENGTH
- 1);
605 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
606 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
609 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, !=, 0);
610 clock_step(UIP_HOLD_LENGTH
);
611 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
613 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
616 static void uip_stuck(void)
618 set_datetime(REG_B_24H
, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
620 /* The first update ends 500 ms after divider reset */
621 (void)cmos_read(RTC_REG_C
);
622 clock_step(500000000LL);
623 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
624 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
627 cmos_write(RTC_HOURS_ALARM
, 0x02);
628 cmos_write(RTC_MINUTES_ALARM
, 0xC0);
629 cmos_write(RTC_SECONDS_ALARM
, 0xC0);
631 /* Because the alarm will fire soon, reading register A will latch UIP. */
632 clock_step(1000000000LL - UIP_HOLD_LENGTH
/ 2);
633 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, !=, 0);
635 /* Move the alarm far away. This must not cause UIP to remain stuck! */
636 cmos_write(RTC_HOURS_ALARM
, 0x03);
637 clock_step(UIP_HOLD_LENGTH
);
638 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
641 #define RTC_PERIOD_CODE1 13 /* 8 Hz */
642 #define RTC_PERIOD_CODE2 15 /* 2 Hz */
644 #define RTC_PERIOD_TEST_NR 50
646 static uint64_t wait_periodic_interrupt(uint64_t real_time
)
648 while (!get_irq(RTC_ISA_IRQ
)) {
649 real_time
= clock_step_next();
652 g_assert((cmos_read(RTC_REG_C
) & REG_C_PF
) != 0);
656 static void periodic_timer(void)
659 uint64_t period_clocks
, period_time
, start_time
, real_time
;
661 /* disable all interrupts. */
662 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) &
663 ~(REG_B_PIE
| REG_B_AIE
| REG_B_UIE
));
664 cmos_write(RTC_REG_A
, RTC_PERIOD_CODE1
);
665 /* enable periodic interrupt after properly configure the period. */
666 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) | REG_B_PIE
);
668 start_time
= real_time
= clock_step_next();
670 for (i
= 0; i
< RTC_PERIOD_TEST_NR
; i
++) {
671 cmos_write(RTC_REG_A
, RTC_PERIOD_CODE1
);
672 real_time
= wait_periodic_interrupt(real_time
);
673 cmos_write(RTC_REG_A
, RTC_PERIOD_CODE2
);
674 real_time
= wait_periodic_interrupt(real_time
);
677 period_clocks
= periodic_period_to_clock(RTC_PERIOD_CODE1
) +
678 periodic_period_to_clock(RTC_PERIOD_CODE2
);
679 period_clocks
*= RTC_PERIOD_TEST_NR
;
680 period_time
= periodic_clock_to_ns(period_clocks
);
682 real_time
-= start_time
;
683 g_assert_cmpint(ABS((int64_t)(real_time
- period_time
)), <=,
684 NANOSECONDS_PER_SECOND
* 0.5);
687 int main(int argc
, char **argv
)
692 g_test_init(&argc
, &argv
, NULL
);
694 s
= qtest_start("-rtc clock=vm");
695 qtest_irq_intercept_in(s
, "ioapic");
697 qtest_add_func("/rtc/check-time/bcd", bcd_check_time
);
698 qtest_add_func("/rtc/check-time/dec", dec_check_time
);
699 qtest_add_func("/rtc/alarm/interrupt", alarm_time
);
700 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm
);
701 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec
);
702 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd
);
703 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec
);
704 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd
);
705 qtest_add_func("/rtc/set-year/20xx", set_year_20xx
);
706 qtest_add_func("/rtc/set-year/1980", set_year_1980
);
707 qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag
);
708 qtest_add_func("/rtc/update/divider-reset", divider_reset
);
709 qtest_add_func("/rtc/update/uip-stuck", uip_stuck
);
710 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers
);
711 qtest_add_func("/rtc/periodic/interrupt", periodic_timer
);