2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
30 #include "qemu/error-report.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
40 #include "qemu/plugin-memory.h"
42 #include "tcg/tcg-ldst.h"
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
49 # define DEBUG_TLB_GATE 1
51 # define DEBUG_TLB_LOG_GATE 1
53 # define DEBUG_TLB_LOG_GATE 0
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
60 #define tlb_debug(fmt, ...) do { \
61 if (DEBUG_TLB_LOG_GATE) { \
62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 } else if (DEBUG_TLB_GATE) { \
65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
69 #define assert_cpu_is_self(cpu) do { \
70 if (DEBUG_TLB_GATE) { \
71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76 * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong
) > sizeof(run_on_cpu_data
));
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES
> 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84 static inline size_t tlb_n_entries(CPUTLBDescFast
*fast
)
86 return (fast
->mask
>> CPU_TLB_ENTRY_BITS
) + 1;
89 static inline size_t sizeof_tlb(CPUTLBDescFast
*fast
)
91 return fast
->mask
+ (1 << CPU_TLB_ENTRY_BITS
);
94 static void tlb_window_reset(CPUTLBDesc
*desc
, int64_t ns
,
97 desc
->window_begin_ns
= ns
;
98 desc
->window_max_entries
= max_entries
;
101 static void tb_jmp_cache_clear_page(CPUState
*cpu
, target_ulong page_addr
)
103 CPUJumpCache
*jc
= cpu
->tb_jmp_cache
;
110 i0
= tb_jmp_cache_hash_page(page_addr
);
111 for (i
= 0; i
< TB_JMP_PAGE_SIZE
; i
++) {
112 qatomic_set(&jc
->array
[i0
+ i
].tb
, NULL
);
117 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
118 * @desc: The CPUTLBDesc portion of the TLB
119 * @fast: The CPUTLBDescFast portion of the same TLB
121 * Called with tlb_lock_held.
123 * We have two main constraints when resizing a TLB: (1) we only resize it
124 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
125 * the array or unnecessarily flushing it), which means we do not control how
126 * frequently the resizing can occur; (2) we don't have access to the guest's
127 * future scheduling decisions, and therefore have to decide the magnitude of
128 * the resize based on past observations.
130 * In general, a memory-hungry process can benefit greatly from an appropriately
131 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
132 * we just have to make the TLB as large as possible; while an oversized TLB
133 * results in minimal TLB miss rates, it also takes longer to be flushed
134 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * To achieve near-optimal performance for all kinds of workloads, we:
139 * 1. Aggressively increase the size of the TLB when the use rate of the
140 * TLB being flushed is high, since it is likely that in the near future this
141 * memory-hungry process will execute again, and its memory hungriness will
142 * probably be similar.
144 * 2. Slowly reduce the size of the TLB as the use rate declines over a
145 * reasonably large time window. The rationale is that if in such a time window
146 * we have not observed a high TLB use rate, it is likely that we won't observe
147 * it in the near future. In that case, once a time window expires we downsize
148 * the TLB to match the maximum use rate observed in the window.
150 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
151 * since in that range performance is likely near-optimal. Recall that the TLB
152 * is direct mapped, so we want the use rate to be low (or at least not too
153 * high), since otherwise we are likely to have a significant amount of
156 static void tlb_mmu_resize_locked(CPUTLBDesc
*desc
, CPUTLBDescFast
*fast
,
159 size_t old_size
= tlb_n_entries(fast
);
161 size_t new_size
= old_size
;
162 int64_t window_len_ms
= 100;
163 int64_t window_len_ns
= window_len_ms
* 1000 * 1000;
164 bool window_expired
= now
> desc
->window_begin_ns
+ window_len_ns
;
166 if (desc
->n_used_entries
> desc
->window_max_entries
) {
167 desc
->window_max_entries
= desc
->n_used_entries
;
169 rate
= desc
->window_max_entries
* 100 / old_size
;
172 new_size
= MIN(old_size
<< 1, 1 << CPU_TLB_DYN_MAX_BITS
);
173 } else if (rate
< 30 && window_expired
) {
174 size_t ceil
= pow2ceil(desc
->window_max_entries
);
175 size_t expected_rate
= desc
->window_max_entries
* 100 / ceil
;
178 * Avoid undersizing when the max number of entries seen is just below
179 * a pow2. For instance, if max_entries == 1025, the expected use rate
180 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
181 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
182 * later. Thus, make sure that the expected use rate remains below 70%.
183 * (and since we double the size, that means the lowest rate we'd
184 * expect to get is 35%, which is still in the 30-70% range where
185 * we consider that the size is appropriate.)
187 if (expected_rate
> 70) {
190 new_size
= MAX(ceil
, 1 << CPU_TLB_DYN_MIN_BITS
);
193 if (new_size
== old_size
) {
194 if (window_expired
) {
195 tlb_window_reset(desc
, now
, desc
->n_used_entries
);
201 g_free(desc
->fulltlb
);
203 tlb_window_reset(desc
, now
, 0);
204 /* desc->n_used_entries is cleared by the caller */
205 fast
->mask
= (new_size
- 1) << CPU_TLB_ENTRY_BITS
;
206 fast
->table
= g_try_new(CPUTLBEntry
, new_size
);
207 desc
->fulltlb
= g_try_new(CPUTLBEntryFull
, new_size
);
210 * If the allocations fail, try smaller sizes. We just freed some
211 * memory, so going back to half of new_size has a good chance of working.
212 * Increased memory pressure elsewhere in the system might cause the
213 * allocations to fail though, so we progressively reduce the allocation
214 * size, aborting if we cannot even allocate the smallest TLB we support.
216 while (fast
->table
== NULL
|| desc
->fulltlb
== NULL
) {
217 if (new_size
== (1 << CPU_TLB_DYN_MIN_BITS
)) {
218 error_report("%s: %s", __func__
, strerror(errno
));
221 new_size
= MAX(new_size
>> 1, 1 << CPU_TLB_DYN_MIN_BITS
);
222 fast
->mask
= (new_size
- 1) << CPU_TLB_ENTRY_BITS
;
225 g_free(desc
->fulltlb
);
226 fast
->table
= g_try_new(CPUTLBEntry
, new_size
);
227 desc
->fulltlb
= g_try_new(CPUTLBEntryFull
, new_size
);
231 static void tlb_mmu_flush_locked(CPUTLBDesc
*desc
, CPUTLBDescFast
*fast
)
233 desc
->n_used_entries
= 0;
234 desc
->large_page_addr
= -1;
235 desc
->large_page_mask
= -1;
237 memset(fast
->table
, -1, sizeof_tlb(fast
));
238 memset(desc
->vtable
, -1, sizeof(desc
->vtable
));
241 static void tlb_flush_one_mmuidx_locked(CPUArchState
*env
, int mmu_idx
,
244 CPUTLBDesc
*desc
= &env_tlb(env
)->d
[mmu_idx
];
245 CPUTLBDescFast
*fast
= &env_tlb(env
)->f
[mmu_idx
];
247 tlb_mmu_resize_locked(desc
, fast
, now
);
248 tlb_mmu_flush_locked(desc
, fast
);
251 static void tlb_mmu_init(CPUTLBDesc
*desc
, CPUTLBDescFast
*fast
, int64_t now
)
253 size_t n_entries
= 1 << CPU_TLB_DYN_DEFAULT_BITS
;
255 tlb_window_reset(desc
, now
, 0);
256 desc
->n_used_entries
= 0;
257 fast
->mask
= (n_entries
- 1) << CPU_TLB_ENTRY_BITS
;
258 fast
->table
= g_new(CPUTLBEntry
, n_entries
);
259 desc
->fulltlb
= g_new(CPUTLBEntryFull
, n_entries
);
260 tlb_mmu_flush_locked(desc
, fast
);
263 static inline void tlb_n_used_entries_inc(CPUArchState
*env
, uintptr_t mmu_idx
)
265 env_tlb(env
)->d
[mmu_idx
].n_used_entries
++;
268 static inline void tlb_n_used_entries_dec(CPUArchState
*env
, uintptr_t mmu_idx
)
270 env_tlb(env
)->d
[mmu_idx
].n_used_entries
--;
273 void tlb_init(CPUState
*cpu
)
275 CPUArchState
*env
= cpu
->env_ptr
;
276 int64_t now
= get_clock_realtime();
279 qemu_spin_init(&env_tlb(env
)->c
.lock
);
281 /* All tlbs are initialized flushed. */
282 env_tlb(env
)->c
.dirty
= 0;
284 for (i
= 0; i
< NB_MMU_MODES
; i
++) {
285 tlb_mmu_init(&env_tlb(env
)->d
[i
], &env_tlb(env
)->f
[i
], now
);
289 void tlb_destroy(CPUState
*cpu
)
291 CPUArchState
*env
= cpu
->env_ptr
;
294 qemu_spin_destroy(&env_tlb(env
)->c
.lock
);
295 for (i
= 0; i
< NB_MMU_MODES
; i
++) {
296 CPUTLBDesc
*desc
= &env_tlb(env
)->d
[i
];
297 CPUTLBDescFast
*fast
= &env_tlb(env
)->f
[i
];
300 g_free(desc
->fulltlb
);
304 /* flush_all_helper: run fn across all cpus
306 * If the wait flag is set then the src cpu's helper will be queued as
307 * "safe" work and the loop exited creating a synchronisation point
308 * where all queued work will be finished before execution starts
311 static void flush_all_helper(CPUState
*src
, run_on_cpu_func fn
,
318 async_run_on_cpu(cpu
, fn
, d
);
323 void tlb_flush_counts(size_t *pfull
, size_t *ppart
, size_t *pelide
)
326 size_t full
= 0, part
= 0, elide
= 0;
329 CPUArchState
*env
= cpu
->env_ptr
;
331 full
+= qatomic_read(&env_tlb(env
)->c
.full_flush_count
);
332 part
+= qatomic_read(&env_tlb(env
)->c
.part_flush_count
);
333 elide
+= qatomic_read(&env_tlb(env
)->c
.elide_flush_count
);
340 static void tlb_flush_by_mmuidx_async_work(CPUState
*cpu
, run_on_cpu_data data
)
342 CPUArchState
*env
= cpu
->env_ptr
;
343 uint16_t asked
= data
.host_int
;
344 uint16_t all_dirty
, work
, to_clean
;
345 int64_t now
= get_clock_realtime();
347 assert_cpu_is_self(cpu
);
349 tlb_debug("mmu_idx:0x%04" PRIx16
"\n", asked
);
351 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
353 all_dirty
= env_tlb(env
)->c
.dirty
;
354 to_clean
= asked
& all_dirty
;
355 all_dirty
&= ~to_clean
;
356 env_tlb(env
)->c
.dirty
= all_dirty
;
358 for (work
= to_clean
; work
!= 0; work
&= work
- 1) {
359 int mmu_idx
= ctz32(work
);
360 tlb_flush_one_mmuidx_locked(env
, mmu_idx
, now
);
363 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
365 tcg_flush_jmp_cache(cpu
);
367 if (to_clean
== ALL_MMUIDX_BITS
) {
368 qatomic_set(&env_tlb(env
)->c
.full_flush_count
,
369 env_tlb(env
)->c
.full_flush_count
+ 1);
371 qatomic_set(&env_tlb(env
)->c
.part_flush_count
,
372 env_tlb(env
)->c
.part_flush_count
+ ctpop16(to_clean
));
373 if (to_clean
!= asked
) {
