qapi: allow unions to contain further unions
[qemu/armbru.git] / target / i386 / kvm / kvm.c
blobde531842f6b1c302f7add59a49cc5663565f4334
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "sev.h"
35 #include "xen-emu.h"
36 #include "hyperv.h"
37 #include "hyperv-proto.h"
39 #include "exec/gdbstub.h"
40 #include "qemu/host-utils.h"
41 #include "qemu/main-loop.h"
42 #include "qemu/ratelimit.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/memalign.h"
46 #include "hw/i386/x86.h"
47 #include "hw/i386/kvm/xen_evtchn.h"
48 #include "hw/i386/pc.h"
49 #include "hw/i386/apic.h"
50 #include "hw/i386/apic_internal.h"
51 #include "hw/i386/apic-msidef.h"
52 #include "hw/i386/intel_iommu.h"
53 #include "hw/i386/x86-iommu.h"
54 #include "hw/i386/e820_memory_layout.h"
56 #include "hw/xen/xen.h"
58 #include "hw/pci/pci.h"
59 #include "hw/pci/msi.h"
60 #include "hw/pci/msix.h"
61 #include "migration/blocker.h"
62 #include "exec/memattrs.h"
63 #include "trace.h"
65 #include CONFIG_DEVICES
67 //#define DEBUG_KVM
69 #ifdef DEBUG_KVM
70 #define DPRINTF(fmt, ...) \
71 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...) \
74 do { } while (0)
75 #endif
77 /* From arch/x86/kvm/lapic.h */
78 #define KVM_APIC_BUS_CYCLE_NS 1
79 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
81 #define MSR_KVM_WALL_CLOCK 0x11
82 #define MSR_KVM_SYSTEM_TIME 0x12
84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
85 * 255 kvm_msr_entry structs */
86 #define MSR_BUF_SIZE 4096
88 static void kvm_init_msrs(X86CPU *cpu);
90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
91 KVM_CAP_INFO(SET_TSS_ADDR),
92 KVM_CAP_INFO(EXT_CPUID),
93 KVM_CAP_INFO(MP_STATE),
94 KVM_CAP_LAST_INFO
97 static bool has_msr_star;
98 static bool has_msr_hsave_pa;
99 static bool has_msr_tsc_aux;
100 static bool has_msr_tsc_adjust;
101 static bool has_msr_tsc_deadline;
102 static bool has_msr_feature_control;
103 static bool has_msr_misc_enable;
104 static bool has_msr_smbase;
105 static bool has_msr_bndcfgs;
106 static int lm_capable_kernel;
107 static bool has_msr_hv_hypercall;
108 static bool has_msr_hv_crash;
109 static bool has_msr_hv_reset;
110 static bool has_msr_hv_vpindex;
111 static bool hv_vpindex_settable;
112 static bool has_msr_hv_runtime;
113 static bool has_msr_hv_synic;
114 static bool has_msr_hv_stimer;
115 static bool has_msr_hv_frequencies;
116 static bool has_msr_hv_reenlightenment;
117 static bool has_msr_hv_syndbg_options;
118 static bool has_msr_xss;
119 static bool has_msr_umwait;
120 static bool has_msr_spec_ctrl;
121 static bool has_tsc_scale_msr;
122 static bool has_msr_tsx_ctrl;
123 static bool has_msr_virt_ssbd;
124 static bool has_msr_smi_count;
125 static bool has_msr_arch_capabs;
126 static bool has_msr_core_capabs;
127 static bool has_msr_vmx_vmfunc;
128 static bool has_msr_ucode_rev;
129 static bool has_msr_vmx_procbased_ctls2;
130 static bool has_msr_perf_capabs;
131 static bool has_msr_pkrs;
133 static uint32_t has_architectural_pmu_version;
134 static uint32_t num_architectural_pmu_gp_counters;
135 static uint32_t num_architectural_pmu_fixed_counters;
137 static int has_xsave;
138 static int has_xsave2;
139 static int has_xcrs;
140 static int has_pit_state2;
141 static int has_sregs2;
142 static int has_exception_payload;
143 static int has_triple_fault_event;
145 static bool has_msr_mcg_ext_ctl;
147 static struct kvm_cpuid2 *cpuid_cache;
148 static struct kvm_cpuid2 *hv_cpuid_cache;
149 static struct kvm_msr_list *kvm_feature_msrs;
151 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
153 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
154 static RateLimit bus_lock_ratelimit_ctrl;
155 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
157 int kvm_has_pit_state2(void)
159 return has_pit_state2;
162 bool kvm_has_smm(void)
164 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
167 bool kvm_has_adjust_clock_stable(void)
169 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
171 return (ret & KVM_CLOCK_TSC_STABLE);
174 bool kvm_has_adjust_clock(void)
176 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
179 bool kvm_has_exception_payload(void)
181 return has_exception_payload;
184 static bool kvm_x2apic_api_set_flags(uint64_t flags)
186 KVMState *s = KVM_STATE(current_accel());
188 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
191 #define MEMORIZE(fn, _result) \
192 ({ \
193 static bool _memorized; \
195 if (_memorized) { \
196 return _result; \
198 _memorized = true; \
199 _result = fn; \
202 static bool has_x2apic_api;
204 bool kvm_has_x2apic_api(void)
206 return has_x2apic_api;
209 bool kvm_enable_x2apic(void)
211 return MEMORIZE(
212 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
213 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
214 has_x2apic_api);
217 bool kvm_hv_vpindex_settable(void)
219 return hv_vpindex_settable;
222 static int kvm_get_tsc(CPUState *cs)
224 X86CPU *cpu = X86_CPU(cs);
225 CPUX86State *env = &cpu->env;
226 uint64_t value;
227 int ret;
229 if (env->tsc_valid) {
230 return 0;
233 env->tsc_valid = !runstate_is_running();
235 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
236 if (ret < 0) {
237 return ret;
240 env->tsc = value;
241 return 0;
244 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
246 kvm_get_tsc(cpu);
249 void kvm_synchronize_all_tsc(void)
251 CPUState *cpu;
253 if (kvm_enabled()) {
254 CPU_FOREACH(cpu) {
255 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
260 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
262 struct kvm_cpuid2 *cpuid;
263 int r, size;
265 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
266 cpuid = g_malloc0(size);
267 cpuid->nent = max;
268 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
269 if (r == 0 && cpuid->nent >= max) {
270 r = -E2BIG;
272 if (r < 0) {
273 if (r == -E2BIG) {
274 g_free(cpuid);
275 return NULL;
276 } else {
277 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
278 strerror(-r));
279 exit(1);
282 return cpuid;
285 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
286 * for all entries.
288 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
290 struct kvm_cpuid2 *cpuid;
291 int max = 1;
293 if (cpuid_cache != NULL) {
294 return cpuid_cache;
296 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
297 max *= 2;
299 cpuid_cache = cpuid;
300 return cpuid;
303 static bool host_tsx_broken(void)
305 int family, model, stepping;\
306 char vendor[CPUID_VENDOR_SZ + 1];
308 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
310 /* Check if we are running on a Haswell host known to have broken TSX */
311 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
312 (family == 6) &&
313 ((model == 63 && stepping < 4) ||
314 model == 60 || model == 69 || model == 70);
317 /* Returns the value for a specific register on the cpuid entry
319 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
321 uint32_t ret = 0;
322 switch (reg) {
323 case R_EAX:
324 ret = entry->eax;
325 break;
326 case R_EBX:
327 ret = entry->ebx;
328 break;
329 case R_ECX:
330 ret = entry->ecx;
331 break;
332 case R_EDX:
333 ret = entry->edx;
334 break;
336 return ret;
339 /* Find matching entry for function/index on kvm_cpuid2 struct
341 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
342 uint32_t function,
343 uint32_t index)
345 int i;
346 for (i = 0; i < cpuid->nent; ++i) {
347 if (cpuid->entries[i].function == function &&
348 cpuid->entries[i].index == index) {
349 return &cpuid->entries[i];
352 /* not found: */
353 return NULL;
356 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
357 uint32_t index, int reg)
359 struct kvm_cpuid2 *cpuid;
360 uint32_t ret = 0;
361 uint32_t cpuid_1_edx, unused;
362 uint64_t bitmask;
364 cpuid = get_supported_cpuid(s);
366 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
367 if (entry) {
368 ret = cpuid_entry_get_reg(entry, reg);
371 /* Fixups for the data returned by KVM, below */
373 if (function == 1 && reg == R_EDX) {
374 /* KVM before 2.6.30 misreports the following features */
375 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
376 } else if (function == 1 && reg == R_ECX) {
377 /* We can set the hypervisor flag, even if KVM does not return it on
378 * GET_SUPPORTED_CPUID
380 ret |= CPUID_EXT_HYPERVISOR;
381 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
382 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
383 * and the irqchip is in the kernel.
385 if (kvm_irqchip_in_kernel() &&
386 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
387 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
390 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
391 * without the in-kernel irqchip
393 if (!kvm_irqchip_in_kernel()) {
394 ret &= ~CPUID_EXT_X2APIC;
397 if (enable_cpu_pm) {
398 int disable_exits = kvm_check_extension(s,
399 KVM_CAP_X86_DISABLE_EXITS);
401 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
402 ret |= CPUID_EXT_MONITOR;
405 } else if (function == 6 && reg == R_EAX) {
406 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
407 } else if (function == 7 && index == 0 && reg == R_EBX) {
408 /* Not new instructions, just an optimization. */
409 uint32_t ebx;
410 host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
411 ret |= ebx & CPUID_7_0_EBX_ERMS;
413 if (host_tsx_broken()) {
414 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
416 } else if (function == 7 && index == 0 && reg == R_EDX) {
417 /* Not new instructions, just an optimization. */
418 uint32_t edx;
419 host_cpuid(7, 0, &unused, &unused, &unused, &edx);
420 ret |= edx & CPUID_7_0_EDX_FSRM;
423 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
424 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
425 * returned by KVM_GET_MSR_INDEX_LIST.
427 if (!has_msr_arch_capabs) {
428 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
430 } else if (function == 7 && index == 1 && reg == R_EAX) {
431 /* Not new instructions, just an optimization. */
432 uint32_t eax;
433 host_cpuid(7, 1, &eax, &unused, &unused, &unused);
434 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
435 } else if (function == 0xd && index == 0 &&
436 (reg == R_EAX || reg == R_EDX)) {
438 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
439 * features that still have to be enabled with the arch_prctl
440 * system call. QEMU needs the full value, which is retrieved
441 * with KVM_GET_DEVICE_ATTR.
443 struct kvm_device_attr attr = {
444 .group = 0,
445 .attr = KVM_X86_XCOMP_GUEST_SUPP,
446 .addr = (unsigned long) &bitmask
449 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
450 if (!sys_attr) {
451 return ret;
454 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
455 if (rc < 0) {
456 if (rc != -ENXIO) {
457 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
458 "error: %d", rc);
460 return ret;
462 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
463 } else if (function == 0x80000001 && reg == R_ECX) {
465 * It's safe to enable TOPOEXT even if it's not returned by
466 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
467 * us to keep CPU models including TOPOEXT runnable on older kernels.
469 ret |= CPUID_EXT3_TOPOEXT;
470 } else if (function == 0x80000001 && reg == R_EDX) {
471 /* On Intel, kvm returns cpuid according to the Intel spec,
472 * so add missing bits according to the AMD spec:
474 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
475 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
476 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
477 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
478 * be enabled without the in-kernel irqchip
480 if (!kvm_irqchip_in_kernel()) {
481 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
483 if (kvm_irqchip_is_split()) {
484 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
486 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
487 ret |= 1U << KVM_HINTS_REALTIME;
490 return ret;
493 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
495 struct {
496 struct kvm_msrs info;
497 struct kvm_msr_entry entries[1];
498 } msr_data = {};
499 uint64_t value;
500 uint32_t ret, can_be_one, must_be_one;
502 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
503 return 0;
506 /* Check if requested MSR is supported feature MSR */
507 int i;
508 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
509 if (kvm_feature_msrs->indices[i] == index) {
510 break;
512 if (i == kvm_feature_msrs->nmsrs) {
513 return 0; /* if the feature MSR is not supported, simply return 0 */
516 msr_data.info.nmsrs = 1;
517 msr_data.entries[0].index = index;
519 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
520 if (ret != 1) {
521 error_report("KVM get MSR (index=0x%x) feature failed, %s",
522 index, strerror(-ret));
523 exit(1);
526 value = msr_data.entries[0].data;
527 switch (index) {
528 case MSR_IA32_VMX_PROCBASED_CTLS2:
529 if (!has_msr_vmx_procbased_ctls2) {
530 /* KVM forgot to add these bits for some time, do this ourselves. */
531 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
532 CPUID_XSAVE_XSAVES) {
533 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
535 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
536 CPUID_EXT_RDRAND) {
537 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
539 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
540 CPUID_7_0_EBX_INVPCID) {
541 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
543 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
544 CPUID_7_0_EBX_RDSEED) {
545 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
547 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
548 CPUID_EXT2_RDTSCP) {
549 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
552 /* fall through */
553 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
554 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
555 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
556 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
558 * Return true for bits that can be one, but do not have to be one.
559 * The SDM tells us which bits could have a "must be one" setting,
560 * so we can do the opposite transformation in make_vmx_msr_value.
562 must_be_one = (uint32_t)value;
563 can_be_one = (uint32_t)(value >> 32);
564 return can_be_one & ~must_be_one;
566 default:
567 return value;
571 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
572 int *max_banks)
574 int r;
576 r = kvm_check_extension(s, KVM_CAP_MCE);
577 if (r > 0) {
578 *max_banks = r;
579 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
581 return -ENOSYS;
584 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
586 CPUState *cs = CPU(cpu);
587 CPUX86State *env = &cpu->env;
588 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
589 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
590 uint64_t mcg_status = MCG_STATUS_MCIP;
591 int flags = 0;
593 if (code == BUS_MCEERR_AR) {
594 status |= MCI_STATUS_AR | 0x134;
595 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
596 } else {
597 status |= 0xc0;
598 mcg_status |= MCG_STATUS_RIPV;
601 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
602 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
603 * guest kernel back into env->mcg_ext_ctl.
605 cpu_synchronize_state(cs);
606 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
607 mcg_status |= MCG_STATUS_LMCE;
608 flags = 0;
611 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
612 (MCM_ADDR_PHYS << 6) | 0xc, flags);
615 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
617 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
619 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
620 &mff);
623 static void hardware_memory_error(void *host_addr)
625 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
626 error_report("QEMU got Hardware memory error at addr %p", host_addr);
627 exit(1);
630 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
632 X86CPU *cpu = X86_CPU(c);
633 CPUX86State *env = &cpu->env;
634 ram_addr_t ram_addr;
635 hwaddr paddr;
637 /* If we get an action required MCE, it has been injected by KVM
638 * while the VM was running. An action optional MCE instead should
639 * be coming from the main thread, which qemu_init_sigbus identifies
640 * as the "early kill" thread.
642 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
644 if ((env->mcg_cap & MCG_SER_P) && addr) {
645 ram_addr = qemu_ram_addr_from_host(addr);
646 if (ram_addr != RAM_ADDR_INVALID &&
647 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
648 kvm_hwpoison_page_add(ram_addr);
649 kvm_mce_inject(cpu, paddr, code);
652 * Use different logging severity based on error type.
653 * If there is additional MCE reporting on the hypervisor, QEMU VA
654 * could be another source to identify the PA and MCE details.
656 if (code == BUS_MCEERR_AR) {
657 error_report("Guest MCE Memory Error at QEMU addr %p and "
658 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
659 addr, paddr, "BUS_MCEERR_AR");
660 } else {
661 warn_report("Guest MCE Memory Error at QEMU addr %p and "
662 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
663 addr, paddr, "BUS_MCEERR_AO");
666 return;
669 if (code == BUS_MCEERR_AO) {
670 warn_report("Hardware memory error at addr %p of type %s "
671 "for memory used by QEMU itself instead of guest system!",
672 addr, "BUS_MCEERR_AO");
676 if (code == BUS_MCEERR_AR) {
677 hardware_memory_error(addr);
680 /* Hope we are lucky for AO MCE, just notify a event */
681 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
684 static void kvm_reset_exception(CPUX86State *env)
686 env->exception_nr = -1;
687 env->exception_pending = 0;
688 env->exception_injected = 0;
689 env->exception_has_payload = false;
690 env->exception_payload = 0;
693 static void kvm_queue_exception(CPUX86State *env,
694 int32_t exception_nr,
695 uint8_t exception_has_payload,
696 uint64_t exception_payload)
698 assert(env->exception_nr == -1);
699 assert(!env->exception_pending);
700 assert(!env->exception_injected);
701 assert(!env->exception_has_payload);
703 env->exception_nr = exception_nr;
705 if (has_exception_payload) {
706 env->exception_pending = 1;
708 env->exception_has_payload = exception_has_payload;
709 env->exception_payload = exception_payload;
710 } else {
711 env->exception_injected = 1;
713 if (exception_nr == EXCP01_DB) {
714 assert(exception_has_payload);
715 env->dr[6] = exception_payload;
716 } else if (exception_nr == EXCP0E_PAGE) {
717 assert(exception_has_payload);
718 env->cr[2] = exception_payload;
719 } else {
720 assert(!exception_has_payload);
725 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
727 CPUX86State *env = &cpu->env;
729 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
730 unsigned int bank, bank_num = env->mcg_cap & 0xff;
731 struct kvm_x86_mce mce;
733 kvm_reset_exception(env);
736 * There must be at least one bank in use if an MCE is pending.
737 * Find it and use its values for the event injection.
