qapi: allow unions to contain further unions
[qemu/armbru.git] / accel / tcg / tb-maint.c
blobcb1f806f00d4609faca29a57795bea38d17d2156
1 /*
2 * Translation Block Maintaince
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/interval-tree.h"
22 #include "qemu/qtree.h"
23 #include "exec/cputlb.h"
24 #include "exec/log.h"
25 #include "exec/exec-all.h"
26 #include "exec/tb-flush.h"
27 #include "exec/translate-all.h"
28 #include "sysemu/tcg.h"
29 #include "tcg/tcg.h"
30 #include "tb-hash.h"
31 #include "tb-context.h"
32 #include "internal.h"
35 /* List iterators for lists of tagged pointers in TranslationBlock. */
36 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
37 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
38 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
39 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
41 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
42 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
44 static bool tb_cmp(const void *ap, const void *bp)
46 const TranslationBlock *a = ap;
47 const TranslationBlock *b = bp;
49 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) &&
50 a->cs_base == b->cs_base &&
51 a->flags == b->flags &&
52 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
53 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
54 tb_page_addr0(a) == tb_page_addr0(b) &&
55 tb_page_addr1(a) == tb_page_addr1(b));
58 void tb_htable_init(void)
60 unsigned int mode = QHT_MODE_AUTO_RESIZE;
62 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
65 typedef struct PageDesc PageDesc;
67 #ifdef CONFIG_USER_ONLY
70 * In user-mode page locks aren't used; mmap_lock is enough.
72 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
74 static inline void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
75 PageDesc **ret_p2, tb_page_addr_t phys2,
76 bool alloc)
78 *ret_p1 = NULL;
79 *ret_p2 = NULL;
82 static inline void page_unlock(PageDesc *pd) { }
83 static inline void page_lock_tb(const TranslationBlock *tb) { }
84 static inline void page_unlock_tb(const TranslationBlock *tb) { }
87 * For user-only, since we are protecting all of memory with a single lock,
88 * and because the two pages of a TranslationBlock are always contiguous,
89 * use a single data structure to record all TranslationBlocks.
91 static IntervalTreeRoot tb_root;
93 static void tb_remove_all(void)
95 assert_memory_lock();
96 memset(&tb_root, 0, sizeof(tb_root));
99 /* Call with mmap_lock held. */
100 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2)
102 target_ulong addr;
103 int flags;
105 assert_memory_lock();
106 tb->itree.last = tb->itree.start + tb->size - 1;
108 /* translator_loop() must have made all TB pages non-writable */
109 addr = tb_page_addr0(tb);
110 flags = page_get_flags(addr);
111 assert(!(flags & PAGE_WRITE));
113 addr = tb_page_addr1(tb);
114 if (addr != -1) {
115 flags = page_get_flags(addr);
116 assert(!(flags & PAGE_WRITE));
119 interval_tree_insert(&tb->itree, &tb_root);
122 /* Call with mmap_lock held. */
123 static void tb_remove(TranslationBlock *tb)
125 assert_memory_lock();
126 interval_tree_remove(&tb->itree, &tb_root);
129 /* TODO: For now, still shared with translate-all.c for system mode. */
130 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \
131 for (T = foreach_tb_first(start, last), \
132 N = foreach_tb_next(T, start, last); \
133 T != NULL; \
134 T = N, N = foreach_tb_next(N, start, last))
136 typedef TranslationBlock *PageForEachNext;
138 static PageForEachNext foreach_tb_first(tb_page_addr_t start,
139 tb_page_addr_t last)
141 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last);
142 return n ? container_of(n, TranslationBlock, itree) : NULL;
145 static PageForEachNext foreach_tb_next(PageForEachNext tb,
146 tb_page_addr_t start,
147 tb_page_addr_t last)
149 IntervalTreeNode *n;
151 if (tb) {
152 n = interval_tree_iter_next(&tb->itree, start, last);
153 if (n) {
154 return container_of(n, TranslationBlock, itree);
157 return NULL;
160 #else
162 * In system mode we want L1_MAP to be based on ram offsets.
