4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
44 #include "qapi/visitor.h"
45 #include "qapi/qapi-types-common.h"
46 #include "qapi/qapi-visit-common.h"
47 #include "sysemu/reset.h"
49 #include "hw/boards.h"
51 /* This check must be after config-host.h is included */
53 #include <sys/eventfd.h>
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
59 #define PAGE_SIZE qemu_real_host_page_size
64 #define DPRINTF(fmt, ...) \
65 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
67 #define DPRINTF(fmt, ...) \
71 #define KVM_MSI_HASHTAB_SIZE 256
73 struct KVMParkedVcpu
{
74 unsigned long vcpu_id
;
76 QLIST_ENTRY(KVMParkedVcpu
) node
;
81 AccelState parent_obj
;
88 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
89 bool coalesced_flush_in_progress
;
91 int robust_singlestep
;
93 #ifdef KVM_CAP_SET_GUEST_DEBUG
94 QTAILQ_HEAD(, kvm_sw_breakpoint
) kvm_sw_breakpoints
;
96 int max_nested_state_len
;
100 bool kernel_irqchip_allowed
;
101 bool kernel_irqchip_required
;
102 OnOffAuto kernel_irqchip_split
;
104 bool manual_dirty_log_protect
;
105 /* The man page (and posix) say ioctl numbers are signed int, but
106 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
107 * unsigned, and treating them as signed here can break things */
108 unsigned irq_set_ioctl
;
109 unsigned int sigmask_len
;
111 #ifdef KVM_CAP_IRQ_ROUTING
112 struct kvm_irq_routing
*irq_routes
;
113 int nr_allocated_irq_routes
;
114 unsigned long *used_gsi_bitmap
;
115 unsigned int gsi_count
;
116 QTAILQ_HEAD(, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
118 KVMMemoryListener memory_listener
;
119 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
121 /* memory encryption */
122 void *memcrypt_handle
;
123 int (*memcrypt_encrypt_data
)(void *handle
, uint8_t *ptr
, uint64_t len
);
125 /* For "info mtree -f" to tell if an MR is registered in KVM */
128 KVMMemoryListener
*ml
;
134 bool kvm_kernel_irqchip
;
135 bool kvm_split_irqchip
;
136 bool kvm_async_interrupts_allowed
;
137 bool kvm_halt_in_kernel_allowed
;
138 bool kvm_eventfds_allowed
;
139 bool kvm_irqfds_allowed
;
140 bool kvm_resamplefds_allowed
;
141 bool kvm_msi_via_irqfd_allowed
;
142 bool kvm_gsi_routing_allowed
;
143 bool kvm_gsi_direct_mapping
;
145 bool kvm_readonly_mem_allowed
;
146 bool kvm_vm_attributes_allowed
;
147 bool kvm_direct_msi_allowed
;
148 bool kvm_ioeventfd_any_length_allowed
;
149 bool kvm_msi_use_devid
;
150 static bool kvm_immediate_exit
;
151 static hwaddr kvm_max_slot_size
= ~0;
153 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
154 KVM_CAP_INFO(USER_MEMORY
),
155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
160 static NotifierList kvm_irqchip_change_notifiers
=
161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers
);
163 struct KVMResampleFd
{
165 EventNotifier
*resample_event
;
166 QLIST_ENTRY(KVMResampleFd
) node
;
168 typedef struct KVMResampleFd KVMResampleFd
;
171 * Only used with split irqchip where we need to do the resample fd
172 * kick for the kernel from userspace.
174 static QLIST_HEAD(, KVMResampleFd
) kvm_resample_fd_list
=
175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list
);
177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
180 static inline void kvm_resample_fd_remove(int gsi
)
184 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
185 if (rfd
->gsi
== gsi
) {
186 QLIST_REMOVE(rfd
, node
);
193 static inline void kvm_resample_fd_insert(int gsi
, EventNotifier
*event
)
195 KVMResampleFd
*rfd
= g_new0(KVMResampleFd
, 1);
198 rfd
->resample_event
= event
;
200 QLIST_INSERT_HEAD(&kvm_resample_fd_list
, rfd
, node
);
203 void kvm_resample_fd_notify(int gsi
)
207 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
208 if (rfd
->gsi
== gsi
) {
209 event_notifier_set(rfd
->resample_event
);
210 trace_kvm_resample_fd_notify(gsi
);
216 int kvm_get_max_memslots(void)
218 KVMState
*s
= KVM_STATE(current_accel());
223 bool kvm_memcrypt_enabled(void)
225 if (kvm_state
&& kvm_state
->memcrypt_handle
) {
232 int kvm_memcrypt_encrypt_data(uint8_t *ptr
, uint64_t len
)
234 if (kvm_state
->memcrypt_handle
&&
235 kvm_state
->memcrypt_encrypt_data
) {
236 return kvm_state
->memcrypt_encrypt_data(kvm_state
->memcrypt_handle
,
243 /* Called with KVMMemoryListener.slots_lock held */
244 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
246 KVMState
*s
= kvm_state
;
249 for (i
= 0; i
< s
->nr_slots
; i
++) {
250 if (kml
->slots
[i
].memory_size
== 0) {
251 return &kml
->slots
[i
];
258 bool kvm_has_free_slot(MachineState
*ms
)
260 KVMState
*s
= KVM_STATE(ms
->accelerator
);
262 KVMMemoryListener
*kml
= &s
->memory_listener
;
265 result
= !!kvm_get_free_slot(kml
);
266 kvm_slots_unlock(kml
);
271 /* Called with KVMMemoryListener.slots_lock held */
272 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
274 KVMSlot
*slot
= kvm_get_free_slot(kml
);
280 fprintf(stderr
, "%s: no free slot available\n", __func__
);
284 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
288 KVMState
*s
= kvm_state
;
291 for (i
= 0; i
< s
->nr_slots
; i
++) {
292 KVMSlot
*mem
= &kml
->slots
[i
];
294 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
303 * Calculate and align the start address and the size of the section.
304 * Return the size. If the size is 0, the aligned section is empty.
