4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "sysemu/sev.h"
42 #include "sysemu/balloon.h"
44 #include "hw/boards.h"
46 /* This check must be after config-host.h is included */
48 #include <sys/eventfd.h>
51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
52 * need to use the real host PAGE_SIZE, as that's what KVM will use.
54 #define PAGE_SIZE getpagesize()
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #define DPRINTF(fmt, ...) \
66 #define KVM_MSI_HASHTAB_SIZE 256
68 struct KVMParkedVcpu
{
69 unsigned long vcpu_id
;
71 QLIST_ENTRY(KVMParkedVcpu
) node
;
76 AccelState parent_obj
;
82 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
83 bool coalesced_flush_in_progress
;
85 int robust_singlestep
;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl
;
97 unsigned int sigmask_len
;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing
*irq_routes
;
101 int nr_allocated_irq_routes
;
102 unsigned long *used_gsi_bitmap
;
103 unsigned int gsi_count
;
104 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
106 KVMMemoryListener memory_listener
;
107 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
109 /* memory encryption */
110 void *memcrypt_handle
;
111 int (*memcrypt_encrypt_data
)(void *handle
, uint8_t *ptr
, uint64_t len
);
115 bool kvm_kernel_irqchip
;
116 bool kvm_split_irqchip
;
117 bool kvm_async_interrupts_allowed
;
118 bool kvm_halt_in_kernel_allowed
;
119 bool kvm_eventfds_allowed
;
120 bool kvm_irqfds_allowed
;
121 bool kvm_resamplefds_allowed
;
122 bool kvm_msi_via_irqfd_allowed
;
123 bool kvm_gsi_routing_allowed
;
124 bool kvm_gsi_direct_mapping
;
126 bool kvm_readonly_mem_allowed
;
127 bool kvm_vm_attributes_allowed
;
128 bool kvm_direct_msi_allowed
;
129 bool kvm_ioeventfd_any_length_allowed
;
130 bool kvm_msi_use_devid
;
131 static bool kvm_immediate_exit
;
133 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
134 KVM_CAP_INFO(USER_MEMORY
),
135 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
136 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
140 int kvm_get_max_memslots(void)
142 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
147 bool kvm_memcrypt_enabled(void)
149 if (kvm_state
&& kvm_state
->memcrypt_handle
) {
156 int kvm_memcrypt_encrypt_data(uint8_t *ptr
, uint64_t len
)
158 if (kvm_state
->memcrypt_handle
&&
159 kvm_state
->memcrypt_encrypt_data
) {
160 return kvm_state
->memcrypt_encrypt_data(kvm_state
->memcrypt_handle
,
167 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
169 KVMState
*s
= kvm_state
;
172 for (i
= 0; i
< s
->nr_slots
; i
++) {
173 if (kml
->slots
[i
].memory_size
== 0) {
174 return &kml
->slots
[i
];
181 bool kvm_has_free_slot(MachineState
*ms
)
183 KVMState
*s
= KVM_STATE(ms
->accelerator
);
185 return kvm_get_free_slot(&s
->memory_listener
);
188 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
190 KVMSlot
*slot
= kvm_get_free_slot(kml
);
196 fprintf(stderr
, "%s: no free slot available\n", __func__
);
200 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
204 KVMState
*s
= kvm_state
;
207 for (i
= 0; i
< s
->nr_slots
; i
++) {
208 KVMSlot
*mem
= &kml
->slots
[i
];
210 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
219 * Calculate and align the start address and the size of the section.
220 * Return the size. If the size is 0, the aligned section is empty.
222 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
225 hwaddr size
= int128_get64(section
->size
);
226 hwaddr delta
, aligned
;
228 /* kvm works in page size chunks, but the function may be called
229 with sub-page size and unaligned start address. Pad the start
230 address to next and truncate size to previous page boundary. */
231 aligned
= ROUND_UP(section
->offset_within_address_space
,
232 qemu_real_host_page_size
);
233 delta
= aligned
- section
->offset_within_address_space
;
239 return (size
- delta
) & qemu_real_host_page_mask
;
242 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
245 KVMMemoryListener
*kml
= &s
->memory_listener
;
248 for (i
= 0; i
< s
->nr_slots
; i
++) {
249 KVMSlot
*mem
= &kml
->slots
[i
];
251 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
252 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
260 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
262 KVMState
*s
= kvm_state
;
263 struct kvm_userspace_memory_region mem
;
266 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
267 mem
.guest_phys_addr
= slot
->start_addr
;
268 mem
.userspace_addr
= (unsigned long)slot
->ram
;
269 mem
.flags
= slot
->flags
;
271 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
272 /* Set the slot size to 0 before setting the slot to the desired
273 * value. This is needed based on KVM commit 75d61fbc. */
275 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
277 mem
.memory_size
= slot
->memory_size
;
278 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
279 slot
->old_flags
= mem
.flags
;
280 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
281 mem
.memory_size
, mem
.userspace_addr
, ret
);
285 int kvm_destroy_vcpu(CPUState
*cpu
)
287 KVMState
*s
= kvm_state
;
289 struct KVMParkedVcpu
*vcpu
= NULL
;
292 DPRINTF("kvm_destroy_vcpu\n");
294 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
297 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
301 ret
= munmap(cpu
->kvm_run
, mmap_size
);
306 vcpu
= g_malloc0(sizeof(*vcpu
));
307 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
308 vcpu
->kvm_fd
= cpu
->kvm_fd
;
309 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
314 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
316 struct KVMParkedVcpu
*cpu
;
318 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
319 if (cpu
->vcpu_id
== vcpu_id
) {
322 QLIST_REMOVE(cpu
, node
);
323 kvm_fd
= cpu
->kvm_fd
;
329 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
332 int kvm_init_vcpu(CPUState
*cpu
)
334 KVMState
*s
= kvm_state
;
338 DPRINTF("kvm_init_vcpu\n");
340 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
342 DPRINTF("kvm_create_vcpu failed\n");
348 cpu
->vcpu_dirty
= true;
350 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
353 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