164 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
165 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
166 #else
167 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
168 #endif
170 /* Size of the L2 (and L3, etc) page tables. */
171 #define V_L2_BITS 10
172 #define V_L2_SIZE (1 << V_L2_BITS)
175 * L1 Mapping properties
177 static int v_l1_size;
178 static int v_l1_shift;
179 static int v_l2_levels;
182 * The bottom level has pointers to PageDesc, and is indexed by
183 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
185 #define V_L1_MIN_BITS 4
186 #define V_L1_MAX_BITS (V_L2_BITS + 3)
187 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
189 static void *l1_map[V_L1_MAX_SIZE];
191 struct PageDesc {
192 QemuSpin lock;
193 /* list of TBs intersecting this ram page */
194 uintptr_t first_tb;
197 void page_table_config_init(void)
199 uint32_t v_l1_bits;
201 assert(TARGET_PAGE_BITS);
202 /* The bits remaining after N lower levels of page tables. */
203 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
204 if (v_l1_bits < V_L1_MIN_BITS) {
205 v_l1_bits += V_L2_BITS;
208 v_l1_size = 1 << v_l1_bits;
209 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
210 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
212 assert(v_l1_bits <= V_L1_MAX_BITS);
213 assert(v_l1_shift % V_L2_BITS == 0);
214 assert(v_l2_levels >= 0);
217 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc)
219 PageDesc *pd;
220 void **lp;
221 int i;
223 /* Level 1. Always allocated. */
224 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
226 /* Level 2..N-1. */
227 for (i = v_l2_levels; i > 0; i--) {
228 void **p = qatomic_rcu_read(lp);
230 if (p == NULL) {
231 void *existing;
233 if (!alloc) {
234 return NULL;
236 p = g_new0(void *, V_L2_SIZE);
237 existing = qatomic_cmpxchg(lp, NULL, p);
238 if (unlikely(existing)) {
239 g_free(p);
240 p = existing;
244 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
247 pd = qatomic_rcu_read(lp);
248 if (pd == NULL) {
249 void *existing;
251 if (!alloc) {
252 return NULL;
255 pd = g_new0(PageDesc, V_L2_SIZE);
256 for (int i = 0; i < V_L2_SIZE; i++) {
257 qemu_spin_init(&pd[i].lock);
260 existing = qatomic_cmpxchg(lp, NULL, pd);
261 if (unlikely(existing)) {
262 for (int i = 0; i < V_L2_SIZE; i++) {
263 qemu_spin_destroy(&pd[i].lock);
265 g_free(pd);
266 pd = existing;
270 return pd + (index & (V_L2_SIZE - 1));
273 static inline PageDesc *page_find(tb_page_addr_t index)
275 return page_find_alloc(index, false);
279 * struct page_entry - page descriptor entry
280 * @pd: pointer to the &struct PageDesc of the page this entry represents
281 * @index: page index of the page
282 * @locked: whether the page is locked
284 * This struct helps us keep track of the locked state of a page, without
285 * bloating &struct PageDesc.
287 * A page lock protects accesses to all fields of &struct PageDesc.
289 * See also: &struct page_collection.
291 struct page_entry {
292 PageDesc *pd;
293 tb_page_addr_t index;
294 bool locked;
298 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
299 * @tree: Binary search tree (BST) of the pages, with key == page index
300 * @max: Pointer to the page in @tree with the highest page index
302 * To avoid deadlock we lock pages in ascending order of page index.
303 * When operating on a set of pages, we need to keep track of them so that
304 * we can lock them in order and also unlock them later. For this we collect
305 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
306 * @tree implementation we use does not provide an O(1) operation to obtain the
307 * highest-ranked element, we use @max to keep track of the inserted page
308 * with the highest index. This is valuable because if a page is not in
309 * the tree and its index is higher than @max's, then we can lock it
310 * without breaking the locking order rule.