374 qatomic_set(&env_tlb(env
)->c
.elide_flush_count
,
375 env_tlb(env
)->c
.elide_flush_count
+
376 ctpop16(asked
& ~to_clean
));
381 void tlb_flush_by_mmuidx(CPUState
*cpu
, uint16_t idxmap
)
383 tlb_debug("mmu_idx: 0x%" PRIx16
"\n", idxmap
);
385 if (cpu
->created
&& !qemu_cpu_is_self(cpu
)) {
386 async_run_on_cpu(cpu
, tlb_flush_by_mmuidx_async_work
,
387 RUN_ON_CPU_HOST_INT(idxmap
));
389 tlb_flush_by_mmuidx_async_work(cpu
, RUN_ON_CPU_HOST_INT(idxmap
));
393 void tlb_flush(CPUState
*cpu
)
395 tlb_flush_by_mmuidx(cpu
, ALL_MMUIDX_BITS
);
398 void tlb_flush_by_mmuidx_all_cpus(CPUState
*src_cpu
, uint16_t idxmap
)
400 const run_on_cpu_func fn
= tlb_flush_by_mmuidx_async_work
;
402 tlb_debug("mmu_idx: 0x%"PRIx16
"\n", idxmap
);
404 flush_all_helper(src_cpu
, fn
, RUN_ON_CPU_HOST_INT(idxmap
));
405 fn(src_cpu
, RUN_ON_CPU_HOST_INT(idxmap
));
408 void tlb_flush_all_cpus(CPUState
*src_cpu
)
410 tlb_flush_by_mmuidx_all_cpus(src_cpu
, ALL_MMUIDX_BITS
);
413 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
, uint16_t idxmap
)
415 const run_on_cpu_func fn
= tlb_flush_by_mmuidx_async_work
;
417 tlb_debug("mmu_idx: 0x%"PRIx16
"\n", idxmap
);
419 flush_all_helper(src_cpu
, fn
, RUN_ON_CPU_HOST_INT(idxmap
));
420 async_safe_run_on_cpu(src_cpu
, fn
, RUN_ON_CPU_HOST_INT(idxmap
));
423 void tlb_flush_all_cpus_synced(CPUState
*src_cpu
)
425 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu
, ALL_MMUIDX_BITS
);
428 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry
*tlb_entry
,
429 target_ulong page
, target_ulong mask
)
432 mask
&= TARGET_PAGE_MASK
| TLB_INVALID_MASK
;
434 return (page
== (tlb_entry
->addr_read
& mask
) ||
435 page
== (tlb_addr_write(tlb_entry
) & mask
) ||
436 page
== (tlb_entry
->addr_code
& mask
));
439 static inline bool tlb_hit_page_anyprot(CPUTLBEntry
*tlb_entry
,
442 return tlb_hit_page_mask_anyprot(tlb_entry
, page
, -1);
446 * tlb_entry_is_empty - return true if the entry is not in use
447 * @te: pointer to CPUTLBEntry
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry
*te
)
451 return te
->addr_read
== -1 && te
->addr_write
== -1 && te
->addr_code
== -1;
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry
*tlb_entry
,
459 if (tlb_hit_page_mask_anyprot(tlb_entry
, page
, mask
)) {
460 memset(tlb_entry
, -1, sizeof(*tlb_entry
));
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry
*tlb_entry
,
469 return tlb_flush_entry_mask_locked(tlb_entry
, page
, -1);
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState
*env
, int mmu_idx
,
477 CPUTLBDesc
*d
= &env_tlb(env
)->d
[mmu_idx
];
480 assert_cpu_is_self(env_cpu(env
));
481 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
482 if (tlb_flush_entry_mask_locked(&d
->vtable
[k
], page
, mask
)) {
483 tlb_n_used_entries_dec(env
, mmu_idx
);
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState
*env
, int mmu_idx
,
491 tlb_flush_vtlb_page_mask_locked(env
, mmu_idx
, page
, -1);
494 static void tlb_flush_page_locked(CPUArchState
*env
, int midx
,
497 target_ulong lp_addr
= env_tlb(env
)->d
[midx
].large_page_addr
;
498 target_ulong lp_mask
= env_tlb(env
)->d
[midx
].large_page_mask
;
500 /* Check if we need to flush due to large pages. */
501 if ((page
& lp_mask
) == lp_addr
) {
502 tlb_debug("forcing full flush midx %d ("
503 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
504 midx
, lp_addr
, lp_mask
);
505 tlb_flush_one_mmuidx_locked(env
, midx
, get_clock_realtime());
507 if (tlb_flush_entry_locked(tlb_entry(env
, midx
, page
), page
)) {
508 tlb_n_used_entries_dec(env
, midx
);
510 tlb_flush_vtlb_page_locked(env
, midx
, page
);
515 * tlb_flush_page_by_mmuidx_async_0:
516 * @cpu: cpu on which to flush
517 * @addr: page of virtual address to flush
518 * @idxmap: set of mmu_idx to flush
520 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
521 * at @addr from the tlbs indicated by @idxmap from @cpu.
523 static void tlb_flush_page_by_mmuidx_async_0(CPUState
*cpu
,
527 CPUArchState
*env
= cpu
->env_ptr
;
530 assert_cpu_is_self(cpu
);
532 tlb_debug("page addr:" TARGET_FMT_lx
" mmu_map:0x%x\n", addr
, idxmap
);
534 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
535 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
536 if ((idxmap
>> mmu_idx
) & 1) {
537 tlb_flush_page_locked(env
, mmu_idx
, addr
);
540 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
543 * Discard jump cache entries for any tb which might potentially
544 * overlap the flushed page, which includes the previous.
546 tb_jmp_cache_clear_page(cpu
, addr
- TARGET_PAGE_SIZE
);
547 tb_jmp_cache_clear_page(cpu
, addr
);
551 * tlb_flush_page_by_mmuidx_async_1:
552 * @cpu: cpu on which to flush
553 * @data: encoded addr + idxmap
555 * Helper for tlb_flush_page_by_mmuidx and friends, called through
556 * async_run_on_cpu. The idxmap parameter is encoded in the page
557 * offset of the target_ptr field. This limits the set of mmu_idx
558 * that can be passed via this method.
560 static void tlb_flush_page_by_mmuidx_async_1(CPUState
*cpu
,
561 run_on_cpu_data data
)
563 target_ulong addr_and_idxmap
= (target_ulong
) data
.target_ptr
;
564 target_ulong addr
= addr_and_idxmap
& TARGET_PAGE_MASK
;
565 uint16_t idxmap
= addr_and_idxmap
& ~TARGET_PAGE_MASK
;
567 tlb_flush_page_by_mmuidx_async_0(cpu
, addr
, idxmap
);
573 } TLBFlushPageByMMUIdxData
;
576 * tlb_flush_page_by_mmuidx_async_2:
577 * @cpu: cpu on which to flush
578 * @data: allocated addr + idxmap
580 * Helper for tlb_flush_page_by_mmuidx and friends, called through
581 * async_run_on_cpu. The addr+idxmap parameters are stored in a
582 * TLBFlushPageByMMUIdxData structure that has been allocated
583 * specifically for this helper. Free the structure when done.
585 static void tlb_flush_page_by_mmuidx_async_2(CPUState
*cpu
,
586 run_on_cpu_data data
)
588 TLBFlushPageByMMUIdxData
*d
= data
.host_ptr
;
590 tlb_flush_page_by_mmuidx_async_0(cpu
, d
->addr
, d
->idxmap
);
594 void tlb_flush_page_by_mmuidx(CPUState
*cpu
, target_ulong addr
, uint16_t idxmap
)
596 tlb_debug("addr: "TARGET_FMT_lx
" mmu_idx:%" PRIx16
"\n", addr
, idxmap
);
598 /* This should already be page aligned */
599 addr
&= TARGET_PAGE_MASK
;
601 if (qemu_cpu_is_self(cpu
)) {
602 tlb_flush_page_by_mmuidx_async_0(cpu
, addr
, idxmap
);
603 } else if (idxmap
< TARGET_PAGE_SIZE
) {
605 * Most targets have only a few mmu_idx. In the case where
606 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
607 * allocating memory for this operation.
609 async_run_on_cpu(cpu
, tlb_flush_page_by_mmuidx_async_1
,
610 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
612 TLBFlushPageByMMUIdxData
*d
= g_new(TLBFlushPageByMMUIdxData
, 1);
614 /* Otherwise allocate a structure, freed by the worker. */
617 async_run_on_cpu(cpu
, tlb_flush_page_by_mmuidx_async_2
,
618 RUN_ON_CPU_HOST_PTR(d
));
622 void tlb_flush_page(CPUState
*cpu
, target_ulong addr
)
624 tlb_flush_page_by_mmuidx(cpu
, addr
, ALL_MMUIDX_BITS
);
627 void tlb_flush_page_by_mmuidx_all_cpus(CPUState
*src_cpu
, target_ulong addr
,
630 tlb_debug("addr: "TARGET_FMT_lx
" mmu_idx:%"PRIx16
"\n", addr
, idxmap
);
632 /* This should already be page aligned */
633 addr
&= TARGET_PAGE_MASK
;
636 * Allocate memory to hold addr+idxmap only when needed.
637 * See tlb_flush_page_by_mmuidx for details.
639 if (idxmap
< TARGET_PAGE_SIZE
) {
640 flush_all_helper(src_cpu
, tlb_flush_page_by_mmuidx_async_1
,
641 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
645 /* Allocate a separate data block for each destination cpu. */
646 CPU_FOREACH(dst_cpu
) {
647 if (dst_cpu
!= src_cpu
) {
648 TLBFlushPageByMMUIdxData
*d
649 = g_new(TLBFlushPageByMMUIdxData
, 1);
653 async_run_on_cpu(dst_cpu
, tlb_flush_page_by_mmuidx_async_2
,
654 RUN_ON_CPU_HOST_PTR(d
));
659 tlb_flush_page_by_mmuidx_async_0(src_cpu
, addr
, idxmap
);
662 void tlb_flush_page_all_cpus(CPUState
*src
, target_ulong addr
)
664 tlb_flush_page_by_mmuidx_all_cpus(src
, addr
, ALL_MMUIDX_BITS
);
667 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
,
671 tlb_debug("addr: "TARGET_FMT_lx
" mmu_idx:%"PRIx16
"\n", addr
, idxmap
);
673 /* This should already be page aligned */
674 addr
&= TARGET_PAGE_MASK
;
677 * Allocate memory to hold addr+idxmap only when needed.
678 * See tlb_flush_page_by_mmuidx for details.
680 if (idxmap
< TARGET_PAGE_SIZE
) {
681 flush_all_helper(src_cpu
, tlb_flush_page_by_mmuidx_async_1
,
682 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
683 async_safe_run_on_cpu(src_cpu
, tlb_flush_page_by_mmuidx_async_1
,
684 RUN_ON_CPU_TARGET_PTR(addr
| idxmap
));
687 TLBFlushPageByMMUIdxData
*d
;
689 /* Allocate a separate data block for each destination cpu. */
690 CPU_FOREACH(dst_cpu
) {
691 if (dst_cpu
!= src_cpu
) {
692 d
= g_new(TLBFlushPageByMMUIdxData
, 1);
695 async_run_on_cpu(dst_cpu
, tlb_flush_page_by_mmuidx_async_2
,
696 RUN_ON_CPU_HOST_PTR(d
));
700 d
= g_new(TLBFlushPageByMMUIdxData
, 1);
703 async_safe_run_on_cpu(src_cpu
, tlb_flush_page_by_mmuidx_async_2
,
704 RUN_ON_CPU_HOST_PTR(d
));
708 void tlb_flush_page_all_cpus_synced(CPUState
*src
, target_ulong addr
)
710 tlb_flush_page_by_mmuidx_all_cpus_synced(src
, addr
, ALL_MMUIDX_BITS
);
713 static void tlb_flush_range_locked(CPUArchState
*env
, int midx
,
714 target_ulong addr
, target_ulong len
,
717 CPUTLBDesc
*d
= &env_tlb(env
)->d
[midx
];
718 CPUTLBDescFast
*f
= &env_tlb(env
)->f
[midx
];
719 target_ulong mask
= MAKE_64BIT_MASK(0, bits
);
722 * If @bits is smaller than the tlb size, there may be multiple entries
723 * within the TLB; otherwise all addresses that match under @mask hit
724 * the same TLB entry.
725 * TODO: Perhaps allow bits to be a few bits less than the size.
726 * For now, just flush the entire TLB.
728 * If @len is larger than the tlb size, then it will take longer to
729 * test all of the entries in the TLB than it will to flush it all.