357 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
359 if (cpu
->kvm_run
== MAP_FAILED
) {
361 DPRINTF("mmap'ing vcpu state failed\n");
365 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
366 s
->coalesced_mmio_ring
=
367 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
370 ret
= kvm_arch_init_vcpu(cpu
);
376 * dirty pages logging control
379 static int kvm_mem_flags(MemoryRegion
*mr
)
381 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
384 if (memory_region_get_dirty_log_mask(mr
) != 0) {
385 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
387 if (readonly
&& kvm_readonly_mem_allowed
) {
388 flags
|= KVM_MEM_READONLY
;
393 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
396 mem
->flags
= kvm_mem_flags(mr
);
398 /* If nothing changed effectively, no need to issue ioctl */
399 if (mem
->flags
== mem
->old_flags
) {
403 return kvm_set_user_memory_region(kml
, mem
, false);
406 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
407 MemoryRegionSection
*section
)
409 hwaddr start_addr
, size
;
412 size
= kvm_align_section(section
, &start_addr
);
417 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
419 /* We don't have a slot if we want to trap every access. */
423 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
426 static void kvm_log_start(MemoryListener
*listener
,
427 MemoryRegionSection
*section
,
430 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
437 r
= kvm_section_update_flags(kml
, section
);
443 static void kvm_log_stop(MemoryListener
*listener
,
444 MemoryRegionSection
*section
,
447 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
454 r
= kvm_section_update_flags(kml
, section
);
460 /* get kvm's dirty pages bitmap and update qemu's */
461 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
462 unsigned long *bitmap
)
464 ram_addr_t start
= section
->offset_within_region
+
465 memory_region_get_ram_addr(section
->mr
);
466 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
468 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
472 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
475 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
476 * This function updates qemu's dirty bitmap using
477 * memory_region_set_dirty(). This means all bits are set
480 * @start_add: start of logged region.
481 * @end_addr: end of logged region.
483 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
484 MemoryRegionSection
*section
)
486 KVMState
*s
= kvm_state
;
487 struct kvm_dirty_log d
= {};
489 hwaddr start_addr
, size
;
491 size
= kvm_align_section(section
, &start_addr
);
493 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
495 /* We don't have a slot if we want to trap every access. */
499 /* XXX bad kernel interface alert
500 * For dirty bitmap, kernel allocates array of size aligned to
501 * bits-per-long. But for case when the kernel is 64bits and
502 * the userspace is 32bits, userspace can't align to the same
503 * bits-per-long, since sizeof(long) is different between kernel
504 * and user space. This way, userspace will provide buffer which
505 * may be 4 bytes less than the kernel will use, resulting in
506 * userspace memory corruption (which is not detectable by valgrind
507 * too, in most cases).
508 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
509 * a hope that sizeof(long) won't become >8 any time soon.
511 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
512 /*HOST_LONG_BITS*/ 64) / 8;
513 d
.dirty_bitmap
= g_malloc0(size
);
515 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
516 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
517 DPRINTF("ioctl failed %d\n", errno
);
518 g_free(d
.dirty_bitmap
);
522 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
523 g_free(d
.dirty_bitmap
);
529 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
530 MemoryRegionSection
*secion
,
531 hwaddr start
, hwaddr size
)
533 KVMState
*s
= kvm_state
;
535 if (s
->coalesced_mmio
) {
536 struct kvm_coalesced_mmio_zone zone
;
542 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
546 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
547 MemoryRegionSection
*secion
,
548 hwaddr start
, hwaddr size
)
550 KVMState
*s
= kvm_state
;
552 if (s
->coalesced_mmio
) {
553 struct kvm_coalesced_mmio_zone zone
;
559 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
563 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
567 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
575 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
579 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
581 /* VM wide version not implemented, use global one instead */
582 ret
= kvm_check_extension(s
, extension
);
588 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
590 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
591 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
592 * endianness, but the memory core hands them in target endianness.
593 * For example, PPC is always treated as big-endian even if running
594 * on KVM and on PPC64LE. Correct here.
608 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
609 bool assign
, uint32_t size
, bool datamatch
)
612 struct kvm_ioeventfd iofd
= {
613 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
620 if (!kvm_enabled()) {
625 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
628 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
631 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
640 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
641 bool assign
, uint32_t size
, bool datamatch
)
643 struct kvm_ioeventfd kick
= {
644 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
646 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
651 if (!kvm_enabled()) {
655 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
658 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
660 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
668 static int kvm_check_many_ioeventfds(void)
670 /* Userspace can use ioeventfd for io notification. This requires a host
671 * that supports eventfd(2) and an I/O thread; since eventfd does not
672 * support SIGIO it cannot interrupt the vcpu.