312 * Note on naming: 'struct page_set' would be shorter, but we already have a few
313 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
315 * See also: page_collection_lock().
317 struct page_collection {
318 QTree *tree;
319 struct page_entry *max;
322 typedef int PageForEachNext;
323 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \
324 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
326 #ifdef CONFIG_DEBUG_TCG
328 static __thread GHashTable *ht_pages_locked_debug;
330 static void ht_pages_locked_debug_init(void)
332 if (ht_pages_locked_debug) {
333 return;
335 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
338 static bool page_is_locked(const PageDesc *pd)
340 PageDesc *found;
342 ht_pages_locked_debug_init();
343 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
344 return !!found;
347 static void page_lock__debug(PageDesc *pd)
349 ht_pages_locked_debug_init();
350 g_assert(!page_is_locked(pd));
351 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
354 static void page_unlock__debug(const PageDesc *pd)
356 bool removed;
358 ht_pages_locked_debug_init();
359 g_assert(page_is_locked(pd));
360 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
361 g_assert(removed);
364 static void do_assert_page_locked(const PageDesc *pd,
365 const char *file, int line)
367 if (unlikely(!page_is_locked(pd))) {
368 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
369 pd, file, line);
370 abort();
373 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
375 void assert_no_pages_locked(void)
377 ht_pages_locked_debug_init();
378 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
381 #else /* !CONFIG_DEBUG_TCG */
383 static inline void page_lock__debug(const PageDesc *pd) { }
384 static inline void page_unlock__debug(const PageDesc *pd) { }
385 static inline void assert_page_locked(const PageDesc *pd) { }
387 #endif /* CONFIG_DEBUG_TCG */
389 static void page_lock(PageDesc *pd)
391 page_lock__debug(pd);
392 qemu_spin_lock(&pd->lock);
395 static void page_unlock(PageDesc *pd)
397 qemu_spin_unlock(&pd->lock);
398 page_unlock__debug(pd);
401 static inline struct page_entry *
402 page_entry_new(PageDesc *pd, tb_page_addr_t index)
404 struct page_entry *pe = g_malloc(sizeof(*pe));
406 pe->index = index;
407 pe->pd = pd;
408 pe->locked = false;
409 return pe;
412 static void page_entry_destroy(gpointer p)
414 struct page_entry *pe = p;
416 g_assert(pe->locked);
417 page_unlock(pe->pd);
418 g_free(pe);
421 /* returns false on success */
422 static bool page_entry_trylock(struct page_entry *pe)
424 bool busy;
426 busy = qemu_spin_trylock(&pe->pd->lock);
427 if (!busy) {
428 g_assert(!pe->locked);
429 pe->locked = true;
430 page_lock__debug(pe->pd);
432 return busy;
435 static void do_page_entry_lock(struct page_entry *pe)
437 page_lock(pe->pd);
438 g_assert(!pe->locked);
439 pe->locked = true;
442 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
444 struct page_entry *pe = value;
446 do_page_entry_lock(pe);
447 return FALSE;
450 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
452 struct page_entry *pe = value;
454 if (pe->locked) {
455 pe->locked = false;
456 page_unlock(pe->pd);
458 return FALSE;
462 * Trylock a page, and if successful, add the page to a collection.
463 * Returns true ("busy") if the page could not be locked; false otherwise.
465 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
467 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
468 struct page_entry *pe;
469 PageDesc *pd;
471 pe = q_tree_lookup(set->tree, &index);
472 if (pe) {
473 return false;
476 pd = page_find(index);
477 if (pd == NULL) {
478 return false;
481 pe = page_entry_new(pd, index);
482 q_tree_insert(set->tree, &pe->index, pe);
485 * If this is either (1) the first insertion or (2) a page whose index
486 * is higher than any other so far, just lock the page and move on.
488 if (set->max == NULL || pe->index > set->max->index) {
489 set->max = pe;
490 do_page_entry_lock(pe);
491 return false;
494 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
495 * locks in order.