306 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
309 hwaddr size
= int128_get64(section
->size
);
310 hwaddr delta
, aligned
;
312 /* kvm works in page size chunks, but the function may be called
313 with sub-page size and unaligned start address. Pad the start
314 address to next and truncate size to previous page boundary. */
315 aligned
= ROUND_UP(section
->offset_within_address_space
,
316 qemu_real_host_page_size
);
317 delta
= aligned
- section
->offset_within_address_space
;
323 return (size
- delta
) & qemu_real_host_page_mask
;
326 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
329 KVMMemoryListener
*kml
= &s
->memory_listener
;
333 for (i
= 0; i
< s
->nr_slots
; i
++) {
334 KVMSlot
*mem
= &kml
->slots
[i
];
336 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
337 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
342 kvm_slots_unlock(kml
);
347 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
349 KVMState
*s
= kvm_state
;
350 struct kvm_userspace_memory_region mem
;
353 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
354 mem
.guest_phys_addr
= slot
->start_addr
;
355 mem
.userspace_addr
= (unsigned long)slot
->ram
;
356 mem
.flags
= slot
->flags
;
358 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
359 /* Set the slot size to 0 before setting the slot to the desired
360 * value. This is needed based on KVM commit 75d61fbc. */
362 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
367 mem
.memory_size
= slot
->memory_size
;
368 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
369 slot
->old_flags
= mem
.flags
;
371 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
372 mem
.memory_size
, mem
.userspace_addr
, ret
);
374 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
375 " start=0x%" PRIx64
", size=0x%" PRIx64
": %s",
376 __func__
, mem
.slot
, slot
->start_addr
,
377 (uint64_t)mem
.memory_size
, strerror(errno
));
382 int kvm_destroy_vcpu(CPUState
*cpu
)
384 KVMState
*s
= kvm_state
;
386 struct KVMParkedVcpu
*vcpu
= NULL
;
389 DPRINTF("kvm_destroy_vcpu\n");
391 ret
= kvm_arch_destroy_vcpu(cpu
);
396 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
399 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
403 ret
= munmap(cpu
->kvm_run
, mmap_size
);
408 vcpu
= g_malloc0(sizeof(*vcpu
));
409 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
410 vcpu
->kvm_fd
= cpu
->kvm_fd
;
411 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
416 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
418 struct KVMParkedVcpu
*cpu
;
420 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
421 if (cpu
->vcpu_id
== vcpu_id
) {
424 QLIST_REMOVE(cpu
, node
);
425 kvm_fd
= cpu
->kvm_fd
;
431 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
434 int kvm_init_vcpu(CPUState
*cpu
)
436 KVMState
*s
= kvm_state
;
440 DPRINTF("kvm_init_vcpu\n");
442 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
444 DPRINTF("kvm_create_vcpu failed\n");
450 cpu
->vcpu_dirty
= true;
452 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
455 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
459 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
461 if (cpu
->kvm_run
== MAP_FAILED
) {
463 DPRINTF("mmap'ing vcpu state failed\n");
467 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
468 s
->coalesced_mmio_ring
=
469 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
472 ret
= kvm_arch_init_vcpu(cpu
);
478 * dirty pages logging control
481 static int kvm_mem_flags(MemoryRegion
*mr
)
483 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
486 if (memory_region_get_dirty_log_mask(mr
) != 0) {
487 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
489 if (readonly
&& kvm_readonly_mem_allowed
) {
490 flags
|= KVM_MEM_READONLY
;
495 /* Called with KVMMemoryListener.slots_lock held */
496 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
499 mem
->flags
= kvm_mem_flags(mr
);
501 /* If nothing changed effectively, no need to issue ioctl */
502 if (mem
->flags
== mem
->old_flags
) {
506 return kvm_set_user_memory_region(kml
, mem
, false);
509 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
510 MemoryRegionSection
*section
)
512 hwaddr start_addr
, size
, slot_size
;
516 size
= kvm_align_section(section
, &start_addr
);
523 while (size
&& !ret
) {
524 slot_size
= MIN(kvm_max_slot_size
, size
);
525 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
527 /* We don't have a slot if we want to trap every access. */
531 ret
= kvm_slot_update_flags(kml
, mem
, section
->mr
);
532 start_addr
+= slot_size
;
537 kvm_slots_unlock(kml
);
541 static void kvm_log_start(MemoryListener
*listener
,
542 MemoryRegionSection
*section
,
545 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
552 r
= kvm_section_update_flags(kml
, section
);
558 static void kvm_log_stop(MemoryListener
*listener
,
559 MemoryRegionSection
*section
,
562 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
569 r
= kvm_section_update_flags(kml
, section
);
575 /* get kvm's dirty pages bitmap and update qemu's */
576 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
577 unsigned long *bitmap
)
579 ram_addr_t start
= section
->offset_within_region
+
580 memory_region_get_ram_addr(section
->mr
);
581 ram_addr_t pages
= int128_get64(section
->size
) / qemu_real_host_page_size
;
583 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
587 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
589 /* Allocate the dirty bitmap for a slot */
590 static void kvm_memslot_init_dirty_bitmap(KVMSlot
*mem
)
593 * XXX bad kernel interface alert
594 * For dirty bitmap, kernel allocates array of size aligned to
595 * bits-per-long. But for case when the kernel is 64bits and
596 * the userspace is 32bits, userspace can't align to the same
597 * bits-per-long, since sizeof(long) is different between kernel
598 * and user space. This way, userspace will provide buffer which
599 * may be 4 bytes less than the kernel will use, resulting in
600 * userspace memory corruption (which is not detectable by valgrind
601 * too, in most cases).
602 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
603 * a hope that sizeof(long) won't become >8 any time soon.
605 hwaddr bitmap_size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
606 /*HOST_LONG_BITS*/ 64) / 8;
607 mem
->dirty_bmap
= g_malloc0(bitmap_size
);
611 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
613 * This function will first try to fetch dirty bitmap from the kernel,
614 * and then updates qemu's dirty bitmap.
616 * NOTE: caller must be with kml->slots_lock held.
618 * @kml: the KVM memory listener object
619 * @section: the memory section to sync the dirty bitmap with
621 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
622 MemoryRegionSection
*section
)
624 KVMState
*s
= kvm_state
;
625 struct kvm_dirty_log d
= {};
627 hwaddr start_addr
, size
;
628 hwaddr slot_size
, slot_offset
= 0;
631 size
= kvm_align_section(section
, &start_addr
);
633 MemoryRegionSection subsection
= *section
;
635 slot_size
= MIN(kvm_max_slot_size
, size
);
636 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
638 /* We don't have a slot if we want to trap every access. */
642 if (!mem
->dirty_bmap
) {
643 /* Allocate on the first log_sync, once and for all */
644 kvm_memslot_init_dirty_bitmap(mem
);
647 d
.dirty_bitmap
= mem
->dirty_bmap
;
648 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
649 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
650 DPRINTF("ioctl failed %d\n", errno
);
655 subsection
.offset_within_region
+= slot_offset
;
656 subsection
.size
= int128_make64(slot_size
);
657 kvm_get_dirty_pages_log_range(&subsection
, d
.dirty_bitmap
);
659 slot_offset
+= slot_size
;
660 start_addr
+= slot_size
;
667 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
668 #define KVM_CLEAR_LOG_SHIFT 6
669 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
670 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
672 static int kvm_log_clear_one_slot(KVMSlot
*mem
, int as_id
, uint64_t start
,
675 KVMState
*s
= kvm_state
;
676 uint64_t end
, bmap_start
, start_delta
, bmap_npages
;
677 struct kvm_clear_dirty_log d
;
678 unsigned long *bmap_clear
= NULL
, psize
= qemu_real_host_page_size
;
682 * We need to extend either the start or the size or both to
683 * satisfy the KVM interface requirement. Firstly, do the start
684 * page alignment on 64 host pages
686 bmap_start
= start
& KVM_CLEAR_LOG_MASK
;
687 start_delta
= start
- bmap_start
;
691 * The kernel interface has restriction on the size too, that either:
693 * (1) the size is 64 host pages aligned (just like the start), or
694 * (2) the size fills up until the end of the KVM memslot.
696 bmap_npages
= DIV_ROUND_UP(size
+ start_delta
, KVM_CLEAR_LOG_ALIGN
)
697 << KVM_CLEAR_LOG_SHIFT
;
698 end
= mem
->memory_size
/ psize
;
699 if (bmap_npages
> end
- bmap_start
) {
700 bmap_npages
= end
- bmap_start
;
702 start_delta
/= psize
;
705 * Prepare the bitmap to clear dirty bits. Here we must guarantee
706 * that we won't clear any unknown dirty bits otherwise we might
707 * accidentally clear some set bits which are not yet synced from
708 * the kernel into QEMU's bitmap, then we'll lose track of the
709 * guest modifications upon those pages (which can directly lead
710 * to guest data loss or panic after migration).