674 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
675 * can avoid creating too many ioeventfds.
677 #if defined(CONFIG_EVENTFD)
680 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
681 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
682 if (ioeventfds
[i
] < 0) {
685 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
687 close(ioeventfds
[i
]);
692 /* Decide whether many devices are supported or not */
693 ret
= i
== ARRAY_SIZE(ioeventfds
);
696 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
697 close(ioeventfds
[i
]);
705 static const KVMCapabilityInfo
*
706 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
709 if (!kvm_check_extension(s
, list
->value
)) {
717 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
718 MemoryRegionSection
*section
, bool add
)
722 MemoryRegion
*mr
= section
->mr
;
723 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
724 hwaddr start_addr
, size
;
727 if (!memory_region_is_ram(mr
)) {
728 if (writeable
|| !kvm_readonly_mem_allowed
) {
730 } else if (!mr
->romd_mode
) {
731 /* If the memory device is not in romd_mode, then we actually want
732 * to remove the kvm memory slot so all accesses will trap. */
737 size
= kvm_align_section(section
, &start_addr
);
742 /* use aligned delta to align the ram address */
743 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+
744 (start_addr
- section
->offset_within_address_space
);
747 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
751 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
752 kvm_physical_sync_dirty_bitmap(kml
, section
);
755 /* unregister the slot */
756 mem
->memory_size
= 0;
758 err
= kvm_set_user_memory_region(kml
, mem
, false);
760 fprintf(stderr
, "%s: error unregistering slot: %s\n",
761 __func__
, strerror(-err
));
767 /* register the new slot */
768 mem
= kvm_alloc_slot(kml
);
769 mem
->memory_size
= size
;
770 mem
->start_addr
= start_addr
;
772 mem
->flags
= kvm_mem_flags(mr
);
774 err
= kvm_set_user_memory_region(kml
, mem
, true);
776 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
782 static void kvm_region_add(MemoryListener
*listener
,
783 MemoryRegionSection
*section
)
785 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
787 memory_region_ref(section
->mr
);
788 kvm_set_phys_mem(kml
, section
, true);
791 static void kvm_region_del(MemoryListener
*listener
,
792 MemoryRegionSection
*section
)
794 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
796 kvm_set_phys_mem(kml
, section
, false);
797 memory_region_unref(section
->mr
);
800 static void kvm_log_sync(MemoryListener
*listener
,
801 MemoryRegionSection
*section
)
803 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
806 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
812 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
813 MemoryRegionSection
*section
,
814 bool match_data
, uint64_t data
,
817 int fd
= event_notifier_get_fd(e
);
820 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
821 data
, true, int128_get64(section
->size
),
824 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
825 __func__
, strerror(-r
));
830 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
831 MemoryRegionSection
*section
,
832 bool match_data
, uint64_t data
,
835 int fd
= event_notifier_get_fd(e
);
838 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
839 data
, false, int128_get64(section
->size
),
846 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
847 MemoryRegionSection
*section
,
848 bool match_data
, uint64_t data
,
851 int fd
= event_notifier_get_fd(e
);
854 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
855 data
, true, int128_get64(section
->size
),
858 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
859 __func__
, strerror(-r
));
864 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
865 MemoryRegionSection
*section
,
866 bool match_data
, uint64_t data
,
870 int fd
= event_notifier_get_fd(e
);
873 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
874 data
, false, int128_get64(section
->size
),
881 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
882 AddressSpace
*as
, int as_id
)
886 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
889 for (i
= 0; i
< s
->nr_slots
; i
++) {
890 kml
->slots
[i
].slot
= i
;
893 kml
->listener
.region_add
= kvm_region_add
;
894 kml
->listener
.region_del
= kvm_region_del
;
895 kml
->listener
.log_start
= kvm_log_start
;
896 kml
->listener
.log_stop
= kvm_log_stop
;
897 kml
->listener
.log_sync
= kvm_log_sync
;
898 kml
->listener
.priority
= 10;
900 memory_listener_register(&kml
->listener
, as
);
903 static MemoryListener kvm_io_listener
= {
904 .eventfd_add
= kvm_io_ioeventfd_add
,
905 .eventfd_del
= kvm_io_ioeventfd_del
,
909 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
911 struct kvm_irq_level event
;
914 assert(kvm_async_interrupts_enabled());
918 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
920 perror("kvm_set_irq");
924 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
927 #ifdef KVM_CAP_IRQ_ROUTING
928 typedef struct KVMMSIRoute
{
929 struct kvm_irq_routing_entry kroute
;
930 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
933 static void set_gsi(KVMState
*s
, unsigned int gsi
)
935 set_bit(gsi
, s
->used_gsi_bitmap
);
938 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
940 clear_bit(gsi
, s
->used_gsi_bitmap
);
943 void kvm_init_irq_routing(KVMState
*s
)
947 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
949 /* Round up so we can search ints using ffs */
950 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
951 s
->gsi_count
= gsi_count
;
954 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
955 s
->nr_allocated_irq_routes
= 0;
957 if (!kvm_direct_msi_allowed
) {
958 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
959 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
963 kvm_arch_init_irq_routing(s
);
966 void kvm_irqchip_commit_routes(KVMState
*s
)
970 if (kvm_gsi_direct_mapping()) {
974 if (!kvm_gsi_routing_enabled()) {
978 s
->irq_routes
->flags
= 0;
979 trace_kvm_irqchip_commit_routes();
980 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
984 static void kvm_add_routing_entry(KVMState
*s
,
985 struct kvm_irq_routing_entry
*entry
)
987 struct kvm_irq_routing_entry
*new;
990 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
991 n
= s
->nr_allocated_irq_routes
* 2;
995 size
= sizeof(struct kvm_irq_routing
);
996 size
+= n
* sizeof(*new);
997 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
998 s
->nr_allocated_irq_routes
= n
;
1000 n
= s
->irq_routes
->nr
++;
1001 new = &s
->irq_routes
->entries
[n
];
1005 set_gsi(s
, entry
->gsi
);
1008 static int kvm_update_routing_entry(KVMState
*s
,
1009 struct kvm_irq_routing_entry
*new_entry
)
1011 struct kvm_irq_routing_entry
*entry
;
1014 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1015 entry
= &s
->irq_routes
->entries