731 if (mask
< f
->mask
|| len
> f
->mask
) {
732 tlb_debug("forcing full flush midx %d ("
733 TARGET_FMT_lx
"/" TARGET_FMT_lx
"+" TARGET_FMT_lx
")\n",
734 midx
, addr
, mask
, len
);
735 tlb_flush_one_mmuidx_locked(env
, midx
, get_clock_realtime());
740 * Check if we need to flush due to large pages.
741 * Because large_page_mask contains all 1's from the msb,
742 * we only need to test the end of the range.
744 if (((addr
+ len
- 1) & d
->large_page_mask
) == d
->large_page_addr
) {
745 tlb_debug("forcing full flush midx %d ("
746 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
747 midx
, d
->large_page_addr
, d
->large_page_mask
);
748 tlb_flush_one_mmuidx_locked(env
, midx
, get_clock_realtime());
752 for (target_ulong i
= 0; i
< len
; i
+= TARGET_PAGE_SIZE
) {
753 target_ulong page
= addr
+ i
;
754 CPUTLBEntry
*entry
= tlb_entry(env
, midx
, page
);
756 if (tlb_flush_entry_mask_locked(entry
, page
, mask
)) {
757 tlb_n_used_entries_dec(env
, midx
);
759 tlb_flush_vtlb_page_mask_locked(env
, midx
, page
, mask
);
770 static void tlb_flush_range_by_mmuidx_async_0(CPUState
*cpu
,
773 CPUArchState
*env
= cpu
->env_ptr
;
776 assert_cpu_is_self(cpu
);
778 tlb_debug("range:" TARGET_FMT_lx
"/%u+" TARGET_FMT_lx
" mmu_map:0x%x\n",
779 d
.addr
, d
.bits
, d
.len
, d
.idxmap
);
781 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
782 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
783 if ((d
.idxmap
>> mmu_idx
) & 1) {
784 tlb_flush_range_locked(env
, mmu_idx
, d
.addr
, d
.len
, d
.bits
);
787 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
790 * If the length is larger than the jump cache size, then it will take
791 * longer to clear each entry individually than it will to clear it all.
793 if (d
.len
>= (TARGET_PAGE_SIZE
* TB_JMP_CACHE_SIZE
)) {
794 tcg_flush_jmp_cache(cpu
);
799 * Discard jump cache entries for any tb which might potentially
800 * overlap the flushed pages, which includes the previous.
802 d
.addr
-= TARGET_PAGE_SIZE
;
803 for (target_ulong i
= 0, n
= d
.len
/ TARGET_PAGE_SIZE
+ 1; i
< n
; i
++) {
804 tb_jmp_cache_clear_page(cpu
, d
.addr
);
805 d
.addr
+= TARGET_PAGE_SIZE
;
809 static void tlb_flush_range_by_mmuidx_async_1(CPUState
*cpu
,
810 run_on_cpu_data data
)
812 TLBFlushRangeData
*d
= data
.host_ptr
;
813 tlb_flush_range_by_mmuidx_async_0(cpu
, *d
);
817 void tlb_flush_range_by_mmuidx(CPUState
*cpu
, target_ulong addr
,
818 target_ulong len
, uint16_t idxmap
,
824 * If all bits are significant, and len is small,
825 * this devolves to tlb_flush_page.
827 if (bits
>= TARGET_LONG_BITS
&& len
<= TARGET_PAGE_SIZE
) {
828 tlb_flush_page_by_mmuidx(cpu
, addr
, idxmap
);
831 /* If no page bits are significant, this devolves to tlb_flush. */
832 if (bits
< TARGET_PAGE_BITS
) {
833 tlb_flush_by_mmuidx(cpu
, idxmap
);
837 /* This should already be page aligned */
838 d
.addr
= addr
& TARGET_PAGE_MASK
;
843 if (qemu_cpu_is_self(cpu
)) {
844 tlb_flush_range_by_mmuidx_async_0(cpu
, d
);
846 /* Otherwise allocate a structure, freed by the worker. */
847 TLBFlushRangeData
*p
= g_memdup(&d
, sizeof(d
));
848 async_run_on_cpu(cpu
, tlb_flush_range_by_mmuidx_async_1
,
849 RUN_ON_CPU_HOST_PTR(p
));
853 void tlb_flush_page_bits_by_mmuidx(CPUState
*cpu
, target_ulong addr
,
854 uint16_t idxmap
, unsigned bits
)
856 tlb_flush_range_by_mmuidx(cpu
, addr
, TARGET_PAGE_SIZE
, idxmap
, bits
);
859 void tlb_flush_range_by_mmuidx_all_cpus(CPUState
*src_cpu
,
860 target_ulong addr
, target_ulong len
,
861 uint16_t idxmap
, unsigned bits
)
867 * If all bits are significant, and len is small,
868 * this devolves to tlb_flush_page.
870 if (bits
>= TARGET_LONG_BITS
&& len
<= TARGET_PAGE_SIZE
) {
871 tlb_flush_page_by_mmuidx_all_cpus(src_cpu
, addr
, idxmap
);
874 /* If no page bits are significant, this devolves to tlb_flush. */
875 if (bits
< TARGET_PAGE_BITS
) {
876 tlb_flush_by_mmuidx_all_cpus(src_cpu
, idxmap
);
880 /* This should already be page aligned */
881 d
.addr
= addr
& TARGET_PAGE_MASK
;
886 /* Allocate a separate data block for each destination cpu. */
887 CPU_FOREACH(dst_cpu
) {
888 if (dst_cpu
!= src_cpu
) {
889 TLBFlushRangeData
*p
= g_memdup(&d
, sizeof(d
));
890 async_run_on_cpu(dst_cpu
,
891 tlb_flush_range_by_mmuidx_async_1
,
892 RUN_ON_CPU_HOST_PTR(p
));
896 tlb_flush_range_by_mmuidx_async_0(src_cpu
, d
);
899 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState
*src_cpu
,
901 uint16_t idxmap
, unsigned bits
)
903 tlb_flush_range_by_mmuidx_all_cpus(src_cpu
, addr
, TARGET_PAGE_SIZE
,
907 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
,
913 TLBFlushRangeData d
, *p
;
917 * If all bits are significant, and len is small,
918 * this devolves to tlb_flush_page.
920 if (bits
>= TARGET_LONG_BITS
&& len
<= TARGET_PAGE_SIZE
) {
921 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu
, addr
, idxmap
);
924 /* If no page bits are significant, this devolves to tlb_flush. */
925 if (bits
< TARGET_PAGE_BITS
) {
926 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu
, idxmap
);
930 /* This should already be page aligned */
931 d
.addr
= addr
& TARGET_PAGE_MASK
;
936 /* Allocate a separate data block for each destination cpu. */
937 CPU_FOREACH(dst_cpu
) {
938 if (dst_cpu
!= src_cpu
) {
939 p
= g_memdup(&d
, sizeof(d
));
940 async_run_on_cpu(dst_cpu
, tlb_flush_range_by_mmuidx_async_1
,
941 RUN_ON_CPU_HOST_PTR(p
));
945 p
= g_memdup(&d
, sizeof(d
));
946 async_safe_run_on_cpu(src_cpu
, tlb_flush_range_by_mmuidx_async_1
,
947 RUN_ON_CPU_HOST_PTR(p
));
950 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState
*src_cpu
,
955 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu
, addr
, TARGET_PAGE_SIZE
,
959 /* update the TLBs so that writes to code in the virtual page 'addr'
961 void tlb_protect_code(ram_addr_t ram_addr
)
963 cpu_physical_memory_test_and_clear_dirty(ram_addr
& TARGET_PAGE_MASK
,
968 /* update the TLB so that writes in physical page 'phys_addr' are no longer
969 tested for self modifying code */
970 void tlb_unprotect_code(ram_addr_t ram_addr
)
972 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
);
977 * Dirty write flag handling
979 * When the TCG code writes to a location it looks up the address in
980 * the TLB and uses that data to compute the final address. If any of
981 * the lower bits of the address are set then the slow path is forced.
982 * There are a number of reasons to do this but for normal RAM the
983 * most usual is detecting writes to code regions which may invalidate
986 * Other vCPUs might be reading their TLBs during guest execution, so we update
987 * te->addr_write with qatomic_set. We don't need to worry about this for
988 * oversized guests as MTTCG is disabled for them.
990 * Called with tlb_c.lock held.
992 static void tlb_reset_dirty_range_locked(CPUTLBEntry
*tlb_entry
,
993 uintptr_t start
, uintptr_t length
)
995 uintptr_t addr
= tlb_entry
->addr_write
;
997 if ((addr
& (TLB_INVALID_MASK
| TLB_MMIO
|
998 TLB_DISCARD_WRITE
| TLB_NOTDIRTY
)) == 0) {
999 addr
&= TARGET_PAGE_MASK
;
1000 addr
+= tlb_entry
->addend
;
1001 if ((addr
- start
) < length
) {
1002 #if TCG_OVERSIZED_GUEST
1003 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1005 qatomic_set(&tlb_entry
->addr_write
,
1006 tlb_entry
->addr_write
| TLB_NOTDIRTY
);
1013 * Called with tlb_c.lock held.
1014 * Called only from the vCPU context, i.e. the TLB's owner thread.
1016 static inline void copy_tlb_helper_locked(CPUTLBEntry
*d
, const CPUTLBEntry
*s
)
1021 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1023 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1024 * thing actually updated is the target TLB entry ->addr_write flags.
1026 void tlb_reset_dirty(CPUState
*cpu
, ram_addr_t start1
, ram_addr_t length
)
1033 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
1034 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1036 unsigned int n
= tlb_n_entries(&env_tlb(env
)->f
[mmu_idx
]);
1038 for (i
= 0; i
< n
; i
++) {
1039 tlb_reset_dirty_range_locked(&env_tlb(env
)->f
[mmu_idx
].table
[i
],
1043 for (i
= 0; i
< CPU_VTLB_SIZE
; i
++) {
1044 tlb_reset_dirty_range_locked(&env_tlb(env
)->d
[mmu_idx
].vtable
[i
],
1048 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
1051 /* Called with tlb_c.lock held */
1052 static inline void tlb_set_dirty1_locked(CPUTLBEntry
*tlb_entry
,
1055 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
)) {
1056 tlb_entry
->addr_write
= vaddr
;
1060 /* update the TLB corresponding to virtual page vaddr
1061 so that it is no longer dirty */
1062 void tlb_set_dirty(CPUState
*cpu
, target_ulong vaddr
)
1064 CPUArchState
*env
= cpu
->env_ptr
;
1067 assert_cpu_is_self(cpu
);
1069 vaddr
&= TARGET_PAGE_MASK
;
1070 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
1071 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1072 tlb_set_dirty1_locked(tlb_entry(env
, mmu_idx
, vaddr
), vaddr
);
1075 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1077 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
1078 tlb_set_dirty1_locked(&env_tlb(env
)->d
[mmu_idx
].vtable
[k
], vaddr
);
1081 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
1084 /* Our TLB does not support large pages, so remember the area covered by
1085 large pages and trigger a full TLB flush if these are invalidated. */
1086 static void tlb_add_large_page(CPUArchState
*env
, int mmu_idx
,
1087 target_ulong vaddr
, target_ulong size
)
1089 target_ulong lp_addr
= env_tlb(env
)->d
[mmu_idx
].large_page_addr
;
1090 target_ulong lp_mask
= ~(size
- 1);
1092 if (lp_addr
== (target_ulong
)-1) {
1093 /* No previous large page. */
1096 /* Extend the existing region to include the new page.
1097 This is a compromise between unnecessary flushes and
1098 the cost of maintaining a full variable size TLB. */
1099 lp_mask
&= env_tlb(env
)->d
[mmu_idx
].large_page_mask
;
1100 while (((lp_addr
^ vaddr
) & lp_mask
) != 0) {
1104 env_tlb(env
)->d
[mmu_idx
].large_page_addr
= lp_addr
& lp_mask
;
1105 env_tlb(env
)->d
[mmu_idx
].large_page_mask
= lp_mask
;
1109 * Add a new TLB entry. At most one entry for a given virtual address
1110 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1111 * supplied size is only used by tlb_flush_page.