712 * Layout of the KVMSlot.dirty_bmap:
714 * |<-------- bmap_npages -----------..>|
717 * |----------------|-------------|------------------|------------|
720 * start bmap_start (start) end
721 * of memslot of memslot
723 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
726 assert(bmap_start
% BITS_PER_LONG
== 0);
727 /* We should never do log_clear before log_sync */
728 assert(mem
->dirty_bmap
);
730 /* Slow path - we need to manipulate a temp bitmap */
731 bmap_clear
= bitmap_new(bmap_npages
);
732 bitmap_copy_with_src_offset(bmap_clear
, mem
->dirty_bmap
,
733 bmap_start
, start_delta
+ size
/ psize
);
735 * We need to fill the holes at start because that was not
736 * specified by the caller and we extended the bitmap only for
739 bitmap_clear(bmap_clear
, 0, start_delta
);
740 d
.dirty_bitmap
= bmap_clear
;
742 /* Fast path - start address aligns well with BITS_PER_LONG */
743 d
.dirty_bitmap
= mem
->dirty_bmap
+ BIT_WORD(bmap_start
);
746 d
.first_page
= bmap_start
;
747 /* It should never overflow. If it happens, say something */
748 assert(bmap_npages
<= UINT32_MAX
);
749 d
.num_pages
= bmap_npages
;
750 d
.slot
= mem
->slot
| (as_id
<< 16);
752 if (kvm_vm_ioctl(s
, KVM_CLEAR_DIRTY_LOG
, &d
) == -1) {
754 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
755 "start=0x%"PRIx64
", size=0x%"PRIx32
", errno=%d",
756 __func__
, d
.slot
, (uint64_t)d
.first_page
,
757 (uint32_t)d
.num_pages
, ret
);
760 trace_kvm_clear_dirty_log(d
.slot
, d
.first_page
, d
.num_pages
);
764 * After we have updated the remote dirty bitmap, we update the
765 * cached bitmap as well for the memslot, then if another user
766 * clears the same region we know we shouldn't clear it again on
767 * the remote otherwise it's data loss as well.
769 bitmap_clear(mem
->dirty_bmap
, bmap_start
+ start_delta
,
771 /* This handles the NULL case well */
778 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
780 * NOTE: this will be a no-op if we haven't enabled manual dirty log
781 * protection in the host kernel because in that case this operation
782 * will be done within log_sync().
784 * @kml: the kvm memory listener
785 * @section: the memory range to clear dirty bitmap
787 static int kvm_physical_log_clear(KVMMemoryListener
*kml
,
788 MemoryRegionSection
*section
)
790 KVMState
*s
= kvm_state
;
791 uint64_t start
, size
, offset
, count
;
795 if (!s
->manual_dirty_log_protect
) {
796 /* No need to do explicit clear */
800 start
= section
->offset_within_address_space
;
801 size
= int128_get64(section
->size
);
804 /* Nothing more we can do... */
810 for (i
= 0; i
< s
->nr_slots
; i
++) {
811 mem
= &kml
->slots
[i
];
812 /* Discard slots that are empty or do not overlap the section */
813 if (!mem
->memory_size
||
814 mem
->start_addr
> start
+ size
- 1 ||
815 start
> mem
->start_addr
+ mem
->memory_size
- 1) {
819 if (start
>= mem
->start_addr
) {
820 /* The slot starts before section or is aligned to it. */
821 offset
= start
- mem
->start_addr
;
822 count
= MIN(mem
->memory_size
- offset
, size
);
824 /* The slot starts after section. */
826 count
= MIN(mem
->memory_size
, size
- (mem
->start_addr
- start
));
828 ret
= kvm_log_clear_one_slot(mem
, kml
->as_id
, offset
, count
);
834 kvm_slots_unlock(kml
);
839 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
840 MemoryRegionSection
*secion
,
841 hwaddr start
, hwaddr size
)
843 KVMState
*s
= kvm_state
;
845 if (s
->coalesced_mmio
) {
846 struct kvm_coalesced_mmio_zone zone
;
852 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
856 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
857 MemoryRegionSection
*secion
,
858 hwaddr start
, hwaddr size
)
860 KVMState
*s
= kvm_state
;
862 if (s
->coalesced_mmio
) {
863 struct kvm_coalesced_mmio_zone zone
;
869 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
873 static void kvm_coalesce_pio_add(MemoryListener
*listener
,
874 MemoryRegionSection
*section
,
875 hwaddr start
, hwaddr size
)
877 KVMState
*s
= kvm_state
;
879 if (s
->coalesced_pio
) {
880 struct kvm_coalesced_mmio_zone zone
;
886 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
890 static void kvm_coalesce_pio_del(MemoryListener
*listener
,
891 MemoryRegionSection
*section
,
892 hwaddr start
, hwaddr size
)
894 KVMState
*s
= kvm_state
;
896 if (s
->coalesced_pio
) {
897 struct kvm_coalesced_mmio_zone zone
;
903 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
907 static MemoryListener kvm_coalesced_pio_listener
= {
908 .coalesced_io_add
= kvm_coalesce_pio_add
,
909 .coalesced_io_del
= kvm_coalesce_pio_del
,
912 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
916 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
924 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
928 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
930 /* VM wide version not implemented, use global one instead */
931 ret
= kvm_check_extension(s
, extension
);
937 typedef struct HWPoisonPage
{
939 QLIST_ENTRY(HWPoisonPage
) list
;
942 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
943 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
945 static void kvm_unpoison_all(void *param
)
947 HWPoisonPage
*page
, *next_page
;
949 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
950 QLIST_REMOVE(page
, list
);
951 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
956 void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
960 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
961 if (page
->ram_addr
== ram_addr
) {
965 page
= g_new(HWPoisonPage
, 1);
966 page
->ram_addr
= ram_addr
;
967 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
970 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
972 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
973 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
974 * endianness, but the memory core hands them in target endianness.
975 * For example, PPC is always treated as big-endian even if running
976 * on KVM and on PPC64LE. Correct here.
990 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
991 bool assign
, uint32_t size
, bool datamatch
)
994 struct kvm_ioeventfd iofd
= {
995 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1002 trace_kvm_set_ioeventfd_mmio(fd
, (uint64_t)addr
, val
, assign
, size
,
1004 if (!kvm_enabled()) {
1009 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1012 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1015 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1024 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
1025 bool assign
, uint32_t size
, bool datamatch
)
1027 struct kvm_ioeventfd kick
= {
1028 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1030 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
1035 trace_kvm_set_ioeventfd_pio(fd
, addr
, val
, assign
, size
, datamatch
);
1036 if (!kvm_enabled()) {
1040 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1043 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1045 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1053 static int kvm_check_many_ioeventfds(void)
1055 /* Userspace can use ioeventfd for io notification. This requires a host
1056 * that supports eventfd(2) and an I/O thread; since eventfd does not
1057 * support SIGIO it cannot interrupt the vcpu.
1059 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1060 * can avoid creating too many ioeventfds.
1062 #if defined(CONFIG_EVENTFD)
1065 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
1066 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
1067 if (ioeventfds
[i
] < 0) {
1070 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
1072 close(ioeventfds
[i
]);
1077 /* Decide whether many devices are supported or not */
1078 ret
= i
== ARRAY_SIZE(ioeventfds
);
1081 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
1082 close(ioeventfds
[i
]);
1090 static const KVMCapabilityInfo
*
1091 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
1093 while (list
->name
) {
1094 if (!kvm_check_extension(s
, list
->value
)) {
1102 void kvm_set_max_memslot_size(hwaddr max_slot_size
)
1105 ROUND_UP(max_slot_size
, qemu_real_host_page_size
) == max_slot_size
1107 kvm_max_slot_size
= max_slot_size
;
1110 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
1111 MemoryRegionSection
*section
, bool add
)
1115 MemoryRegion
*mr
= section
->mr
;
1116 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
1117 hwaddr start_addr
, size
, slot_size
;
1120 if (!memory_region_is_ram(mr
)) {
1121 if (writeable
|| !kvm_readonly_mem_allowed
) {
1123 } else if (!mr
->romd_mode
) {
1124 /* If the memory device is not in romd_mode, then we actually want
1125 * to remove the kvm memory slot so all accesses will trap. */
1130 size
= kvm_align_section(section
, &start_addr
);
1135 /* use aligned delta to align the ram address */
1136 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+
1137 (start_addr
- section
->offset_within_address_space
);
1139 kvm_slots_lock(kml
);
1143 slot_size
= MIN(kvm_max_slot_size
, size
);
1144 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
1148 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1149 kvm_physical_sync_dirty_bitmap(kml
, section
);
1152 /* unregister the slot */
1153 g_free(mem
->dirty_bmap
);
1154 mem
->dirty_bmap
= NULL
;
1155 mem
->memory_size
= 0;
1157 err
= kvm_set_user_memory_region(kml
, mem
, false);
1159 fprintf(stderr
, "%s: error unregistering slot: %s\n",
1160 __func__
, strerror(-err
));
1163 start_addr
+= slot_size
;
1169 /* register the new slot */
1171 slot_size
= MIN(kvm_max_slot_size
, size
);
1172 mem
= kvm_alloc_slot(kml
);
1173 mem
->memory_size
= slot_size
;
1174 mem
->start_addr
= start_addr
;
1176 mem
->flags
= kvm_mem_flags(mr
);
1178 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1180 * Reallocate the bmap; it means it doesn't disappear in
1181 * middle of a migrate.