739 for (bank = 0; bank < bank_num; bank++) {
740 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
741 break;
744 assert(bank < bank_num);
746 mce.bank = bank;
747 mce.status = env->mce_banks[bank * 4 + 1];
748 mce.mcg_status = env->mcg_status;
749 mce.addr = env->mce_banks[bank * 4 + 2];
750 mce.misc = env->mce_banks[bank * 4 + 3];
752 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
754 return 0;
757 static void cpu_update_state(void *opaque, bool running, RunState state)
759 CPUX86State *env = opaque;
761 if (running) {
762 env->tsc_valid = false;
766 unsigned long kvm_arch_vcpu_id(CPUState *cs)
768 X86CPU *cpu = X86_CPU(cs);
769 return cpu->apic_id;
772 #ifndef KVM_CPUID_SIGNATURE_NEXT
773 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
774 #endif
776 static bool hyperv_enabled(X86CPU *cpu)
778 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
779 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
780 cpu->hyperv_features || cpu->hyperv_passthrough);
784 * Check whether target_freq is within conservative
785 * ntp correctable bounds (250ppm) of freq
787 static inline bool freq_within_bounds(int freq, int target_freq)
789 int max_freq = freq + (freq * 250 / 1000000);
790 int min_freq = freq - (freq * 250 / 1000000);
792 if (target_freq >= min_freq && target_freq <= max_freq) {
793 return true;
796 return false;
799 static int kvm_arch_set_tsc_khz(CPUState *cs)
801 X86CPU *cpu = X86_CPU(cs);
802 CPUX86State *env = &cpu->env;
803 int r, cur_freq;
804 bool set_ioctl = false;
806 if (!env->tsc_khz) {
807 return 0;
810 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
811 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
814 * If TSC scaling is supported, attempt to set TSC frequency.
816 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
817 set_ioctl = true;
821 * If desired TSC frequency is within bounds of NTP correction,
822 * attempt to set TSC frequency.
824 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
825 set_ioctl = true;
828 r = set_ioctl ?
829 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
830 -ENOTSUP;
832 if (r < 0) {
833 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
834 * TSC frequency doesn't match the one we want.
836 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
837 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
838 -ENOTSUP;
839 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
840 warn_report("TSC frequency mismatch between "
841 "VM (%" PRId64 " kHz) and host (%d kHz), "
842 "and TSC scaling unavailable",
843 env->tsc_khz, cur_freq);
844 return r;
848 return 0;
851 static bool tsc_is_stable_and_known(CPUX86State *env)
853 if (!env->tsc_khz) {
854 return false;
856 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
857 || env->user_tsc_khz;
860 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
862 static struct {
863 const char *desc;
864 struct {
865 uint32_t func;
866 int reg;
867 uint32_t bits;
868 } flags[2];
869 uint64_t dependencies;
870 } kvm_hyperv_properties[] = {
871 [HYPERV_FEAT_RELAXED] = {
872 .desc = "relaxed timing (hv-relaxed)",
873 .flags = {
874 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
875 .bits = HV_RELAXED_TIMING_RECOMMENDED}
878 [HYPERV_FEAT_VAPIC] = {
879 .desc = "virtual APIC (hv-vapic)",
880 .flags = {
881 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
882 .bits = HV_APIC_ACCESS_AVAILABLE}
885 [HYPERV_FEAT_TIME] = {
886 .desc = "clocksources (hv-time)",
887 .flags = {
888 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
889 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
892 [HYPERV_FEAT_CRASH] = {
893 .desc = "crash MSRs (hv-crash)",
894 .flags = {
895 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
896 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
899 [HYPERV_FEAT_RESET] = {
900 .desc = "reset MSR (hv-reset)",
901 .flags = {
902 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
903 .bits = HV_RESET_AVAILABLE}
906 [HYPERV_FEAT_VPINDEX] = {
907 .desc = "VP_INDEX MSR (hv-vpindex)",
908 .flags = {
909 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
910 .bits = HV_VP_INDEX_AVAILABLE}
913 [HYPERV_FEAT_RUNTIME] = {
914 .desc = "VP_RUNTIME MSR (hv-runtime)",
915 .flags = {
916 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
917 .bits = HV_VP_RUNTIME_AVAILABLE}
920 [HYPERV_FEAT_SYNIC] = {
921 .desc = "synthetic interrupt controller (hv-synic)",
922 .flags = {
923 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
924 .bits = HV_SYNIC_AVAILABLE}
927 [HYPERV_FEAT_STIMER] = {
928 .desc = "synthetic timers (hv-stimer)",
929 .flags = {
930 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
931 .bits = HV_SYNTIMERS_AVAILABLE}
933 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
935 [HYPERV_FEAT_FREQUENCIES] = {
936 .desc = "frequency MSRs (hv-frequencies)",
937 .flags = {
938 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
939 .bits = HV_ACCESS_FREQUENCY_MSRS},
940 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
941 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
944 [HYPERV_FEAT_REENLIGHTENMENT] = {
945 .desc = "reenlightenment MSRs (hv-reenlightenment)",
946 .flags = {
947 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
948 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
951 [HYPERV_FEAT_TLBFLUSH] = {
952 .desc = "paravirtualized TLB flush (hv-tlbflush)",
953 .flags = {
954 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
955 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
956 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
958 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
960 [HYPERV_FEAT_EVMCS] = {
961 .desc = "enlightened VMCS (hv-evmcs)",
962 .flags = {
963 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
964 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
966 .dependencies = BIT(HYPERV_FEAT_VAPIC)
968 [HYPERV_FEAT_IPI] = {
969 .desc = "paravirtualized IPI (hv-ipi)",
970 .flags = {
971 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
972 .bits = HV_CLUSTER_IPI_RECOMMENDED |
973 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
975 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
977 [HYPERV_FEAT_STIMER_DIRECT] = {
978 .desc = "direct mode synthetic timers (hv-stimer-direct)",
979 .flags = {
980 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
981 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
983 .dependencies = BIT(HYPERV_FEAT_STIMER)
985 [HYPERV_FEAT_AVIC] = {
986 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
987 .flags = {
988 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
989 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
992 #ifdef CONFIG_SYNDBG
993 [HYPERV_FEAT_SYNDBG] = {
994 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
995 .flags = {
996 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
997 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
999 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1001 #endif
1002 [HYPERV_FEAT_MSR_BITMAP] = {
1003 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1004 .flags = {
1005 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1006 .bits = HV_NESTED_MSR_BITMAP}
1009 [HYPERV_FEAT_XMM_INPUT] = {
1010 .desc = "XMM fast hypercall input (hv-xmm-input)",
1011 .flags = {
1012 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1013 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1016 [HYPERV_FEAT_TLBFLUSH_EXT] = {
1017 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1018 .flags = {
1019 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1020 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1022 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1024 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1025 .desc = "direct TLB flush (hv-tlbflush-direct)",
1026 .flags = {
1027 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1028 .bits = HV_NESTED_DIRECT_FLUSH}
1030 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1034 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1035 bool do_sys_ioctl)
1037 struct kvm_cpuid2 *cpuid;
1038 int r, size;
1040 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1041 cpuid = g_malloc0(size);
1042 cpuid->nent = max;
1044 if (do_sys_ioctl) {
1045 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1046 } else {
1047 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1049 if (r == 0 && cpuid->nent >= max) {
1050 r = -E2BIG;
1052 if (r < 0) {
1053 if (r == -E2BIG) {
1054 g_free(cpuid);
1055 return NULL;
1056 } else {
1057 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1058 strerror(-r));
1059 exit(1);
1062 return cpuid;
1066 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1067 * for all entries.
1069 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1071 struct kvm_cpuid2 *cpuid;
1072 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1073 int max = 11;
1074 int i;
1075 bool do_sys_ioctl;
1077 do_sys_ioctl =
1078 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1081 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1082 * unsupported, kvm_hyperv_expand_features() checks for that.
1084 assert(do_sys_ioctl || cs->kvm_state);
1087 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1088 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1089 * it and re-trying until we succeed.
1091 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1092 max++;
1096 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1097 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1098 * information early, just check for the capability and set the bit
1099 * manually.
1101 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1102 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1103 for (i = 0; i < cpuid->nent; i++) {
1104 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1105 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1110 return cpuid;
1114 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1115 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1117 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1119 X86CPU *cpu = X86_CPU(cs);
1120 struct kvm_cpuid2 *cpuid;
1121 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1123 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1124 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1125 cpuid->nent = 2;
1127 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1128 entry_feat = &cpuid->entries[0];
1129 entry_feat->function = HV_CPUID_FEATURES;
1131 entry_recomm = &cpuid->entries[1];
1132 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1133 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1135 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1136 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1137 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1138 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1139 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1140 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1143 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1144 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1145 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1148 if (has_msr_hv_frequencies) {
1149 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1150 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1153 if (has_msr_hv_crash) {
1154 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1157 if (has_msr_hv_reenlightenment) {
1158 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1161 if (has_msr_hv_reset) {
1162 entry_feat->eax |= HV_RESET_AVAILABLE;
1165 if (has_msr_hv_vpindex) {
1166 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1169 if (has_msr_hv_runtime) {
1170 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1173 if (has_msr_hv_synic) {
1174 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1175 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1177 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1178 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1182 if (has_msr_hv_stimer) {
1183 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1186 if (has_msr_hv_syndbg_options) {
1187 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1188 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1189 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1192 if (kvm_check_extension(cs->kvm_state,
1193 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1194 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1195 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1198 if (kvm_check_extension(cs->kvm_state,
1199 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1200 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1203 if (kvm_check_extension(cs->kvm_state,
1204 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1205 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1206 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1209 return cpuid;
1212 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1214 struct kvm_cpuid_entry2 *entry;
1215 struct kvm_cpuid2 *cpuid;
1217 if (hv_cpuid_cache) {
1218 cpuid = hv_cpuid_cache;
1219 } else {
1220 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1221 cpuid = get_supported_hv_cpuid(cs);
1222 } else {
1224 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1225 * before KVM context is created but this is only done when
1226 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1227 * KVM_CAP_HYPERV_CPUID.
1229 assert(cs->kvm_state);
1231 cpuid = get_supported_hv_cpuid_legacy(cs);
1233 hv_cpuid_cache = cpuid;
1236 if (!cpuid) {
1237 return 0;
1240 entry = cpuid_find_entry(cpuid, func, 0);
1241 if (!entry) {
1242 return 0;
1245 return cpuid_entry_get_reg(entry, reg);
1248 static bool hyperv_feature_supported(CPUState *cs, int feature)
1250 uint32_t func, bits;
1251 int i, reg;
1253 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1255 func = kvm_hyperv_properties[feature].flags[i].func;
1256 reg = kvm_hyperv_properties[feature].flags[i].reg;
1257 bits = kvm_hyperv_properties[feature].flags[i].bits;
1259 if (!func) {
1260 continue;
1263 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1264 return false;
1268 return true;
1271 /* Checks that all feature dependencies are enabled */
1272 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1274 uint64_t deps;
1275 int dep_feat;
1277 deps = kvm_hyperv_properties[feature].dependencies;
1278 while (deps) {
1279 dep_feat = ctz64(deps);
1280 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1281 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1282 kvm_hyperv_properties[feature].desc,
1283 kvm_hyperv_properties[dep_feat].desc);
1284 return false;
1286 deps &= ~(1ull << dep_feat);
1289 return true;
1292 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1294 X86CPU *cpu = X86_CPU(cs);
1295 uint32_t r = 0;
1296 int i, j;
1298 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1299 if (!hyperv_feat_enabled(cpu, i)) {
1300 continue;
1303 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1304 if (kvm_hyperv_properties[i].flags[j].func != func) {
1305 continue;
1307 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1308 continue;
1311 r |= kvm_hyperv_properties[i].flags[j].bits;
1315 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1316 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1317 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1318 r |= DEFAULT_EVMCS_VERSION;
1322 return r;
1326 * Expand Hyper-V CPU features. In partucular, check that all the requested
1327 * features are supported by the host and the sanity of the configuration
1328 * (that all the required dependencies are included). Also, this takes care
1329 * of 'hv_passthrough' mode and fills the environment with all supported
1330 * Hyper-V features.
1332 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1334 CPUState *cs = CPU(cpu);
1335 Error *local_err = NULL;
1336 int feat;
1338 if (!hyperv_enabled(cpu))
1339 return true;
1342 * When kvm_hyperv_expand_features is called at CPU feature expansion
1343 * time per-CPU kvm_state is not available yet so we can only proceed
1344 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1346 if (!cs->kvm_state &&
1347 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1348 return true;
1350 if (cpu->hyperv_passthrough) {
1351 cpu->hyperv_vendor_id[0] =
1352 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1353 cpu->hyperv_vendor_id[1] =
1354 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1355 cpu->hyperv_vendor_id[2] =
1356 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1357 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1358 sizeof(cpu->hyperv_vendor_id) + 1);
1359 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1360 sizeof(cpu->hyperv_vendor_id));
1361 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1363 cpu->hyperv_interface_id[0] =
1364 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1365 cpu->hyperv_interface_id[1] =
1366 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1367 cpu->hyperv_interface_id[2] =
1368 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1369 cpu->hyperv_interface_id[3] =
1370 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1372 cpu->hyperv_ver_id_build =
1373 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1374 cpu->hyperv_ver_id_major =
1375 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1376 cpu->hyperv_ver_id_minor =
1377 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1378 cpu->hyperv_ver_id_sp =
1379 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1380 cpu->hyperv_ver_id_sb =
1381 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1382 cpu->hyperv_ver_id_sn =
1383 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1385 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1386 R_EAX);
1387 cpu->hyperv_limits[0] =
1388 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1389 cpu->hyperv_limits[1] =
1390 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1391 cpu->hyperv_limits[2] =
1392 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1394 cpu->hyperv_spinlock_attempts =
1395 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1398 * Mark feature as enabled in 'cpu->hyperv_features' as
1399 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1401 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1402 if (hyperv_feature_supported(cs, feat)) {
1403 cpu->hyperv_features |= BIT(feat);
1406 } else {
1407 /* Check features availability and dependencies */
1408 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1409 /* If the feature was not requested skip it. */
1410 if (!hyperv_feat_enabled(cpu, feat)) {
1411 continue;
1414 /* Check if the feature is supported by KVM */
1415 if (!hyperv_feature_supported(cs, feat)) {
1416 error_setg(errp, "Hyper-V %s is not supported by kernel",
1417 kvm_hyperv_properties[feat].desc);
1418 return false;
1421 /* Check dependencies */
1422 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1423 error_propagate(errp, local_err);
1424 return false;
1429 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1430 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1431 !cpu->hyperv_synic_kvm_only &&
1432 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1433 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1434 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1435 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1436 return false;
1439 return true;
1443 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1445 static int hyperv_fill_cpuids(CPUState *cs,
1446 struct kvm_cpuid_entry2 *cpuid_ent)
1448 X86CPU *cpu = X86_CPU(cs);
1449 struct kvm_cpuid_entry2 *c;
1450 uint32_t signature[3];
1451 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1452 uint32_t nested_eax =
1453 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1455 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1456 HV_CPUID_IMPLEMENT_LIMITS;
1458 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1459 max_cpuid_leaf =
1460 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1463 c = &cpuid_ent[cpuid_i++];
1464 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1465 c->eax = max_cpuid_leaf;
1466 c->ebx = cpu->hyperv_vendor_id[0];
1467 c->ecx = cpu->hyperv_vendor_id[1];
1468 c->edx = cpu->hyperv_vendor_id[2];
1470 c = &cpuid_ent[cpuid_i++];
1471 c->function = HV_CPUID_INTERFACE;
1472 c->eax = cpu->hyperv_interface_id[0];
1473 c->ebx = cpu->hyperv_interface_id[1];
1474 c->ecx = cpu->hyperv_interface_id[2];
1475 c->edx = cpu->hyperv_interface_id[3];
1477 c = &cpuid_ent[cpuid_i++];
1478 c->function = HV_CPUID_VERSION;
1479 c->eax = cpu->hyperv_ver_id_build;
1480 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1481 cpu->hyperv_ver_id_minor;
1482 c->ecx = cpu->hyperv_ver_id_sp;
1483 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1484 (cpu->hyperv_ver_id_sn & 0xffffff);
1486 c = &cpuid_ent[cpuid_i++];
1487 c->function = HV_CPUID_FEATURES;
1488 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1489 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1490 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1492 /* Unconditionally required with any Hyper-V enlightenment */
1493 c->eax |= HV_HYPERCALL_AVAILABLE;
1495 /* SynIC and Vmbus devices require messages/signals hypercalls */
1496 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1497 !cpu->hyperv_synic_kvm_only) {
1498 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1502 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1503 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1505 c = &cpuid_ent[cpuid_i++];
1506 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1507 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1508 c->ebx = cpu->hyperv_spinlock_attempts;
1510 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1511 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1512 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1515 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1516 c->eax |= HV_NO_NONARCH_CORESHARING;
1517 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1518 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1519 HV_NO_NONARCH_CORESHARING;
1522 c = &cpuid_ent[cpuid_i++];
1523 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1524 c->eax = cpu->hv_max_vps;
1525 c->ebx = cpu->hyperv_limits[0];
1526 c->ecx = cpu->hyperv_limits[1];
1527 c->edx = cpu->hyperv_limits[2];
1529 if (nested_eax) {
1530 uint32_t function;
1532 /* Create zeroed 0x40000006..0x40000009 leaves */
1533 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1534 function < HV_CPUID_NESTED_FEATURES; function++) {
1535 c = &cpuid_ent[cpuid_i++];
1536 c->function = function;
1539 c = &cpuid_ent[cpuid_i++];
1540 c->function = HV_CPUID_NESTED_FEATURES;
1541 c->eax = nested_eax;
1544 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1545 c = &cpuid_ent[cpuid_i++];
1546 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1547 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1548 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1549 memcpy(signature, "Microsoft VS", 12);
1550 c->eax = 0;
1551 c->ebx = signature[0];
1552 c->ecx = signature[1];
1553 c->edx = signature[2];
1555 c = &cpuid_ent[cpuid_i++];
1556 c->function = HV_CPUID_SYNDBG_INTERFACE;
1557 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1558 c->eax = signature[0];
1559 c->ebx = 0;
1560 c->ecx = 0;
1561 c->edx = 0;
1563 c = &cpuid_ent[cpuid_i++];
1564 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1565 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1566 c->ebx = 0;
1567 c->ecx = 0;
1568 c->edx = 0;
1571 return cpuid_i;
1574 static Error *hv_passthrough_mig_blocker;
1575 static Error *hv_no_nonarch_cs_mig_blocker;
1577 /* Checks that the exposed eVMCS version range is supported by KVM */
1578 static bool evmcs_version_supported(uint16_t evmcs_version,
1579 uint16_t supported_evmcs_version)
1581 uint8_t min_version = evmcs_version & 0xff;
1582 uint8_t max_version = evmcs_version >> 8;
1583 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1584 uint8_t max_supported_version = supported_evmcs_version >> 8;
1586 return (min_version >= min_supported_version) &&
1587 (max_version <= max_supported_version);
1590 static int hyperv_init_vcpu(X86CPU *cpu)
1592 CPUState *cs = CPU(cpu);
1593 Error *local_err = NULL;
1594 int ret;
1596 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1597 error_setg(&hv_passthrough_mig_blocker,
1598 "'hv-passthrough' CPU flag prevents migration, use explicit"
1599 " set of hv-* flags instead");
1600 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1601 if (ret < 0) {
1602 error_report_err(local_err);
1603 return ret;
1607 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1608 hv_no_nonarch_cs_mig_blocker == NULL) {
1609 error_setg(&hv_no_nonarch_cs_mig_blocker,
1610 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1611 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1612 " make sure SMT is disabled and/or that vCPUs are properly"
1613 " pinned)");
1614 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1615 if (ret < 0) {
1616 error_report_err(local_err);
1617 return ret;
1621 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1623 * the kernel doesn't support setting vp_index; assert that its value
1624 * is in sync
1626 uint64_t value;
1628 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1629 if (ret < 0) {
1630 return ret;
1633 if (value != hyperv_vp_index(CPU(cpu))) {
1634 error_report("kernel's vp_index != QEMU's vp_index");
1635 return -ENXIO;
1639 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1640 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1641 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1642 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1643 if (ret < 0) {
1644 error_report("failed to turn on HyperV SynIC in KVM: %s",
1645 strerror(-ret));
1646 return ret;
1649 if (!cpu->hyperv_synic_kvm_only) {
1650 ret = hyperv_x86_synic_add(cpu);
1651 if (ret < 0) {
1652 error_report("failed to create HyperV SynIC: %s",
1653 strerror(-ret));
1654 return ret;
1659 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1660 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1661 uint16_t supported_evmcs_version;
1663 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1664 (uintptr_t)&supported_evmcs_version);
1667 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1668 * option sets. Note: we hardcode the maximum supported eVMCS version
1669 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1670 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1671 * to be added.
