4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/datadir.h"
13 #include "qemu/error-report.h"
14 #include "qapi/error.h"
16 #include "hw/arm/boot.h"
17 #include "hw/arm/linux-boot-if.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "sysemu/reset.h"
23 #include "hw/loader.h"
25 #include "sysemu/device_tree.h"
26 #include "qemu/config-file.h"
27 #include "qemu/option.h"
28 #include "qemu/units.h"
30 /* Kernel boot protocol is specified in the kernel docs
31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
32 * They have different preferred image load offsets from system RAM base.
34 #define KERNEL_ARGS_ADDR 0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR 0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
39 #define ARM64_TEXT_OFFSET_OFFSET 8
40 #define ARM64_MAGIC_OFFSET 56
42 #define BOOTLOADER_MAX_SIZE (4 * KiB)
44 AddressSpace
*arm_boot_address_space(ARMCPU
*cpu
,
45 const struct arm_boot_info
*info
)
47 /* Return the address space to use for bootloader reads and writes.
48 * We prefer the secure address space if the CPU has it and we're
49 * going to boot the guest into it.
52 CPUState
*cs
= CPU(cpu
);
54 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
) && info
->secure_boot
) {
60 return cpu_get_address_space(cs
, asidx
);
64 FIXUP_NONE
= 0, /* do nothing */
65 FIXUP_TERMINATOR
, /* end of insns */
66 FIXUP_BOARDID
, /* overwrite with board ID number */
67 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
68 FIXUP_ARGPTR_LO
, /* overwrite with pointer to kernel args */
69 FIXUP_ARGPTR_HI
, /* overwrite with pointer to kernel args (high half) */
70 FIXUP_ENTRYPOINT_LO
, /* overwrite with kernel entry point */
71 FIXUP_ENTRYPOINT_HI
, /* overwrite with kernel entry point (high half) */
72 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
73 FIXUP_BOOTREG
, /* overwrite with boot register address */
74 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
78 typedef struct ARMInsnFixup
{
83 static const ARMInsnFixup bootloader_aarch64
[] = {
84 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85 { 0xaa1f03e1 }, /* mov x1, xzr */
86 { 0xaa1f03e2 }, /* mov x2, xzr */
87 { 0xaa1f03e3 }, /* mov x3, xzr */
88 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
90 { 0, FIXUP_ARGPTR_LO
}, /* arg: .word @DTB Lower 32-bits */
91 { 0, FIXUP_ARGPTR_HI
}, /* .word @DTB Higher 32-bits */
92 { 0, FIXUP_ENTRYPOINT_LO
}, /* entry: .word @Kernel Entry Lower 32-bits */
93 { 0, FIXUP_ENTRYPOINT_HI
}, /* .word @Kernel Entry Higher 32-bits */
94 { 0, FIXUP_TERMINATOR
}
97 /* A very small bootloader: call the board-setup code (if needed),
98 * set r0-r2, then jump to the kernel.
99 * If we're not calling boot setup code then we don't copy across
100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
103 static const ARMInsnFixup bootloader
[] = {
104 { 0xe28fe004 }, /* add lr, pc, #4 */
105 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
106 { 0, FIXUP_BOARD_SETUP
},
107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
108 { 0xe3a00000 }, /* mov r0, #0 */
109 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
110 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
111 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
112 { 0, FIXUP_BOARDID
},
113 { 0, FIXUP_ARGPTR_LO
},
114 { 0, FIXUP_ENTRYPOINT_LO
},
115 { 0, FIXUP_TERMINATOR
}
118 /* Handling for secondary CPU boot in a multicore system.
119 * Unlike the uniprocessor/primary CPU boot, this is platform
120 * dependent. The default code here is based on the secondary
121 * CPU boot protocol used on realview/vexpress boards, with
122 * some parameterisation to increase its flexibility.
123 * QEMU platform models for which this code is not appropriate
124 * should override write_secondary_boot and secondary_cpu_reset_hook
127 * This code enables the interrupt controllers for the secondary
128 * CPUs and then puts all the secondary CPUs into a loop waiting
129 * for an interprocessor interrupt and polling a configurable
130 * location for the kernel secondary CPU entry point.