1183 kvm_memslot_init_dirty_bitmap(mem
);
1185 err
= kvm_set_user_memory_region(kml
, mem
, true);
1187 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
1191 start_addr
+= slot_size
;
1197 kvm_slots_unlock(kml
);
1200 static void kvm_region_add(MemoryListener
*listener
,
1201 MemoryRegionSection
*section
)
1203 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1205 memory_region_ref(section
->mr
);
1206 kvm_set_phys_mem(kml
, section
, true);
1209 static void kvm_region_del(MemoryListener
*listener
,
1210 MemoryRegionSection
*section
)
1212 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1214 kvm_set_phys_mem(kml
, section
, false);
1215 memory_region_unref(section
->mr
);
1218 static void kvm_log_sync(MemoryListener
*listener
,
1219 MemoryRegionSection
*section
)
1221 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1224 kvm_slots_lock(kml
);
1225 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
1226 kvm_slots_unlock(kml
);
1232 static void kvm_log_clear(MemoryListener
*listener
,
1233 MemoryRegionSection
*section
)
1235 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1238 r
= kvm_physical_log_clear(kml
, section
);
1240 error_report_once("%s: kvm log clear failed: mr=%s "
1241 "offset=%"HWADDR_PRIx
" size=%"PRIx64
, __func__
,
1242 section
->mr
->name
, section
->offset_within_region
,
1243 int128_get64(section
->size
));
1248 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
1249 MemoryRegionSection
*section
,
1250 bool match_data
, uint64_t data
,
1253 int fd
= event_notifier_get_fd(e
);
1256 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1257 data
, true, int128_get64(section
->size
),
1260 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1261 __func__
, strerror(-r
), -r
);
1266 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
1267 MemoryRegionSection
*section
,
1268 bool match_data
, uint64_t data
,
1271 int fd
= event_notifier_get_fd(e
);
1274 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1275 data
, false, int128_get64(section
->size
),
1278 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1279 __func__
, strerror(-r
), -r
);
1284 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
1285 MemoryRegionSection
*section
,
1286 bool match_data
, uint64_t data
,
1289 int fd
= event_notifier_get_fd(e
);
1292 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1293 data
, true, int128_get64(section
->size
),
1296 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1297 __func__
, strerror(-r
), -r
);
1302 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
1303 MemoryRegionSection
*section
,
1304 bool match_data
, uint64_t data
,
1308 int fd
= event_notifier_get_fd(e
);
1311 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1312 data
, false, int128_get64(section
->size
),
1315 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1316 __func__
, strerror(-r
), -r
);
1321 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
1322 AddressSpace
*as
, int as_id
)
1326 qemu_mutex_init(&kml
->slots_lock
);
1327 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1330 for (i
= 0; i
< s
->nr_slots
; i
++) {
1331 kml
->slots
[i
].slot
= i
;
1334 kml
->listener
.region_add
= kvm_region_add
;
1335 kml
->listener
.region_del
= kvm_region_del
;
1336 kml
->listener
.log_start
= kvm_log_start
;
1337 kml
->listener
.log_stop
= kvm_log_stop
;
1338 kml
->listener
.log_sync
= kvm_log_sync
;
1339 kml
->listener
.log_clear
= kvm_log_clear
;
1340 kml
->listener
.priority
= 10;
1342 memory_listener_register(&kml
->listener
, as
);
1344 for (i
= 0; i
< s
->nr_as
; ++i
) {
1353 static MemoryListener kvm_io_listener
= {
1354 .eventfd_add
= kvm_io_ioeventfd_add
,
1355 .eventfd_del
= kvm_io_ioeventfd_del
,
1359 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
1361 struct kvm_irq_level event
;
1364 assert(kvm_async_interrupts_enabled());
1366 event
.level
= level
;
1368 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1370 perror("kvm_set_irq");
1374 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1377 #ifdef KVM_CAP_IRQ_ROUTING
1378 typedef struct KVMMSIRoute
{
1379 struct kvm_irq_routing_entry kroute
;
1380 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1383 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1385 set_bit(gsi
, s
->used_gsi_bitmap
);
1388 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1390 clear_bit(gsi
, s
->used_gsi_bitmap
);
1393 void kvm_init_irq_routing(KVMState
*s
)
1397 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1398 if (gsi_count
> 0) {
1399 /* Round up so we can search ints using ffs */
1400 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1401 s
->gsi_count
= gsi_count
;
1404 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1405 s
->nr_allocated_irq_routes
= 0;
1407 if (!kvm_direct_msi_allowed
) {
1408 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1409 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1413 kvm_arch_init_irq_routing(s
);
1416 void kvm_irqchip_commit_routes(KVMState
*s
)
1420 if (kvm_gsi_direct_mapping()) {
1424 if (!kvm_gsi_routing_enabled()) {
1428 s
->irq_routes
->flags
= 0;
1429 trace_kvm_irqchip_commit_routes();
1430 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1434 static void kvm_add_routing_entry(KVMState
*s
,
1435 struct kvm_irq_routing_entry
*entry
)
1437 struct kvm_irq_routing_entry
*new;
1440 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1441 n
= s
->nr_allocated_irq_routes
* 2;
1445 size
= sizeof(struct kvm_irq_routing
);
1446 size
+= n
* sizeof(*new);
1447 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1448 s
->nr_allocated_irq_routes
= n
;
1450 n
= s
->irq_routes
->nr
++;
1451 new = &s
->irq_routes
->entries
[n
];
1455 set_gsi(s
, entry
->gsi
);
1458 static int kvm_update_routing_entry(KVMState
*s
,
1459 struct kvm_irq_routing_entry
*new_entry
)
1461 struct kvm_irq_routing_entry
*entry
;
1464 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1465 entry
= &s
->irq_routes
->entries
[n
];
1466 if (entry
->gsi
!= new_entry
->gsi
) {
1470 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1474 *entry
= *new_entry
;
1482 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1484 struct kvm_irq_routing_entry e
= {};
1486 assert(pin
< s
->gsi_count
);
1489 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1491 e
.u
.irqchip
.irqchip
= irqchip
;
1492 e
.u
.irqchip
.pin
= pin
;
1493 kvm_add_routing_entry(s
, &e
);
1496 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1498 struct kvm_irq_routing_entry
*e
;
1501 if (kvm_gsi_direct_mapping()) {
1505 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1506 e
= &s
->irq_routes
->entries
[i
];
1507 if (e
->gsi
== virq
) {
1508 s
->irq_routes
->nr
--;
1509 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1513 kvm_arch_release_virq_post(virq
);
1514 trace_kvm_irqchip_release_virq(virq
);
1517 void kvm_irqchip_add_change_notifier(Notifier
*n
)
1519 notifier_list_add(&kvm_irqchip_change_notifiers
, n
);
1522 void kvm_irqchip_remove_change_notifier(Notifier
*n
)
1527 void kvm_irqchip_change_notify(void)
1529 notifier_list_notify(&kvm_irqchip_change_notifiers
, NULL
);
1532 static unsigned int kvm_hash_msi(uint32_t data
)
1534 /* This is optimized for IA32 MSI layout. However, no other arch shall
1535 * repeat the mistake of not providing a direct MSI injection API. */
1539 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1541 KVMMSIRoute
*route
, *next
;
1544 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1545 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1546 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1547 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1553 static int kvm_irqchip_get_virq(KVMState
*s
)
1558 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1559 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1560 * number can succeed even though a new route entry cannot be added.