[n
];
1016 if (entry
->gsi
!= new_entry
->gsi
) {
1020 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1024 *entry
= *new_entry
;
1032 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1034 struct kvm_irq_routing_entry e
= {};
1036 assert(pin
< s
->gsi_count
);
1039 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1041 e
.u
.irqchip
.irqchip
= irqchip
;
1042 e
.u
.irqchip
.pin
= pin
;
1043 kvm_add_routing_entry(s
, &e
);
1046 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1048 struct kvm_irq_routing_entry
*e
;
1051 if (kvm_gsi_direct_mapping()) {
1055 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1056 e
= &s
->irq_routes
->entries
[i
];
1057 if (e
->gsi
== virq
) {
1058 s
->irq_routes
->nr
--;
1059 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1063 kvm_arch_release_virq_post(virq
);
1064 trace_kvm_irqchip_release_virq(virq
);
1067 static unsigned int kvm_hash_msi(uint32_t data
)
1069 /* This is optimized for IA32 MSI layout. However, no other arch shall
1070 * repeat the mistake of not providing a direct MSI injection API. */
1074 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1076 KVMMSIRoute
*route
, *next
;
1079 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1080 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1081 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1082 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1088 static int kvm_irqchip_get_virq(KVMState
*s
)
1093 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1094 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1095 * number can succeed even though a new route entry cannot be added.
1096 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1098 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1099 kvm_flush_dynamic_msi_routes(s
);
1102 /* Return the lowest unused GSI in the bitmap */
1103 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1104 if (next_virq
>= s
->gsi_count
) {
1111 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1113 unsigned int hash
= kvm_hash_msi(msg
.data
);
1116 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1117 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1118 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1119 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1126 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1131 if (kvm_direct_msi_allowed
) {
1132 msi
.address_lo
= (uint32_t)msg
.address
;
1133 msi
.address_hi
= msg
.address
>> 32;
1134 msi
.data
= le32_to_cpu(msg
.data
);
1136 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1138 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1141 route
= kvm_lookup_msi_route(s
, msg
);
1145 virq
= kvm_irqchip_get_virq(s
);
1150 route
= g_malloc0(sizeof(KVMMSIRoute
));
1151 route
->kroute
.gsi
= virq
;
1152 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1153 route
->kroute
.flags
= 0;
1154 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1155 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1156 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1158 kvm_add_routing_entry(s
, &route
->kroute
);
1159 kvm_irqchip_commit_routes(s
);
1161 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1165 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1167 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1170 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1172 struct kvm_irq_routing_entry kroute
= {};
1174 MSIMessage msg
= {0, 0};
1176 if (pci_available
&& dev
) {
1177 msg
= pci_get_msi_message(dev
, vector
);
1180 if (kvm_gsi_direct_mapping()) {
1181 return kvm_arch_msi_data_to_gsi(msg
.data
);
1184 if (!kvm_gsi_routing_enabled()) {
1188 virq
= kvm_irqchip_get_virq(s
);
1194 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1196 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1197 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1198 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1199 if (pci_available
&& kvm_msi_devid_required()) {
1200 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1201 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1203 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1204 kvm_irqchip_release_virq(s
, virq
);
1208 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
1211 kvm_add_routing_entry(s
, &kroute
);
1212 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1213 kvm_irqchip_commit_routes(s
);
1218 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1221 struct kvm_irq_routing_entry kroute
= {};
1223 if (kvm_gsi_direct_mapping()) {
1227 if (!kvm_irqchip_in_kernel()) {
1232 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1234 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1235 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1236 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1237 if (pci_available
&& kvm_msi_devid_required()) {
1238 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1239 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1241 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1245 trace_kvm_irqchip_update_msi_route(virq
);
1247 return kvm_update_routing_entry(s
, &kroute
);
1250 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1253 struct kvm_irqfd irqfd
= {
1256 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1260 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1261 irqfd
.resamplefd
= rfd
;
1264 if (!kvm_irqfds_enabled()) {
1268 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1271 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1273 struct kvm_irq_routing_entry kroute
= {};
1276 if (!kvm_gsi_routing_enabled()) {
1280 virq
= kvm_irqchip_get_virq(s
);
1286 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1288 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1289 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1290 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1291 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1292 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1294 kvm_add_routing_entry(s
, &kroute
);
1299 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1301 struct kvm_irq_routing_entry kroute
= {};
1304 if (!kvm_gsi_routing_enabled()) {
1307 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1310 virq
= kvm_irqchip_get_virq(s
);
1316 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1318 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1319 kroute
.u
.hv_sint
.sint
= sint
;
1321 kvm_add_routing_entry(s
, &kroute
);
1322 kvm_irqchip_commit_routes(s
);
1327 #else /* !KVM_CAP_IRQ_ROUTING */
1329 void kvm_init_irq_routing(KVMState
*s
)
1333 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1337 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1342 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1347 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1352 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1357 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1362 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1366 #endif /* !KVM_CAP_IRQ_ROUTING */