1673 if (ret < 0) {
1674 error_report("Hyper-V %s is not supported by kernel",
1675 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1676 return ret;
1679 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1680 error_report("eVMCS version range [%d..%d] is not supported by "
1681 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1682 evmcs_version >> 8, supported_evmcs_version & 0xff,
1683 supported_evmcs_version >> 8);
1684 return -ENOTSUP;
1688 if (cpu->hyperv_enforce_cpuid) {
1689 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1690 if (ret < 0) {
1691 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1692 strerror(-ret));
1693 return ret;
1697 return 0;
1700 static Error *invtsc_mig_blocker;
1702 #define KVM_MAX_CPUID_ENTRIES 100
1704 static void kvm_init_xsave(CPUX86State *env)
1706 if (has_xsave2) {
1707 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1708 } else if (has_xsave) {
1709 env->xsave_buf_len = sizeof(struct kvm_xsave);
1710 } else {
1711 return;
1714 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1715 memset(env->xsave_buf, 0, env->xsave_buf_len);
1717 * The allocated storage must be large enough for all of the
1718 * possible XSAVE state components.
1720 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1721 env->xsave_buf_len);
1724 static void kvm_init_nested_state(CPUX86State *env)
1726 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1727 uint32_t size;
1729 if (!env->nested_state) {
1730 return;
1733 size = env->nested_state->size;
1735 memset(env->nested_state, 0, size);
1736 env->nested_state->size = size;
1738 if (cpu_has_vmx(env)) {
1739 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1740 vmx_hdr = &env->nested_state->hdr.vmx;
1741 vmx_hdr->vmxon_pa = -1ull;
1742 vmx_hdr->vmcs12_pa = -1ull;
1743 } else if (cpu_has_svm(env)) {
1744 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1748 int kvm_arch_init_vcpu(CPUState *cs)
1750 struct {
1751 struct kvm_cpuid2 cpuid;
1752 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1753 } cpuid_data;
1755 * The kernel defines these structs with padding fields so there
1756 * should be no extra padding in our cpuid_data struct.
1758 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1759 sizeof(struct kvm_cpuid2) +
1760 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1762 X86CPU *cpu = X86_CPU(cs);
1763 CPUX86State *env = &cpu->env;
1764 uint32_t limit, i, j, cpuid_i;
1765 uint32_t unused;
1766 struct kvm_cpuid_entry2 *c;
1767 uint32_t signature[3];
1768 int kvm_base = KVM_CPUID_SIGNATURE;
1769 int max_nested_state_len;
1770 int r;
1771 Error *local_err = NULL;
1773 memset(&cpuid_data, 0, sizeof(cpuid_data));
1775 cpuid_i = 0;
1777 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1779 r = kvm_arch_set_tsc_khz(cs);
1780 if (r < 0) {
1781 return r;
1784 /* vcpu's TSC frequency is either specified by user, or following
1785 * the value used by KVM if the former is not present. In the
1786 * latter case, we query it from KVM and record in env->tsc_khz,
1787 * so that vcpu's TSC frequency can be migrated later via this field.
1789 if (!env->tsc_khz) {
1790 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1791 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1792 -ENOTSUP;
1793 if (r > 0) {
1794 env->tsc_khz = r;
1798 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1801 * kvm_hyperv_expand_features() is called here for the second time in case
1802 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1803 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1804 * check which Hyper-V enlightenments are supported and which are not, we
1805 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1806 * behavior is preserved.
1808 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1809 error_report_err(local_err);
1810 return -ENOSYS;
1813 if (hyperv_enabled(cpu)) {
1814 r = hyperv_init_vcpu(cpu);
1815 if (r) {
1816 return r;
1819 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1820 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1821 has_msr_hv_hypercall = true;
1824 if (cs->kvm_state->xen_version) {
1825 #ifdef CONFIG_XEN_EMU
1826 struct kvm_cpuid_entry2 *xen_max_leaf;
1828 memcpy(signature, "XenVMMXenVMM", 12);
1830 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1831 c->function = kvm_base + XEN_CPUID_SIGNATURE;
1832 c->eax = kvm_base + XEN_CPUID_TIME;
1833 c->ebx = signature[0];
1834 c->ecx = signature[1];
1835 c->edx = signature[2];
1837 c = &cpuid_data.entries[cpuid_i++];
1838 c->function = kvm_base + XEN_CPUID_VENDOR;
1839 c->eax = cs->kvm_state->xen_version;
1840 c->ebx = 0;
1841 c->ecx = 0;
1842 c->edx = 0;
1844 c = &cpuid_data.entries[cpuid_i++];
1845 c->function = kvm_base + XEN_CPUID_HVM_MSR;
1846 /* Number of hypercall-transfer pages */
1847 c->eax = 1;
1848 /* Hypercall MSR base address */
1849 if (hyperv_enabled(cpu)) {
1850 c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1851 kvm_xen_init(cs->kvm_state, c->ebx);
1852 } else {
1853 c->ebx = XEN_HYPERCALL_MSR;
1855 c->ecx = 0;
1856 c->edx = 0;
1858 c = &cpuid_data.entries[cpuid_i++];
1859 c->function = kvm_base + XEN_CPUID_TIME;
1860 c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1861 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1862 /* default=0 (emulate if necessary) */
1863 c->ebx = 0;
1864 /* guest tsc frequency */
1865 c->ecx = env->user_tsc_khz;
1866 /* guest tsc incarnation (migration count) */
1867 c->edx = 0;
1869 c = &cpuid_data.entries[cpuid_i++];
1870 c->function = kvm_base + XEN_CPUID_HVM;
1871 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1872 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1873 c->function = kvm_base + XEN_CPUID_HVM;
1875 if (cpu->xen_vapic) {
1876 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1877 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1880 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1882 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1883 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1884 c->ebx = cs->cpu_index;
1888 r = kvm_xen_init_vcpu(cs);
1889 if (r) {
1890 return r;
1893 kvm_base += 0x100;
1894 #else /* CONFIG_XEN_EMU */
1895 /* This should never happen as kvm_arch_init() would have died first. */
1896 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1897 abort();
1898 #endif
1899 } else if (cpu->expose_kvm) {
1900 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1901 c = &cpuid_data.entries[cpuid_i++];
1902 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1903 c->eax = KVM_CPUID_FEATURES | kvm_base;
1904 c->ebx = signature[0];
1905 c->ecx = signature[1];
1906 c->edx = signature[2];
1908 c = &cpuid_data.entries[cpuid_i++];
1909 c->function = KVM_CPUID_FEATURES | kvm_base;
1910 c->eax = env->features[FEAT_KVM];
1911 c->edx = env->features[FEAT_KVM_HINTS];
1914 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1916 if (cpu->kvm_pv_enforce_cpuid) {
1917 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1918 if (r < 0) {
1919 fprintf(stderr,
1920 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1921 strerror(-r));
1922 abort();
1926 for (i = 0; i <= limit; i++) {
1927 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1928 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1929 abort();
1931 c = &cpuid_data.entries[cpuid_i++];
1933 switch (i) {
1934 case 2: {
1935 /* Keep reading function 2 till all the input is received */
1936 int times;
1938 c->function = i;
1939 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1940 KVM_CPUID_FLAG_STATE_READ_NEXT;
1941 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1942 times = c->eax & 0xff;
1944 for (j = 1; j < times; ++j) {
1945 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1946 fprintf(stderr, "cpuid_data is full, no space for "
1947 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1948 abort();
1950 c = &cpuid_data.entries[cpuid_i++];
1951 c->function = i;
1952 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1953 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1955 break;
1957 case 0x1f:
1958 if (env->nr_dies < 2) {
1959 break;
1961 /* fallthrough */
1962 case 4:
1963 case 0xb:
1964 case 0xd:
1965 for (j = 0; ; j++) {
1966 if (i == 0xd && j == 64) {
1967 break;
1970 if (i == 0x1f && j == 64) {
1971 break;
1974 c->function = i;
1975 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1976 c->index = j;
1977 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1979 if (i == 4 && c->eax == 0) {
1980 break;
1982 if (i == 0xb && !(c->ecx & 0xff00)) {
1983 break;
1985 if (i == 0x1f && !(c->ecx & 0xff00)) {
1986 break;
1988 if (i == 0xd && c->eax == 0) {
1989 continue;
1991 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1992 fprintf(stderr, "cpuid_data is full, no space for "
1993 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1994 abort();
1996 c = &cpuid_data.entries[cpuid_i++];
1998 break;
1999 case 0x7:
2000 case 0x12:
2001 for (j = 0; ; j++) {
2002 c->function = i;
2003 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2004 c->index = j;
2005 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2007 if (j > 1 && (c->eax & 0xf) != 1) {
2008 break;
2011 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2012 fprintf(stderr, "cpuid_data is full, no space for "
2013 "cpuid(eax:0x12,ecx:0x%x)\n", j);
2014 abort();
2016 c = &cpuid_data.entries[cpuid_i++];
2018 break;
2019 case 0x14:
2020 case 0x1d:
2021 case 0x1e: {
2022 uint32_t times;
2024 c->function = i;
2025 c->index = 0;
2026 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2027 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2028 times = c->eax;
2030 for (j = 1; j <= times; ++j) {
2031 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2032 fprintf(stderr, "cpuid_data is full, no space for "
2033 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2034 abort();
2036 c = &cpuid_data.entries[cpuid_i++];
2037 c->function = i;
2038 c->index = j;
2039 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2040 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2042 break;
2044 default:
2045 c->function = i;
2046 c->flags = 0;
2047 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2048 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2050 * KVM already returns all zeroes if a CPUID entry is missing,
2051 * so we can omit it and avoid hitting KVM's 80-entry limit.
2053 cpuid_i--;
2055 break;
2059 if (limit >= 0x0a) {
2060 uint32_t eax, edx;
2062 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2064 has_architectural_pmu_version = eax & 0xff;
2065 if (has_architectural_pmu_version > 0) {
2066 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2068 /* Shouldn't be more than 32, since that's the number of bits
2069 * available in EBX to tell us _which_ counters are available.
2070 * Play it safe.
2072 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2073 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2076 if (has_architectural_pmu_version > 1) {
2077 num_architectural_pmu_fixed_counters = edx & 0x1f;
2079 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2080 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2086 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2088 for (i = 0x80000000; i <= limit; i++) {
2089 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2090 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2091 abort();
2093 c = &cpuid_data.entries[cpuid_i++];
2095 switch (i) {
2096 case 0x8000001d:
2097 /* Query for all AMD cache information leaves */
2098 for (j = 0; ; j++) {
2099 c->function = i;
2100 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2101 c->index = j;
2102 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2104 if (c->eax == 0) {
2105 break;
2107 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2108 fprintf(stderr, "cpuid_data is full, no space for "
2109 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2110 abort();
2112 c = &cpuid_data.entries[cpuid_i++];
2114 break;
2115 default:
2116 c->function = i;
2117 c->flags = 0;
2118 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2119 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2121 * KVM already returns all zeroes if a CPUID entry is missing,
2122 * so we can omit it and avoid hitting KVM's 80-entry limit.
2124 cpuid_i--;
2126 break;
2130 /* Call Centaur's CPUID instructions they are supported. */
2131 if (env->cpuid_xlevel2 > 0) {
2132 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2134 for (i = 0xC0000000; i <= limit; i++) {
2135 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2136 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2137 abort();
2139 c = &cpuid_data.entries[cpuid_i++];
2141 c->function = i;
2142 c->flags = 0;
2143 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2147 cpuid_data.cpuid.nent = cpuid_i;
2149 if (((env->cpuid_version >> 8)&0xF) >= 6
2150 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2151 (CPUID_MCE | CPUID_MCA)
2152 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2153 uint64_t mcg_cap, unsupported_caps;
2154 int banks;
2155 int ret;
2157 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2158 if (ret < 0) {
2159 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2160 return ret;
2163 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2164 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2165 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2166 return -ENOTSUP;
2169 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2170 if (unsupported_caps) {
2171 if (unsupported_caps & MCG_LMCE_P) {
2172 error_report("kvm: LMCE not supported");
2173 return -ENOTSUP;
2175 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2176 unsupported_caps);
2179 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2180 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2181 if (ret < 0) {
2182 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2183 return ret;
2187 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2189 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2190 if (c) {
2191 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2192 !!(c->ecx & CPUID_EXT_SMX);
2195 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2196 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2197 has_msr_feature_control = true;
2200 if (env->mcg_cap & MCG_LMCE_P) {
2201 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2204 if (!env->user_tsc_khz) {
2205 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2206 invtsc_mig_blocker == NULL) {
2207 error_setg(&invtsc_mig_blocker,
2208 "State blocked by non-migratable CPU device"
2209 " (invtsc flag)");
2210 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2211 if (r < 0) {
2212 error_report_err(local_err);
2213 return r;
2218 if (cpu->vmware_cpuid_freq
2219 /* Guests depend on 0x40000000 to detect this feature, so only expose
2220 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2221 && cpu->expose_kvm
2222 && kvm_base == KVM_CPUID_SIGNATURE
2223 /* TSC clock must be stable and known for this feature. */
2224 && tsc_is_stable_and_known(env)) {
2226 c = &cpuid_data.entries[cpuid_i++];
2227 c->function = KVM_CPUID_SIGNATURE | 0x10;
2228 c->eax = env->tsc_khz;
2229 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2230 c->ecx = c->edx = 0;
2232 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2233 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2236 cpuid_data.cpuid.nent = cpuid_i;
2238 cpuid_data.cpuid.padding = 0;
2239 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2240 if (r) {
2241 goto fail;
2243 kvm_init_xsave(env);
2245 max_nested_state_len = kvm_max_nested_state_length();
2246 if (max_nested_state_len > 0) {
2247 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2249 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2250 env->nested_state = g_malloc0(max_nested_state_len);
2251 env->nested_state->size = max_nested_state_len;
2253 kvm_init_nested_state(env);
2257 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2259 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2260 has_msr_tsc_aux = false;
2263 kvm_init_msrs(cpu);
2265 return 0;
2267 fail:
2268 migrate_del_blocker(invtsc_mig_blocker);
2270 return r;
2273 int kvm_arch_destroy_vcpu(CPUState *cs)
2275 X86CPU *cpu = X86_CPU(cs);
2276 CPUX86State *env = &cpu->env;
2278 g_free(env->xsave_buf);
2280 g_free(cpu->kvm_msr_buf);
2281 cpu->kvm_msr_buf = NULL;
2283 g_free(env->nested_state);
2284 env->nested_state = NULL;
2286 qemu_del_vm_change_state_handler(cpu->vmsentry);
2288 return 0;
2291 void kvm_arch_reset_vcpu(X86CPU *cpu)
2293 CPUX86State *env = &cpu->env;
2295 env->xcr0 = 1;
2296 if (kvm_irqchip_in_kernel()) {
2297 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2298 KVM_MP_STATE_UNINITIALIZED;
2299 } else {
2300 env->mp_state = KVM_MP_STATE_RUNNABLE;
2303 /* enabled by default */
2304 env->poll_control_msr = 1;
2306 kvm_init_nested_state(env);
2308 sev_es_set_reset_vector(CPU(cpu));
2311 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2313 CPUX86State *env = &cpu->env;
2314 int i;
2317 * Reset SynIC after all other devices have been reset to let them remove
2318 * their SINT routes first.