1561 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1563 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1564 kvm_flush_dynamic_msi_routes(s
);
1567 /* Return the lowest unused GSI in the bitmap */
1568 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1569 if (next_virq
>= s
->gsi_count
) {
1576 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1578 unsigned int hash
= kvm_hash_msi(msg
.data
);
1581 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1582 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1583 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1584 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1591 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1596 if (kvm_direct_msi_allowed
) {
1597 msi
.address_lo
= (uint32_t)msg
.address
;
1598 msi
.address_hi
= msg
.address
>> 32;
1599 msi
.data
= le32_to_cpu(msg
.data
);
1601 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1603 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1606 route
= kvm_lookup_msi_route(s
, msg
);
1610 virq
= kvm_irqchip_get_virq(s
);
1615 route
= g_malloc0(sizeof(KVMMSIRoute
));
1616 route
->kroute
.gsi
= virq
;
1617 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1618 route
->kroute
.flags
= 0;
1619 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1620 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1621 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1623 kvm_add_routing_entry(s
, &route
->kroute
);
1624 kvm_irqchip_commit_routes(s
);
1626 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1630 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1632 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1635 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1637 struct kvm_irq_routing_entry kroute
= {};
1639 MSIMessage msg
= {0, 0};
1641 if (pci_available
&& dev
) {
1642 msg
= pci_get_msi_message(dev
, vector
);
1645 if (kvm_gsi_direct_mapping()) {
1646 return kvm_arch_msi_data_to_gsi(msg
.data
);
1649 if (!kvm_gsi_routing_enabled()) {
1653 virq
= kvm_irqchip_get_virq(s
);
1659 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1661 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1662 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1663 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1664 if (pci_available
&& kvm_msi_devid_required()) {
1665 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1666 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1668 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1669 kvm_irqchip_release_virq(s
, virq
);
1673 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
1676 kvm_add_routing_entry(s
, &kroute
);
1677 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1678 kvm_irqchip_commit_routes(s
);
1683 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1686 struct kvm_irq_routing_entry kroute
= {};
1688 if (kvm_gsi_direct_mapping()) {
1692 if (!kvm_irqchip_in_kernel()) {
1697 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1699 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1700 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1701 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1702 if (pci_available
&& kvm_msi_devid_required()) {
1703 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1704 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1706 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1710 trace_kvm_irqchip_update_msi_route(virq
);
1712 return kvm_update_routing_entry(s
, &kroute
);
1715 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
1716 EventNotifier
*resample
, int virq
,
1719 int fd
= event_notifier_get_fd(event
);
1720 int rfd
= resample
? event_notifier_get_fd(resample
) : -1;
1722 struct kvm_irqfd irqfd
= {
1725 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1730 if (kvm_irqchip_is_split()) {
1732 * When the slow irqchip (e.g. IOAPIC) is in the
1733 * userspace, KVM kernel resamplefd will not work because
1734 * the EOI of the interrupt will be delivered to userspace
1735 * instead, so the KVM kernel resamplefd kick will be
1736 * skipped. The userspace here mimics what the kernel
1737 * provides with resamplefd, remember the resamplefd and
1738 * kick it when we receive EOI of this IRQ.
1740 * This is hackery because IOAPIC is mostly bypassed
1741 * (except EOI broadcasts) when irqfd is used. However
1742 * this can bring much performance back for split irqchip
1743 * with INTx IRQs (for VFIO, this gives 93% perf of the
1744 * full fast path, which is 46% perf boost comparing to
1745 * the INTx slow path).
1747 kvm_resample_fd_insert(virq
, resample
);
1749 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1750 irqfd
.resamplefd
= rfd
;
1752 } else if (!assign
) {
1753 if (kvm_irqchip_is_split()) {
1754 kvm_resample_fd_remove(virq
);
1758 if (!kvm_irqfds_enabled()) {
1762 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1765 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1767 struct kvm_irq_routing_entry kroute
= {};
1770 if (!kvm_gsi_routing_enabled()) {
1774 virq
= kvm_irqchip_get_virq(s
);
1780 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1782 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1783 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1784 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1785 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1786 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1788 kvm_add_routing_entry(s
, &kroute
);
1793 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1795 struct kvm_irq_routing_entry kroute
= {};
1798 if (!kvm_gsi_routing_enabled()) {
1801 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1804 virq
= kvm_irqchip_get_virq(s
);
1810 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1812 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1813 kroute
.u
.hv_sint
.sint
= sint
;
1815 kvm_add_routing_entry(s
, &kroute
);
1816 kvm_irqchip_commit_routes(s
);
1821 #else /* !KVM_CAP_IRQ_ROUTING */
1823 void kvm_init_irq_routing(KVMState
*s
)
1827 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1831 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1836 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1841 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1846 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1851 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
1852 EventNotifier
*resample
, int virq
,
1858 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1862 #endif /* !KVM_CAP_IRQ_ROUTING */
1864 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1865 EventNotifier
*rn
, int virq
)
1867 return kvm_irqchip_assign_irqfd(s
, n
, rn
, virq
, true);
1870 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1873 return kvm_irqchip_assign_irqfd(s
, n
, NULL
, virq
, false);
1876 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1877 EventNotifier
*rn
, qemu_irq irq
)
1880 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1885 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1888 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1892 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1897 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1900 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1902 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1905 static void kvm_irqchip_create(KVMState
*s
)
1909 assert(s
->kernel_irqchip_split
!= ON_OFF_AUTO_AUTO
);
1910 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1912 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1913 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1915 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1922 /* First probe and see if there's a arch-specific hook to create the
1923 * in-kernel irqchip for us */
1924 ret
= kvm_arch_irqchip_create(s
);
1926 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_ON
) {
1927 perror("Split IRQ chip mode not supported.");
1930 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1934 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1938 kvm_kernel_irqchip
= true;
1939 /* If we have an in-kernel IRQ chip then we must have asynchronous
1940 * interrupt delivery (though the reverse is not necessarily true)
1942 kvm_async_interrupts_allowed
= true;
1943 kvm_halt_in_kernel_allowed
= true;
1945 kvm_init_irq_routing(s
);
1947 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1950 /* Find number of supported CPUs using the recommended
1951 * procedure from the kernel API documentation to cope with
1952 * older kernels that may be missing capabilities.
1954 static int kvm_recommended_vcpus(KVMState
*s
)
1956 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1957 return (ret
) ? ret
: 4;
1960 static int kvm_max_vcpus(KVMState
*s
)
1962 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1963 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1966 static int kvm_max_vcpu_id(KVMState
*s
)
1968 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1969 return (ret
) ? ret
: kvm_max_vcpus(s
);
1972 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1974 KVMState
*s
= KVM_STATE(current_accel());
1975 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1978 static int kvm_init(MachineState
*ms
)
1980 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1981 static const char upgrade_note
[] =
1982 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1983 "(see http://sourceforge.net/projects/kvm).\n";
1988 { "SMP", ms
->smp
.cpus
},
1989 { "hotpluggable", ms
->smp
.max_cpus
},
1992 int soft_vcpus_limit
, hard_vcpus_limit
;
1994 const KVMCapabilityInfo
*missing_cap
;
1997 const char *kvm_type
;
1999 s
= KVM_STATE(ms
->accelerator
);
2002 * On systems where the kernel can support different base page
2003 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2004 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2005 * page size for the system though.