1113 * Called from TCG-generated code, which is under an RCU read-side
1116 void tlb_set_page_full(CPUState
*cpu
, int mmu_idx
,
1117 target_ulong vaddr
, CPUTLBEntryFull
*full
)
1119 CPUArchState
*env
= cpu
->env_ptr
;
1120 CPUTLB
*tlb
= env_tlb(env
);
1121 CPUTLBDesc
*desc
= &tlb
->d
[mmu_idx
];
1122 MemoryRegionSection
*section
;
1124 target_ulong address
;
1125 target_ulong write_address
;
1127 CPUTLBEntry
*te
, tn
;
1128 hwaddr iotlb
, xlat
, sz
, paddr_page
;
1129 target_ulong vaddr_page
;
1130 int asidx
, wp_flags
, prot
;
1131 bool is_ram
, is_romd
;
1133 assert_cpu_is_self(cpu
);
1135 if (full
->lg_page_size
<= TARGET_PAGE_BITS
) {
1136 sz
= TARGET_PAGE_SIZE
;
1138 sz
= (hwaddr
)1 << full
->lg_page_size
;
1139 tlb_add_large_page(env
, mmu_idx
, vaddr
, sz
);
1141 vaddr_page
= vaddr
& TARGET_PAGE_MASK
;
1142 paddr_page
= full
->phys_addr
& TARGET_PAGE_MASK
;
1145 asidx
= cpu_asidx_from_attrs(cpu
, full
->attrs
);
1146 section
= address_space_translate_for_iotlb(cpu
, asidx
, paddr_page
,
1147 &xlat
, &sz
, full
->attrs
, &prot
);
1148 assert(sz
>= TARGET_PAGE_SIZE
);
1150 tlb_debug("vaddr=" TARGET_FMT_lx
" paddr=0x" HWADDR_FMT_plx
1151 " prot=%x idx=%d\n",
1152 vaddr
, full
->phys_addr
, prot
, mmu_idx
);
1154 address
= vaddr_page
;
1155 if (full
->lg_page_size
< TARGET_PAGE_BITS
) {
1156 /* Repeat the MMU check and TLB fill on every access. */
1157 address
|= TLB_INVALID_MASK
;
1159 if (full
->attrs
.byte_swap
) {
1160 address
|= TLB_BSWAP
;
1163 is_ram
= memory_region_is_ram(section
->mr
);
1164 is_romd
= memory_region_is_romd(section
->mr
);
1166 if (is_ram
|| is_romd
) {
1167 /* RAM and ROMD both have associated host memory. */
1168 addend
= (uintptr_t)memory_region_get_ram_ptr(section
->mr
) + xlat
;
1170 /* I/O does not; force the host address to NULL. */
1174 write_address
= address
;
1176 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1178 * Computing is_clean is expensive; avoid all that unless
1179 * the page is actually writable.
1181 if (prot
& PAGE_WRITE
) {
1182 if (section
->readonly
) {
1183 write_address
|= TLB_DISCARD_WRITE
;
1184 } else if (cpu_physical_memory_is_clean(iotlb
)) {
1185 write_address
|= TLB_NOTDIRTY
;
1190 iotlb
= memory_region_section_get_iotlb(cpu
, section
) + xlat
;
1192 * Writes to romd devices must go through MMIO to enable write.
1193 * Reads to romd devices go through the ram_ptr found above,
1194 * but of course reads to I/O must go through MMIO.
1196 write_address
|= TLB_MMIO
;
1198 address
= write_address
;
1202 wp_flags
= cpu_watchpoint_address_matches(cpu
, vaddr_page
,
1205 index
= tlb_index(env
, mmu_idx
, vaddr_page
);
1206 te
= tlb_entry(env
, mmu_idx
, vaddr_page
);
1209 * Hold the TLB lock for the rest of the function. We could acquire/release
1210 * the lock several times in the function, but it is faster to amortize the
1211 * acquisition cost by acquiring it just once. Note that this leads to
1212 * a longer critical section, but this is not a concern since the TLB lock
1213 * is unlikely to be contended.
1215 qemu_spin_lock(&tlb
->c
.lock
);
1217 /* Note that the tlb is no longer clean. */
1218 tlb
->c
.dirty
|= 1 << mmu_idx
;
1220 /* Make sure there's no cached translation for the new page. */
1221 tlb_flush_vtlb_page_locked(env
, mmu_idx
, vaddr_page
);
1224 * Only evict the old entry to the victim tlb if it's for a
1225 * different page; otherwise just overwrite the stale data.
1227 if (!tlb_hit_page_anyprot(te
, vaddr_page
) && !tlb_entry_is_empty(te
)) {
1228 unsigned vidx
= desc
->vindex
++ % CPU_VTLB_SIZE
;
1229 CPUTLBEntry
*tv
= &desc
->vtable
[vidx
];
1231 /* Evict the old entry into the victim tlb. */
1232 copy_tlb_helper_locked(tv
, te
);
1233 desc
->vfulltlb
[vidx
] = desc
->fulltlb
[index
];
1234 tlb_n_used_entries_dec(env
, mmu_idx
);
1237 /* refill the tlb */
1239 * At this point iotlb contains a physical section number in the lower
1240 * TARGET_PAGE_BITS, and either
1241 * + the ram_addr_t of the page base of the target RAM (RAM)
1242 * + the offset within section->mr of the page base (I/O, ROMD)
1243 * We subtract the vaddr_page (which is page aligned and thus won't
1244 * disturb the low bits) to give an offset which can be added to the
1245 * (non-page-aligned) vaddr of the eventual memory access to get
1246 * the MemoryRegion offset for the access. Note that the vaddr we
1247 * subtract here is that of the page base, and not the same as the
1248 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1250 desc
->fulltlb
[index
] = *full
;
1251 desc
->fulltlb
[index
].xlat_section
= iotlb
- vaddr_page
;
1252 desc
->fulltlb
[index
].phys_addr
= paddr_page
;
1254 /* Now calculate the new entry */
1255 tn
.addend
= addend
- vaddr_page
;
1256 if (prot
& PAGE_READ
) {
1257 tn
.addr_read
= address
;
1258 if (wp_flags
& BP_MEM_READ
) {
1259 tn
.addr_read
|= TLB_WATCHPOINT
;
1265 if (prot
& PAGE_EXEC
) {
1266 tn
.addr_code
= address
;
1272 if (prot
& PAGE_WRITE
) {
1273 tn
.addr_write
= write_address
;
1274 if (prot
& PAGE_WRITE_INV
) {
1275 tn
.addr_write
|= TLB_INVALID_MASK
;
1277 if (wp_flags
& BP_MEM_WRITE
) {
1278 tn
.addr_write
|= TLB_WATCHPOINT
;
1282 copy_tlb_helper_locked(te
, &tn
);
1283 tlb_n_used_entries_inc(env
, mmu_idx
);
1284 qemu_spin_unlock(&tlb
->c
.lock
);
1287 void tlb_set_page_with_attrs(CPUState
*cpu
, target_ulong vaddr
,
1288 hwaddr paddr
, MemTxAttrs attrs
, int prot
,
1289 int mmu_idx
, target_ulong size
)
1291 CPUTLBEntryFull full
= {
1295 .lg_page_size
= ctz64(size
)
1298 assert(is_power_of_2(size
));
1299 tlb_set_page_full(cpu
, mmu_idx
, vaddr
, &full
);
1302 void tlb_set_page(CPUState
*cpu
, target_ulong vaddr
,
1303 hwaddr paddr
, int prot
,
1304 int mmu_idx
, target_ulong size
)
1306 tlb_set_page_with_attrs(cpu
, vaddr
, paddr
, MEMTXATTRS_UNSPECIFIED
,
1307 prot
, mmu_idx
, size
);
1311 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1312 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1313 * be discarded and looked up again (e.g. via tlb_entry()).
1315 static void tlb_fill(CPUState
*cpu
, target_ulong addr
, int size
,
1316 MMUAccessType access_type
, int mmu_idx
, uintptr_t retaddr
)
1321 * This is not a probe, so only valid return is success; failure
1322 * should result in exception + longjmp to the cpu loop.
1324 ok
= cpu
->cc
->tcg_ops
->tlb_fill(cpu
, addr
, size
,
1325 access_type
, mmu_idx
, false, retaddr
);
1329 static inline void cpu_unaligned_access(CPUState
*cpu
, vaddr addr
,
1330 MMUAccessType access_type
,
1331 int mmu_idx
, uintptr_t retaddr
)
1333 cpu
->cc
->tcg_ops
->do_unaligned_access(cpu
, addr
, access_type
,
1337 static inline void cpu_transaction_failed(CPUState
*cpu
, hwaddr physaddr
,
1338 vaddr addr
, unsigned size
,
1339 MMUAccessType access_type
,
1340 int mmu_idx
, MemTxAttrs attrs
,
1341 MemTxResult response
,
1344 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
1346 if (!cpu
->ignore_memory_transaction_failures
&&
1347 cc
->tcg_ops
->do_transaction_failed
) {
1348 cc
->tcg_ops
->do_transaction_failed(cpu
, physaddr
, addr
, size
,
1349 access_type
, mmu_idx
, attrs
,
1354 static uint64_t io_readx(CPUArchState
*env
, CPUTLBEntryFull
*full
,
1355 int mmu_idx
, target_ulong addr
, uintptr_t retaddr
,
1356 MMUAccessType access_type
, MemOp op
)
1358 CPUState
*cpu
= env_cpu(env
);
1360 MemoryRegionSection
*section
;
1365 section
= iotlb_to_section(cpu
, full
->xlat_section
, full
->attrs
);
1367 mr_offset
= (full
->xlat_section
& TARGET_PAGE_MASK
) + addr
;
1368 cpu
->mem_io_pc
= retaddr
;
1369 if (!cpu
->can_do_io
) {
1370 cpu_io_recompile(cpu
, retaddr
);
1374 QEMU_IOTHREAD_LOCK_GUARD();
1375 r
= memory_region_dispatch_read(mr
, mr_offset
, &val
, op
, full
->attrs
);
1378 if (r
!= MEMTX_OK
) {
1379 hwaddr physaddr
= mr_offset
+
1380 section
->offset_within_address_space
-
1381 section
->offset_within_region
;
1383 cpu_transaction_failed(cpu
, physaddr
, addr
, memop_size(op
), access_type
,
1384 mmu_idx
, full
->attrs
, r
, retaddr
);
1390 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1391 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1392 * because of the side effect of io_writex changing memory layout.
1394 static void save_iotlb_data(CPUState
*cs
, MemoryRegionSection
*section
,
1397 #ifdef CONFIG_PLUGIN
1398 SavedIOTLB
*saved
= &cs
->saved_iotlb
;
1399 saved
->section
= section
;
1400 saved
->mr_offset
= mr_offset
;
1404 static void io_writex(CPUArchState
*env
, CPUTLBEntryFull
*full
,
1405 int mmu_idx
, uint64_t val
, target_ulong addr
,
1406 uintptr_t retaddr
, MemOp op
)
1408 CPUState
*cpu
= env_cpu(env
);
1410 MemoryRegionSection
*section
;
1414 section
= iotlb_to_section(cpu
, full
->xlat_section
, full
->attrs
);
1416 mr_offset
= (full
->xlat_section
& TARGET_PAGE_MASK
) + addr
;
1417 if (!cpu
->can_do_io
) {
1418 cpu_io_recompile(cpu
, retaddr
);
1420 cpu
->mem_io_pc
= retaddr
;
1423 * The memory_region_dispatch may trigger a flush/resize
1424 * so for plugins we save the iotlb_data just in case.