2320 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2321 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2322 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2325 hyperv_x86_synic_reset(cpu);
2329 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2331 CPUX86State *env = &cpu->env;
2333 /* APs get directly into wait-for-SIPI state. */
2334 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2335 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2339 static int kvm_get_supported_feature_msrs(KVMState *s)
2341 int ret = 0;
2343 if (kvm_feature_msrs != NULL) {
2344 return 0;
2347 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2348 return 0;
2351 struct kvm_msr_list msr_list;
2353 msr_list.nmsrs = 0;
2354 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2355 if (ret < 0 && ret != -E2BIG) {
2356 error_report("Fetch KVM feature MSR list failed: %s",
2357 strerror(-ret));
2358 return ret;
2361 assert(msr_list.nmsrs > 0);
2362 kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2363 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2365 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2366 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2368 if (ret < 0) {
2369 error_report("Fetch KVM feature MSR list failed: %s",
2370 strerror(-ret));
2371 g_free(kvm_feature_msrs);
2372 kvm_feature_msrs = NULL;
2373 return ret;
2376 return 0;
2379 static int kvm_get_supported_msrs(KVMState *s)
2381 int ret = 0;
2382 struct kvm_msr_list msr_list, *kvm_msr_list;
2385 * Obtain MSR list from KVM. These are the MSRs that we must
2386 * save/restore.
2388 msr_list.nmsrs = 0;
2389 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2390 if (ret < 0 && ret != -E2BIG) {
2391 return ret;
2394 * Old kernel modules had a bug and could write beyond the provided
2395 * memory. Allocate at least a safe amount of 1K.
2397 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2398 msr_list.nmsrs *
2399 sizeof(msr_list.indices[0])));
2401 kvm_msr_list->nmsrs = msr_list.nmsrs;
2402 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2403 if (ret >= 0) {
2404 int i;
2406 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2407 switch (kvm_msr_list->indices[i]) {
2408 case MSR_STAR:
2409 has_msr_star = true;
2410 break;
2411 case MSR_VM_HSAVE_PA:
2412 has_msr_hsave_pa = true;
2413 break;
2414 case MSR_TSC_AUX:
2415 has_msr_tsc_aux = true;
2416 break;
2417 case MSR_TSC_ADJUST:
2418 has_msr_tsc_adjust = true;
2419 break;
2420 case MSR_IA32_TSCDEADLINE:
2421 has_msr_tsc_deadline = true;
2422 break;
2423 case MSR_IA32_SMBASE:
2424 has_msr_smbase = true;
2425 break;
2426 case MSR_SMI_COUNT:
2427 has_msr_smi_count = true;
2428 break;
2429 case MSR_IA32_MISC_ENABLE:
2430 has_msr_misc_enable = true;
2431 break;
2432 case MSR_IA32_BNDCFGS:
2433 has_msr_bndcfgs = true;
2434 break;
2435 case MSR_IA32_XSS:
2436 has_msr_xss = true;
2437 break;
2438 case MSR_IA32_UMWAIT_CONTROL:
2439 has_msr_umwait = true;
2440 break;
2441 case HV_X64_MSR_CRASH_CTL:
2442 has_msr_hv_crash = true;
2443 break;
2444 case HV_X64_MSR_RESET:
2445 has_msr_hv_reset = true;
2446 break;
2447 case HV_X64_MSR_VP_INDEX:
2448 has_msr_hv_vpindex = true;
2449 break;
2450 case HV_X64_MSR_VP_RUNTIME:
2451 has_msr_hv_runtime = true;
2452 break;
2453 case HV_X64_MSR_SCONTROL:
2454 has_msr_hv_synic = true;
2455 break;
2456 case HV_X64_MSR_STIMER0_CONFIG:
2457 has_msr_hv_stimer = true;
2458 break;
2459 case HV_X64_MSR_TSC_FREQUENCY:
2460 has_msr_hv_frequencies = true;
2461 break;
2462 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2463 has_msr_hv_reenlightenment = true;
2464 break;
2465 case HV_X64_MSR_SYNDBG_OPTIONS:
2466 has_msr_hv_syndbg_options = true;
2467 break;
2468 case MSR_IA32_SPEC_CTRL:
2469 has_msr_spec_ctrl = true;
2470 break;
2471 case MSR_AMD64_TSC_RATIO:
2472 has_tsc_scale_msr = true;
2473 break;
2474 case MSR_IA32_TSX_CTRL:
2475 has_msr_tsx_ctrl = true;
2476 break;
2477 case MSR_VIRT_SSBD:
2478 has_msr_virt_ssbd = true;
2479 break;
2480 case MSR_IA32_ARCH_CAPABILITIES:
2481 has_msr_arch_capabs = true;
2482 break;
2483 case MSR_IA32_CORE_CAPABILITY:
2484 has_msr_core_capabs = true;
2485 break;
2486 case MSR_IA32_PERF_CAPABILITIES:
2487 has_msr_perf_capabs = true;
2488 break;
2489 case MSR_IA32_VMX_VMFUNC:
2490 has_msr_vmx_vmfunc = true;
2491 break;
2492 case MSR_IA32_UCODE_REV:
2493 has_msr_ucode_rev = true;
2494 break;
2495 case MSR_IA32_VMX_PROCBASED_CTLS2:
2496 has_msr_vmx_procbased_ctls2 = true;
2497 break;
2498 case MSR_IA32_PKRS:
2499 has_msr_pkrs = true;
2500 break;
2505 g_free(kvm_msr_list);
2507 return ret;
2510 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2511 uint64_t *val)
2513 CPUState *cs = CPU(cpu);
2515 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2516 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2518 return true;
2521 static Notifier smram_machine_done;
2522 static KVMMemoryListener smram_listener;
2523 static AddressSpace smram_address_space;
2524 static MemoryRegion smram_as_root;
2525 static MemoryRegion smram_as_mem;
2527 static void register_smram_listener(Notifier *n, void *unused)
2529 MemoryRegion *smram =
2530 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2532 /* Outer container... */
2533 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2534 memory_region_set_enabled(&smram_as_root, true);
2536 /* ... with two regions inside: normal system memory with low
2537 * priority, and...
2539 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2540 get_system_memory(), 0, ~0ull);
2541 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2542 memory_region_set_enabled(&smram_as_mem, true);
2544 if (smram) {
2545 /* ... SMRAM with higher priority */
2546 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2547 memory_region_set_enabled(smram, true);
2550 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2551 kvm_memory_listener_register(kvm_state, &smram_listener,
2552 &smram_address_space, 1, "kvm-smram");
2555 int kvm_arch_init(MachineState *ms, KVMState *s)
2557 uint64_t identity_base = 0xfffbc000;
2558 uint64_t shadow_mem;
2559 int ret;
2560 struct utsname utsname;
2561 Error *local_err = NULL;
2564 * Initialize SEV context, if required
2566 * If no memory encryption is requested (ms->cgs == NULL) this is
2567 * a no-op.
2569 * It's also a no-op if a non-SEV confidential guest support
2570 * mechanism is selected. SEV is the only mechanism available to
2571 * select on x86 at present, so this doesn't arise, but if new
2572 * mechanisms are supported in future (e.g. TDX), they'll need
2573 * their own initialization either here or elsewhere.
2575 ret = sev_kvm_init(ms->cgs, &local_err);
2576 if (ret < 0) {
2577 error_report_err(local_err);
2578 return ret;
2581 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2582 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2583 return -ENOTSUP;
2586 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2587 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2588 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2589 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2591 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2593 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2594 if (has_exception_payload) {
2595 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2596 if (ret < 0) {
2597 error_report("kvm: Failed to enable exception payload cap: %s",
2598 strerror(-ret));
2599 return ret;
2603 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2604 if (has_triple_fault_event) {
2605 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2606 if (ret < 0) {
2607 error_report("kvm: Failed to enable triple fault event cap: %s",
2608 strerror(-ret));
2609 return ret;
2613 if (s->xen_version) {
2614 #ifdef CONFIG_XEN_EMU
2615 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2616 error_report("kvm: Xen support only available in PC machine");
2617 return -ENOTSUP;
2619 /* hyperv_enabled() doesn't work yet. */
2620 uint32_t msr = XEN_HYPERCALL_MSR;
2621 ret = kvm_xen_init(s, msr);
2622 if (ret < 0) {
2623 return ret;
2625 #else
2626 error_report("kvm: Xen support not enabled in qemu");
2627 return -ENOTSUP;
2628 #endif
2631 ret = kvm_get_supported_msrs(s);
2632 if (ret < 0) {
2633 return ret;
2636 kvm_get_supported_feature_msrs(s);
2638 uname(&utsname);
2639 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2642 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2643 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2644 * Since these must be part of guest physical memory, we need to allocate
2645 * them, both by setting their start addresses in the kernel and by
2646 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2648 * Older KVM versions may not support setting the identity map base. In
2649 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2650 * size.
2652 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2653 /* Allows up to 16M BIOSes. */
2654 identity_base = 0xfeffc000;
2656 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2657 if (ret < 0) {
2658 return ret;
2662 /* Set TSS base one page after EPT identity map. */
2663 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2664 if (ret < 0) {
2665 return ret;
2668 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2669 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2670 if (ret < 0) {
2671 fprintf(stderr, "e820_add_entry() table is full\n");
2672 return ret;
2675 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2676 if (shadow_mem != -1) {
2677 shadow_mem /= 4096;
2678 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2679 if (ret < 0) {
2680 return ret;
2684 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2685 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2686 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2687 smram_machine_done.notify = register_smram_listener;
2688 qemu_add_machine_init_done_notifier(&smram_machine_done);
2691 if (enable_cpu_pm) {
2692 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2693 int ret;
2695 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2696 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2697 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2698 #endif
2699 if (disable_exits) {
2700 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2701 KVM_X86_DISABLE_EXITS_HLT |
2702 KVM_X86_DISABLE_EXITS_PAUSE |
2703 KVM_X86_DISABLE_EXITS_CSTATE);
2706 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2707 disable_exits);
2708 if (ret < 0) {
2709 error_report("kvm: guest stopping CPU not supported: %s",
2710 strerror(-ret));
2714 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2715 X86MachineState *x86ms = X86_MACHINE(ms);
2717 if (x86ms->bus_lock_ratelimit > 0) {
2718 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2719 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2720 error_report("kvm: bus lock detection unsupported");
2721 return -ENOTSUP;
2723 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2724 KVM_BUS_LOCK_DETECTION_EXIT);
2725 if (ret < 0) {
2726 error_report("kvm: Failed to enable bus lock detection cap: %s",
2727 strerror(-ret));
2728 return ret;
2730 ratelimit_init(&bus_lock_ratelimit_ctrl);
2731 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2732 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2736 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2737 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2738 uint64_t notify_window_flags =
2739 ((uint64_t)s->notify_window << 32) |
2740 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2741 KVM_X86_NOTIFY_VMEXIT_USER;
2742 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2743 notify_window_flags);
2744 if (ret < 0) {
2745 error_report("kvm: Failed to enable notify vmexit cap: %s",
2746 strerror(-ret));
2747 return ret;
2750 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2751 bool r;
2753 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2754 KVM_MSR_EXIT_REASON_FILTER);
2755 if (ret) {
2756 error_report("Could not enable user space MSRs: %s",
2757 strerror(-ret));
2758 exit(1);
2761 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2762 kvm_rdmsr_core_thread_count, NULL);
2763 if (!r) {
2764 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2765 strerror(-ret));
2766 exit(1);
2770 return 0;
2773 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2775 lhs->selector = rhs->selector;
2776 lhs->base = rhs->base;
2777 lhs->limit = rhs->limit;
2778 lhs->type = 3;
2779 lhs->present = 1;
2780 lhs->dpl = 3;
2781 lhs->db = 0;
2782 lhs->s = 1;
2783 lhs->l = 0;
2784 lhs->g = 0;
2785 lhs->avl = 0;
2786 lhs->unusable = 0;
2789 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2791 unsigned flags = rhs->flags;
2792 lhs->selector = rhs->selector;
2793 lhs->base = rhs->base;
2794 lhs->limit = rhs->limit;
2795 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2796 lhs->present = (flags & DESC_P_MASK) != 0;
2797 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2798 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2799 lhs->s = (flags & DESC_S_MASK) != 0;
2800 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2801 lhs->g = (flags & DESC_G_MASK) != 0;
2802 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2803 lhs->unusable = !lhs->present;
2804 lhs->padding = 0;
2807 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2809 lhs->selector = rhs->selector;
2810 lhs->base = rhs->base;
2811 lhs->limit = rhs->limit;
2812 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2813 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2814 (rhs->dpl << DESC_DPL_SHIFT) |
2815 (rhs->db << DESC_B_SHIFT) |
2816 (rhs->s * DESC_S_MASK) |
2817 (rhs->l << DESC_L_SHIFT) |
2818 (rhs->g * DESC_G_MASK) |
2819 (rhs->avl * DESC_AVL_MASK);
2822 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2824 if (set) {
2825 *kvm_reg = *qemu_reg;
2826 } else {
2827 *qemu_reg = *kvm_reg;
2831 static int kvm_getput_regs(X86CPU *cpu, int set)
2833 CPUX86State *env = &cpu->env;
2834 struct kvm_regs regs;
2835 int ret = 0;
2837 if (!set) {
2838 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2839 if (ret < 0) {
2840 return ret;
2844 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2845 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2846 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2847 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2848 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2849 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2850 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2851 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2852 #ifdef TARGET_X86_64
2853 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2854 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2855 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2856 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2857 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2858 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2859 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2860 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2861 #endif
2863 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2864 kvm_getput_reg(&regs.rip, &env->eip, set);
2866 if (set) {
2867 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2870 return ret;
2873 static int kvm_put_fpu(X86CPU *cpu)
2875 CPUX86State *env = &cpu->env;
2876 struct kvm_fpu fpu;
2877 int i;
2879 memset(&fpu, 0, sizeof fpu);
2880 fpu.fsw = env->fpus & ~(7 << 11);
2881 fpu.fsw |= (env->fpstt & 7) << 11;
2882 fpu.fcw = env->fpuc;
2883 fpu.last_opcode = env->fpop;
2884 fpu.last_ip = env->fpip;
2885 fpu.last_dp = env->fpdp;
2886 for (i = 0; i < 8; ++i) {
2887 fpu.ftwx |= (!env->fptags[i]) << i;
2889 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2890 for (i = 0; i < CPU_NB_REGS; i++) {
2891 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2892 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2894 fpu.mxcsr = env->mxcsr;
2896 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2899 static int kvm_put_xsave(X86CPU *cpu)
2901 CPUX86State *env = &cpu->env;
2902 void *xsave = env->xsave_buf;
2904 if (!has_xsave) {
2905 return kvm_put_fpu(cpu);
2907 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2909 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2912 static int kvm_put_xcrs(X86CPU *cpu)
2914 CPUX86State *env = &cpu->env;
2915 struct kvm_xcrs xcrs = {};
2917 if (!has_xcrs) {
2918 return 0;
2921 xcrs.nr_xcrs = 1;
2922 xcrs.flags = 0;
2923 xcrs.xcrs[0].xcr = 0;
2924 xcrs.xcrs[0].value = env->xcr0;
2925 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2928 static int kvm_put_sregs(X86CPU *cpu)
2930 CPUX86State *env = &cpu->env;
2931 struct kvm_sregs sregs;
2934 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2935 * always followed by KVM_SET_VCPU_EVENTS.