497 return page_entry_trylock(pe);
500 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
502 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
503 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
505 if (a == b) {
506 return 0;
507 } else if (a < b) {
508 return -1;
510 return 1;
514 * Lock a range of pages ([@start,@last]) as well as the pages of all
515 * intersecting TBs.
516 * Locking order: acquire locks in ascending order of page index.
518 static struct page_collection *page_collection_lock(tb_page_addr_t start,
519 tb_page_addr_t last)
521 struct page_collection *set = g_malloc(sizeof(*set));
522 tb_page_addr_t index;
523 PageDesc *pd;
525 start >>= TARGET_PAGE_BITS;
526 last >>= TARGET_PAGE_BITS;
527 g_assert(start <= last);
529 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL,
530 page_entry_destroy);
531 set->max = NULL;
532 assert_no_pages_locked();
534 retry:
535 q_tree_foreach(set->tree, page_entry_lock, NULL);
537 for (index = start; index <= last; index++) {
538 TranslationBlock *tb;
539 PageForEachNext n;
541 pd = page_find(index);
542 if (pd == NULL) {
543 continue;
545 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
546 q_tree_foreach(set->tree, page_entry_unlock, NULL);
547 goto retry;
549 assert_page_locked(pd);
550 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) {
551 if (page_trylock_add(set, tb_page_addr0(tb)) ||
552 (tb_page_addr1(tb) != -1 &&
553 page_trylock_add(set, tb_page_addr1(tb)))) {
554 /* drop all locks, and reacquire in order */
555 q_tree_foreach(set->tree, page_entry_unlock, NULL);
556 goto retry;
560 return set;
563 static void page_collection_unlock(struct page_collection *set)
565 /* entries are unlocked and freed via page_entry_destroy */
566 q_tree_destroy(set->tree);
567 g_free(set);
570 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
571 static void tb_remove_all_1(int level, void **lp)
573 int i;
575 if (*lp == NULL) {
576 return;
578 if (level == 0) {
579 PageDesc *pd = *lp;
581 for (i = 0; i < V_L2_SIZE; ++i) {
582 page_lock(&pd[i]);
583 pd[i].first_tb = (uintptr_t)NULL;
584 page_unlock(&pd[i]);
586 } else {
587 void **pp = *lp;
589 for (i = 0; i < V_L2_SIZE; ++i) {
590 tb_remove_all_1(level - 1, pp + i);
595 static void tb_remove_all(void)
597 int i, l1_sz = v_l1_size;
599 for (i = 0; i < l1_sz; i++) {
600 tb_remove_all_1(v_l2_levels, l1_map + i);
605 * Add the tb in the target page and protect it if necessary.
606 * Called with @p->lock held.
608 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
609 unsigned int n)
611 bool page_already_protected;
613 assert_page_locked(p);
615 tb->page_next[n] = p->first_tb;
616 page_already_protected = p->first_tb != 0;
617 p->first_tb = (uintptr_t)tb | n;
620 * If some code is already present, then the pages are already
621 * protected. So we handle the case where only the first TB is
622 * allocated in a physical page.