1426 save_iotlb_data(cpu
, section
, mr_offset
);
1429 QEMU_IOTHREAD_LOCK_GUARD();
1430 r
= memory_region_dispatch_write(mr
, mr_offset
, val
, op
, full
->attrs
);
1433 if (r
!= MEMTX_OK
) {
1434 hwaddr physaddr
= mr_offset
+
1435 section
->offset_within_address_space
-
1436 section
->offset_within_region
;
1438 cpu_transaction_failed(cpu
, physaddr
, addr
, memop_size(op
),
1439 MMU_DATA_STORE
, mmu_idx
, full
->attrs
, r
,
1444 static inline target_ulong
tlb_read_ofs(CPUTLBEntry
*entry
, size_t ofs
)
1446 #if TCG_OVERSIZED_GUEST
1447 return *(target_ulong
*)((uintptr_t)entry
+ ofs
);
1449 /* ofs might correspond to .addr_write, so use qatomic_read */
1450 return qatomic_read((target_ulong
*)((uintptr_t)entry
+ ofs
));
1454 /* Return true if ADDR is present in the victim tlb, and has been copied
1455 back to the main tlb. */
1456 static bool victim_tlb_hit(CPUArchState
*env
, size_t mmu_idx
, size_t index
,
1457 size_t elt_ofs
, target_ulong page
)
1461 assert_cpu_is_self(env_cpu(env
));
1462 for (vidx
= 0; vidx
< CPU_VTLB_SIZE
; ++vidx
) {
1463 CPUTLBEntry
*vtlb
= &env_tlb(env
)->d
[mmu_idx
].vtable
[vidx
];
1466 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1467 #if TCG_OVERSIZED_GUEST
1468 cmp
= *(target_ulong
*)((uintptr_t)vtlb
+ elt_ofs
);
1470 cmp
= qatomic_read((target_ulong
*)((uintptr_t)vtlb
+ elt_ofs
));
1474 /* Found entry in victim tlb, swap tlb and iotlb. */
1475 CPUTLBEntry tmptlb
, *tlb
= &env_tlb(env
)->f
[mmu_idx
].table
[index
];
1477 qemu_spin_lock(&env_tlb(env
)->c
.lock
);
1478 copy_tlb_helper_locked(&tmptlb
, tlb
);
1479 copy_tlb_helper_locked(tlb
, vtlb
);
1480 copy_tlb_helper_locked(vtlb
, &tmptlb
);
1481 qemu_spin_unlock(&env_tlb(env
)->c
.lock
);
1483 CPUTLBEntryFull
*f1
= &env_tlb(env
)->d
[mmu_idx
].fulltlb
[index
];
1484 CPUTLBEntryFull
*f2
= &env_tlb(env
)->d
[mmu_idx
].vfulltlb
[vidx
];
1485 CPUTLBEntryFull tmpf
;
1486 tmpf
= *f1
; *f1
= *f2
; *f2
= tmpf
;
1493 /* Macro to call the above, with local variables from the use context. */
1494 #define VICTIM_TLB_HIT(TY, ADDR) \
1495 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1496 (ADDR) & TARGET_PAGE_MASK)
1498 static void notdirty_write(CPUState
*cpu
, vaddr mem_vaddr
, unsigned size
,
1499 CPUTLBEntryFull
*full
, uintptr_t retaddr
)
1501 ram_addr_t ram_addr
= mem_vaddr
+ full
->xlat_section
;
1503 trace_memory_notdirty_write_access(mem_vaddr
, ram_addr
, size
);
1505 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1506 tb_invalidate_phys_range_fast(ram_addr
, size
, retaddr
);
1510 * Set both VGA and migration bits for simplicity and to remove
1511 * the notdirty callback faster.
1513 cpu_physical_memory_set_dirty_range(ram_addr
, size
, DIRTY_CLIENTS_NOCODE
);
1515 /* We remove the notdirty callback only if the code has been flushed. */
1516 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1517 trace_memory_notdirty_set_dirty(mem_vaddr
);
1518 tlb_set_dirty(cpu
, mem_vaddr
);
1522 static int probe_access_internal(CPUArchState
*env
, target_ulong addr
,
1523 int fault_size
, MMUAccessType access_type
,
1524 int mmu_idx
, bool nonfault
,
1525 void **phost
, CPUTLBEntryFull
**pfull
,
1528 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
1529 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
1530 target_ulong tlb_addr
, page_addr
;
1534 switch (access_type
) {
1536 elt_ofs
= offsetof(CPUTLBEntry
, addr_read
);
1538 case MMU_DATA_STORE
:
1539 elt_ofs
= offsetof(CPUTLBEntry
, addr_write
);
1541 case MMU_INST_FETCH
:
1542 elt_ofs
= offsetof(CPUTLBEntry
, addr_code
);
1545 g_assert_not_reached();
1547 tlb_addr
= tlb_read_ofs(entry
, elt_ofs
);
1549 flags
= TLB_FLAGS_MASK
;
1550 page_addr
= addr
& TARGET_PAGE_MASK
;
1551 if (!tlb_hit_page(tlb_addr
, page_addr
)) {
1552 if (!victim_tlb_hit(env
, mmu_idx
, index
, elt_ofs
, page_addr
)) {
1553 CPUState
*cs
= env_cpu(env
);
1555 if (!cs
->cc
->tcg_ops
->tlb_fill(cs
, addr
, fault_size
, access_type
,
1556 mmu_idx
, nonfault
, retaddr
)) {
1557 /* Non-faulting page table read failed. */
1560 return TLB_INVALID_MASK
;
1563 /* TLB resize via tlb_fill may have moved the entry. */
1564 index
= tlb_index(env
, mmu_idx
, addr
);
1565 entry
= tlb_entry(env
, mmu_idx
, addr
);
1568 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1569 * to force the next access through tlb_fill. We've just
1570 * called tlb_fill, so we know that this entry *is* valid.
1572 flags
&= ~TLB_INVALID_MASK
;
1574 tlb_addr
= tlb_read_ofs(entry
, elt_ofs
);
1578 *pfull
= &env_tlb(env
)->d
[mmu_idx
].fulltlb
[index
];
1580 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1581 if (unlikely(flags
& ~(TLB_WATCHPOINT
| TLB_NOTDIRTY
))) {
1586 /* Everything else is RAM. */
1587 *phost
= (void *)((uintptr_t)addr
+ entry
->addend
);
1591 int probe_access_full(CPUArchState
*env
, target_ulong addr
, int size
,
1592 MMUAccessType access_type
, int mmu_idx
,
1593 bool nonfault
, void **phost
, CPUTLBEntryFull
**pfull
,
1596 int flags
= probe_access_internal(env
, addr
, size
, access_type
, mmu_idx
,
1597 nonfault
, phost
, pfull
, retaddr
);
1599 /* Handle clean RAM pages. */
1600 if (unlikely(flags
& TLB_NOTDIRTY
)) {
1601 notdirty_write(env_cpu(env
), addr
, 1, *pfull
, retaddr
);
1602 flags
&= ~TLB_NOTDIRTY
;
1608 int probe_access_flags(CPUArchState
*env
, target_ulong addr
, int size
,
1609 MMUAccessType access_type
, int mmu_idx
,
1610 bool nonfault
, void **phost
, uintptr_t retaddr
)
1612 CPUTLBEntryFull
*full
;
1615 g_assert(-(addr
| TARGET_PAGE_MASK
) >= size
);
1617 flags
= probe_access_internal(env
, addr
, size
, access_type
, mmu_idx
,
1618 nonfault
, phost
, &full
, retaddr
);
1620 /* Handle clean RAM pages. */
1621 if (unlikely(flags
& TLB_NOTDIRTY
)) {
1622 notdirty_write(env_cpu(env
), addr
, 1, full
, retaddr
);
1623 flags
&= ~TLB_NOTDIRTY
;
1629 void *probe_access(CPUArchState
*env
, target_ulong addr
, int size
,
1630 MMUAccessType access_type
, int mmu_idx
, uintptr_t retaddr
)
1632 CPUTLBEntryFull
*full
;
1636 g_assert(-(addr
| TARGET_PAGE_MASK
) >= size
);
1638 flags
= probe_access_internal(env
, addr
, size
, access_type
, mmu_idx
,
1639 false, &host
, &full
, retaddr
);
1641 /* Per the interface, size == 0 merely faults the access. */
1646 if (unlikely(flags
& (TLB_NOTDIRTY
| TLB_WATCHPOINT
))) {
1647 /* Handle watchpoints. */
1648 if (flags
& TLB_WATCHPOINT
) {
1649 int wp_access
= (access_type
== MMU_DATA_STORE
1650 ? BP_MEM_WRITE
: BP_MEM_READ
);
1651 cpu_check_watchpoint(env_cpu(env
), addr
, size
,
1652 full
->attrs
, wp_access
, retaddr
);
1655 /* Handle clean RAM pages. */
1656 if (flags
& TLB_NOTDIRTY
) {
1657 notdirty_write(env_cpu(env
), addr
, 1, full
, retaddr
);
1664 void *tlb_vaddr_to_host(CPUArchState
*env
, abi_ptr addr
,
1665 MMUAccessType access_type
, int mmu_idx
)
1667 CPUTLBEntryFull
*full
;
1671 flags
= probe_access_internal(env
, addr
, 0, access_type
,
1672 mmu_idx
, true, &host
, &full
, 0);
1674 /* No combination of flags are expected by the caller. */
1675 return flags
? NULL
: host
;
1679 * Return a ram_addr_t for the virtual address for execution.
1681 * Return -1 if we can't translate and execute from an entire page
1682 * of RAM. This will force us to execute by loading and translating
1683 * one insn at a time, without caching.
1685 * NOTE: This function will trigger an exception if the page is
1688 tb_page_addr_t
get_page_addr_code_hostp(CPUArchState
*env
, target_ulong addr
,
1691 CPUTLBEntryFull
*full
;
1694 (void)probe_access_internal(env
, addr
, 1, MMU_INST_FETCH
,
1695 cpu_mmu_index(env
, true), false, &p
, &full
, 0);
1702 return qemu_ram_addr_from_host_nofail(p
);
1705 #ifdef CONFIG_PLUGIN
1707 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1708 * This should be a hot path as we will have just looked this path up
1709 * in the softmmu lookup code (or helper). We don't handle re-fills or
1710 * checking the victim table. This is purely informational.
1712 * This almost never fails as the memory access being instrumented
1713 * should have just filled the TLB. The one corner case is io_writex
1714 * which can cause TLB flushes and potential resizing of the TLBs
1715 * losing the information we need. In those cases we need to recover
1716 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1717 * from the same thread (which a mem callback will be) this is safe.
1720 bool tlb_plugin_lookup(CPUState
*cpu
, target_ulong addr
, int mmu_idx
,
1721 bool is_store
, struct qemu_plugin_hwaddr
*data
)
1723 CPUArchState
*env
= cpu
->env_ptr
;
1724 CPUTLBEntry
*tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1725 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
1726 target_ulong tlb_addr
= is_store
? tlb_addr_write(tlbe
) : tlbe
->addr_read
;
1728 if (likely(tlb_hit(tlb_addr
, addr
))) {
1729 /* We must have an iotlb entry for MMIO */
1730 if (tlb_addr
& TLB_MMIO
) {
1731 CPUTLBEntryFull
*full
;
1732 full
= &env_tlb(env
)->d
[mmu_idx
].fulltlb
[index
];
1734 data
->v
.io
.section
=
1735 iotlb_to_section(cpu
, full
->xlat_section
, full
->attrs
);
1736 data
->v
.io
.offset
= (full
->xlat_section
& TARGET_PAGE_MASK
) + addr
;
1738 data
->is_io
= false;
1739 data
->v
.ram
.hostaddr
= (void *)((uintptr_t)addr
+ tlbe
->addend
);
1743 SavedIOTLB
*saved
= &cpu
->saved_iotlb
;
1745 data
->v
.io
.section
= saved
->section
;
1746 data
->v
.io
.offset
= saved
->mr_offset
;
1754 * Probe for an atomic operation. Do not allow unaligned operations,
1755 * or io operations to proceed. Return the host address.