2937 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2939 if ((env->eflags & VM_MASK)) {
2940 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2941 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2942 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2943 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2944 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2945 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2946 } else {
2947 set_seg(&sregs.cs, &env->segs[R_CS]);
2948 set_seg(&sregs.ds, &env->segs[R_DS]);
2949 set_seg(&sregs.es, &env->segs[R_ES]);
2950 set_seg(&sregs.fs, &env->segs[R_FS]);
2951 set_seg(&sregs.gs, &env->segs[R_GS]);
2952 set_seg(&sregs.ss, &env->segs[R_SS]);
2955 set_seg(&sregs.tr, &env->tr);
2956 set_seg(&sregs.ldt, &env->ldt);
2958 sregs.idt.limit = env->idt.limit;
2959 sregs.idt.base = env->idt.base;
2960 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2961 sregs.gdt.limit = env->gdt.limit;
2962 sregs.gdt.base = env->gdt.base;
2963 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2965 sregs.cr0 = env->cr[0];
2966 sregs.cr2 = env->cr[2];
2967 sregs.cr3 = env->cr[3];
2968 sregs.cr4 = env->cr[4];
2970 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2971 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2973 sregs.efer = env->efer;
2975 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2978 static int kvm_put_sregs2(X86CPU *cpu)
2980 CPUX86State *env = &cpu->env;
2981 struct kvm_sregs2 sregs;
2982 int i;
2984 sregs.flags = 0;
2986 if ((env->eflags & VM_MASK)) {
2987 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2988 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2989 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2990 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2991 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2992 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2993 } else {
2994 set_seg(&sregs.cs, &env->segs[R_CS]);
2995 set_seg(&sregs.ds, &env->segs[R_DS]);
2996 set_seg(&sregs.es, &env->segs[R_ES]);
2997 set_seg(&sregs.fs, &env->segs[R_FS]);
2998 set_seg(&sregs.gs, &env->segs[R_GS]);
2999 set_seg(&sregs.ss, &env->segs[R_SS]);
3002 set_seg(&sregs.tr, &env->tr);
3003 set_seg(&sregs.ldt, &env->ldt);
3005 sregs.idt.limit = env->idt.limit;
3006 sregs.idt.base = env->idt.base;
3007 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3008 sregs.gdt.limit = env->gdt.limit;
3009 sregs.gdt.base = env->gdt.base;
3010 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3012 sregs.cr0 = env->cr[0];
3013 sregs.cr2 = env->cr[2];
3014 sregs.cr3 = env->cr[3];
3015 sregs.cr4 = env->cr[4];
3017 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3018 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3020 sregs.efer = env->efer;
3022 if (env->pdptrs_valid) {
3023 for (i = 0; i < 4; i++) {
3024 sregs.pdptrs[i] = env->pdptrs[i];
3026 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3029 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3033 static void kvm_msr_buf_reset(X86CPU *cpu)
3035 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3038 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3040 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3041 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3042 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3044 assert((void *)(entry + 1) <= limit);
3046 entry->index = index;
3047 entry->reserved = 0;
3048 entry->data = value;
3049 msrs->nmsrs++;
3052 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3054 kvm_msr_buf_reset(cpu);
3055 kvm_msr_entry_add(cpu, index, value);
3057 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3060 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3062 int ret;
3063 struct {
3064 struct kvm_msrs info;
3065 struct kvm_msr_entry entries[1];
3066 } msr_data = {
3067 .info.nmsrs = 1,
3068 .entries[0].index = index,
3071 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3072 if (ret < 0) {
3073 return ret;
3075 assert(ret == 1);
3076 *value = msr_data.entries[0].data;
3077 return ret;
3079 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3081 int ret;
3083 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3084 assert(ret == 1);
3087 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3089 CPUX86State *env = &cpu->env;
3090 int ret;
3092 if (!has_msr_tsc_deadline) {
3093 return 0;
3096 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3097 if (ret < 0) {
3098 return ret;
3101 assert(ret == 1);
3102 return 0;
3106 * Provide a separate write service for the feature control MSR in order to
3107 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3108 * before writing any other state because forcibly leaving nested mode
3109 * invalidates the VCPU state.
3111 static int kvm_put_msr_feature_control(X86CPU *cpu)
3113 int ret;
3115 if (!has_msr_feature_control) {
3116 return 0;
3119 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3120 cpu->env.msr_ia32_feature_control);
3121 if (ret < 0) {
3122 return ret;
3125 assert(ret == 1);
3126 return 0;
3129 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3131 uint32_t default1, can_be_one, can_be_zero;
3132 uint32_t must_be_one;
3134 switch (index) {
3135 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3136 default1 = 0x00000016;
3137 break;
3138 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3139 default1 = 0x0401e172;
3140 break;
3141 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3142 default1 = 0x000011ff;
3143 break;
3144 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3145 default1 = 0x00036dff;
3146 break;
3147 case MSR_IA32_VMX_PROCBASED_CTLS2:
3148 default1 = 0;
3149 break;
3150 default:
3151 abort();
3154 /* If a feature bit is set, the control can be either set or clear.
3155 * Otherwise the value is limited to either 0 or 1 by default1.
3157 can_be_one = features | default1;
3158 can_be_zero = features | ~default1;
3159 must_be_one = ~can_be_zero;
3162 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3163 * Bit 32:63 -> 1 if the control bit can be one.
3165 return must_be_one | (((uint64_t)can_be_one) << 32);
3168 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3170 uint64_t kvm_vmx_basic =
3171 kvm_arch_get_supported_msr_feature(kvm_state,
3172 MSR_IA32_VMX_BASIC);
3174 if (!kvm_vmx_basic) {
3175 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3176 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3178 return;
3181 uint64_t kvm_vmx_misc =
3182 kvm_arch_get_supported_msr_feature(kvm_state,
3183 MSR_IA32_VMX_MISC);
3184 uint64_t kvm_vmx_ept_vpid =
3185 kvm_arch_get_supported_msr_feature(kvm_state,
3186 MSR_IA32_VMX_EPT_VPID_CAP);
3189 * If the guest is 64-bit, a value of 1 is allowed for the host address
3190 * space size vmexit control.
3192 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3193 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3196 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3197 * not change them for backwards compatibility.
3199 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3200 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3201 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3202 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3205 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3206 * change in the future but are always zero for now, clear them to be
3207 * future proof. Bits 32-63 in theory could change, though KVM does
3208 * not support dual-monitor treatment and probably never will; mask
3209 * them out as well.
3211 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3212 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3213 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3216 * EPT memory types should not change either, so we do not bother
3217 * adding features for them.
3219 uint64_t fixed_vmx_ept_mask =
3220 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3221 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3222 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3224 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3225 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3226 f[FEAT_VMX_PROCBASED_CTLS]));
3227 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3228 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3229 f[FEAT_VMX_PINBASED_CTLS]));
3230 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3231 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3232 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3233 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3234 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3235 f[FEAT_VMX_ENTRY_CTLS]));
3236 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3237 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3238 f[FEAT_VMX_SECONDARY_CTLS]));
3239 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3240 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3241 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3242 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3243 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3244 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3245 if (has_msr_vmx_vmfunc) {
3246 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3250 * Just to be safe, write these with constant values. The CRn_FIXED1
3251 * MSRs are generated by KVM based on the vCPU's CPUID.
3253 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3254 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3255 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3256 CR4_VMXE_MASK);
3258 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3259 /* TSC multiplier (0x2032). */
3260 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3261 } else {
3262 /* Preemption timer (0x482E). */
3263 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3267 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3269 uint64_t kvm_perf_cap =
3270 kvm_arch_get_supported_msr_feature(kvm_state,
3271 MSR_IA32_PERF_CAPABILITIES);
3273 if (kvm_perf_cap) {
3274 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3275 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3279 static int kvm_buf_set_msrs(X86CPU *cpu)
3281 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3282 if (ret < 0) {
3283 return ret;
3286 if (ret < cpu->kvm_msr_buf->nmsrs) {
3287 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3288 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3289 (uint32_t)e->index, (uint64_t)e->data);
3292 assert(ret == cpu->kvm_msr_buf->nmsrs);
3293 return 0;
3296 static void kvm_init_msrs(X86CPU *cpu)
3298 CPUX86State *env = &cpu->env;
3300 kvm_msr_buf_reset(cpu);
3301 if (has_msr_arch_capabs) {
3302 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3303 env->features[FEAT_ARCH_CAPABILITIES]);
3306 if (has_msr_core_capabs) {
3307 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3308 env->features[FEAT_CORE_CAPABILITY]);
3311 if (has_msr_perf_capabs && cpu->enable_pmu) {
3312 kvm_msr_entry_add_perf(cpu, env->features);
3315 if (has_msr_ucode_rev) {
3316 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3320 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3321 * all kernels with MSR features should have them.
3323 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3324 kvm_msr_entry_add_vmx(cpu, env->features);
3327 assert(kvm_buf_set_msrs(cpu) == 0);
3330 static int kvm_put_msrs(X86CPU *cpu, int level)
3332 CPUX86State *env = &cpu->env;
3333 int i;
3335 kvm_msr_buf_reset(cpu);
3337 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3338 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3339 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3340 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3341 if (has_msr_star) {
3342 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3344 if (has_msr_hsave_pa) {
3345 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3347 if (has_msr_tsc_aux) {
3348 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3350 if (has_msr_tsc_adjust) {
3351 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3353 if (has_msr_misc_enable) {
3354 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3355 env->msr_ia32_misc_enable);
3357 if (has_msr_smbase) {
3358 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3360 if (has_msr_smi_count) {
3361 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3363 if (has_msr_pkrs) {
3364 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3366 if (has_msr_bndcfgs) {
3367 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3369 if (has_msr_xss) {
3370 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3372 if (has_msr_umwait) {
3373 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3375 if (has_msr_spec_ctrl) {
3376 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3378 if (has_tsc_scale_msr) {
3379 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3382 if (has_msr_tsx_ctrl) {
3383 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3385 if (has_msr_virt_ssbd) {
3386 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3389 #ifdef TARGET_X86_64
3390 if (lm_capable_kernel) {
3391 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3392 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3393 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3394 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3396 #endif
3399 * The following MSRs have side effects on the guest or are too heavy
3400 * for normal writeback. Limit them to reset or full state updates.
3402 if (level >= KVM_PUT_RESET_STATE) {
3403 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3404 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3405 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3406 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3407 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3409 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3410 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3412 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3413 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3415 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3416 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3419 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3420 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3423 if (has_architectural_pmu_version > 0) {
3424 if (has_architectural_pmu_version > 1) {
3425 /* Stop the counter. */
3426 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3427 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3430 /* Set the counter values. */
3431 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3432 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3433 env->msr_fixed_counters[i]);
3435 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3436 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3437 env->msr_gp_counters[i]);
3438 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3439 env->msr_gp_evtsel[i]);
3441 if (has_architectural_pmu_version > 1) {
3442 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3443 env->msr_global_status);
3444 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3445 env->msr_global_ovf_ctrl);
3447 /* Now start the PMU. */
3448 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3449 env->msr_fixed_ctr_ctrl);
3450 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3451 env->msr_global_ctrl);
3455 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3456 * only sync them to KVM on the first cpu
3458 if (current_cpu == first_cpu) {
3459 if (has_msr_hv_hypercall) {
3460 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3461 env->msr_hv_guest_os_id);
3462 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3463 env->msr_hv_hypercall);
3465 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3466 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3467 env->msr_hv_tsc);
3469 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3470 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3471 env->msr_hv_reenlightenment_control);
3472 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3473 env->msr_hv_tsc_emulation_control);
3474 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3475 env->msr_hv_tsc_emulation_status);
3477 #ifdef CONFIG_SYNDBG
3478 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3479 has_msr_hv_syndbg_options) {
3480 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3481 hyperv_syndbg_query_options());
3483 #endif
3485 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3486 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3487 env->msr_hv_vapic);
3489 if (has_msr_hv_crash) {
3490 int j;
3492 for (j = 0; j < HV_CRASH_PARAMS; j++)
3493 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3494 env->msr_hv_crash_params[j]);
3496 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3498 if (has_msr_hv_runtime) {
3499 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3501 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3502 && hv_vpindex_settable) {
3503 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3504 hyperv_vp_index(CPU(cpu)));
3506 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3507 int j;
3509 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3511 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3512 env->msr_hv_synic_control);
3513 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3514 env->msr_hv_synic_evt_page);
3515 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3516 env->msr_hv_synic_msg_page);
3518 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3519 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3520 env->msr_hv_synic_sint[j]);
3523 if (has_msr_hv_stimer) {
3524 int j;
3526 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3527 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3528 env->msr_hv_stimer_config[j]);
3531 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3532 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3533 env->msr_hv_stimer_count[j]);
3536 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3537 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3539 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3540 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3541 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3542 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3543 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3544 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3545 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3546 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3547 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3548 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3549 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3550 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3551 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3552 /* The CPU GPs if we write to a bit above the physical limit of
3553 * the host CPU (and KVM emulates that)
3555 uint64_t mask = env->mtrr_var[i].mask;
3556 mask &= phys_mask;
3558 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3559 env->mtrr_var[i].base);
3560 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3563 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3564 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3565 0x14, 1, R_EAX) & 0x7;
3567 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3568 env->msr_rtit_ctrl);
3569 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3570 env->msr_rtit_status);
3571 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3572 env->msr_rtit_output_base);
3573 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3574 env->msr_rtit_output_mask);
3575 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3576 env->msr_rtit_cr3_match);
3577 for (i = 0; i < addr_num; i++) {
3578 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3579 env->msr_rtit_addrs[i]);
3583 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3584 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3585 env->msr_ia32_sgxlepubkeyhash[0]);
3586 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3587 env->msr_ia32_sgxlepubkeyhash[1]);
3588 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3589 env->msr_ia32_sgxlepubkeyhash[2]);
3590 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3591 env->msr_ia32_sgxlepubkeyhash[3]);
3594 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3595 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3596 env->msr_xfd);
3597 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3598 env->msr_xfd_err);
3601 if (kvm_enabled() && cpu->enable_pmu &&
3602 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3603 uint64_t depth;
3604 int i, ret;
3607 * Only migrate Arch LBR states when the host Arch LBR depth
3608 * equals that of source guest's, this is to avoid mismatch
3609 * of guest/host config for the msr hence avoid unexpected
3610 * misbehavior.
3612 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3614 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3615 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3616 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3618 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3619 if (!env->lbr_records[i].from) {
3620 continue;
3622 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3623 env->lbr_records[i].from);
3624 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3625 env->lbr_records[i].to);
3626 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3627 env->lbr_records[i].info);
3632 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3633 * kvm_put_msr_feature_control. */
3636 if (env->mcg_cap) {
3637 int i;
3639 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3640 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3641 if (has_msr_mcg_ext_ctl) {
3642 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3644 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3645 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3649 return kvm_buf_set_msrs(cpu);
3653 static int kvm_get_fpu(X86CPU *cpu)
3655 CPUX86State *env = &cpu->env;
3656 struct kvm_fpu fpu;
3657 int i, ret;
3659 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3660 if (ret < 0) {
3661 return ret;
3664 env->fpstt = (fpu.fsw >> 11) & 7;
3665 env->fpus = fpu.fsw;
3666 env->fpuc = fpu.fcw;
3667 env->fpop = fpu.last_opcode;
3668 env->fpip = fpu.last_ip;
3669 env->fpdp = fpu.last_dp;
3670 for (i = 0; i < 8; ++i) {
3671 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3673 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3674 for (i = 0; i < CPU_NB_REGS; i++) {
3675 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3676 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3678 env->mxcsr = fpu.mxcsr;
3680 return 0;
3683 static int kvm_get_xsave(X86CPU *cpu)
3685 CPUX86State *env = &cpu->env;
3686 void *xsave = env->xsave_buf;
3687 int type, ret;
3689 if (!has_xsave) {
3690 return kvm_get_fpu(cpu);
3693 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3694 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3695 if (ret < 0) {
3696 return ret;
3698 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3700 return 0;
3703 static int kvm_get_xcrs(X86CPU *cpu)
3705 CPUX86State *env = &cpu->env;
3706 int i, ret;
3707 struct kvm_xcrs xcrs;
3709 if (!has_xcrs) {
3710 return 0;
3713 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3714 if (ret < 0) {
3715 return ret;
3718 for (i = 0; i < xcrs.nr_xcrs; i++) {
3719 /* Only support xcr0 now */
3720 if (xcrs.xcrs[i].xcr == 0) {
3721 env->xcr0 = xcrs.xcrs[i].value;
3722 break;
3725 return 0;
3728 static int kvm_get_sregs(X86CPU *cpu)
3730 CPUX86State *env = &cpu->env;
3731 struct kvm_sregs sregs;
3732 int ret;
3734 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3735 if (ret < 0) {
3736 return ret;
3740 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3741 * always preceded by KVM_GET_VCPU_EVENTS.