1368 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1369 EventNotifier
*rn
, int virq
)
1371 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1372 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1375 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1378 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1382 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1383 EventNotifier
*rn
, qemu_irq irq
)
1386 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1391 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1394 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1398 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1403 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1406 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1408 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1411 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1415 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1417 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1418 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1420 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1427 /* First probe and see if there's a arch-specific hook to create the
1428 * in-kernel irqchip for us */
1429 ret
= kvm_arch_irqchip_create(machine
, s
);
1431 if (machine_kernel_irqchip_split(machine
)) {
1432 perror("Split IRQ chip mode not supported.");
1435 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1439 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1443 kvm_kernel_irqchip
= true;
1444 /* If we have an in-kernel IRQ chip then we must have asynchronous
1445 * interrupt delivery (though the reverse is not necessarily true)
1447 kvm_async_interrupts_allowed
= true;
1448 kvm_halt_in_kernel_allowed
= true;
1450 kvm_init_irq_routing(s
);
1452 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1455 /* Find number of supported CPUs using the recommended
1456 * procedure from the kernel API documentation to cope with
1457 * older kernels that may be missing capabilities.
1459 static int kvm_recommended_vcpus(KVMState
*s
)
1461 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1462 return (ret
) ? ret
: 4;
1465 static int kvm_max_vcpus(KVMState
*s
)
1467 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1468 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1471 static int kvm_max_vcpu_id(KVMState
*s
)
1473 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1474 return (ret
) ? ret
: kvm_max_vcpus(s
);
1477 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1479 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
1480 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1483 static int kvm_init(MachineState
*ms
)
1485 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1486 static const char upgrade_note
[] =
1487 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1488 "(see http://sourceforge.net/projects/kvm).\n";
1493 { "SMP", smp_cpus
},
1494 { "hotpluggable", max_cpus
},
1497 int soft_vcpus_limit
, hard_vcpus_limit
;
1499 const KVMCapabilityInfo
*missing_cap
;
1502 const char *kvm_type
;
1504 s
= KVM_STATE(ms
->accelerator
);
1507 * On systems where the kernel can support different base page
1508 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1509 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1510 * page size for the system though.
1512 assert(TARGET_PAGE_SIZE
<= getpagesize());
1516 #ifdef KVM_CAP_SET_GUEST_DEBUG
1517 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1519 QLIST_INIT(&s
->kvm_parked_vcpus
);
1521 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1523 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1528 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1529 if (ret
< KVM_API_VERSION
) {
1533 fprintf(stderr
, "kvm version too old\n");
1537 if (ret
> KVM_API_VERSION
) {
1539 fprintf(stderr
, "kvm version not supported\n");
1543 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
1544 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1546 /* If unspecified, use the default value */
1551 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1553 type
= mc
->kvm_type(kvm_type
);
1554 } else if (kvm_type
) {
1556 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1561 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1562 } while (ret
== -EINTR
);
1565 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1569 if (ret
== -EINVAL
) {
1571 "Host kernel setup problem detected. Please verify:\n");
1572 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1573 " user_mode parameters, whether\n");
1575 " user space is running in primary address space\n");
1577 "- for kernels supporting the vm.allocate_pgste sysctl, "
1578 "whether it is enabled\n");
1586 /* check the vcpu limits */
1587 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1588 hard_vcpus_limit
= kvm_max_vcpus(s
);
1591 if (nc
->num
> soft_vcpus_limit
) {
1592 warn_report("Number of %s cpus requested (%d) exceeds "
1593 "the recommended cpus supported by KVM (%d)",
1594 nc
->name
, nc
->num
, soft_vcpus_limit
);
1596 if (nc
->num
> hard_vcpus_limit
) {
1597 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1598 "the maximum cpus supported by KVM (%d)\n",
1599 nc
->name
, nc
->num
, hard_vcpus_limit
);
1606 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1609 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1613 fprintf(stderr
, "kvm does not support %s\n%s",
1614 missing_cap
->name
, upgrade_note
);
1618 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1620 #ifdef KVM_CAP_VCPU_EVENTS
1621 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1624 s
->robust_singlestep
=
1625 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1627 #ifdef KVM_CAP_DEBUGREGS
1628 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1631 #ifdef KVM_CAP_IRQ_ROUTING
1632 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1635 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1637 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1638 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1639 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1642 kvm_readonly_mem_allowed
=
1643 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1645 kvm_eventfds_allowed
=
1646 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1648 kvm_irqfds_allowed
=
1649 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1651 kvm_resamplefds_allowed
=
1652 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1654 kvm_vm_attributes_allowed
=
1655 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1657 kvm_ioeventfd_any_length_allowed
=
1658 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
1663 * if memory encryption object is specified then initialize the memory
1664 * encryption context.