1757 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1759 static void *atomic_mmu_lookup(CPUArchState
*env
, target_ulong addr
,
1760 MemOpIdx oi
, int size
, int prot
,
1763 uintptr_t mmu_idx
= get_mmuidx(oi
);
1764 MemOp mop
= get_memop(oi
);
1765 int a_bits
= get_alignment_bits(mop
);
1768 target_ulong tlb_addr
;
1770 CPUTLBEntryFull
*full
;
1772 tcg_debug_assert(mmu_idx
< NB_MMU_MODES
);
1774 /* Adjust the given return address. */
1775 retaddr
-= GETPC_ADJ
;
1777 /* Enforce guest required alignment. */
1778 if (unlikely(a_bits
> 0 && (addr
& ((1 << a_bits
) - 1)))) {
1779 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1780 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_STORE
,
1784 /* Enforce qemu required alignment. */
1785 if (unlikely(addr
& (size
- 1))) {
1786 /* We get here if guest alignment was not requested,
1787 or was not enforced by cpu_unaligned_access above.
1788 We might widen the access and emulate, but for now
1789 mark an exception and exit the cpu loop. */
1790 goto stop_the_world
;
1793 index
= tlb_index(env
, mmu_idx
, addr
);
1794 tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1796 /* Check TLB entry and enforce page permissions. */
1797 if (prot
& PAGE_WRITE
) {
1798 tlb_addr
= tlb_addr_write(tlbe
);
1799 if (!tlb_hit(tlb_addr
, addr
)) {
1800 if (!VICTIM_TLB_HIT(addr_write
, addr
)) {
1801 tlb_fill(env_cpu(env
), addr
, size
,
1802 MMU_DATA_STORE
, mmu_idx
, retaddr
);
1803 index
= tlb_index(env
, mmu_idx
, addr
);
1804 tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1806 tlb_addr
= tlb_addr_write(tlbe
) & ~TLB_INVALID_MASK
;
1809 if (prot
& PAGE_READ
) {
1811 * Let the guest notice RMW on a write-only page.
1812 * We have just verified that the page is writable.
1813 * Subpage lookups may have left TLB_INVALID_MASK set,
1814 * but addr_read will only be -1 if PAGE_READ was unset.
1816 if (unlikely(tlbe
->addr_read
== -1)) {
1817 tlb_fill(env_cpu(env
), addr
, size
,
1818 MMU_DATA_LOAD
, mmu_idx
, retaddr
);
1820 * Since we don't support reads and writes to different
1821 * addresses, and we do have the proper page loaded for
1822 * write, this shouldn't ever return. But just in case,
1823 * handle via stop-the-world.
1825 goto stop_the_world
;
1827 /* Collect TLB_WATCHPOINT for read. */
1828 tlb_addr
|= tlbe
->addr_read
;
1830 } else /* if (prot & PAGE_READ) */ {
1831 tlb_addr
= tlbe
->addr_read
;
1832 if (!tlb_hit(tlb_addr
, addr
)) {
1833 if (!VICTIM_TLB_HIT(addr_write
, addr
)) {
1834 tlb_fill(env_cpu(env
), addr
, size
,
1835 MMU_DATA_LOAD
, mmu_idx
, retaddr
);
1836 index
= tlb_index(env
, mmu_idx
, addr
);
1837 tlbe
= tlb_entry(env
, mmu_idx
, addr
);
1839 tlb_addr
= tlbe
->addr_read
& ~TLB_INVALID_MASK
;
1843 /* Notice an IO access or a needs-MMU-lookup access */
1844 if (unlikely(tlb_addr
& (TLB_MMIO
| TLB_DISCARD_WRITE
))) {
1845 /* There's really nothing that can be done to
1846 support this apart from stop-the-world. */
1847 goto stop_the_world
;
1850 hostaddr
= (void *)((uintptr_t)addr
+ tlbe
->addend
);
1851 full
= &env_tlb(env
)->d
[mmu_idx
].fulltlb
[index
];
1853 if (unlikely(tlb_addr
& TLB_NOTDIRTY
)) {
1854 notdirty_write(env_cpu(env
), addr
, size
, full
, retaddr
);
1857 if (unlikely(tlb_addr
& TLB_WATCHPOINT
)) {
1858 QEMU_BUILD_BUG_ON(PAGE_READ
!= BP_MEM_READ
);
1859 QEMU_BUILD_BUG_ON(PAGE_WRITE
!= BP_MEM_WRITE
);
1860 /* therefore prot == watchpoint bits */
1861 cpu_check_watchpoint(env_cpu(env
), addr
, size
,
1862 full
->attrs
, prot
, retaddr
);
1868 cpu_loop_exit_atomic(env_cpu(env
), retaddr
);
1872 * Verify that we have passed the correct MemOp to the correct function.
1874 * In the case of the helper_*_mmu functions, we will have done this by
1875 * using the MemOp to look up the helper during code generation.
1877 * In the case of the cpu_*_mmu functions, this is up to the caller.
1878 * We could present one function to target code, and dispatch based on
1879 * the MemOp, but so far we have worked hard to avoid an indirect function
1880 * call along the memory path.
1882 static void validate_memop(MemOpIdx oi
, MemOp expected
)
1884 #ifdef CONFIG_DEBUG_TCG
1885 MemOp have
= get_memop(oi
) & (MO_SIZE
| MO_BSWAP
);
1886 assert(have
== expected
);
1893 * We support two different access types. SOFTMMU_CODE_ACCESS is
1894 * specifically for reading instructions from system memory. It is
1895 * called by the translation loop and in some helpers where the code
1896 * is disassembled. It shouldn't be called directly by guest code.
1899 typedef uint64_t FullLoadHelper(CPUArchState
*env
, target_ulong addr
,
1900 MemOpIdx oi
, uintptr_t retaddr
);
1902 static inline uint64_t QEMU_ALWAYS_INLINE
1903 load_memop(const void *haddr
, MemOp op
)
1907 return ldub_p(haddr
);
1909 return lduw_be_p(haddr
);
1911 return lduw_le_p(haddr
);
1913 return (uint32_t)ldl_be_p(haddr
);
1915 return (uint32_t)ldl_le_p(haddr
);
1917 return ldq_be_p(haddr
);
1919 return ldq_le_p(haddr
);
1921 qemu_build_not_reached();
1925 static inline uint64_t QEMU_ALWAYS_INLINE
1926 load_helper(CPUArchState
*env
, target_ulong addr
, MemOpIdx oi
,
1927 uintptr_t retaddr
, MemOp op
, bool code_read
,
1928 FullLoadHelper
*full_load
)
1930 const size_t tlb_off
= code_read
?
1931 offsetof(CPUTLBEntry
, addr_code
) : offsetof(CPUTLBEntry
, addr_read
);
1932 const MMUAccessType access_type
=
1933 code_read
? MMU_INST_FETCH
: MMU_DATA_LOAD
;
1934 const unsigned a_bits
= get_alignment_bits(get_memop(oi
));
1935 const size_t size
= memop_size(op
);
1936 uintptr_t mmu_idx
= get_mmuidx(oi
);
1939 target_ulong tlb_addr
;
1943 tcg_debug_assert(mmu_idx
< NB_MMU_MODES
);
1945 /* Handle CPU specific unaligned behaviour */
1946 if (addr
& ((1 << a_bits
) - 1)) {
1947 cpu_unaligned_access(env_cpu(env
), addr
, access_type
,
1951 index
= tlb_index(env
, mmu_idx
, addr
);
1952 entry
= tlb_entry(env
, mmu_idx
, addr
);
1953 tlb_addr
= code_read
? entry
->addr_code
: entry
->addr_read
;
1955 /* If the TLB entry is for a different page, reload and try again. */
1956 if (!tlb_hit(tlb_addr
, addr
)) {
1957 if (!victim_tlb_hit(env
, mmu_idx
, index
, tlb_off
,
1958 addr
& TARGET_PAGE_MASK
)) {
1959 tlb_fill(env_cpu(env
), addr
, size
,
1960 access_type
, mmu_idx
, retaddr
);
1961 index
= tlb_index(env
, mmu_idx
, addr
);
1962 entry
= tlb_entry(env
, mmu_idx
, addr
);
1964 tlb_addr
= code_read
? entry
->addr_code
: entry
->addr_read
;
1965 tlb_addr
&= ~TLB_INVALID_MASK
;
1968 /* Handle anything that isn't just a straight memory access. */
1969 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
1970 CPUTLBEntryFull
*full
;
1973 /* For anything that is unaligned, recurse through full_load. */
1974 if ((addr
& (size
- 1)) != 0) {
1975 goto do_unaligned_access
;
1978 full
= &env_tlb(env
)->d
[mmu_idx
].fulltlb
[index
];
1980 /* Handle watchpoints. */
1981 if (unlikely(tlb_addr
& TLB_WATCHPOINT
)) {
1982 /* On watchpoint hit, this will longjmp out. */
1983 cpu_check_watchpoint(env_cpu(env
), addr
, size
,
1984 full
->attrs
, BP_MEM_READ
, retaddr
);
1987 need_swap
= size
> 1 && (tlb_addr
& TLB_BSWAP
);
1989 /* Handle I/O access. */
1990 if (likely(tlb_addr
& TLB_MMIO
)) {
1991 return io_readx(env
, full
, mmu_idx
, addr
, retaddr
,
1992 access_type
, op
^ (need_swap
* MO_BSWAP
));
1995 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
1998 * Keep these two load_memop separate to ensure that the compiler
1999 * is able to fold the entire function to a single instruction.
2000 * There is a build-time assert inside to remind you of this. ;-)
2002 if (unlikely(need_swap
)) {
2003 return load_memop(haddr
, op
^ MO_BSWAP
);
2005 return load_memop(haddr
, op
);
2008 /* Handle slow unaligned access (it spans two pages or IO). */
2010 && unlikely((addr
& ~TARGET_PAGE_MASK
) + size
- 1
2011 >= TARGET_PAGE_SIZE
)) {
2012 target_ulong addr1
, addr2
;
2015 do_unaligned_access
:
2016 addr1
= addr
& ~((target_ulong
)size
- 1);
2017 addr2
= addr1
+ size
;
2018 r1
= full_load(env
, addr1
, oi
, retaddr
);
2019 r2
= full_load(env
, addr2
, oi
, retaddr
);
2020 shift
= (addr
& (size
- 1)) * 8;
2022 if (memop_big_endian(op
)) {
2023 /* Big-endian combine. */
2024 res
= (r1
<< shift
) | (r2
>> ((size
* 8) - shift
));
2026 /* Little-endian combine. */
2027 res
= (r1
>> shift
) | (r2
<< ((size
* 8) - shift
));
2029 return res
& MAKE_64BIT_MASK(0, size
* 8);
2032 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
2033 return load_memop(haddr
, op
);
2037 * For the benefit of TCG generated code, we want to avoid the
2038 * complication of ABI-specific return type promotion and always
2039 * return a value extended to the register size of the host. This is
2040 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2041 * data, and for that we always have uint64_t.
