2 * ARM SSE (Subsystems for Embedded): IoTKit, SSE-200
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * This is a model of the Arm "Subsystems for Embedded" family of
14 * hardware, which include the IoT Kit and the SSE-050, SSE-100 and
15 * SSE-200. Currently we model:
16 * - the Arm IoT Kit which is documented in
17 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
18 * - the SSE-200 which is documented in
19 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
21 * The IoTKit contains:
24 * some timers and watchdogs
25 * two peripheral protection controllers
26 * a memory protection controller
27 * a security controller
28 * a bus fabric which arranges that some parts of the address
29 * space are secure and non-secure aliases of each other
30 * The SSE-200 additionally contains:
32 * two Message Handling Units (MHUs)
33 * an optional CryptoCell (which we do not model)
34 * more SRAM banks with associated MPCs
35 * multiple Power Policy Units (PPUs)
36 * a control interface for an icache for each CPU
37 * per-CPU identity and control register blocks
40 * + QOM property "memory" is a MemoryRegion containing the devices provided
42 * + QOM property "MAINCLK" is the frequency of the main system clock
43 * + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts.
44 * (In hardware, the SSE-200 permits the number of expansion interrupts
45 * for the two CPUs to be configured separately, but we restrict it to
46 * being the same for both, to avoid having to have separate Property
47 * lists for different variants. This restriction can be relaxed later
49 * + QOM property "SRAM_ADDR_WIDTH" sets the number of bits used for the
50 * address of each SRAM bank (and thus the total amount of internal SRAM)
51 * + QOM property "init-svtor" sets the initial value of the CPU SVTOR register
52 * (where it expects to load the PC and SP from the vector table on reset)
53 * + QOM properties "CPU0_FPU", "CPU0_DSP", "CPU1_FPU" and "CPU1_DSP" which
54 * set whether the CPUs have the FPU and DSP features present. The default
55 * (matching the hardware) is that for CPU0 in an IoTKit and CPU1 in an
56 * SSE-200 both are present; CPU0 in an SSE-200 has neither.
57 * Since the IoTKit has only one CPU, it does not have the CPU1_* properties.
58 * + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0,
59 * which are wired to its NVIC lines 32 .. n+32
60 * + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for
61 * CPU 1, which are wired to its NVIC lines 32 .. n+32
62 * + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows
63 * bus master devices in the board model to make transactions into
64 * all the devices and memory areas in the IoTKit
65 * Controlling up to 4 AHB expansion PPBs which a system using the IoTKit
67 * + named GPIO outputs apb_ppcexp{0,1,2,3}_nonsec[0..15]
68 * + named GPIO outputs apb_ppcexp{0,1,2,3}_ap[0..15]
69 * + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_enable
70 * + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_clear
71 * + named GPIO inputs apb_ppcexp{0,1,2,3}_irq_status
72 * Controlling each of the 4 expansion AHB PPCs which a system using the IoTKit
74 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_nonsec[0..15]
75 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_ap[0..15]
76 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable
77 * + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear
78 * + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status
79 * Controlling each of the 16 expansion MPCs which a system using the IoTKit
81 * + named GPIO inputs mpcexp_status[0..15]
82 * Controlling each of the 16 expansion MSCs which a system using the IoTKit
84 * + named GPIO inputs mscexp_status[0..15]
85 * + named GPIO outputs mscexp_clear[0..15]
86 * + named GPIO outputs mscexp_ns[0..15]
92 #include "hw/sysbus.h"
93 #include "hw/arm/armv7m.h"
94 #include "hw/misc/iotkit-secctl.h"
95 #include "hw/misc/tz-ppc.h"
96 #include "hw/misc/tz-mpc.h"
97 #include "hw/timer/cmsdk-apb-timer.h"
98 #include "hw/timer/cmsdk-apb-dualtimer.h"
99 #include "hw/watchdog/cmsdk-apb-watchdog.h"
100 #include "hw/misc/iotkit-sysctl.h"
101 #include "hw/misc/iotkit-sysinfo.h"
102 #include "hw/misc/armsse-cpuid.h"
103 #include "hw/misc/armsse-mhu.h"
104 #include "hw/misc/unimp.h"
105 #include "hw/or-irq.h"
106 #include "hw/core/split-irq.h"
107 #include "hw/cpu/cluster.h"
109 #define TYPE_ARMSSE "arm-sse"
110 #define ARMSSE(obj) OBJECT_CHECK(ARMSSE, (obj), TYPE_ARMSSE)
113 * These type names are for specific IoTKit subsystems; other than
114 * instantiating them, code using these devices should always handle
115 * them via the ARMSSE base class, so they have no IOTKIT() etc macros.