3744 get_seg(&env->segs[R_CS], &sregs.cs);
3745 get_seg(&env->segs[R_DS], &sregs.ds);
3746 get_seg(&env->segs[R_ES], &sregs.es);
3747 get_seg(&env->segs[R_FS], &sregs.fs);
3748 get_seg(&env->segs[R_GS], &sregs.gs);
3749 get_seg(&env->segs[R_SS], &sregs.ss);
3751 get_seg(&env->tr, &sregs.tr);
3752 get_seg(&env->ldt, &sregs.ldt);
3754 env->idt.limit = sregs.idt.limit;
3755 env->idt.base = sregs.idt.base;
3756 env->gdt.limit = sregs.gdt.limit;
3757 env->gdt.base = sregs.gdt.base;
3759 env->cr[0] = sregs.cr0;
3760 env->cr[2] = sregs.cr2;
3761 env->cr[3] = sregs.cr3;
3762 env->cr[4] = sregs.cr4;
3764 env->efer = sregs.efer;
3766 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3767 x86_update_hflags(env);
3769 return 0;
3772 static int kvm_get_sregs2(X86CPU *cpu)
3774 CPUX86State *env = &cpu->env;
3775 struct kvm_sregs2 sregs;
3776 int i, ret;
3778 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3779 if (ret < 0) {
3780 return ret;
3783 get_seg(&env->segs[R_CS], &sregs.cs);
3784 get_seg(&env->segs[R_DS], &sregs.ds);
3785 get_seg(&env->segs[R_ES], &sregs.es);
3786 get_seg(&env->segs[R_FS], &sregs.fs);
3787 get_seg(&env->segs[R_GS], &sregs.gs);
3788 get_seg(&env->segs[R_SS], &sregs.ss);
3790 get_seg(&env->tr, &sregs.tr);
3791 get_seg(&env->ldt, &sregs.ldt);
3793 env->idt.limit = sregs.idt.limit;
3794 env->idt.base = sregs.idt.base;
3795 env->gdt.limit = sregs.gdt.limit;
3796 env->gdt.base = sregs.gdt.base;
3798 env->cr[0] = sregs.cr0;
3799 env->cr[2] = sregs.cr2;
3800 env->cr[3] = sregs.cr3;
3801 env->cr[4] = sregs.cr4;
3803 env->efer = sregs.efer;
3805 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3807 if (env->pdptrs_valid) {
3808 for (i = 0; i < 4; i++) {
3809 env->pdptrs[i] = sregs.pdptrs[i];
3813 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3814 x86_update_hflags(env);
3816 return 0;
3819 static int kvm_get_msrs(X86CPU *cpu)
3821 CPUX86State *env = &cpu->env;
3822 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3823 int ret, i;
3824 uint64_t mtrr_top_bits;
3826 kvm_msr_buf_reset(cpu);
3828 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3829 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3830 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3831 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3832 if (has_msr_star) {
3833 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3835 if (has_msr_hsave_pa) {
3836 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3838 if (has_msr_tsc_aux) {
3839 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3841 if (has_msr_tsc_adjust) {
3842 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3844 if (has_msr_tsc_deadline) {
3845 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3847 if (has_msr_misc_enable) {
3848 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3850 if (has_msr_smbase) {
3851 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3853 if (has_msr_smi_count) {
3854 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3856 if (has_msr_feature_control) {
3857 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3859 if (has_msr_pkrs) {
3860 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3862 if (has_msr_bndcfgs) {
3863 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3865 if (has_msr_xss) {
3866 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3868 if (has_msr_umwait) {
3869 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3871 if (has_msr_spec_ctrl) {
3872 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3874 if (has_tsc_scale_msr) {
3875 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3878 if (has_msr_tsx_ctrl) {
3879 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3881 if (has_msr_virt_ssbd) {
3882 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3884 if (!env->tsc_valid) {
3885 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3886 env->tsc_valid = !runstate_is_running();
3889 #ifdef TARGET_X86_64
3890 if (lm_capable_kernel) {
3891 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3892 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3893 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3894 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3896 #endif
3897 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3898 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3899 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3900 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3902 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3903 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3905 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3906 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3908 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3909 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3911 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3912 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3914 if (has_architectural_pmu_version > 0) {
3915 if (has_architectural_pmu_version > 1) {
3916 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3917 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3918 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3919 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3921 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3922 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3924 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3925 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3926 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3930 if (env->mcg_cap) {
3931 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3932 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3933 if (has_msr_mcg_ext_ctl) {
3934 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3936 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3937 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3941 if (has_msr_hv_hypercall) {
3942 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3943 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3945 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3946 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3948 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3949 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3951 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3952 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3953 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3954 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3956 if (has_msr_hv_syndbg_options) {
3957 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3959 if (has_msr_hv_crash) {
3960 int j;
3962 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3963 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3966 if (has_msr_hv_runtime) {
3967 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3969 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3970 uint32_t msr;
3972 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3973 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3974 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3975 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3976 kvm_msr_entry_add(cpu, msr, 0);
3979 if (has_msr_hv_stimer) {
3980 uint32_t msr;
3982 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3983 msr++) {
3984 kvm_msr_entry_add(cpu, msr, 0);
3987 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3988 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3989 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3990 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3991 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3992 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3993 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3994 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3995 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3998 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4000 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4001 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4002 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4006 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4007 int addr_num =
4008 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4010 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4011 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4012 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4013 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4014 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4015 for (i = 0; i < addr_num; i++) {
4016 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4020 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4021 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4022 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4023 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4024 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4027 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4028 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4029 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4032 if (kvm_enabled() && cpu->enable_pmu &&
4033 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4034 uint64_t depth;
4035 int i, ret;
4037 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4038 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4039 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4040 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4042 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4043 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4044 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4045 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4050 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4051 if (ret < 0) {
4052 return ret;
4055 if (ret < cpu->kvm_msr_buf->nmsrs) {
4056 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4057 error_report("error: failed to get MSR 0x%" PRIx32,
4058 (uint32_t)e->index);
4061 assert(ret == cpu->kvm_msr_buf->nmsrs);
4063 * MTRR masks: Each mask consists of 5 parts
4064 * a 10..0: must be zero
4065 * b 11 : valid bit
4066 * c n-1.12: actual mask bits
4067 * d 51..n: reserved must be zero
4068 * e 63.52: reserved must be zero
4070 * 'n' is the number of physical bits supported by the CPU and is
4071 * apparently always <= 52. We know our 'n' but don't know what
4072 * the destinations 'n' is; it might be smaller, in which case
4073 * it masks (c) on loading. It might be larger, in which case
4074 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4075 * we're migrating to.
4078 if (cpu->fill_mtrr_mask) {
4079 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4080 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4081 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4082 } else {
4083 mtrr_top_bits = 0;
4086 for (i = 0; i < ret; i++) {
4087 uint32_t index = msrs[i].index;
4088 switch (index) {
4089 case MSR_IA32_SYSENTER_CS:
4090 env->sysenter_cs = msrs[i].data;
4091 break;
4092 case MSR_IA32_SYSENTER_ESP:
4093 env->sysenter_esp = msrs[i].data;
4094 break;
4095 case MSR_IA32_SYSENTER_EIP:
4096 env->sysenter_eip = msrs[i].data;
4097 break;
4098 case MSR_PAT:
4099 env->pat = msrs[i].data;
4100 break;
4101 case MSR_STAR:
4102 env->star = msrs[i].data;
4103 break;
4104 #ifdef TARGET_X86_64
4105 case MSR_CSTAR:
4106 env->cstar = msrs[i].data;
4107 break;
4108 case MSR_KERNELGSBASE:
4109 env->kernelgsbase = msrs[i].data;
4110 break;
4111 case MSR_FMASK:
4112 env->fmask = msrs[i].data;
4113 break;
4114 case MSR_LSTAR:
4115 env->lstar = msrs[i].data;
4116 break;
4117 #endif
4118 case MSR_IA32_TSC:
4119 env->tsc = msrs[i].data;
4120 break;
4121 case MSR_TSC_AUX:
4122 env->tsc_aux = msrs[i].data;
4123 break;
4124 case MSR_TSC_ADJUST:
4125 env->tsc_adjust = msrs[i].data;
4126 break;
4127 case MSR_IA32_TSCDEADLINE:
4128 env->tsc_deadline = msrs[i].data;
4129 break;
4130 case MSR_VM_HSAVE_PA:
4131 env->vm_hsave = msrs[i].data;
4132 break;
4133 case MSR_KVM_SYSTEM_TIME:
4134 env->system_time_msr = msrs[i].data;
4135 break;
4136 case MSR_KVM_WALL_CLOCK:
4137 env->wall_clock_msr = msrs[i].data;
4138 break;
4139 case MSR_MCG_STATUS:
4140 env->mcg_status = msrs[i].data;
4141 break;
4142 case MSR_MCG_CTL:
4143 env->mcg_ctl = msrs[i].data;
4144 break;
4145 case MSR_MCG_EXT_CTL:
4146 env->mcg_ext_ctl = msrs[i].data;
4147 break;
4148 case MSR_IA32_MISC_ENABLE:
4149 env->msr_ia32_misc_enable = msrs[i].data;
4150 break;
4151 case MSR_IA32_SMBASE:
4152 env->smbase = msrs[i].data;
4153 break;
4154 case MSR_SMI_COUNT:
4155 env->msr_smi_count = msrs[i].data;
4156 break;
4157 case MSR_IA32_FEATURE_CONTROL:
4158 env->msr_ia32_feature_control = msrs[i].data;
4159 break;
4160 case MSR_IA32_BNDCFGS:
4161 env->msr_bndcfgs = msrs[i].data;
4162 break;
4163 case MSR_IA32_XSS:
4164 env->xss = msrs[i].data;
4165 break;
4166 case MSR_IA32_UMWAIT_CONTROL:
4167 env->umwait = msrs[i].data;
4168 break;
4169 case MSR_IA32_PKRS:
4170 env->pkrs = msrs[i].data;
4171 break;
4172 default:
4173 if (msrs[i].index >= MSR_MC0_CTL &&
4174 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4175 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4177 break;
4178 case MSR_KVM_ASYNC_PF_EN:
4179 env->async_pf_en_msr = msrs[i].data;
4180 break;
4181 case MSR_KVM_ASYNC_PF_INT:
4182 env->async_pf_int_msr = msrs[i].data;
4183 break;
4184 case MSR_KVM_PV_EOI_EN:
4185 env->pv_eoi_en_msr = msrs[i].data;
4186 break;
4187 case MSR_KVM_STEAL_TIME:
4188 env->steal_time_msr = msrs[i].data;
4189 break;
4190 case MSR_KVM_POLL_CONTROL: {
4191 env->poll_control_msr = msrs[i].data;
4192 break;
4194 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4195 env->msr_fixed_ctr_ctrl = msrs[i].data;
4196 break;
4197 case MSR_CORE_PERF_GLOBAL_CTRL:
4198 env->msr_global_ctrl = msrs[i].data;
4199 break;
4200 case MSR_CORE_PERF_GLOBAL_STATUS:
4201 env->msr_global_status = msrs[i].data;
4202 break;
4203 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4204 env->msr_global_ovf_ctrl = msrs[i].data;
4205 break;
4206 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4207 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4208 break;
4209 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4210 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4211 break;
4212 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4213 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4214 break;
4215 case HV_X64_MSR_HYPERCALL:
4216 env->msr_hv_hypercall = msrs[i].data;
4217 break;
4218 case HV_X64_MSR_GUEST_OS_ID:
4219 env->msr_hv_guest_os_id = msrs[i].data;
4220 break;
4221 case HV_X64_MSR_APIC_ASSIST_PAGE:
4222 env->msr_hv_vapic = msrs[i].data;
4223 break;
4224 case HV_X64_MSR_REFERENCE_TSC:
4225 env->msr_hv_tsc = msrs[i].data;
4226 break;
4227 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4228 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4229 break;
4230 case HV_X64_MSR_VP_RUNTIME:
4231 env->msr_hv_runtime = msrs[i].data;
4232 break;
4233 case HV_X64_MSR_SCONTROL:
4234 env->msr_hv_synic_control = msrs[i].data;
4235 break;
4236 case HV_X64_MSR_SIEFP:
4237 env->msr_hv_synic_evt_page = msrs[i].data;
4238 break;
4239 case HV_X64_MSR_SIMP:
4240 env->msr_hv_synic_msg_page = msrs[i].data;
4241 break;
4242 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4243 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4244 break;
4245 case HV_X64_MSR_STIMER0_CONFIG:
4246 case HV_X64_MSR_STIMER1_CONFIG:
4247 case HV_X64_MSR_STIMER2_CONFIG:
4248 case HV_X64_MSR_STIMER3_CONFIG:
4249 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4250 msrs[i].data;
4251 break;
4252 case HV_X64_MSR_STIMER0_COUNT:
4253 case HV_X64_MSR_STIMER1_COUNT:
4254 case HV_X64_MSR_STIMER2_COUNT:
4255 case HV_X64_MSR_STIMER3_COUNT:
4256 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4257 msrs[i].data;
4258 break;
4259 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4260 env->msr_hv_reenlightenment_control = msrs[i].data;
4261 break;
4262 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4263 env->msr_hv_tsc_emulation_control = msrs[i].data;
4264 break;
4265 case HV_X64_MSR_TSC_EMULATION_STATUS:
4266 env->msr_hv_tsc_emulation_status = msrs[i].data;
4267 break;
4268 case HV_X64_MSR_SYNDBG_OPTIONS:
4269 env->msr_hv_syndbg_options = msrs[i].data;
4270 break;
4271 case MSR_MTRRdefType:
4272 env->mtrr_deftype = msrs[i].data;
4273 break;
4274 case MSR_MTRRfix64K_00000:
4275 env->mtrr_fixed[0] = msrs[i].data;
4276 break;
4277 case MSR_MTRRfix16K_80000:
4278 env->mtrr_fixed[1] = msrs[i].data;
4279 break;
4280 case MSR_MTRRfix16K_A0000:
4281 env->mtrr_fixed[2] = msrs[i].data;
4282 break;
4283 case MSR_MTRRfix4K_C0000:
4284 env->mtrr_fixed[3] = msrs[i].data;
4285 break;
4286 case MSR_MTRRfix4K_C8000:
4287 env->mtrr_fixed[4] = msrs[i].data;
4288 break;
4289 case MSR_MTRRfix4K_D0000:
4290 env->mtrr_fixed[5] = msrs[i].data;
4291 break;
4292 case MSR_MTRRfix4K_D8000:
4293 env->mtrr_fixed[6] = msrs[i].data;
4294 break;
4295 case MSR_MTRRfix4K_E0000:
4296 env->mtrr_fixed[7] = msrs[i].data;
4297 break;
4298 case MSR_MTRRfix4K_E8000:
4299 env->mtrr_fixed[8] = msrs[i].data;
4300 break;
4301 case MSR_MTRRfix4K_F0000:
4302 env->mtrr_fixed[9] = msrs[i].data;
4303 break;
4304 case MSR_MTRRfix4K_F8000:
4305 env->mtrr_fixed[10] = msrs[i].data;
4306 break;
4307 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4308 if (index & 1) {
4309 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4310 mtrr_top_bits;
4311 } else {
4312 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4314 break;
4315 case MSR_IA32_SPEC_CTRL:
4316 env->spec_ctrl = msrs[i].data;
4317 break;
4318 case MSR_AMD64_TSC_RATIO:
4319 env->amd_tsc_scale_msr = msrs[i].data;
4320 break;
4321 case MSR_IA32_TSX_CTRL:
4322 env->tsx_ctrl = msrs[i].data;
4323 break;
4324 case MSR_VIRT_SSBD:
4325 env->virt_ssbd = msrs[i].data;
4326 break;
4327 case MSR_IA32_RTIT_CTL:
4328 env->msr_rtit_ctrl = msrs[i].data;
4329 break;
4330 case MSR_IA32_RTIT_STATUS:
4331 env->msr_rtit_status = msrs[i].data;
4332 break;
4333 case MSR_IA32_RTIT_OUTPUT_BASE:
4334 env->msr_rtit_output_base = msrs[i].data;
4335 break;
4336 case MSR_IA32_RTIT_OUTPUT_MASK:
4337 env->msr_rtit_output_mask = msrs[i].data;
4338 break;
4339 case MSR_IA32_RTIT_CR3_MATCH:
4340 env->msr_rtit_cr3_match = msrs[i].data;
4341 break;
4342 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4343 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4344 break;
4345 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4346 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4347 msrs[i].data;
4348 break;
4349 case MSR_IA32_XFD:
4350 env->msr_xfd = msrs[i].data;
4351 break;
4352 case MSR_IA32_XFD_ERR:
4353 env->msr_xfd_err = msrs[i].data;
4354 break;
4355 case MSR_ARCH_LBR_CTL:
4356 env->msr_lbr_ctl = msrs[i].data;
4357 break;
4358 case MSR_ARCH_LBR_DEPTH:
4359 env->msr_lbr_depth = msrs[i].data;
4360 break;
4361 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4362 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4363 break;
4364 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4365 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4366 break;
4367 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4368 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4369 break;
4373 return 0;
4376 static int kvm_put_mp_state(X86CPU *cpu)
4378 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4380 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4383 static int kvm_get_mp_state(X86CPU *cpu)
4385 CPUState *cs = CPU(cpu);
4386 CPUX86State *env = &cpu->env;
4387 struct kvm_mp_state mp_state;
4388 int ret;
4390 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4391 if (ret < 0) {
4392 return ret;
4394 env->mp_state = mp_state.mp_state;
4395 if (kvm_irqchip_in_kernel()) {
4396 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4398 return 0;
4401 static int kvm_get_apic(X86CPU *cpu)
4403 DeviceState *apic = cpu->apic_state;
4404 struct kvm_lapic_state kapic;
4405 int ret;
4407 if (apic && kvm_irqchip_in_kernel()) {
4408 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4409 if (ret < 0) {
4410 return ret;
4413 kvm_get_apic_state(apic, &kapic);
4415 return 0;
4418 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4420 CPUState *cs = CPU(cpu);
4421 CPUX86State *env = &cpu->env;
4422 struct kvm_vcpu_events events = {};
4424 if (!kvm_has_vcpu_events()) {
4425 return 0;
4428 events.flags = 0;
4430 if (has_exception_payload) {
4431 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4432 events.exception.pending = env->exception_pending;
4433 events.exception_has_payload = env->exception_has_payload;
4434 events.exception_payload = env->exception_payload;
4436 events.exception.nr = env->exception_nr;
4437 events.exception.injected = env->exception_injected;
4438 events.exception.has_error_code = env->has_error_code;
4439 events.exception.error_code = env->error_code;
4441 events.interrupt.injected = (env->interrupt_injected >= 0);
4442 events.interrupt.nr = env->interrupt_injected;
4443 events.interrupt.soft = env->soft_interrupt;
4445 events.nmi.injected = env->nmi_injected;
4446 events.nmi.pending = env->nmi_pending;
4447 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4449 events.sipi_vector = env->sipi_vector;
4451 if (has_msr_smbase) {
4452 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4453 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4454 if (kvm_irqchip_in_kernel()) {
4455 /* As soon as these are moved to the kernel, remove them
4456 * from cs->interrupt_request.
4458 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4459 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4460 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4461 } else {
4462 /* Keep these in cs->interrupt_request. */
4463 events.smi.pending = 0;
4464 events.smi.latched_init = 0;
4466 /* Stop SMI delivery on old machine types to avoid a reboot
4467 * on an inward migration of an old VM.
4469 if (!cpu->kvm_no_smi_migration) {
4470 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4474 if (level >= KVM_PUT_RESET_STATE) {
4475 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4476 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4477 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4481 if (has_triple_fault_event) {
4482 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4483 events.triple_fault.pending = env->triple_fault_pending;
4486 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4489 static int kvm_get_vcpu_events(X86CPU *cpu)
4491 CPUX86State *env = &cpu->env;
4492 struct kvm_vcpu_events events;
4493 int ret;
4495 if (!kvm_has_vcpu_events()) {
4496 return 0;
4499 memset(&events, 0, sizeof(events));
4500 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4501 if (ret < 0) {
4502 return ret;
4505 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4506 env->exception_pending = events.exception.pending;
4507 env->exception_has_payload = events.exception_has_payload;
4508 env->exception_payload = events.exception_payload;
4509 } else {
4510 env->exception_pending = 0;
4511 env->exception_has_payload = false;
4513 env->exception_injected = events.exception.injected;
4514 env->exception_nr =
4515 (env->exception_pending || env->exception_injected) ?