2007 assert(TARGET_PAGE_SIZE
<= qemu_real_host_page_size
);
2011 #ifdef KVM_CAP_SET_GUEST_DEBUG
2012 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
2014 QLIST_INIT(&s
->kvm_parked_vcpus
);
2016 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
2018 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
2023 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
2024 if (ret
< KVM_API_VERSION
) {
2028 fprintf(stderr
, "kvm version too old\n");
2032 if (ret
> KVM_API_VERSION
) {
2034 fprintf(stderr
, "kvm version not supported\n");
2038 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
2039 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2041 /* If unspecified, use the default value */
2046 s
->nr_as
= kvm_check_extension(s
, KVM_CAP_MULTI_ADDRESS_SPACE
);
2047 if (s
->nr_as
<= 1) {
2050 s
->as
= g_new0(struct KVMAs
, s
->nr_as
);
2052 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
2054 type
= mc
->kvm_type(ms
, kvm_type
);
2055 } else if (kvm_type
) {
2057 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
2062 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
2063 } while (ret
== -EINTR
);
2066 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
2070 if (ret
== -EINVAL
) {
2072 "Host kernel setup problem detected. Please verify:\n");
2073 fprintf(stderr
, "- for kernels supporting the switch_amode or"
2074 " user_mode parameters, whether\n");
2076 " user space is running in primary address space\n");
2078 "- for kernels supporting the vm.allocate_pgste sysctl, "
2079 "whether it is enabled\n");
2087 /* check the vcpu limits */
2088 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
2089 hard_vcpus_limit
= kvm_max_vcpus(s
);
2092 if (nc
->num
> soft_vcpus_limit
) {
2093 warn_report("Number of %s cpus requested (%d) exceeds "
2094 "the recommended cpus supported by KVM (%d)",
2095 nc
->name
, nc
->num
, soft_vcpus_limit
);
2097 if (nc
->num
> hard_vcpus_limit
) {
2098 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
2099 "the maximum cpus supported by KVM (%d)\n",
2100 nc
->name
, nc
->num
, hard_vcpus_limit
);
2107 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
2110 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
2114 fprintf(stderr
, "kvm does not support %s\n%s",
2115 missing_cap
->name
, upgrade_note
);
2119 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
2120 s
->coalesced_pio
= s
->coalesced_mmio
&&
2121 kvm_check_extension(s
, KVM_CAP_COALESCED_PIO
);
2123 s
->manual_dirty_log_protect
=
2124 kvm_check_extension(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
);
2125 if (s
->manual_dirty_log_protect
) {
2126 ret
= kvm_vm_enable_cap(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
, 0, 1);
2128 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
2129 "but failed. Falling back to the legacy mode. ");
2130 s
->manual_dirty_log_protect
= false;
2134 #ifdef KVM_CAP_VCPU_EVENTS
2135 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
2138 s
->robust_singlestep
=
2139 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
2141 #ifdef KVM_CAP_DEBUGREGS
2142 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
2145 s
->max_nested_state_len
= kvm_check_extension(s
, KVM_CAP_NESTED_STATE
);
2147 #ifdef KVM_CAP_IRQ_ROUTING
2148 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
2151 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
2153 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
2154 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
2155 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
2158 kvm_readonly_mem_allowed
=
2159 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
2161 kvm_eventfds_allowed
=
2162 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
2164 kvm_irqfds_allowed
=
2165 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
2167 kvm_resamplefds_allowed
=
2168 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
2170 kvm_vm_attributes_allowed
=
2171 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
2173 kvm_ioeventfd_any_length_allowed
=
2174 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
2179 * if memory encryption object is specified then initialize the memory
2180 * encryption context.
2182 if (ms
->memory_encryption
) {
2183 kvm_state
->memcrypt_handle
= sev_guest_init(ms
->memory_encryption
);
2184 if (!kvm_state
->memcrypt_handle
) {
2189 kvm_state
->memcrypt_encrypt_data
= sev_encrypt_data
;
2192 ret
= kvm_arch_init(ms
, s
);
2197 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_AUTO
) {
2198 s
->kernel_irqchip_split
= mc
->default_kernel_irqchip_split
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
2201 qemu_register_reset(kvm_unpoison_all
, NULL
);
2203 if (s
->kernel_irqchip_allowed
) {
2204 kvm_irqchip_create(s
);
2207 if (kvm_eventfds_allowed
) {
2208 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
2209 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
2211 s
->memory_listener
.listener
.coalesced_io_add
= kvm_coalesce_mmio_region
;
2212 s
->memory_listener
.listener
.coalesced_io_del
= kvm_uncoalesce_mmio_region
;
2214 kvm_memory_listener_register(s
, &s
->memory_listener
,
2215 &address_space_memory
, 0);
2216 memory_listener_register(&kvm_io_listener
,
2218 memory_listener_register(&kvm_coalesced_pio_listener
,
2221 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
2223 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2225 qemu_balloon_inhibit(true);
2238 g_free(s
->memory_listener
.slots
);
2243 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
2245 s
->sigmask_len
= sigmask_len
;
2248 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
2249 int size
, uint32_t count
)
2252 uint8_t *ptr
= data
;
2254 for (i
= 0; i
< count
; i
++) {
2255 address_space_rw(&address_space_io
, port
, attrs
,
2257 direction
== KVM_EXIT_IO_OUT
);
2262 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
2264 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
2265 run
->internal
.suberror
);
2267 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
2270 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
2271 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
2272 i
, (uint64_t)run
->internal
.data
[i
]);
2275 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
2276 fprintf(stderr
, "emulation failure\n");
2277 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
2278 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2279 return EXCP_INTERRUPT
;
2282 /* FIXME: Should trigger a qmp message to let management know
2283 * something went wrong.
2288 void kvm_flush_coalesced_mmio_buffer(void)
2290 KVMState
*s
= kvm_state
;
2292 if (s
->coalesced_flush_in_progress
) {
2296 s
->coalesced_flush_in_progress
= true;
2298 if (s
->coalesced_mmio_ring
) {
2299 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
2300 while (ring
->first
!= ring
->last
) {
2301 struct kvm_coalesced_mmio
*ent
;
2303 ent
= &ring
->coalesced_mmio
[ring
->first
];
2305 if (ent
->pio
== 1) {
2306 address_space_write(&address_space_io
, ent
->phys_addr
,
2307 MEMTXATTRS_UNSPECIFIED
, ent
->data
,
2310 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
2313 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
2317 s
->coalesced_flush_in_progress
= false;
2320 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
2322 if (!cpu
->vcpu_dirty
) {
2323 kvm_arch_get_registers(cpu
);
2324 cpu
->vcpu_dirty
= true;
2328 void kvm_cpu_synchronize_state(CPUState
*cpu
)
2330 if (!cpu
->vcpu_dirty
) {
2331 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
2335 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
2337 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
2338 cpu
->vcpu_dirty
= false;
2341 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
2343 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
2346 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
2348 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
2349 cpu
->vcpu_dirty
= false;
2352 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
2354 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
2357 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
2359 cpu
->vcpu_dirty
= true;
2362 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
2364 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
2367 #ifdef KVM_HAVE_MCE_INJECTION
2368 static __thread
void *pending_sigbus_addr
;
2369 static __thread
int pending_sigbus_code
;
2370 static __thread
bool have_sigbus_pending
;
2373 static void kvm_cpu_kick(CPUState
*cpu
)
2375 atomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
2378 static void kvm_cpu_kick_self(void)
2380 if (kvm_immediate_exit
) {
2381 kvm_cpu_kick(current_cpu
);
2383 qemu_cpu_kick_self();
2387 static void kvm_eat_signals(CPUState
*cpu
)
2389 struct timespec ts
= { 0, 0 };
2395 if (kvm_immediate_exit
) {
2396 atomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
2397 /* Write kvm_run->immediate_exit before the cpu->exit_request
2398 * write in kvm_cpu_exec.