624 if (!page_already_protected) {
625 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK);
629 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2)
631 tb_page_add(p1, tb, 0);
632 if (unlikely(p2)) {
633 tb_page_add(p2, tb, 1);
637 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
639 TranslationBlock *tb1;
640 uintptr_t *pprev;
641 PageForEachNext n1;
643 assert_page_locked(pd);
644 pprev = &pd->first_tb;
645 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) {
646 if (tb1 == tb) {
647 *pprev = tb1->page_next[n1];
648 return;
650 pprev = &tb1->page_next[n1];
652 g_assert_not_reached();
655 static void tb_remove(TranslationBlock *tb)
657 PageDesc *pd;
659 pd = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
660 tb_page_remove(pd, tb);
661 if (unlikely(tb->page_addr[1] != -1)) {
662 pd = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
663 tb_page_remove(pd, tb);
667 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
668 PageDesc **ret_p2, tb_page_addr_t phys2, bool alloc)
670 PageDesc *p1, *p2;
671 tb_page_addr_t page1;
672 tb_page_addr_t page2;
674 assert_memory_lock();
675 g_assert(phys1 != -1);
677 page1 = phys1 >> TARGET_PAGE_BITS;
678 page2 = phys2 >> TARGET_PAGE_BITS;
680 p1 = page_find_alloc(page1, alloc);
681 if (ret_p1) {
682 *ret_p1 = p1;
684 if (likely(phys2 == -1)) {
685 page_lock(p1);
686 return;
687 } else if (page1 == page2) {
688 page_lock(p1);
689 if (ret_p2) {
690 *ret_p2 = p1;
692 return;
694 p2 = page_find_alloc(page2, alloc);
695 if (ret_p2) {
696 *ret_p2 = p2;
698 if (page1 < page2) {
699 page_lock(p1);
700 page_lock(p2);
701 } else {
702 page_lock(p2);
703 page_lock(p1);
707 /* lock the page(s) of a TB in the correct acquisition order */
708 static void page_lock_tb(const TranslationBlock *tb)
710 page_lock_pair(NULL, tb_page_addr0(tb), NULL, tb_page_addr1(tb), false);
713 static void page_unlock_tb(const TranslationBlock *tb)
715 PageDesc *p1 = page_find(tb_page_addr0(tb) >> TARGET_PAGE_BITS);
717 page_unlock(p1);
718 if (unlikely(tb_page_addr1(tb) != -1)) {
719 PageDesc *p2 = page_find(tb_page_addr1(tb) >> TARGET_PAGE_BITS);
721 if (p2 != p1) {
722 page_unlock(p2);
726 #endif /* CONFIG_USER_ONLY */
728 /* flush all the translation blocks */
729 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
731 bool did_flush = false;
733 mmap_lock();
734 /* If it is already been done on request of another CPU, just retry. */
735 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
736 goto done;
738 did_flush = true;
740 CPU_FOREACH(cpu) {
741 tcg_flush_jmp_cache(cpu);
744 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
745 tb_remove_all();
747 tcg_region_reset_all();
748 /* XXX: flush processor icache at this point if cache flush is expensive */
749 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
751 done:
752 mmap_unlock();
753 if (did_flush) {
754 qemu_plugin_flush_cb();
758 void tb_flush(CPUState *cpu)
760 if (tcg_enabled()) {
761 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
763 if (cpu_in_exclusive_context(cpu)) {
764 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
765 } else {
766 async_safe_run_on_cpu(cpu, do_tb_flush,
767 RUN_ON_CPU_HOST_INT(tb_flush_count));
772 /* remove @orig from its @n_orig-th jump list */
773 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
775 uintptr_t ptr, ptr_locked;
776 TranslationBlock *dest;
777 TranslationBlock *tb;
778 uintptr_t *pprev;
779 int n;
781 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
782 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
783 dest = (TranslationBlock *)(ptr & ~1);
784 if (dest == NULL) {
785 return;
788 qemu_spin_lock(&dest->jmp_lock);
790 * While acquiring the lock, the jump might have been removed if the
791 * destination TB was invalidated; check again.
793 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
794 if (ptr_locked != ptr) {
795 qemu_spin_unlock(&dest->jmp_lock);
797 * The only possibility is that the jump was unlinked via
798 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
799 * because we set the LSB above.
801 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
802 return;
805 * We first acquired the lock, and since the destination pointer matches,
806 * we know for sure that @orig is in the jmp list.
808 pprev = &dest->jmp_list_head;
809 TB_FOR_EACH_JMP(dest, tb, n) {
810 if (tb == orig && n == n_orig) {
811 *pprev = tb->jmp_list_next[n];
812 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
813 qemu_spin_unlock(&dest->jmp_lock);
814 return;
816 pprev = &tb->jmp_list_next[n];
818 g_assert_not_reached();
822 * Reset the jump entry 'n' of a TB so that it is not chained to another TB.