4516 events.exception.nr : -1;
4517 env->has_error_code = events.exception.has_error_code;
4518 env->error_code = events.exception.error_code;
4520 env->interrupt_injected =
4521 events.interrupt.injected ? events.interrupt.nr : -1;
4522 env->soft_interrupt = events.interrupt.soft;
4524 env->nmi_injected = events.nmi.injected;
4525 env->nmi_pending = events.nmi.pending;
4526 if (events.nmi.masked) {
4527 env->hflags2 |= HF2_NMI_MASK;
4528 } else {
4529 env->hflags2 &= ~HF2_NMI_MASK;
4532 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4533 if (events.smi.smm) {
4534 env->hflags |= HF_SMM_MASK;
4535 } else {
4536 env->hflags &= ~HF_SMM_MASK;
4538 if (events.smi.pending) {
4539 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4540 } else {
4541 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4543 if (events.smi.smm_inside_nmi) {
4544 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4545 } else {
4546 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4548 if (events.smi.latched_init) {
4549 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4550 } else {
4551 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4555 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4556 env->triple_fault_pending = events.triple_fault.pending;
4559 env->sipi_vector = events.sipi_vector;
4561 return 0;
4564 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4566 CPUState *cs = CPU(cpu);
4567 CPUX86State *env = &cpu->env;
4568 int ret = 0;
4569 unsigned long reinject_trap = 0;
4571 if (!kvm_has_vcpu_events()) {
4572 if (env->exception_nr == EXCP01_DB) {
4573 reinject_trap = KVM_GUESTDBG_INJECT_DB;
4574 } else if (env->exception_injected == EXCP03_INT3) {
4575 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4577 kvm_reset_exception(env);
4581 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4582 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4583 * by updating the debug state once again if single-stepping is on.
4584 * Another reason to call kvm_update_guest_debug here is a pending debug
4585 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4586 * reinject them via SET_GUEST_DEBUG.
4588 if (reinject_trap ||
4589 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4590 ret = kvm_update_guest_debug(cs, reinject_trap);
4592 return ret;
4595 static int kvm_put_debugregs(X86CPU *cpu)
4597 CPUX86State *env = &cpu->env;
4598 struct kvm_debugregs dbgregs;
4599 int i;
4601 if (!kvm_has_debugregs()) {
4602 return 0;
4605 memset(&dbgregs, 0, sizeof(dbgregs));
4606 for (i = 0; i < 4; i++) {
4607 dbgregs.db[i] = env->dr[i];
4609 dbgregs.dr6 = env->dr[6];
4610 dbgregs.dr7 = env->dr[7];
4611 dbgregs.flags = 0;
4613 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4616 static int kvm_get_debugregs(X86CPU *cpu)
4618 CPUX86State *env = &cpu->env;
4619 struct kvm_debugregs dbgregs;
4620 int i, ret;
4622 if (!kvm_has_debugregs()) {
4623 return 0;
4626 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4627 if (ret < 0) {
4628 return ret;
4630 for (i = 0; i < 4; i++) {
4631 env->dr[i] = dbgregs.db[i];
4633 env->dr[4] = env->dr[6] = dbgregs.dr6;
4634 env->dr[5] = env->dr[7] = dbgregs.dr7;
4636 return 0;
4639 static int kvm_put_nested_state(X86CPU *cpu)
4641 CPUX86State *env = &cpu->env;
4642 int max_nested_state_len = kvm_max_nested_state_length();
4644 if (!env->nested_state) {
4645 return 0;
4649 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4651 if (env->hflags & HF_GUEST_MASK) {
4652 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4653 } else {
4654 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4657 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4658 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4659 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4660 } else {
4661 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4664 assert(env->nested_state->size <= max_nested_state_len);
4665 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4668 static int kvm_get_nested_state(X86CPU *cpu)
4670 CPUX86State *env = &cpu->env;
4671 int max_nested_state_len = kvm_max_nested_state_length();
4672 int ret;
4674 if (!env->nested_state) {
4675 return 0;
4679 * It is possible that migration restored a smaller size into
4680 * nested_state->hdr.size than what our kernel support.
4681 * We preserve migration origin nested_state->hdr.size for
4682 * call to KVM_SET_NESTED_STATE but wish that our next call
4683 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4685 env->nested_state->size = max_nested_state_len;
4687 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4688 if (ret < 0) {
4689 return ret;
4693 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4695 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4696 env->hflags |= HF_GUEST_MASK;
4697 } else {
4698 env->hflags &= ~HF_GUEST_MASK;
4701 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4702 if (cpu_has_svm(env)) {
4703 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4704 env->hflags2 |= HF2_GIF_MASK;
4705 } else {
4706 env->hflags2 &= ~HF2_GIF_MASK;
4710 return ret;
4713 int kvm_arch_put_registers(CPUState *cpu, int level)
4715 X86CPU *x86_cpu = X86_CPU(cpu);
4716 int ret;
4718 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4721 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4722 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4723 * preceed kvm_put_nested_state() when 'real' nested state is set.
4725 if (level >= KVM_PUT_RESET_STATE) {
4726 ret = kvm_put_msr_feature_control(x86_cpu);
4727 if (ret < 0) {
4728 return ret;
4732 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4733 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4734 if (ret < 0) {
4735 return ret;
4738 if (level >= KVM_PUT_RESET_STATE) {
4739 ret = kvm_put_nested_state(x86_cpu);
4740 if (ret < 0) {
4741 return ret;
4745 if (level == KVM_PUT_FULL_STATE) {
4746 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4747 * because TSC frequency mismatch shouldn't abort migration,
4748 * unless the user explicitly asked for a more strict TSC
4749 * setting (e.g. using an explicit "tsc-freq" option).
4751 kvm_arch_set_tsc_khz(cpu);
4754 #ifdef CONFIG_XEN_EMU
4755 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4756 ret = kvm_put_xen_state(cpu);
4757 if (ret < 0) {
4758 return ret;
4761 #endif
4763 ret = kvm_getput_regs(x86_cpu, 1);
4764 if (ret < 0) {
4765 return ret;
4767 ret = kvm_put_xsave(x86_cpu);
4768 if (ret < 0) {
4769 return ret;
4771 ret = kvm_put_xcrs(x86_cpu);
4772 if (ret < 0) {
4773 return ret;
4775 /* must be before kvm_put_msrs */
4776 ret = kvm_inject_mce_oldstyle(x86_cpu);
4777 if (ret < 0) {
4778 return ret;
4780 ret = kvm_put_msrs(x86_cpu, level);
4781 if (ret < 0) {
4782 return ret;
4784 ret = kvm_put_vcpu_events(x86_cpu, level);
4785 if (ret < 0) {
4786 return ret;
4788 if (level >= KVM_PUT_RESET_STATE) {
4789 ret = kvm_put_mp_state(x86_cpu);
4790 if (ret < 0) {
4791 return ret;
4795 ret = kvm_put_tscdeadline_msr(x86_cpu);
4796 if (ret < 0) {
4797 return ret;
4799 ret = kvm_put_debugregs(x86_cpu);
4800 if (ret < 0) {
4801 return ret;
4803 /* must be last */
4804 ret = kvm_guest_debug_workarounds(x86_cpu);
4805 if (ret < 0) {
4806 return ret;
4808 return 0;
4811 int kvm_arch_get_registers(CPUState *cs)
4813 X86CPU *cpu = X86_CPU(cs);
4814 int ret;
4816 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4818 ret = kvm_get_vcpu_events(cpu);
4819 if (ret < 0) {
4820 goto out;
4823 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4824 * KVM_GET_REGS and KVM_GET_SREGS.
4826 ret = kvm_get_mp_state(cpu);
4827 if (ret < 0) {
4828 goto out;
4830 ret = kvm_getput_regs(cpu, 0);
4831 if (ret < 0) {
4832 goto out;
4834 ret = kvm_get_xsave(cpu);
4835 if (ret < 0) {
4836 goto out;
4838 ret = kvm_get_xcrs(cpu);
4839 if (ret < 0) {
4840 goto out;
4842 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4843 if (ret < 0) {
4844 goto out;
4846 ret = kvm_get_msrs(cpu);
4847 if (ret < 0) {
4848 goto out;
4850 ret = kvm_get_apic(cpu);
4851 if (ret < 0) {
4852 goto out;
4854 ret = kvm_get_debugregs(cpu);
4855 if (ret < 0) {
4856 goto out;
4858 ret = kvm_get_nested_state(cpu);
4859 if (ret < 0) {
4860 goto out;
4862 #ifdef CONFIG_XEN_EMU
4863 if (xen_mode == XEN_EMULATE) {
4864 ret = kvm_get_xen_state(cs);
4865 if (ret < 0) {
4866 goto out;
4869 #endif
4870 ret = 0;
4871 out:
4872 cpu_sync_bndcs_hflags(&cpu->env);
4873 return ret;
4876 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4878 X86CPU *x86_cpu = X86_CPU(cpu);
4879 CPUX86State *env = &x86_cpu->env;
4880 int ret;
4882 /* Inject NMI */
4883 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4884 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4885 qemu_mutex_lock_iothread();
4886 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4887 qemu_mutex_unlock_iothread();
4888 DPRINTF("injected NMI\n");
4889 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4890 if (ret < 0) {
4891 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4892 strerror(-ret));
4895 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4896 qemu_mutex_lock_iothread();
4897 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4898 qemu_mutex_unlock_iothread();
4899 DPRINTF("injected SMI\n");
4900 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4901 if (ret < 0) {
4902 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4903 strerror(-ret));
4908 if (!kvm_pic_in_kernel()) {
4909 qemu_mutex_lock_iothread();
4912 /* Force the VCPU out of its inner loop to process any INIT requests
4913 * or (for userspace APIC, but it is cheap to combine the checks here)
4914 * pending TPR access reports.
4916 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4917 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4918 !(env->hflags & HF_SMM_MASK)) {
4919 cpu->exit_request = 1;
4921 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4922 cpu->exit_request = 1;
4926 if (!kvm_pic_in_kernel()) {
4927 /* Try to inject an interrupt if the guest can accept it */
4928 if (run->ready_for_interrupt_injection &&
4929 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4930 (env->eflags & IF_MASK)) {
4931 int irq;
4933 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4934 irq = cpu_get_pic_interrupt(env);
4935 if (irq >= 0) {
4936 struct kvm_interrupt intr;
4938 intr.irq = irq;
4939 DPRINTF("injected interrupt %d\n", irq);
4940 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4941 if (ret < 0) {
4942 fprintf(stderr,
4943 "KVM: injection failed, interrupt lost (%s)\n",
4944 strerror(-ret));
4949 /* If we have an interrupt but the guest is not ready to receive an
4950 * interrupt, request an interrupt window exit. This will
4951 * cause a return to userspace as soon as the guest is ready to
4952 * receive interrupts. */
4953 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4954 run->request_interrupt_window = 1;
4955 } else {
4956 run->request_interrupt_window = 0;
4959 DPRINTF("setting tpr\n");
4960 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4962 qemu_mutex_unlock_iothread();
4966 static void kvm_rate_limit_on_bus_lock(void)
4968 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4970 if (delay_ns) {
4971 g_usleep(delay_ns / SCALE_US);
4975 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4977 X86CPU *x86_cpu = X86_CPU(cpu);
4978 CPUX86State *env = &x86_cpu->env;
4980 if (run->flags & KVM_RUN_X86_SMM) {
4981 env->hflags |= HF_SMM_MASK;
4982 } else {
4983 env->hflags &= ~HF_SMM_MASK;
4985 if (run->if_flag) {
4986 env->eflags |= IF_MASK;
4987 } else {
4988 env->eflags &= ~IF_MASK;
4990 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4991 kvm_rate_limit_on_bus_lock();
4994 #ifdef CONFIG_XEN_EMU
4996 * If the callback is asserted as a GSI (or PCI INTx) then check if
4997 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
4998 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
4999 * EOI and only resample then, exactly how the VFIO eventfd pairs
5000 * are designed to work for level triggered interrupts.
5002 if (x86_cpu->env.xen_callback_asserted) {
5003 kvm_xen_maybe_deassert_callback(cpu);
5005 #endif
5007 /* We need to protect the apic state against concurrent accesses from
5008 * different threads in case the userspace irqchip is used. */
5009 if (!kvm_irqchip_in_kernel()) {
5010 qemu_mutex_lock_iothread();
5012 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5013 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5014 if (!kvm_irqchip_in_kernel()) {
5015 qemu_mutex_unlock_iothread();
5017 return cpu_get_mem_attrs(env);
5020 int kvm_arch_process_async_events(CPUState *cs)
5022 X86CPU *cpu = X86_CPU(cs);
5023 CPUX86State *env = &cpu->env;
5025 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5026 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5027 assert(env->mcg_cap);
5029 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5031 kvm_cpu_synchronize_state(cs);
5033 if (env->exception_nr == EXCP08_DBLE) {
5034 /* this means triple fault */
5035 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5036 cs->exit_request = 1;
5037 return 0;
5039 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5040 env->has_error_code = 0;
5042 cs->halted = 0;
5043 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5044 env->mp_state = KVM_MP_STATE_RUNNABLE;
5048 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5049 !(env->hflags & HF_SMM_MASK)) {
5050 kvm_cpu_synchronize_state(cs);
5051 do_cpu_init(cpu);
5054 if (kvm_irqchip_in_kernel()) {
5055 return 0;
5058 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5059 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5060 apic_poll_irq(cpu->apic_state);
5062 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5063 (env->eflags & IF_MASK)) ||
5064 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5065 cs->halted = 0;
5067 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5068 kvm_cpu_synchronize_state(cs);
5069 do_cpu_sipi(cpu);
5071 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5072 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5073 kvm_cpu_synchronize_state(cs);
5074 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5075 env->tpr_access_type);
5078 return cs->halted;
5081 static int kvm_handle_halt(X86CPU *cpu)
5083 CPUState *cs = CPU(cpu);
5084 CPUX86State *env = &cpu->env;
5086 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5087 (env->eflags & IF_MASK)) &&
5088 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5089 cs->halted = 1;
5090 return EXCP_HLT;
5093 return 0;
5096 static int kvm_handle_tpr_access(X86CPU *cpu)
5098 CPUState *cs = CPU(cpu);
5099 struct kvm_run *run = cs->kvm_run;
5101 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5102 run->tpr_access.is_write ? TPR_ACCESS_WRITE
5103 : TPR_ACCESS_READ);
5104 return 1;
5107 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5109 static const uint8_t int3 = 0xcc;
5111 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5112 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5113 return -EINVAL;
5115 return 0;
5118 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5120 uint8_t int3;
5122 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5123 return -EINVAL;
5125 if (int3 != 0xcc) {
5126 return 0;
5128 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5129 return -EINVAL;
5131 return 0;
5134 static struct {
5135 target_ulong addr;
5136 int len;
5137 int type;
5138 } hw_breakpoint[4];
5140 static int nb_hw_breakpoint;
5142 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5144 int n;
5146 for (n = 0; n < nb_hw_breakpoint; n++) {
5147 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5148 (hw_breakpoint[n].len == len || len == -1)) {
5149 return n;
5152 return -1;
5155 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5156 target_ulong len, int type)
5158 switch (type) {
5159 case GDB_BREAKPOINT_HW:
5160 len = 1;
5161 break;
5162 case GDB_WATCHPOINT_WRITE:
5163 case GDB_WATCHPOINT_ACCESS:
5164 switch (len) {
5165 case 1:
5166 break;
5167 case 2:
5168 case 4:
5169 case 8:
5170 if (addr & (len - 1)) {
5171 return -EINVAL;
5173 break;
5174 default:
5175 return -EINVAL;
5177 break;
5178 default:
5179 return -ENOSYS;
5182 if (nb_hw_breakpoint == 4) {
5183 return -ENOBUFS;
5185 if (find_hw_breakpoint(addr, len, type) >= 0) {
5186 return -EEXIST;
5188 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5189 hw_breakpoint[nb_hw_breakpoint].len = len;
5190 hw_breakpoint[nb_hw_breakpoint].type = type;
5191 nb_hw_breakpoint++;
5193 return 0;
5196 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5197 target_ulong len, int type)
5199 int n;
5201 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5202 if (n < 0) {
5203 return -ENOENT;
5205 nb_hw_breakpoint--;
5206 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5208 return 0;
5211 void kvm_arch_remove_all_hw_breakpoints(void)
5213 nb_hw_breakpoint = 0;
5216 static CPUWatchpoint hw_watchpoint;
5218 static int kvm_handle_debug(X86CPU *cpu,
5219 struct kvm_debug_exit_arch *arch_info)
5221 CPUState *cs = CPU(cpu);
5222 CPUX86State *env = &cpu->env;
5223 int ret = 0;
5224 int n;
5226 if (arch_info->exception == EXCP01_DB) {
5227 if (arch_info->dr6 & DR6_BS) {
5228 if (cs->singlestep_enabled) {
5229 ret = EXCP_DEBUG;
5231 } else {
5232 for (n = 0; n < 4; n++) {
5233 if (arch_info->dr6 & (1 << n)) {
5234 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5235 case 0x0:
5236 ret = EXCP_DEBUG;
5237 break;
5238 case 0x1:
5239 ret = EXCP_DEBUG;
5240 cs->watchpoint_hit = &hw_watchpoint;
5241 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5242 hw_watchpoint.flags = BP_MEM_WRITE;
5243 break;
5244 case 0x3:
5245 ret = EXCP_DEBUG;
5246 cs->watchpoint_hit = &hw_watchpoint;
5247 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5248 hw_watchpoint.flags = BP_MEM_ACCESS;
5249 break;
5254 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5255 ret = EXCP_DEBUG;
5257 if (ret == 0) {
5258 cpu_synchronize_state(cs);
5259 assert(env->exception_nr == -1);
5261 /* pass to guest */
5262 kvm_queue_exception(env, arch_info->exception,
5263 arch_info->exception == EXCP01_DB,
5264 arch_info->dr6);
5265 env->has_error_code = 0;
5268 return ret;
5271 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5273 const uint8_t type_code[] = {
5274 [GDB_BREAKPOINT_HW] = 0x0,
5275 [GDB_WATCHPOINT_WRITE] = 0x1,
5276 [GDB_WATCHPOINT_ACCESS] = 0x3
5278 const uint8_t len_code[] = {
5279 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5281 int n;
5283 if (kvm_sw_breakpoints_active(cpu)) {
5284 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5286 if (nb_hw_breakpoint > 0) {
5287 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5288 dbg->arch.debugreg[7] = 0x0600;
5289 for (n = 0; n < nb_hw_breakpoint; n++) {
5290 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5291 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5292 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5293 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5298 static bool kvm_install_msr_filters(KVMState *s)
5300 uint64_t zero = 0;
5301 struct kvm_msr_filter filter = {
5302 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5304 int r, i, j = 0;
5306 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5307 KVMMSRHandlers *handler = &msr_handlers[i];
5308 if (handler->msr) {
5309 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5311 *range = (struct kvm_msr_filter_range) {
5312 .flags = 0,
5313 .nmsrs = 1,
5314 .base = handler->msr,
5315 .bitmap = (__u8 *)&zero,
5318 if (handler->rdmsr) {
5319 range->flags |= KVM_MSR_FILTER_READ;
5322 if (handler->wrmsr) {
5323 range->flags |= KVM_MSR_FILTER_WRITE;
5328 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5329 if (r) {
5330 return false;
5333 return true;
5336 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5337 QEMUWRMSRHandler *wrmsr)
5339 int i;
5341 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5342 if (!msr_handlers[i].msr) {
5343 msr_handlers[i] = (KVMMSRHandlers) {
5344 .msr = msr,
5345 .rdmsr = rdmsr,
5346 .wrmsr = wrmsr,
5349 if (!kvm_install_msr_filters(s)) {
5350 msr_handlers[i] = (KVMMSRHandlers) { };
5351 return false;
5354 return true;
5358 return false;
5361 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5363 int i;
5364 bool r;
5366 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5367 KVMMSRHandlers *handler = &msr_handlers[i];
5368 if (run->msr.index == handler->msr) {
5369 if (handler->rdmsr) {
5370 r = handler->rdmsr(cpu, handler->msr,
5371 (uint64_t *)&run->msr.data);
5372 run->msr.error = r ? 0 : 1;
5373 return 0;
5378 assert(false);
5381 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5383 int i;
5384 bool r;
5386 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5387 KVMMSRHandlers *handler = &msr_handlers[i];
5388 if (run->msr.index == handler->msr) {
5389 if (handler->wrmsr) {
5390 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5391 run->msr.error = r ? 0 : 1;
5392 return 0;
5397 assert(false);
5400 static bool has_sgx_provisioning;
5402 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5404 int fd, ret;
5406 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5407 return false;
5410 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5411 if (fd < 0) {
5412 return false;
5415 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5416 if (ret) {
5417 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5418 exit(1);
5420 close(fd);
5421 return true;
5424 bool kvm_enable_sgx_provisioning(KVMState *s)
5426 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5429 static bool host_supports_vmx(void)
5431 uint32_t ecx, unused;
5433 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5434 return ecx & CPUID_EXT_VMX;
5437 #define VMX_INVALID_GUEST_STATE 0x80000021
5439 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5441 X86CPU *cpu = X86_CPU(cs);
5442 uint64_t code;
5443 int ret;
5444 bool ctx_invalid;
5445 char str[256];
5446 KVMState *state;
5448 switch (run->exit_reason) {
5449 case KVM_EXIT_HLT:
5450 DPRINTF("handle_hlt\n");
5451 qemu_mutex_lock_iothread();
5452 ret = kvm_handle_halt(cpu);
5453 qemu_mutex_unlock_iothread();
5454 break;
5455 case KVM_EXIT_SET_TPR:
5456 ret = 0;
5457 break;
5458 case KVM_EXIT_TPR_ACCESS:
5459 qemu_mutex_lock_iothread();
5460 ret = kvm_handle_tpr_access(cpu);
5461 qemu_mutex_unlock_iothread();
5462 break;
5463 case KVM_EXIT_FAIL_ENTRY:
5464 code = run->fail_entry.hardware_entry_failure_reason;
5465 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5466 code);
5467 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5468 fprintf(stderr,
5469 "\nIf you're running a guest on an Intel machine without "
5470 "unrestricted mode\n"
5471 "support, the failure can be most likely due to the guest "
5472 "entering an invalid\n"
5473 "state for Intel VT. For example, the guest maybe running "
5474 "in big real mode\n"
5475 "which is not supported on less recent Intel processors."