117 #define TYPE_IOTKIT "iotkit"
118 #define TYPE_SSE200 "sse-200"
120 /* We have an IRQ splitter and an OR gate input for each external PPC
121 * and the 2 internal PPCs
123 #define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC)
124 #define NUM_PPCS (NUM_EXTERNAL_PPCS + 2)
126 #define MAX_SRAM_BANKS 4
127 #if MAX_SRAM_BANKS > IOTS_NUM_MPC
128 #error Too many SRAM banks
131 #define SSE_MAX_CPUS 2
133 /* These define what each PPU in the ppu[] index is for */
134 #define CPU0CORE_PPU 0
135 #define CPU1CORE_PPU 1
143 typedef struct ARMSSE
{
145 SysBusDevice parent_obj
;
148 ARMv7MState armv7m
[SSE_MAX_CPUS
];
149 CPUClusterState cluster
[SSE_MAX_CPUS
];
153 TZMPC mpc
[IOTS_NUM_MPC
];
154 CMSDKAPBTIMER timer0
;
155 CMSDKAPBTIMER timer1
;
156 CMSDKAPBTIMER s32ktimer
;
157 qemu_or_irq ppc_irq_orgate
;
158 SplitIRQ sec_resp_splitter
;
159 SplitIRQ ppc_irq_splitter
[NUM_PPCS
];
160 SplitIRQ mpc_irq_splitter
[IOTS_NUM_EXP_MPC
+ IOTS_NUM_MPC
];
161 qemu_or_irq mpc_irq_orgate
;
162 qemu_or_irq nmi_orgate
;
164 SplitIRQ cpu_irq_splitter
[32];
166 CMSDKAPBDualTimer dualtimer
;
168 CMSDKAPBWatchdog s32kwatchdog
;
169 CMSDKAPBWatchdog nswatchdog
;
170 CMSDKAPBWatchdog swatchdog
;
173 IoTKitSysCtl sysinfo
;
176 UnimplementedDeviceState ppu
[NUM_PPUS
];
177 UnimplementedDeviceState cachectrl
[SSE_MAX_CPUS
];
178 UnimplementedDeviceState cpusecctrl
[SSE_MAX_CPUS
];
180 ARMSSECPUID cpuid
[SSE_MAX_CPUS
];
183 * 'container' holds all devices seen by all CPUs.
184 * 'cpu_container[i]' is the view that CPU i has: this has the
185 * per-CPU devices of that CPU, plus as the background 'container'
186 * (or an alias of it, since we can only use it directly once).
187 * container_alias[i] is the alias of 'container' used by CPU i+1;
188 * CPU 0 can use 'container' directly.
190 MemoryRegion container
;
191 MemoryRegion container_alias
[SSE_MAX_CPUS
- 1];
192 MemoryRegion cpu_container
[SSE_MAX_CPUS
];
195 MemoryRegion alias3
[SSE_MAX_CPUS
];
196 MemoryRegion sram
[MAX_SRAM_BANKS
];
198 qemu_irq
*exp_irqs
[SSE_MAX_CPUS
];
201 qemu_irq sec_resp_cfg
;
202 qemu_irq sec_resp_cfg_in
;
205 qemu_irq irq_status_in
[NUM_EXTERNAL_PPCS
];
206 qemu_irq mpcexp_status_in
[IOTS_NUM_EXP_MPC
];
211 MemoryRegion
*board_memory
;
213 uint32_t mainclk_frq
;
214 uint32_t sram_addr_width
;
216 bool cpu_fpu
[SSE_MAX_CPUS
];
217 bool cpu_dsp
[SSE_MAX_CPUS
];
220 typedef struct ARMSSEInfo ARMSSEInfo
;
222 typedef struct ARMSSEClass
{
223 DeviceClass parent_class
;
224 const ARMSSEInfo
*info
;
227 #define ARMSSE_CLASS(klass) \
228 OBJECT_CLASS_CHECK(ARMSSEClass, (klass), TYPE_ARMSSE)
229 #define ARMSSE_GET_CLASS(obj) \
230 OBJECT_GET_CLASS(ARMSSEClass, (obj), TYPE_ARMSSE)