824 void tb_reset_jump(TranslationBlock *tb, int n)
826 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
827 tb_set_jmp_target(tb, n, addr);
830 /* remove any jumps to the TB */
831 static inline void tb_jmp_unlink(TranslationBlock *dest)
833 TranslationBlock *tb;
834 int n;
836 qemu_spin_lock(&dest->jmp_lock);
838 TB_FOR_EACH_JMP(dest, tb, n) {
839 tb_reset_jump(tb, n);
840 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
841 /* No need to clear the list entry; setting the dest ptr is enough */
843 dest->jmp_list_head = (uintptr_t)NULL;
845 qemu_spin_unlock(&dest->jmp_lock);
848 static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
850 CPUState *cpu;
852 if (tb_cflags(tb) & CF_PCREL) {
853 /* A TB may be at any virtual address */
854 CPU_FOREACH(cpu) {
855 tcg_flush_jmp_cache(cpu);
857 } else {
858 uint32_t h = tb_jmp_cache_hash_func(tb->pc);
860 CPU_FOREACH(cpu) {
861 CPUJumpCache *jc = cpu->tb_jmp_cache;
863 if (qatomic_read(&jc->array[h].tb) == tb) {
864 qatomic_set(&jc->array[h].tb, NULL);
871 * In user-mode, call with mmap_lock held.
872 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
873 * locks held.
875 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
877 uint32_t h;
878 tb_page_addr_t phys_pc;
879 uint32_t orig_cflags = tb_cflags(tb);
881 assert_memory_lock();
883 /* make sure no further incoming jumps will be chained to this TB */
884 qemu_spin_lock(&tb->jmp_lock);
885 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
886 qemu_spin_unlock(&tb->jmp_lock);
888 /* remove the TB from the hash list */
889 phys_pc = tb_page_addr0(tb);
890 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc),
891 tb->flags, orig_cflags, tb->trace_vcpu_dstate);
892 if (!qht_remove(&tb_ctx.htable, tb, h)) {
893 return;
896 /* remove the TB from the page list */
897 if (rm_from_page_list) {
898 tb_remove(tb);
901 /* remove the TB from the hash list */
902 tb_jmp_cache_inval_tb(tb);
904 /* suppress this TB from the two jump lists */
905 tb_remove_from_jmp_list(tb, 0);
906 tb_remove_from_jmp_list(tb, 1);
908 /* suppress any remaining jumps to this TB */
909 tb_jmp_unlink(tb);
911 qatomic_set(&tb_ctx.tb_phys_invalidate_count,
912 tb_ctx.tb_phys_invalidate_count + 1);
915 static void tb_phys_invalidate__locked(TranslationBlock *tb)
917 qemu_thread_jit_write();
918 do_tb_phys_invalidate(tb, true);
919 qemu_thread_jit_execute();
923 * Invalidate one TB.
924 * Called with mmap_lock held in user-mode.
926 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
928 if (page_addr == -1 && tb_page_addr0(tb) != -1) {
929 page_lock_tb(tb);
930 do_tb_phys_invalidate(tb, true);
931 page_unlock_tb(tb);
932 } else {
933 do_tb_phys_invalidate(tb, false);
938 * Add a new TB and link it to the physical page tables. phys_page2 is
939 * (-1) to indicate that only one page contains the TB.
941 * Called with mmap_lock held for user-mode emulation.
943 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
944 * Note that in !user-mode, another thread might have already added a TB
945 * for the same block of guest code that @tb corresponds to. In that case,
946 * the caller should discard the original @tb, and use instead the returned TB.
948 TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
949 tb_page_addr_t phys_page2)
951 PageDesc *p;
952 PageDesc *p2 = NULL;
953 void *existing_tb = NULL;
954 uint32_t h;
956 assert_memory_lock();
957 tcg_debug_assert(!(tb->cflags & CF_INVALID));
960 * Add the TB to the page list, acquiring first the pages's locks.
961 * We keep the locks held until after inserting the TB in the hash table,
962 * so that if the insertion fails we know for sure that the TBs are still
963 * in the page descriptors.