2043 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2046 static uint64_t full_ldub_mmu(CPUArchState
*env
, target_ulong addr
,
2047 MemOpIdx oi
, uintptr_t retaddr
)
2049 validate_memop(oi
, MO_UB
);
2050 return load_helper(env
, addr
, oi
, retaddr
, MO_UB
, false, full_ldub_mmu
);
2053 tcg_target_ulong
helper_ret_ldub_mmu(CPUArchState
*env
, target_ulong addr
,
2054 MemOpIdx oi
, uintptr_t retaddr
)
2056 return full_ldub_mmu(env
, addr
, oi
, retaddr
);
2059 static uint64_t full_le_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2060 MemOpIdx oi
, uintptr_t retaddr
)
2062 validate_memop(oi
, MO_LEUW
);
2063 return load_helper(env
, addr
, oi
, retaddr
, MO_LEUW
, false,
2067 tcg_target_ulong
helper_le_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2068 MemOpIdx oi
, uintptr_t retaddr
)
2070 return full_le_lduw_mmu(env
, addr
, oi
, retaddr
);
2073 static uint64_t full_be_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2074 MemOpIdx oi
, uintptr_t retaddr
)
2076 validate_memop(oi
, MO_BEUW
);
2077 return load_helper(env
, addr
, oi
, retaddr
, MO_BEUW
, false,
2081 tcg_target_ulong
helper_be_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
2082 MemOpIdx oi
, uintptr_t retaddr
)
2084 return full_be_lduw_mmu(env
, addr
, oi
, retaddr
);
2087 static uint64_t full_le_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2088 MemOpIdx oi
, uintptr_t retaddr
)
2090 validate_memop(oi
, MO_LEUL
);
2091 return load_helper(env
, addr
, oi
, retaddr
, MO_LEUL
, false,
2095 tcg_target_ulong
helper_le_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2096 MemOpIdx oi
, uintptr_t retaddr
)
2098 return full_le_ldul_mmu(env
, addr
, oi
, retaddr
);
2101 static uint64_t full_be_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2102 MemOpIdx oi
, uintptr_t retaddr
)
2104 validate_memop(oi
, MO_BEUL
);
2105 return load_helper(env
, addr
, oi
, retaddr
, MO_BEUL
, false,
2109 tcg_target_ulong
helper_be_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
2110 MemOpIdx oi
, uintptr_t retaddr
)
2112 return full_be_ldul_mmu(env
, addr
, oi
, retaddr
);
2115 uint64_t helper_le_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
2116 MemOpIdx oi
, uintptr_t retaddr
)
2118 validate_memop(oi
, MO_LEUQ
);
2119 return load_helper(env
, addr
, oi
, retaddr
, MO_LEUQ
, false,
2123 uint64_t helper_be_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
2124 MemOpIdx oi
, uintptr_t retaddr
)
2126 validate_memop(oi
, MO_BEUQ
);
2127 return load_helper(env
, addr
, oi
, retaddr
, MO_BEUQ
, false,
2132 * Provide signed versions of the load routines as well. We can of course
2133 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2137 tcg_target_ulong
helper_ret_ldsb_mmu(CPUArchState
*env
, target_ulong addr
,
2138 MemOpIdx oi
, uintptr_t retaddr
)
2140 return (int8_t)helper_ret_ldub_mmu(env
, addr
, oi
, retaddr
);
2143 tcg_target_ulong
helper_le_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
2144 MemOpIdx oi
, uintptr_t retaddr
)
2146 return (int16_t)helper_le_lduw_mmu(env
, addr
, oi
, retaddr
);
2149 tcg_target_ulong
helper_be_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
2150 MemOpIdx oi
, uintptr_t retaddr
)
2152 return (int16_t)helper_be_lduw_mmu(env
, addr
, oi
, retaddr
);
2155 tcg_target_ulong
helper_le_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
2156 MemOpIdx oi
, uintptr_t retaddr
)
2158 return (int32_t)helper_le_ldul_mmu(env
, addr
, oi
, retaddr
);
2161 tcg_target_ulong
helper_be_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
2162 MemOpIdx oi
, uintptr_t retaddr
)
2164 return (int32_t)helper_be_ldul_mmu(env
, addr
, oi
, retaddr
);
2168 * Load helpers for cpu_ldst.h.
2171 static inline uint64_t cpu_load_helper(CPUArchState
*env
, abi_ptr addr
,
2172 MemOpIdx oi
, uintptr_t retaddr
,
2173 FullLoadHelper
*full_load
)
2177 ret
= full_load(env
, addr
, oi
, retaddr
);
2178 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_R
);
2182 uint8_t cpu_ldb_mmu(CPUArchState
*env
, abi_ptr addr
, MemOpIdx oi
, uintptr_t ra
)
2184 return cpu_load_helper(env
, addr
, oi
, ra
, full_ldub_mmu
);
2187 uint16_t cpu_ldw_be_mmu(CPUArchState
*env
, abi_ptr addr
,
2188 MemOpIdx oi
, uintptr_t ra
)
2190 return cpu_load_helper(env
, addr
, oi
, ra
, full_be_lduw_mmu
);
2193 uint32_t cpu_ldl_be_mmu(CPUArchState
*env
, abi_ptr addr
,
2194 MemOpIdx oi
, uintptr_t ra
)
2196 return cpu_load_helper(env
, addr
, oi
, ra
, full_be_ldul_mmu
);
2199 uint64_t cpu_ldq_be_mmu(CPUArchState
*env
, abi_ptr addr
,
2200 MemOpIdx oi
, uintptr_t ra
)
2202 return cpu_load_helper(env
, addr
, oi
, ra
, helper_be_ldq_mmu
);
2205 uint16_t cpu_ldw_le_mmu(CPUArchState
*env
, abi_ptr addr
,
2206 MemOpIdx oi
, uintptr_t ra
)
2208 return cpu_load_helper(env
, addr
, oi
, ra
, full_le_lduw_mmu
);
2211 uint32_t cpu_ldl_le_mmu(CPUArchState
*env
, abi_ptr addr
,
2212 MemOpIdx oi
, uintptr_t ra
)
2214 return cpu_load_helper(env
, addr
, oi
, ra
, full_le_ldul_mmu
);
2217 uint64_t cpu_ldq_le_mmu(CPUArchState
*env
, abi_ptr addr
,
2218 MemOpIdx oi
, uintptr_t ra
)
2220 return cpu_load_helper(env
, addr
, oi
, ra
, helper_le_ldq_mmu
);
2223 Int128
cpu_ld16_be_mmu(CPUArchState
*env
, abi_ptr addr
,
2224 MemOpIdx oi
, uintptr_t ra
)
2226 MemOp mop
= get_memop(oi
);
2227 int mmu_idx
= get_mmuidx(oi
);
2232 tcg_debug_assert((mop
& (MO_BSWAP
|MO_SSIZE
)) == (MO_BE
|MO_128
));
2233 a_bits
= get_alignment_bits(mop
);
2235 /* Handle CPU specific unaligned behaviour */
2236 if (addr
& ((1 << a_bits
) - 1)) {
2237 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_LOAD
,
2241 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2242 mop
= (mop
& ~(MO_SIZE
| MO_AMASK
)) | MO_64
| MO_UNALN
;
2243 new_oi
= make_memop_idx(mop
, mmu_idx
);
2245 h
= helper_be_ldq_mmu(env
, addr
, new_oi
, ra
);
2246 l
= helper_be_ldq_mmu(env
, addr
+ 8, new_oi
, ra
);
2248 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_R
);
2249 return int128_make128(l
, h
);
2252 Int128
cpu_ld16_le_mmu(CPUArchState
*env
, abi_ptr addr
,
2253 MemOpIdx oi
, uintptr_t ra
)
2255 MemOp mop
= get_memop(oi
);
2256 int mmu_idx
= get_mmuidx(oi
);
2261 tcg_debug_assert((mop
& (MO_BSWAP
|MO_SSIZE
)) == (MO_LE
|MO_128
));
2262 a_bits
= get_alignment_bits(mop
);
2264 /* Handle CPU specific unaligned behaviour */
2265 if (addr
& ((1 << a_bits
) - 1)) {
2266 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_LOAD
,
2270 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2271 mop
= (mop
& ~(MO_SIZE
| MO_AMASK
)) | MO_64
| MO_UNALN
;
2272 new_oi
= make_memop_idx(mop
, mmu_idx
);
2274 l
= helper_le_ldq_mmu(env
, addr
, new_oi
, ra
);
2275 h
= helper_le_ldq_mmu(env
, addr
+ 8, new_oi
, ra
);
2277 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_R
);
2278 return int128_make128(l
, h
);
2285 static inline void QEMU_ALWAYS_INLINE
2286 store_memop(void *haddr
, uint64_t val
, MemOp op
)
2293 stw_be_p(haddr
, val
);
2296 stw_le_p(haddr
, val
);
2299 stl_be_p(haddr
, val
);
2302 stl_le_p(haddr
, val
);
2305 stq_be_p(haddr
, val
);
2308 stq_le_p(haddr
, val
);
2311 qemu_build_not_reached();
2315 static void full_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2316 MemOpIdx oi
, uintptr_t retaddr
);
2318 static void __attribute__((noinline
))
2319 store_helper_unaligned(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2320 uintptr_t retaddr
, size_t size
, uintptr_t mmu_idx
,
2323 const size_t tlb_off
= offsetof(CPUTLBEntry
, addr_write
);
2324 uintptr_t index
, index2
;
2325 CPUTLBEntry
*entry
, *entry2
;
2326 target_ulong page1
, page2
, tlb_addr
, tlb_addr2
;
2332 * Ensure the second page is in the TLB. Note that the first page
2333 * is already guaranteed to be filled, and that the second page
2334 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV
2335 * handling: the first page could have evicted itself.
2337 page1
= addr
& TARGET_PAGE_MASK
;
2338 page2
= (addr
+ size
) & TARGET_PAGE_MASK
;
2339 size2
= (addr
+ size
) & ~TARGET_PAGE_MASK
;
2340 index2
= tlb_index(env
, mmu_idx
, page2
);
2341 entry2
= tlb_entry(env
, mmu_idx
, page2
);
2343 tlb_addr2
= tlb_addr_write(entry2
);
2344 if (page1
!= page2
&& !tlb_hit_page(tlb_addr2
, page2
)) {
2345 if (!victim_tlb_hit(env
, mmu_idx
, index2
, tlb_off
, page2
)) {
2346 tlb_fill(env_cpu(env
), page2
, size2
, MMU_DATA_STORE
,
2348 index2
= tlb_index(env
, mmu_idx
, page2
);
2349 entry2
= tlb_entry(env
, mmu_idx
, page2
);
2351 tlb_addr2
= tlb_addr_write(entry2
);
2354 index
= tlb_index(env
, mmu_idx
, addr
);
2355 entry
= tlb_entry(env
, mmu_idx
, addr
);
2356 tlb_addr
= tlb_addr_write(entry
);
2359 * Handle watchpoints. Since this may trap, all checks
2360 * must happen before any store.
2362 if (unlikely(tlb_addr
& TLB_WATCHPOINT
)) {
2363 cpu_check_watchpoint(env_cpu(env
), addr
, size
- size2
,
2364 env_tlb(env
)->d
[mmu_idx
].fulltlb
[index
].attrs
,
2365 BP_MEM_WRITE
, retaddr
);
2367 if (unlikely(tlb_addr2
& TLB_WATCHPOINT
)) {
2368 cpu_check_watchpoint(env_cpu(env
), page2
, size2
,
2369 env_tlb(env
)->d
[mmu_idx
].fulltlb
[index2
].attrs
,
2370 BP_MEM_WRITE
, retaddr
);
2374 * XXX: not efficient, but simple.
2375 * This loop must go in the forward direction to avoid issues
2376 * with self-modifying code in Windows 64-bit.