1666 if (ms
->memory_encryption
) {
1667 kvm_state
->memcrypt_handle
= sev_guest_init(ms
->memory_encryption
);
1668 if (!kvm_state
->memcrypt_handle
) {
1673 kvm_state
->memcrypt_encrypt_data
= sev_encrypt_data
;
1676 ret
= kvm_arch_init(ms
, s
);
1681 if (machine_kernel_irqchip_allowed(ms
)) {
1682 kvm_irqchip_create(ms
, s
);
1685 if (kvm_eventfds_allowed
) {
1686 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1687 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1689 s
->memory_listener
.listener
.coalesced_mmio_add
= kvm_coalesce_mmio_region
;
1690 s
->memory_listener
.listener
.coalesced_mmio_del
= kvm_uncoalesce_mmio_region
;
1692 kvm_memory_listener_register(s
, &s
->memory_listener
,
1693 &address_space_memory
, 0);
1694 memory_listener_register(&kvm_io_listener
,
1697 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1699 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1701 qemu_balloon_inhibit(true);
1714 g_free(s
->memory_listener
.slots
);
1719 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1721 s
->sigmask_len
= sigmask_len
;
1724 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1725 int size
, uint32_t count
)
1728 uint8_t *ptr
= data
;
1730 for (i
= 0; i
< count
; i
++) {
1731 address_space_rw(&address_space_io
, port
, attrs
,
1733 direction
== KVM_EXIT_IO_OUT
);
1738 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1740 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1741 run
->internal
.suberror
);
1743 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1746 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1747 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1748 i
, (uint64_t)run
->internal
.data
[i
]);
1751 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1752 fprintf(stderr
, "emulation failure\n");
1753 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1754 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1755 return EXCP_INTERRUPT
;
1758 /* FIXME: Should trigger a qmp message to let management know
1759 * something went wrong.
1764 void kvm_flush_coalesced_mmio_buffer(void)
1766 KVMState
*s
= kvm_state
;
1768 if (s
->coalesced_flush_in_progress
) {
1772 s
->coalesced_flush_in_progress
= true;
1774 if (s
->coalesced_mmio_ring
) {
1775 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1776 while (ring
->first
!= ring
->last
) {
1777 struct kvm_coalesced_mmio
*ent
;
1779 ent
= &ring
->coalesced_mmio
[ring
->first
];
1781 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1783 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1787 s
->coalesced_flush_in_progress
= false;
1790 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
1792 if (!cpu
->vcpu_dirty
) {
1793 kvm_arch_get_registers(cpu
);
1794 cpu
->vcpu_dirty
= true;
1798 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1800 if (!cpu
->vcpu_dirty
) {
1801 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
1805 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
1807 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1808 cpu
->vcpu_dirty
= false;
1811 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1813 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
1816 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
1818 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1819 cpu
->vcpu_dirty
= false;
1822 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1824 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
1827 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
1829 cpu
->vcpu_dirty
= true;
1832 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
1834 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
1837 #ifdef KVM_HAVE_MCE_INJECTION
1838 static __thread
void *pending_sigbus_addr
;
1839 static __thread
int pending_sigbus_code
;
1840 static __thread
bool have_sigbus_pending
;
1843 static void kvm_cpu_kick(CPUState
*cpu
)
1845 atomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
1848 static void kvm_cpu_kick_self(void)
1850 if (kvm_immediate_exit
) {
1851 kvm_cpu_kick(current_cpu
);
1853 qemu_cpu_kick_self();
1857 static void kvm_eat_signals(CPUState
*cpu
)
1859 struct timespec ts
= { 0, 0 };
1865 if (kvm_immediate_exit
) {
1866 atomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
1867 /* Write kvm_run->immediate_exit before the cpu->exit_request
1868 * write in kvm_cpu_exec.
1874 sigemptyset(&waitset
);
1875 sigaddset(&waitset
, SIG_IPI
);
1878 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
1879 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
1880 perror("sigtimedwait");
1884 r
= sigpending(&chkset
);
1886 perror("sigpending");
1889 } while (sigismember(&chkset
, SIG_IPI
));
1892 int kvm_cpu_exec(CPUState
*cpu
)
1894 struct kvm_run
*run
= cpu
->kvm_run
;
1897 DPRINTF("kvm_cpu_exec()\n");
1899 if (kvm_arch_process_async_events(cpu
)) {
1900 atomic_set(&cpu
->exit_request
, 0);
1904 qemu_mutex_unlock_iothread();
1905 cpu_exec_start(cpu
);
1910 if (cpu
->vcpu_dirty
) {
1911 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1912 cpu
->vcpu_dirty
= false;
1915 kvm_arch_pre_run(cpu
, run
);
1916 if (atomic_read(&cpu
->exit_request
)) {
1917 DPRINTF("interrupt exit requested\n");
1919 * KVM requires us to reenter the kernel after IO exits to complete
1920 * instruction emulation. This self-signal will ensure that we
1923 kvm_cpu_kick_self();
1926 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1927 * Matching barrier in kvm_eat_signals.