964 * Note that inserting into the hash table first isn't an option, since
965 * we can only insert TBs that are fully initialized.
967 page_lock_pair(&p, phys_pc, &p2, phys_page2, true);
968 tb_record(tb, p, p2);
970 /* add in the hash table */
971 h = tb_hash_func(phys_pc, (tb->cflags & CF_PCREL ? 0 : tb->pc),
972 tb->flags, tb->cflags, tb->trace_vcpu_dstate);
973 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
975 /* remove TB from the page(s) if we couldn't insert it */
976 if (unlikely(existing_tb)) {
977 tb_remove(tb);
978 tb = existing_tb;
981 if (p2 && p2 != p) {
982 page_unlock(p2);
984 page_unlock(p);
985 return tb;
988 #ifdef CONFIG_USER_ONLY
990 * Invalidate all TBs which intersect with the target address range.
991 * Called with mmap_lock held for user-mode emulation.
992 * NOTE: this function must not be called while a TB is running.
994 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
996 TranslationBlock *tb;
997 PageForEachNext n;
999 assert_memory_lock();
1001 PAGE_FOR_EACH_TB(start, last, unused, tb, n) {
1002 tb_phys_invalidate__locked(tb);
1007 * Invalidate all TBs which intersect with the target address page @addr.
1008 * Called with mmap_lock held for user-mode emulation
1009 * NOTE: this function must not be called while a TB is running.
1011 void tb_invalidate_phys_page(tb_page_addr_t addr)
1013 tb_page_addr_t start, last;
1015 start = addr & TARGET_PAGE_MASK;
1016 last = addr | ~TARGET_PAGE_MASK;
1017 tb_invalidate_phys_range(start, last);
1021 * Called with mmap_lock held. If pc is not 0 then it indicates the
1022 * host PC of the faulting store instruction that caused this invalidate.
1023 * Returns true if the caller needs to abort execution of the current
1024 * TB (because it was modified by this store and the guest CPU has
1025 * precise-SMC semantics).
1027 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc)
1029 TranslationBlock *current_tb;
1030 bool current_tb_modified;
1031 TranslationBlock *tb;
1032 PageForEachNext n;
1033 tb_page_addr_t last;
1036 * Without precise smc semantics, or when outside of a TB,
1037 * we can skip to invalidate.
1039 #ifndef TARGET_HAS_PRECISE_SMC
1040 pc = 0;
1041 #endif
1042 if (!pc) {
1043 tb_invalidate_phys_page(addr);
1044 return false;
1047 assert_memory_lock();
1048 current_tb = tcg_tb_lookup(pc);
1050 last = addr | ~TARGET_PAGE_MASK;
1051 addr &= TARGET_PAGE_MASK;
1052 current_tb_modified = false;
1054 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) {
1055 if (current_tb == tb &&
1056 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1058 * If we are modifying the current TB, we must stop its
1059 * execution. We could be more precise by checking that
1060 * the modification is after the current PC, but it would
1061 * require a specialized function to partially restore
1062 * the CPU state.
1064 current_tb_modified = true;
1065 cpu_restore_state_from_tb(current_cpu, current_tb, pc);
1067 tb_phys_invalidate__locked(tb);
1070 if (current_tb_modified) {
1071 /* Force execution of one insn next time. */
1072 CPUState *cpu = current_cpu;
1073 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1074 return true;
1076 return false;
1078 #else
1080 * @p must be non-NULL.
1081 * Call with all @pages locked.
1083 static void
1084 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1085 PageDesc *p, tb_page_addr_t start,
1086 tb_page_addr_t last,
1087 uintptr_t retaddr)
1089 TranslationBlock *tb;
1090 PageForEachNext n;
1091 #ifdef TARGET_HAS_PRECISE_SMC
1092 bool current_tb_modified = false;
1093 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL;
1094 #endif /* TARGET_HAS_PRECISE_SMC */
1097 * We remove all the TBs in the range [start, last].