5476 "\n\n");
5478 ret = -1;
5479 break;
5480 case KVM_EXIT_EXCEPTION:
5481 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5482 run->ex.exception, run->ex.error_code);
5483 ret = -1;
5484 break;
5485 case KVM_EXIT_DEBUG:
5486 DPRINTF("kvm_exit_debug\n");
5487 qemu_mutex_lock_iothread();
5488 ret = kvm_handle_debug(cpu, &run->debug.arch);
5489 qemu_mutex_unlock_iothread();
5490 break;
5491 case KVM_EXIT_HYPERV:
5492 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5493 break;
5494 case KVM_EXIT_IOAPIC_EOI:
5495 ioapic_eoi_broadcast(run->eoi.vector);
5496 ret = 0;
5497 break;
5498 case KVM_EXIT_X86_BUS_LOCK:
5499 /* already handled in kvm_arch_post_run */
5500 ret = 0;
5501 break;
5502 case KVM_EXIT_NOTIFY:
5503 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5504 state = KVM_STATE(current_accel());
5505 sprintf(str, "Encounter a notify exit with %svalid context in"
5506 " guest. There can be possible misbehaves in guest."
5507 " Please have a look.", ctx_invalid ? "in" : "");
5508 if (ctx_invalid ||
5509 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5510 warn_report("KVM internal error: %s", str);
5511 ret = -1;
5512 } else {
5513 warn_report_once("KVM: %s", str);
5514 ret = 0;
5516 break;
5517 case KVM_EXIT_X86_RDMSR:
5518 /* We only enable MSR filtering, any other exit is bogus */
5519 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5520 ret = kvm_handle_rdmsr(cpu, run);
5521 break;
5522 case KVM_EXIT_X86_WRMSR:
5523 /* We only enable MSR filtering, any other exit is bogus */
5524 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5525 ret = kvm_handle_wrmsr(cpu, run);
5526 break;
5527 #ifdef CONFIG_XEN_EMU
5528 case KVM_EXIT_XEN:
5529 ret = kvm_xen_handle_exit(cpu, &run->xen);
5530 break;
5531 #endif
5532 default:
5533 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5534 ret = -1;
5535 break;
5538 return ret;
5541 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5543 X86CPU *cpu = X86_CPU(cs);
5544 CPUX86State *env = &cpu->env;
5546 kvm_cpu_synchronize_state(cs);
5547 return !(env->cr[0] & CR0_PE_MASK) ||
5548 ((env->segs[R_CS].selector & 3) != 3);
5551 void kvm_arch_init_irq_routing(KVMState *s)
5553 /* We know at this point that we're using the in-kernel
5554 * irqchip, so we can use irqfds, and on x86 we know
5555 * we can use msi via irqfd and GSI routing.
5557 kvm_msi_via_irqfd_allowed = true;
5558 kvm_gsi_routing_allowed = true;
5560 if (kvm_irqchip_is_split()) {
5561 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5562 int i;
5564 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5565 MSI routes for signaling interrupts to the local apics. */
5566 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5567 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5568 error_report("Could not enable split IRQ mode.");
5569 exit(1);
5572 kvm_irqchip_commit_route_changes(&c);
5576 int kvm_arch_irqchip_create(KVMState *s)
5578 int ret;
5579 if (kvm_kernel_irqchip_split()) {
5580 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5581 if (ret) {
5582 error_report("Could not enable split irqchip mode: %s",
5583 strerror(-ret));
5584 exit(1);
5585 } else {
5586 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5587 kvm_split_irqchip = true;
5588 return 1;
5590 } else {
5591 return 0;
5595 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5597 CPUX86State *env;
5598 uint64_t ext_id;
5600 if (!first_cpu) {
5601 return address;
5603 env = &X86_CPU(first_cpu)->env;
5604 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5605 return address;
5609 * If the remappable format bit is set, or the upper bits are
5610 * already set in address_hi, or the low extended bits aren't
5611 * there anyway, do nothing.
5613 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5614 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5615 return address;
5618 address &= ~ext_id;
5619 address |= ext_id << 35;
5620 return address;
5623 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5624 uint64_t address, uint32_t data, PCIDevice *dev)
5626 X86IOMMUState *iommu = x86_iommu_get_default();
5628 if (iommu) {
5629 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5631 if (class->int_remap) {
5632 int ret;
5633 MSIMessage src, dst;
5635 src.address = route->u.msi.address_hi;
5636 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5637 src.address |= route->u.msi.address_lo;
5638 src.data = route->u.msi.data;
5640 ret = class->int_remap(iommu, &src, &dst, dev ? \
5641 pci_requester_id(dev) : \
5642 X86_IOMMU_SID_INVALID);
5643 if (ret) {
5644 trace_kvm_x86_fixup_msi_error(route->gsi);
5645 return 1;
5649 * Handled untranslated compatibilty format interrupt with
5650 * extended destination ID in the low bits 11-5. */
5651 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5653 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5654 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5655 route->u.msi.data = dst.data;
5656 return 0;
5660 #ifdef CONFIG_XEN_EMU
5661 if (xen_mode == XEN_EMULATE) {
5662 int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5665 * If it was a PIRQ and successfully routed (handled == 0) or it was
5666 * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5668 if (handled <= 0) {
5669 return handled;
5672 #endif
5674 address = kvm_swizzle_msi_ext_dest_id(address);
5675 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5676 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5677 return 0;
5680 typedef struct MSIRouteEntry MSIRouteEntry;
5682 struct MSIRouteEntry {
5683 PCIDevice *dev; /* Device pointer */
5684 int vector; /* MSI/MSIX vector index */
5685 int virq; /* Virtual IRQ index */
5686 QLIST_ENTRY(MSIRouteEntry) list;
5689 /* List of used GSI routes */
5690 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5691 QLIST_HEAD_INITIALIZER(msi_route_list);
5693 void kvm_update_msi_routes_all(void *private, bool global,
5694 uint32_t index, uint32_t mask)
5696 int cnt = 0, vector;
5697 MSIRouteEntry *entry;
5698 MSIMessage msg;
5699 PCIDevice *dev;
5701 /* TODO: explicit route update */
5702 QLIST_FOREACH(entry, &msi_route_list, list) {
5703 cnt++;
5704 vector = entry->vector;
5705 dev = entry->dev;
5706 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5707 msg = msix_get_message(dev, vector);
5708 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5709 msg = msi_get_message(dev, vector);
5710 } else {
5712 * Either MSI/MSIX is disabled for the device, or the
5713 * specific message was masked out. Skip this one.
5715 continue;
5717 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5719 kvm_irqchip_commit_routes(kvm_state);
5720 trace_kvm_x86_update_msi_routes(cnt);
5723 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5724 int vector, PCIDevice *dev)
5726 static bool notify_list_inited = false;
5727 MSIRouteEntry *entry;
5729 if (!dev) {
5730 /* These are (possibly) IOAPIC routes only used for split
5731 * kernel irqchip mode, while what we are housekeeping are
5732 * PCI devices only. */
5733 return 0;
5736 entry = g_new0(MSIRouteEntry, 1);
5737 entry->dev = dev;
5738 entry->vector = vector;
5739 entry->virq = route->gsi;
5740 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5742 trace_kvm_x86_add_msi_route(route->gsi);
5744 if (!notify_list_inited) {
5745 /* For the first time we do add route, add ourselves into
5746 * IOMMU's IEC notify list if needed. */
5747 X86IOMMUState *iommu = x86_iommu_get_default();
5748 if (iommu) {
5749 x86_iommu_iec_register_notifier(iommu,
5750 kvm_update_msi_routes_all,
5751 NULL);
5753 notify_list_inited = true;
5755 return 0;
5758 int kvm_arch_release_virq_post(int virq)
5760 MSIRouteEntry *entry, *next;
5761 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5762 if (entry->virq == virq) {
5763 trace_kvm_x86_remove_msi_route(virq);
5764 QLIST_REMOVE(entry, list);
5765 g_free(entry);
5766 break;
5769 return 0;
5772 int kvm_arch_msi_data_to_gsi(uint32_t data)
5774 abort();
5777 bool kvm_has_waitpkg(void)
5779 return has_msr_umwait;
5782 bool kvm_arch_cpu_check_are_resettable(void)
5784 return !sev_es_enabled();
5787 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5789 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5791 KVMState *s = kvm_state;
5792 uint64_t supported;
5794 mask &= XSTATE_DYNAMIC_MASK;
5795 if (!mask) {
5796 return;
5799 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5800 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5801 * about them already because they are not supported features.
5803 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5804 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5805 mask &= supported;
5807 while (mask) {
5808 int bit = ctz64(mask);
5809 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5810 if (rc) {
5812 * Older kernel version (<5.17) do not support
5813 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5814 * any dynamic feature from kvm_arch_get_supported_cpuid.
5816 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5817 "for feature bit %d", bit);
5819 mask &= ~BIT_ULL(bit);
5823 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5825 KVMState *s = KVM_STATE(obj);
5826 return s->notify_vmexit;
5829 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5831 KVMState *s = KVM_STATE(obj);
5833 if (s->fd != -1) {
5834 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5835 return;
5838 s->notify_vmexit = value;
5841 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5842 const char *name, void *opaque,
5843 Error **errp)
5845 KVMState *s = KVM_STATE(obj);
5846 uint32_t value = s->notify_window;
5848 visit_type_uint32(v, name, &value, errp);
5851 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5852 const char *name, void *opaque,
5853 Error **errp)
5855 KVMState *s = KVM_STATE(obj);
5856 uint32_t value;
5858 if (s->fd != -1) {
5859 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5860 return;
5863 if (!visit_type_uint32(v, name, &value, errp)) {
5864 return;
5867 s->notify_window = value;
5870 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5871 const char *name, void *opaque,
5872 Error **errp)
5874 KVMState *s = KVM_STATE(obj);
5875 uint32_t value = s->xen_version;
5877 visit_type_uint32(v, name, &value, errp);
5880 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5881 const char *name, void *opaque,
5882 Error **errp)
5884 KVMState *s = KVM_STATE(obj);
5885 Error *error = NULL;
5886 uint32_t value;
5888 visit_type_uint32(v, name, &value, &error);
5889 if (error) {
5890 error_propagate(errp, error);
5891 return;
5894 s->xen_version = value;
5895 if (value && xen_mode == XEN_DISABLED) {
5896 xen_mode = XEN_EMULATE;
5900 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5901 const char *name, void *opaque,
5902 Error **errp)
5904 KVMState *s = KVM_STATE(obj);
5905 uint16_t value = s->xen_gnttab_max_frames;
5907 visit_type_uint16(v, name, &value, errp);
5910 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5911 const char *name, void *opaque,
5912 Error **errp)
5914 KVMState *s = KVM_STATE(obj);
5915 Error *error = NULL;
5916 uint16_t value;
5918 visit_type_uint16(v, name, &value, &error);
5919 if (error) {
5920 error_propagate(errp, error);
5921 return;
5924 s->xen_gnttab_max_frames = value;
5927 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5928 const char *name, void *opaque,
5929 Error **errp)
5931 KVMState *s = KVM_STATE(obj);
5932 uint16_t value = s->xen_evtchn_max_pirq;
5934 visit_type_uint16(v, name, &value, errp);
5937 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5938 const char *name, void *opaque,
5939 Error **errp)
5941 KVMState *s = KVM_STATE(obj);
5942 Error *error = NULL;
5943 uint16_t value;
5945 visit_type_uint16(v, name, &value, &error);
5946 if (error) {
5947 error_propagate(errp, error);
5948 return;
5951 s->xen_evtchn_max_pirq = value;
5954 void kvm_arch_accel_class_init(ObjectClass *oc)
5956 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5957 &NotifyVmexitOption_lookup,
5958 kvm_arch_get_notify_vmexit,
5959 kvm_arch_set_notify_vmexit);
5960 object_class_property_set_description(oc, "notify-vmexit",
5961 "Enable notify VM exit");
5963 object_class_property_add(oc, "notify-window", "uint32",
5964 kvm_arch_get_notify_window,
5965 kvm_arch_set_notify_window,
5966 NULL, NULL);
5967 object_class_property_set_description(oc, "notify-window",
5968 "Clock cycles without an event window "
5969 "after which a notification VM exit occurs");
5971 object_class_property_add(oc, "xen-version", "uint32",
5972 kvm_arch_get_xen_version,
5973 kvm_arch_set_xen_version,
5974 NULL, NULL);
5975 object_class_property_set_description(oc, "xen-version",
5976 "Xen version to be emulated "
5977 "(in XENVER_version form "
5978 "e.g. 0x4000a for 4.10)");
5980 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5981 kvm_arch_get_xen_gnttab_max_frames,
5982 kvm_arch_set_xen_gnttab_max_frames,
5983 NULL, NULL);
5984 object_class_property_set_description(oc, "xen-gnttab-max-frames",
5985 "Maximum number of grant table frames");
5987 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5988 kvm_arch_get_xen_evtchn_max_pirq,
5989 kvm_arch_set_xen_evtchn_max_pirq,
5990 NULL, NULL);
5991 object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5992 "Maximum number of Xen PIRQs");
5995 void kvm_set_max_apic_id(uint32_t max_apic_id)
5997 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);