2404 sigemptyset(&waitset
);
2405 sigaddset(&waitset
, SIG_IPI
);
2408 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
2409 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
2410 perror("sigtimedwait");
2414 r
= sigpending(&chkset
);
2416 perror("sigpending");
2419 } while (sigismember(&chkset
, SIG_IPI
));
2422 int kvm_cpu_exec(CPUState
*cpu
)
2424 struct kvm_run
*run
= cpu
->kvm_run
;
2427 DPRINTF("kvm_cpu_exec()\n");
2429 if (kvm_arch_process_async_events(cpu
)) {
2430 atomic_set(&cpu
->exit_request
, 0);
2434 qemu_mutex_unlock_iothread();
2435 cpu_exec_start(cpu
);
2440 if (cpu
->vcpu_dirty
) {
2441 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
2442 cpu
->vcpu_dirty
= false;
2445 kvm_arch_pre_run(cpu
, run
);
2446 if (atomic_read(&cpu
->exit_request
)) {
2447 DPRINTF("interrupt exit requested\n");
2449 * KVM requires us to reenter the kernel after IO exits to complete
2450 * instruction emulation. This self-signal will ensure that we
2453 kvm_cpu_kick_self();
2456 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2457 * Matching barrier in kvm_eat_signals.
2461 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
2463 attrs
= kvm_arch_post_run(cpu
, run
);
2465 #ifdef KVM_HAVE_MCE_INJECTION
2466 if (unlikely(have_sigbus_pending
)) {
2467 qemu_mutex_lock_iothread();
2468 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
2469 pending_sigbus_addr
);
2470 have_sigbus_pending
= false;
2471 qemu_mutex_unlock_iothread();
2476 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
2477 DPRINTF("io window exit\n");
2478 kvm_eat_signals(cpu
);
2479 ret
= EXCP_INTERRUPT
;
2482 fprintf(stderr
, "error: kvm run failed %s\n",
2483 strerror(-run_ret
));
2485 if (run_ret
== -EBUSY
) {
2487 "This is probably because your SMT is enabled.\n"
2488 "VCPU can only run on primary threads with all "
2489 "secondary threads offline.\n");
2496 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
2497 switch (run
->exit_reason
) {
2499 DPRINTF("handle_io\n");
2500 /* Called outside BQL */
2501 kvm_handle_io(run
->io
.port
, attrs
,
2502 (uint8_t *)run
+ run
->io
.data_offset
,
2509 DPRINTF("handle_mmio\n");
2510 /* Called outside BQL */
2511 address_space_rw(&address_space_memory
,
2512 run
->mmio
.phys_addr
, attrs
,
2515 run
->mmio
.is_write
);
2518 case KVM_EXIT_IRQ_WINDOW_OPEN
:
2519 DPRINTF("irq_window_open\n");
2520 ret
= EXCP_INTERRUPT
;
2522 case KVM_EXIT_SHUTDOWN
:
2523 DPRINTF("shutdown\n");
2524 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2525 ret
= EXCP_INTERRUPT
;
2527 case KVM_EXIT_UNKNOWN
:
2528 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
2529 (uint64_t)run
->hw
.hardware_exit_reason
);
2532 case KVM_EXIT_INTERNAL_ERROR
:
2533 ret
= kvm_handle_internal_error(cpu
, run
);
2535 case KVM_EXIT_SYSTEM_EVENT
:
2536 switch (run
->system_event
.type
) {
2537 case KVM_SYSTEM_EVENT_SHUTDOWN
:
2538 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
2539 ret
= EXCP_INTERRUPT
;
2541 case KVM_SYSTEM_EVENT_RESET
:
2542 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2543 ret
= EXCP_INTERRUPT
;
2545 case KVM_SYSTEM_EVENT_CRASH
:
2546 kvm_cpu_synchronize_state(cpu
);
2547 qemu_mutex_lock_iothread();
2548 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
2549 qemu_mutex_unlock_iothread();
2553 DPRINTF("kvm_arch_handle_exit\n");
2554 ret
= kvm_arch_handle_exit(cpu
, run
);
2559 DPRINTF("kvm_arch_handle_exit\n");
2560 ret
= kvm_arch_handle_exit(cpu
, run
);
2566 qemu_mutex_lock_iothread();
2569 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2570 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2573 atomic_set(&cpu
->exit_request
, 0);
2577 int kvm_ioctl(KVMState
*s
, int type
, ...)
2584 arg
= va_arg(ap
, void *);
2587 trace_kvm_ioctl(type
, arg
);
2588 ret
= ioctl(s
->fd
, type
, arg
);
2595 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2602 arg
= va_arg(ap
, void *);
2605 trace_kvm_vm_ioctl(type
, arg
);
2606 ret
= ioctl(s
->vmfd
, type
, arg
);
2613 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2620 arg
= va_arg(ap
, void *);
2623 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2624 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2631 int kvm_device_ioctl(int fd
, int type
, ...)
2638 arg
= va_arg(ap
, void *);
2641 trace_kvm_device_ioctl(fd
, type
, arg
);
2642 ret
= ioctl(fd
, type
, arg
);
2649 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2652 struct kvm_device_attr attribute
= {
2657 if (!kvm_vm_attributes_allowed
) {
2661 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2662 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2666 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2668 struct kvm_device_attr attribute
= {
2674 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2677 int kvm_device_access(int fd
, int group
, uint64_t attr
,
2678 void *val
, bool write
, Error
**errp
)
2680 struct kvm_device_attr kvmattr
;
2684 kvmattr
.group
= group
;
2685 kvmattr
.attr
= attr
;
2686 kvmattr
.addr
= (uintptr_t)val
;
2688 err
= kvm_device_ioctl(fd
,
2689 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2692 error_setg_errno(errp
, -err
,
2693 "KVM_%s_DEVICE_ATTR failed: Group %d "
2694 "attr 0x%016" PRIx64
,
2695 write
? "SET" : "GET", group
, attr
);
2700 bool kvm_has_sync_mmu(void)
2702 return kvm_state
->sync_mmu
;
2705 int kvm_has_vcpu_events(void)
2707 return kvm_state
->vcpu_events
;
2710 int kvm_has_robust_singlestep(void)
2712 return kvm_state
->robust_singlestep
;
2715 int kvm_has_debugregs(void)
2717 return kvm_state
->debugregs
;
2720 int kvm_max_nested_state_length(void)
2722 return kvm_state
->max_nested_state_len
;
2725 int kvm_has_many_ioeventfds(void)
2727 if (!kvm_enabled()) {
2730 return kvm_state
->many_ioeventfds
;
2733 int kvm_has_gsi_routing(void)
2735 #ifdef KVM_CAP_IRQ_ROUTING
2736 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2742 int kvm_has_intx_set_mask(void)
2744 return kvm_state
->intx_set_mask
;
2747 bool kvm_arm_supports_user_irq(void)
2749 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
2752 #ifdef KVM_CAP_SET_GUEST_DEBUG
2753 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2756 struct kvm_sw_breakpoint
*bp
;
2758 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2766 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2768 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2771 struct kvm_set_guest_debug_data
{
2772 struct kvm_guest_debug dbg
;
2776 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
2778 struct kvm_set_guest_debug_data
*dbg_data
=
2779 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
2781 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
2785 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2787 struct kvm_set_guest_debug_data data
;
2789 data
.dbg
.control
= reinject_trap
;
2791 if (cpu
->singlestep_enabled
) {
2792 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2794 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2796 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
2797 RUN_ON_CPU_HOST_PTR(&data
));
2801 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2802 target_ulong len
, int type
)
2804 struct kvm_sw_breakpoint
*bp
;
2807 if (type
== GDB_BREAKPOINT_SW
) {
2808 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2814 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2817 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2823 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2825 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2832 err
= kvm_update_guest_debug(cpu
, 0);