2378 oi
= make_memop_idx(MO_UB
, mmu_idx
);
2380 for (i
= 0; i
< size
; ++i
) {
2381 /* Big-endian extract. */
2382 uint8_t val8
= val
>> (((size
- 1) * 8) - (i
* 8));
2383 full_stb_mmu(env
, addr
+ i
, val8
, oi
, retaddr
);
2386 for (i
= 0; i
< size
; ++i
) {
2387 /* Little-endian extract. */
2388 uint8_t val8
= val
>> (i
* 8);
2389 full_stb_mmu(env
, addr
+ i
, val8
, oi
, retaddr
);
2394 static inline void QEMU_ALWAYS_INLINE
2395 store_helper(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2396 MemOpIdx oi
, uintptr_t retaddr
, MemOp op
)
2398 const size_t tlb_off
= offsetof(CPUTLBEntry
, addr_write
);
2399 const unsigned a_bits
= get_alignment_bits(get_memop(oi
));
2400 const size_t size
= memop_size(op
);
2401 uintptr_t mmu_idx
= get_mmuidx(oi
);
2404 target_ulong tlb_addr
;
2407 tcg_debug_assert(mmu_idx
< NB_MMU_MODES
);
2409 /* Handle CPU specific unaligned behaviour */
2410 if (addr
& ((1 << a_bits
) - 1)) {
2411 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_STORE
,
2415 index
= tlb_index(env
, mmu_idx
, addr
);
2416 entry
= tlb_entry(env
, mmu_idx
, addr
);
2417 tlb_addr
= tlb_addr_write(entry
);
2419 /* If the TLB entry is for a different page, reload and try again. */
2420 if (!tlb_hit(tlb_addr
, addr
)) {
2421 if (!victim_tlb_hit(env
, mmu_idx
, index
, tlb_off
,
2422 addr
& TARGET_PAGE_MASK
)) {
2423 tlb_fill(env_cpu(env
), addr
, size
, MMU_DATA_STORE
,
2425 index
= tlb_index(env
, mmu_idx
, addr
);
2426 entry
= tlb_entry(env
, mmu_idx
, addr
);
2428 tlb_addr
= tlb_addr_write(entry
) & ~TLB_INVALID_MASK
;
2431 /* Handle anything that isn't just a straight memory access. */
2432 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
2433 CPUTLBEntryFull
*full
;
2436 /* For anything that is unaligned, recurse through byte stores. */
2437 if ((addr
& (size
- 1)) != 0) {
2438 goto do_unaligned_access
;
2441 full
= &env_tlb(env
)->d
[mmu_idx
].fulltlb
[index
];
2443 /* Handle watchpoints. */
2444 if (unlikely(tlb_addr
& TLB_WATCHPOINT
)) {
2445 /* On watchpoint hit, this will longjmp out. */
2446 cpu_check_watchpoint(env_cpu(env
), addr
, size
,
2447 full
->attrs
, BP_MEM_WRITE
, retaddr
);
2450 need_swap
= size
> 1 && (tlb_addr
& TLB_BSWAP
);
2452 /* Handle I/O access. */
2453 if (tlb_addr
& TLB_MMIO
) {
2454 io_writex(env
, full
, mmu_idx
, val
, addr
, retaddr
,
2455 op
^ (need_swap
* MO_BSWAP
));
2459 /* Ignore writes to ROM. */
2460 if (unlikely(tlb_addr
& TLB_DISCARD_WRITE
)) {
2464 /* Handle clean RAM pages. */
2465 if (tlb_addr
& TLB_NOTDIRTY
) {
2466 notdirty_write(env_cpu(env
), addr
, size
, full
, retaddr
);
2469 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
2472 * Keep these two store_memop separate to ensure that the compiler
2473 * is able to fold the entire function to a single instruction.
2474 * There is a build-time assert inside to remind you of this. ;-)
2476 if (unlikely(need_swap
)) {
2477 store_memop(haddr
, val
, op
^ MO_BSWAP
);
2479 store_memop(haddr
, val
, op
);
2484 /* Handle slow unaligned access (it spans two pages or IO). */
2486 && unlikely((addr
& ~TARGET_PAGE_MASK
) + size
- 1
2487 >= TARGET_PAGE_SIZE
)) {
2488 do_unaligned_access
:
2489 store_helper_unaligned(env
, addr
, val
, retaddr
, size
,
2490 mmu_idx
, memop_big_endian(op
));
2494 haddr
= (void *)((uintptr_t)addr
+ entry
->addend
);
2495 store_memop(haddr
, val
, op
);
2498 static void __attribute__((noinline
))
2499 full_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2500 MemOpIdx oi
, uintptr_t retaddr
)
2502 validate_memop(oi
, MO_UB
);
2503 store_helper(env
, addr
, val
, oi
, retaddr
, MO_UB
);
2506 void helper_ret_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint8_t val
,
2507 MemOpIdx oi
, uintptr_t retaddr
)
2509 full_stb_mmu(env
, addr
, val
, oi
, retaddr
);
2512 static void full_le_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2513 MemOpIdx oi
, uintptr_t retaddr
)
2515 validate_memop(oi
, MO_LEUW
);
2516 store_helper(env
, addr
, val
, oi
, retaddr
, MO_LEUW
);
2519 void helper_le_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2520 MemOpIdx oi
, uintptr_t retaddr
)
2522 full_le_stw_mmu(env
, addr
, val
, oi
, retaddr
);
2525 static void full_be_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2526 MemOpIdx oi
, uintptr_t retaddr
)
2528 validate_memop(oi
, MO_BEUW
);
2529 store_helper(env
, addr
, val
, oi
, retaddr
, MO_BEUW
);
2532 void helper_be_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2533 MemOpIdx oi
, uintptr_t retaddr
)
2535 full_be_stw_mmu(env
, addr
, val
, oi
, retaddr
);
2538 static void full_le_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2539 MemOpIdx oi
, uintptr_t retaddr
)
2541 validate_memop(oi
, MO_LEUL
);
2542 store_helper(env
, addr
, val
, oi
, retaddr
, MO_LEUL
);
2545 void helper_le_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2546 MemOpIdx oi
, uintptr_t retaddr
)
2548 full_le_stl_mmu(env
, addr
, val
, oi
, retaddr
);
2551 static void full_be_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2552 MemOpIdx oi
, uintptr_t retaddr
)
2554 validate_memop(oi
, MO_BEUL
);
2555 store_helper(env
, addr
, val
, oi
, retaddr
, MO_BEUL
);
2558 void helper_be_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2559 MemOpIdx oi
, uintptr_t retaddr
)
2561 full_be_stl_mmu(env
, addr
, val
, oi
, retaddr
);
2564 void helper_le_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2565 MemOpIdx oi
, uintptr_t retaddr
)
2567 validate_memop(oi
, MO_LEUQ
);
2568 store_helper(env
, addr
, val
, oi
, retaddr
, MO_LEUQ
);
2571 void helper_be_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2572 MemOpIdx oi
, uintptr_t retaddr
)
2574 validate_memop(oi
, MO_BEUQ
);
2575 store_helper(env
, addr
, val
, oi
, retaddr
, MO_BEUQ
);
2579 * Store Helpers for cpu_ldst.h
2582 typedef void FullStoreHelper(CPUArchState
*env
, target_ulong addr
,
2583 uint64_t val
, MemOpIdx oi
, uintptr_t retaddr
);
2585 static inline void cpu_store_helper(CPUArchState
*env
, target_ulong addr
,
2586 uint64_t val
, MemOpIdx oi
, uintptr_t ra
,
2587 FullStoreHelper
*full_store
)
2589 full_store(env
, addr
, val
, oi
, ra
);
2590 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_W
);
2593 void cpu_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint8_t val
,
2594 MemOpIdx oi
, uintptr_t retaddr
)
2596 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_stb_mmu
);
2599 void cpu_stw_be_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2600 MemOpIdx oi
, uintptr_t retaddr
)
2602 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_be_stw_mmu
);
2605 void cpu_stl_be_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2606 MemOpIdx oi
, uintptr_t retaddr
)
2608 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_be_stl_mmu
);
2611 void cpu_stq_be_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2612 MemOpIdx oi
, uintptr_t retaddr
)
2614 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, helper_be_stq_mmu
);
2617 void cpu_stw_le_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
2618 MemOpIdx oi
, uintptr_t retaddr
)
2620 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_le_stw_mmu
);
2623 void cpu_stl_le_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
2624 MemOpIdx oi
, uintptr_t retaddr
)
2626 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, full_le_stl_mmu
);
2629 void cpu_stq_le_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
2630 MemOpIdx oi
, uintptr_t retaddr
)
2632 cpu_store_helper(env
, addr
, val
, oi
, retaddr
, helper_le_stq_mmu
);
2635 void cpu_st16_be_mmu(CPUArchState
*env
, abi_ptr addr
, Int128 val
,
2636 MemOpIdx oi
, uintptr_t ra
)
2638 MemOp mop
= get_memop(oi
);
2639 int mmu_idx
= get_mmuidx(oi
);
2643 tcg_debug_assert((mop
& (MO_BSWAP
|MO_SSIZE
)) == (MO_BE
|MO_128
));
2644 a_bits
= get_alignment_bits(mop
);
2646 /* Handle CPU specific unaligned behaviour */
2647 if (addr
& ((1 << a_bits
) - 1)) {
2648 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_STORE
,
2652 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2653 mop
= (mop
& ~(MO_SIZE
| MO_AMASK
)) | MO_64
| MO_UNALN
;
2654 new_oi
= make_memop_idx(mop
, mmu_idx
);
2656 helper_be_stq_mmu(env
, addr
, int128_gethi(val
), new_oi
, ra
);
2657 helper_be_stq_mmu(env
, addr
+ 8, int128_getlo(val
), new_oi
, ra
);
2659 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_W
);
2662 void cpu_st16_le_mmu(CPUArchState
*env
, abi_ptr addr
, Int128 val
,
2663 MemOpIdx oi
, uintptr_t ra
)
2665 MemOp mop
= get_memop(oi
);
2666 int mmu_idx
= get_mmuidx(oi
);
2670 tcg_debug_assert((mop
& (MO_BSWAP
|MO_SSIZE
)) == (MO_LE
|MO_128
));
2671 a_bits
= get_alignment_bits(mop
);
2673 /* Handle CPU specific unaligned behaviour */
2674 if (addr
& ((1 << a_bits
) - 1)) {
2675 cpu_unaligned_access(env_cpu(env
), addr
, MMU_DATA_STORE
,
2679 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2680 mop
= (mop
& ~(MO_SIZE
| MO_AMASK
)) | MO_64
| MO_UNALN
;
2681 new_oi
= make_memop_idx(mop
, mmu_idx
);
2683 helper_le_stq_mmu(env
, addr
, int128_getlo(val
), new_oi
, ra
);
2684 helper_le_stq_mmu(env
, addr
+ 8, int128_gethi(val
), new_oi
, ra
);
2686 qemu_plugin_vcpu_mem_cb(env_cpu(env
), addr
, oi
, QEMU_PLUGIN_MEM_W
);
2689 #include "ldst_common.c.inc"
2692 * First set of functions passes in OI and RETADDR.
2693 * This makes them callable from other helpers.
2696 #define ATOMIC_NAME(X) \
2697 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2699 #define ATOMIC_MMU_CLEANUP
2701 #include "atomic_common.c.inc"
2704 #include "atomic_template.h"
2707 #include "atomic_template.h"
2710 #include "atomic_template.h"
2712 #ifdef CONFIG_ATOMIC64
2714 #include "atomic_template.h"
2717 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2718 #define DATA_SIZE 16
2719 #include "atomic_template.h"
2722 /* Code access functions. */
2724 static uint64_t full_ldub_code(CPUArchState
*env
, target_ulong addr
,
2725 MemOpIdx oi
, uintptr_t retaddr
)
2727 return load_helper(env
, addr
, oi
, retaddr
, MO_8
, true, full_ldub_code
);
2730 uint32_t cpu_ldub_code(CPUArchState
*env
, abi_ptr addr
)
2732 MemOpIdx oi
= make_memop_idx(MO_UB
, cpu_mmu_index(env
, true));
2733 return full_ldub_code(env
, addr
, oi
, 0);
2736 static uint64_t full_lduw_code(CPUArchState
*env
, target_ulong addr
,
2737 MemOpIdx oi
, uintptr_t retaddr
)
2739 return load_helper(env
, addr
, oi
, retaddr
, MO_TEUW
, true, full_lduw_code
);
2742 uint32_t cpu_lduw_code(CPUArchState
*env
, abi_ptr addr
)
2744 MemOpIdx oi
= make_memop_idx(MO_TEUW
, cpu_mmu_index(env
, true));
2745 return full_lduw_code(env
, addr
, oi
, 0);
2748 static uint64_t full_ldl_code(CPUArchState
*env
, target_ulong addr
,
2749 MemOpIdx oi
, uintptr_t retaddr
)
2751 return load_helper(env
, addr
, oi
, retaddr
, MO_TEUL
, true, full_ldl_code
);
2754 uint32_t cpu_ldl_code(CPUArchState
*env
, abi_ptr addr
)
2756 MemOpIdx oi
= make_memop_idx(MO_TEUL
, cpu_mmu_index(env
, true));
2757 return full_ldl_code(env
, addr
, oi
, 0);
2760 static uint64_t full_ldq_code(CPUArchState
*env
, target_ulong addr
,
2761 MemOpIdx oi
, uintptr_t retaddr
)
2763 return load_helper(env
, addr
, oi
, retaddr
, MO_TEUQ
, true, full_ldq_code
);
2766 uint64_t cpu_ldq_code(CPUArchState
*env
, abi_ptr addr
)
2768 MemOpIdx oi
= make_memop_idx(MO_TEUQ
, cpu_mmu_index(env
, true));
2769 return full_ldq_code(env
, addr
, oi
, 0);