1931 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1933 attrs
= kvm_arch_post_run(cpu
, run
);
1935 #ifdef KVM_HAVE_MCE_INJECTION
1936 if (unlikely(have_sigbus_pending
)) {
1937 qemu_mutex_lock_iothread();
1938 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
1939 pending_sigbus_addr
);
1940 have_sigbus_pending
= false;
1941 qemu_mutex_unlock_iothread();
1946 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1947 DPRINTF("io window exit\n");
1948 kvm_eat_signals(cpu
);
1949 ret
= EXCP_INTERRUPT
;
1952 fprintf(stderr
, "error: kvm run failed %s\n",
1953 strerror(-run_ret
));
1955 if (run_ret
== -EBUSY
) {
1957 "This is probably because your SMT is enabled.\n"
1958 "VCPU can only run on primary threads with all "
1959 "secondary threads offline.\n");
1966 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1967 switch (run
->exit_reason
) {
1969 DPRINTF("handle_io\n");
1970 /* Called outside BQL */
1971 kvm_handle_io(run
->io
.port
, attrs
,
1972 (uint8_t *)run
+ run
->io
.data_offset
,
1979 DPRINTF("handle_mmio\n");
1980 /* Called outside BQL */
1981 address_space_rw(&address_space_memory
,
1982 run
->mmio
.phys_addr
, attrs
,
1985 run
->mmio
.is_write
);
1988 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1989 DPRINTF("irq_window_open\n");
1990 ret
= EXCP_INTERRUPT
;
1992 case KVM_EXIT_SHUTDOWN
:
1993 DPRINTF("shutdown\n");
1994 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
1995 ret
= EXCP_INTERRUPT
;
1997 case KVM_EXIT_UNKNOWN
:
1998 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1999 (uint64_t)run
->hw
.hardware_exit_reason
);
2002 case KVM_EXIT_INTERNAL_ERROR
:
2003 ret
= kvm_handle_internal_error(cpu
, run
);
2005 case KVM_EXIT_SYSTEM_EVENT
:
2006 switch (run
->system_event
.type
) {
2007 case KVM_SYSTEM_EVENT_SHUTDOWN
:
2008 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
2009 ret
= EXCP_INTERRUPT
;
2011 case KVM_SYSTEM_EVENT_RESET
:
2012 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2013 ret
= EXCP_INTERRUPT
;
2015 case KVM_SYSTEM_EVENT_CRASH
:
2016 kvm_cpu_synchronize_state(cpu
);
2017 qemu_mutex_lock_iothread();
2018 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
2019 qemu_mutex_unlock_iothread();
2023 DPRINTF("kvm_arch_handle_exit\n");
2024 ret
= kvm_arch_handle_exit(cpu
, run
);
2029 DPRINTF("kvm_arch_handle_exit\n");
2030 ret
= kvm_arch_handle_exit(cpu
, run
);
2036 qemu_mutex_lock_iothread();
2039 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
2040 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2043 atomic_set(&cpu
->exit_request
, 0);
2047 int kvm_ioctl(KVMState
*s
, int type
, ...)
2054 arg
= va_arg(ap
, void *);
2057 trace_kvm_ioctl(type
, arg
);
2058 ret
= ioctl(s
->fd
, type
, arg
);
2065 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2072 arg
= va_arg(ap
, void *);
2075 trace_kvm_vm_ioctl(type
, arg
);
2076 ret
= ioctl(s
->vmfd
, type
, arg
);
2083 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2090 arg
= va_arg(ap
, void *);
2093 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2094 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2101 int kvm_device_ioctl(int fd
, int type
, ...)
2108 arg
= va_arg(ap
, void *);
2111 trace_kvm_device_ioctl(fd
, type
, arg
);
2112 ret
= ioctl(fd
, type
, arg
);
2119 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2122 struct kvm_device_attr attribute
= {
2127 if (!kvm_vm_attributes_allowed
) {
2131 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2132 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2136 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2138 struct kvm_device_attr attribute
= {
2144 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2147 int kvm_device_access(int fd
, int group
, uint64_t attr
,
2148 void *val
, bool write
, Error
**errp
)
2150 struct kvm_device_attr kvmattr
;
2154 kvmattr
.group
= group
;
2155 kvmattr
.attr
= attr
;
2156 kvmattr
.addr
= (uintptr_t)val
;
2158 err
= kvm_device_ioctl(fd
,
2159 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2162 error_setg_errno(errp
, -err
,
2163 "KVM_%s_DEVICE_ATTR failed: Group %d "
2164 "attr 0x%016" PRIx64
,
2165 write
? "SET" : "GET", group
, attr
);
2170 bool kvm_has_sync_mmu(void)
2172 return kvm_state
->sync_mmu
;
2175 int kvm_has_vcpu_events(void)
2177 return kvm_state
->vcpu_events
;
2180 int kvm_has_robust_singlestep(void)
2182 return kvm_state
->robust_singlestep
;
2185 int kvm_has_debugregs(void)
2187 return kvm_state
->debugregs
;
2190 int kvm_has_many_ioeventfds(void)
2192 if (!kvm_enabled()) {
2195 return kvm_state
->many_ioeventfds
;
2198 int kvm_has_gsi_routing(void)
2200 #ifdef KVM_CAP_IRQ_ROUTING
2201 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2207 int kvm_has_intx_set_mask(void)
2209 return kvm_state
->intx_set_mask
;
2212 bool kvm_arm_supports_user_irq(void)
2214 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
2217 #ifdef KVM_CAP_SET_GUEST_DEBUG
2218 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2221 struct kvm_sw_breakpoint
*bp
;
2223 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2231 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2233 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2236 struct kvm_set_guest_debug_data
{
2237 struct kvm_guest_debug dbg
;
2241 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
2243 struct kvm_set_guest_debug_data
*dbg_data
=
2244 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
2246 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
2250 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2252 struct kvm_set_guest_debug_data data
;
2254 data