2840 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2841 target_ulong len
, int type
)
2843 struct kvm_sw_breakpoint
*bp
;
2846 if (type
== GDB_BREAKPOINT_SW
) {
2847 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2852 if (bp
->use_count
> 1) {
2857 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2862 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2865 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2872 err
= kvm_update_guest_debug(cpu
, 0);
2880 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2882 struct kvm_sw_breakpoint
*bp
, *next
;
2883 KVMState
*s
= cpu
->kvm_state
;
2886 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2887 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2888 /* Try harder to find a CPU that currently sees the breakpoint. */
2889 CPU_FOREACH(tmpcpu
) {
2890 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2895 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2898 kvm_arch_remove_all_hw_breakpoints();
2901 kvm_update_guest_debug(cpu
, 0);
2905 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2907 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2912 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2913 target_ulong len
, int type
)
2918 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2919 target_ulong len
, int type
)
2924 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2927 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2929 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2931 KVMState
*s
= kvm_state
;
2932 struct kvm_signal_mask
*sigmask
;
2935 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2937 sigmask
->len
= s
->sigmask_len
;
2938 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2939 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2945 static void kvm_ipi_signal(int sig
)
2948 assert(kvm_immediate_exit
);
2949 kvm_cpu_kick(current_cpu
);
2953 void kvm_init_cpu_signals(CPUState
*cpu
)
2957 struct sigaction sigact
;
2959 memset(&sigact
, 0, sizeof(sigact
));
2960 sigact
.sa_handler
= kvm_ipi_signal
;
2961 sigaction(SIG_IPI
, &sigact
, NULL
);
2963 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
2964 #if defined KVM_HAVE_MCE_INJECTION
2965 sigdelset(&set
, SIGBUS
);
2966 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2968 sigdelset(&set
, SIG_IPI
);
2969 if (kvm_immediate_exit
) {
2970 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2972 r
= kvm_set_signal_mask(cpu
, &set
);
2975 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
2980 /* Called asynchronously in VCPU thread. */
2981 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2983 #ifdef KVM_HAVE_MCE_INJECTION
2984 if (have_sigbus_pending
) {
2987 have_sigbus_pending
= true;
2988 pending_sigbus_addr
= addr
;
2989 pending_sigbus_code
= code
;
2990 atomic_set(&cpu
->exit_request
, 1);
2997 /* Called synchronously (via signalfd) in main thread. */
2998 int kvm_on_sigbus(int code
, void *addr
)
3000 #ifdef KVM_HAVE_MCE_INJECTION
3001 /* Action required MCE kills the process if SIGBUS is blocked. Because
3002 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3003 * we can only get action optional here.
3005 assert(code
!= BUS_MCEERR_AR
);
3006 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
3013 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
3016 struct kvm_create_device create_dev
;
3018 create_dev
.type
= type
;
3020 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
3022 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
3026 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
3031 return test
? 0 : create_dev
.fd
;
3034 bool kvm_device_supported(int vmfd
, uint64_t type
)
3036 struct kvm_create_device create_dev
= {
3039 .flags
= KVM_CREATE_DEVICE_TEST
,
3042 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
3046 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
3049 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
3051 struct kvm_one_reg reg
;
3055 reg
.addr
= (uintptr_t) source
;
3056 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
3058 trace_kvm_failed_reg_set(id
, strerror(-r
));
3063 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
3065 struct kvm_one_reg reg
;
3069 reg
.addr
= (uintptr_t) target
;
3070 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
3072 trace_kvm_failed_reg_get(id
, strerror(-r
));
3077 static bool kvm_accel_has_memory(MachineState
*ms
, AddressSpace
*as
,
3078 hwaddr start_addr
, hwaddr size
)
3080 KVMState
*kvm
= KVM_STATE(ms
->accelerator
);
3083 for (i
= 0; i
< kvm
->nr_as
; ++i
) {
3084 if (kvm
->as
[i
].as
== as
&& kvm
->as
[i
].ml
) {
3085 size
= MIN(kvm_max_slot_size
, size
);
3086 return NULL
!= kvm_lookup_matching_slot(kvm
->as
[i
].ml
,
3094 static void kvm_get_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3095 const char *name
, void *opaque
,
3098 KVMState
*s
= KVM_STATE(obj
);
3099 int64_t value
= s
->kvm_shadow_mem
;
3101 visit_type_int(v
, name
, &value
, errp
);
3104 static void kvm_set_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3105 const char *name
, void *opaque
,
3108 KVMState
*s
= KVM_STATE(obj
);
3109 Error
*error
= NULL
;
3112 visit_type_int(v
, name
, &value
, &error
);
3114 error_propagate(errp
, error
);
3118 s
->kvm_shadow_mem
= value
;
3121 static void kvm_set_kernel_irqchip(Object
*obj
, Visitor
*v
,
3122 const char *name
, void *opaque
,
3126 KVMState
*s
= KVM_STATE(obj
);
3129 visit_type_OnOffSplit(v
, name
, &mode
, &err
);
3131 error_propagate(errp
, err
);
3135 case ON_OFF_SPLIT_ON
:
3136 s
->kernel_irqchip_allowed
= true;
3137 s
->kernel_irqchip_required
= true;
3138 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3140 case ON_OFF_SPLIT_OFF
:
3141 s
->kernel_irqchip_allowed
= false;
3142 s
->kernel_irqchip_required
= false;
3143 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3145 case ON_OFF_SPLIT_SPLIT
:
3146 s
->kernel_irqchip_allowed
= true;
3147 s
->kernel_irqchip_required
= true;
3148 s
->kernel_irqchip_split
= ON_OFF_AUTO_ON
;
3151 /* The value was checked in visit_type_OnOffSplit() above. If
3152 * we get here, then something is wrong in QEMU.
3159 bool kvm_kernel_irqchip_allowed(void)
3161 return kvm_state
->kernel_irqchip_allowed
;
3164 bool kvm_kernel_irqchip_required(void)
3166 return kvm_state
->kernel_irqchip_required
;
3169 bool kvm_kernel_irqchip_split(void)
3171 return kvm_state
->kernel_irqchip_split
== ON_OFF_AUTO_ON
;
3174 static void kvm_accel_instance_init(Object
*obj
)
3176 KVMState
*s
= KVM_STATE(obj
);
3178 s
->kvm_shadow_mem
= -1;
3179 s
->kernel_irqchip_allowed
= true;
3180 s
->kernel_irqchip_split
= ON_OFF_AUTO_AUTO
;
3183 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
3185 AccelClass
*ac
= ACCEL_CLASS(oc
);
3187 ac
->init_machine
= kvm_init
;
3188 ac
->has_memory
= kvm_accel_has_memory
;
3189 ac
->allowed
= &kvm_allowed
;
3191 object_class_property_add(oc
, "kernel-irqchip", "on|off|split",
3192 NULL
, kvm_set_kernel_irqchip
,
3194 object_class_property_set_description(oc
, "kernel-irqchip",
3195 "Configure KVM in-kernel irqchip");
3197 object_class_property_add(oc
, "kvm-shadow-mem", "int",
3198 kvm_get_kvm_shadow_mem
, kvm_set_kvm_shadow_mem
,
3200 object_class_property_set_description(oc
, "kvm-shadow-mem",
3201 "KVM shadow MMU size");
3204 static const TypeInfo kvm_accel_type
= {
3205 .name
= TYPE_KVM_ACCEL
,
3206 .parent
= TYPE_ACCEL
,
3207 .instance_init
= kvm_accel_instance_init
,
3208 .class_init
= kvm_accel_class_init
,
3209 .instance_size
= sizeof(KVMState
),
3212 static void kvm_type_init(void)
3214 type_register_static(&kvm_accel_type
);
3217 type_init(kvm_type_init
);