1098 * XXX: see if in some cases it could be faster to invalidate all the code
1100 PAGE_FOR_EACH_TB(start, last, p, tb, n) {
1101 tb_page_addr_t tb_start, tb_last;
1103 /* NOTE: this is subtle as a TB may span two physical pages */
1104 tb_start = tb_page_addr0(tb);
1105 tb_last = tb_start + tb->size - 1;
1106 if (n == 0) {
1107 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK);
1108 } else {
1109 tb_start = tb_page_addr1(tb);
1110 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK);
1112 if (!(tb_last < start || tb_start > last)) {
1113 #ifdef TARGET_HAS_PRECISE_SMC
1114 if (current_tb == tb &&
1115 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1117 * If we are modifying the current TB, we must stop
1118 * its execution. We could be more precise by checking
1119 * that the modification is after the current PC, but it
1120 * would require a specialized function to partially
1121 * restore the CPU state.
1123 current_tb_modified = true;
1124 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr);
1126 #endif /* TARGET_HAS_PRECISE_SMC */
1127 tb_phys_invalidate__locked(tb);
1131 /* if no code remaining, no need to continue to use slow writes */
1132 if (!p->first_tb) {
1133 tlb_unprotect_code(start);
1136 #ifdef TARGET_HAS_PRECISE_SMC
1137 if (current_tb_modified) {
1138 page_collection_unlock(pages);
1139 /* Force execution of one insn next time. */
1140 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1141 mmap_unlock();
1142 cpu_loop_exit_noexc(current_cpu);
1144 #endif
1148 * Invalidate all TBs which intersect with the target physical
1149 * address page @addr.
1151 void tb_invalidate_phys_page(tb_page_addr_t addr)
1153 struct page_collection *pages;
1154 tb_page_addr_t start, last;
1155 PageDesc *p;
1157 p = page_find(addr >> TARGET_PAGE_BITS);
1158 if (p == NULL) {
1159 return;
1162 start = addr & TARGET_PAGE_MASK;
1163 last = addr | ~TARGET_PAGE_MASK;
1164 pages = page_collection_lock(start, last);
1165 tb_invalidate_phys_page_range__locked(pages, p, start, last, 0);
1166 page_collection_unlock(pages);
1170 * Invalidate all TBs which intersect with the target physical address range
1171 * [start;last]. NOTE: start and end may refer to *different* physical pages.
1172 * 'is_cpu_write_access' should be true if called from a real cpu write
1173 * access: the virtual CPU will exit the current TB if code is modified inside
1174 * this TB.
1176 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
1178 struct page_collection *pages;
1179 tb_page_addr_t index, index_last;
1181 pages = page_collection_lock(start, last);
1183 index_last = last >> TARGET_PAGE_BITS;
1184 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) {
1185 PageDesc *pd = page_find(index);
1186 tb_page_addr_t bound;
1188 if (pd == NULL) {
1189 continue;
1191 assert_page_locked(pd);
1192 bound = (index << TARGET_PAGE_BITS) | ~TARGET_PAGE_MASK;
1193 bound = MIN(bound, last);
1194 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1196 page_collection_unlock(pages);
1200 * Call with all @pages in the range [@start, @start + len[ locked.
1202 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages,
1203 tb_page_addr_t start,
1204 unsigned len, uintptr_t ra)
1206 PageDesc *p;
1208 p = page_find(start >> TARGET_PAGE_BITS);
1209 if (!p) {
1210 return;
1213 assert_page_locked(p);
1214 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra);
1218 * len must be <= 8 and start must be a multiple of len.
1219 * Called via softmmu_template.h when code areas are written to with
1220 * iothread mutex not held.
1222 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr,
1223 unsigned size,
1224 uintptr_t retaddr)
1226 struct page_collection *pages;
1228 pages = page_collection_lock(ram_addr, ram_addr + size - 1);
1229 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr);
1230 page_collection_unlock(pages);
1233 #endif /* CONFIG_USER_ONLY */