.dbg
.control
= reinject_trap
;
2256 if (cpu
->singlestep_enabled
) {
2257 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2259 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2261 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
2262 RUN_ON_CPU_HOST_PTR(&data
));
2266 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2267 target_ulong len
, int type
)
2269 struct kvm_sw_breakpoint
*bp
;
2272 if (type
== GDB_BREAKPOINT_SW
) {
2273 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2279 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2282 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2288 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2290 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2297 err
= kvm_update_guest_debug(cpu
, 0);
2305 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2306 target_ulong len
, int type
)
2308 struct kvm_sw_breakpoint
*bp
;
2311 if (type
== GDB_BREAKPOINT_SW
) {
2312 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2317 if (bp
->use_count
> 1) {
2322 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2327 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2330 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2337 err
= kvm_update_guest_debug(cpu
, 0);
2345 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2347 struct kvm_sw_breakpoint
*bp
, *next
;
2348 KVMState
*s
= cpu
->kvm_state
;
2351 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2352 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2353 /* Try harder to find a CPU that currently sees the breakpoint. */
2354 CPU_FOREACH(tmpcpu
) {
2355 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2360 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2363 kvm_arch_remove_all_hw_breakpoints();
2366 kvm_update_guest_debug(cpu
, 0);
2370 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2372 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2377 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2378 target_ulong len
, int type
)
2383 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2384 target_ulong len
, int type
)
2389 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2392 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2394 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2396 KVMState
*s
= kvm_state
;
2397 struct kvm_signal_mask
*sigmask
;
2400 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2402 sigmask
->len
= s
->sigmask_len
;
2403 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2404 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2410 static void kvm_ipi_signal(int sig
)
2413 assert(kvm_immediate_exit
);
2414 kvm_cpu_kick(current_cpu
);
2418 void kvm_init_cpu_signals(CPUState
*cpu
)
2422 struct sigaction sigact
;
2424 memset(&sigact
, 0, sizeof(sigact
));
2425 sigact
.sa_handler
= kvm_ipi_signal
;
2426 sigaction(SIG_IPI
, &sigact
, NULL
);
2428 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
2429 #if defined KVM_HAVE_MCE_INJECTION
2430 sigdelset(&set
, SIGBUS
);
2431 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2433 sigdelset(&set
, SIG_IPI
);
2434 if (kvm_immediate_exit
) {
2435 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2437 r
= kvm_set_signal_mask(cpu
, &set
);
2440 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
2445 /* Called asynchronously in VCPU thread. */
2446 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2448 #ifdef KVM_HAVE_MCE_INJECTION
2449 if (have_sigbus_pending
) {
2452 have_sigbus_pending
= true;
2453 pending_sigbus_addr
= addr
;
2454 pending_sigbus_code
= code
;
2455 atomic_set(&cpu
->exit_request
, 1);
2462 /* Called synchronously (via signalfd) in main thread. */
2463 int kvm_on_sigbus(int code
, void *addr
)
2465 #ifdef KVM_HAVE_MCE_INJECTION
2466 /* Action required MCE kills the process if SIGBUS is blocked. Because
2467 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2468 * we can only get action optional here.
2470 assert(code
!= BUS_MCEERR_AR
);
2471 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
2478 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2481 struct kvm_create_device create_dev
;
2483 create_dev
.type
= type
;
2485 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2487 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2491 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2496 return test
? 0 : create_dev
.fd
;
2499 bool kvm_device_supported(int vmfd
, uint64_t type
)
2501 struct kvm_create_device create_dev
= {
2504 .flags
= KVM_CREATE_DEVICE_TEST
,
2507 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
2511 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
2514 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2516 struct kvm_one_reg reg
;
2520 reg
.addr
= (uintptr_t) source
;
2521 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2523 trace_kvm_failed_reg_set(id
, strerror(-r
));
2528 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2530 struct kvm_one_reg reg
;
2534 reg
.addr
= (uintptr_t) target
;
2535 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2537 trace_kvm_failed_reg_get(id
, strerror(-r
));
2542 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2544 AccelClass
*ac
= ACCEL_CLASS(oc
);
2546 ac
->init_machine
= kvm_init
;
2547 ac
->allowed
= &kvm_allowed
;
2550 static const TypeInfo kvm_accel_type
= {
2551 .name
= TYPE_KVM_ACCEL
,
2552 .parent
= TYPE_ACCEL
,
2553 .class_init
= kvm_accel_class_init
,
2554 .instance_size
= sizeof(KVMState
),
2557 static void kvm_type_init(void)
2559 type_register_static(&kvm_accel_type
);
2562 type_init(kvm_type_init
);