132 #define DSB_INSN 0xf57ff04f
133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
135 static const ARMInsnFixup smpboot
[] = {
136 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138 { 0xe3a01001 }, /* mov r1, #1 */
139 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140 { 0xe3a010ff }, /* mov r1, #0xff */
141 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142 { 0, FIXUP_DSB
}, /* dsb */
143 { 0xe320f003 }, /* wfi */
144 { 0xe5901000 }, /* ldr r1, [r0] */
145 { 0xe1110001 }, /* tst r1, r1 */
146 { 0x0afffffb }, /* beq <wfi> */
147 { 0xe12fff11 }, /* bx r1 */
148 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
149 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
150 { 0, FIXUP_TERMINATOR
}
153 static void write_bootloader(const char *name
, hwaddr addr
,
154 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
,
157 /* Fix up the specified bootloader fragment and write it into
158 * guest memory using rom_add_blob_fixed(). fixupcontext is
159 * an array giving the values to write in for the fixup types
160 * which write a value into the code array.
166 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
170 code
= g_new0(uint32_t, len
);
172 for (i
= 0; i
< len
; i
++) {
173 uint32_t insn
= insns
[i
].insn
;
174 FixupType fixup
= insns
[i
].fixup
;
180 case FIXUP_BOARD_SETUP
:
181 case FIXUP_ARGPTR_LO
:
182 case FIXUP_ARGPTR_HI
:
183 case FIXUP_ENTRYPOINT_LO
:
184 case FIXUP_ENTRYPOINT_HI
:
185 case FIXUP_GIC_CPU_IF
:
188 insn
= fixupcontext
[fixup
];
193 code
[i
] = tswap32(insn
);
196 assert((len
* sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE
);
198 rom_add_blob_fixed_as(name
, code
, len
* sizeof(uint32_t), addr
, as
);
203 static void default_write_secondary(ARMCPU
*cpu
,
204 const struct arm_boot_info
*info
)
206 uint32_t fixupcontext
[FIXUP_MAX
];
207 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
209 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
210 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
211 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
212 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
214 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
217 write_bootloader("smpboot", info
->smp_loader_start
,
218 smpboot
, fixupcontext
, as
);
221 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
222 const struct arm_boot_info
*info
,
225 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
227 uint32_t mvbar_blob
[] = {
228 /* mvbar_addr: secure monitor vectors
229 * Default unimplemented and unused vectors to spin. Makes it
230 * easier to debug (as opposed to the CPU running away).
232 0xeafffffe, /* (spin) */
233 0xeafffffe, /* (spin) */
234 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
239 0xeafffffe, /* (spin) */
241 uint32_t board_setup_blob
[] = {
242 /* board setup addr */
243 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
244 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
245 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
246 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
247 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
248 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
249 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
250 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
251 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
252 0xe1600070, /* smc #0 ;call monitor to flush SCR */
253 0xe1a0f001, /* mov pc, r1 ;return */
256 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
257 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
259 /* check that these blobs don't overlap */
260 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
261 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
263 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
264 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
266 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
269 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
270 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
272 rom_add_blob_fixed_as("board-setup", board_setup_blob
,
273 sizeof(board_setup_blob
), info
->board_setup_addr
, as
);
276 static void default_reset_secondary(ARMCPU
*cpu
,
277 const struct arm_boot_info
*info
)
279 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
280 CPUState
*cs
= CPU(cpu
);
282 address_space_stl_notdirty(as
, info
->smp_bootreg_addr
,
283 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
284 cpu_set_pc(cs
, info
->smp_loader_start
);
287 static inline bool have_dtb(const struct arm_boot_info
*info
)
289 return info
->dtb_filename
|| info
->get_dtb
;
292 #define WRITE_WORD(p, value) do { \
293 address_space_stl_notdirty(as, p, value, \
294 MEMTXATTRS_UNSPECIFIED, NULL); \
298 static void set_kernel_args(const struct arm_boot_info
*info
, AddressSpace
*as
)
300 int initrd_size
= info
->initrd_size
;
301 hwaddr base
= info
->loader_start
;
304 p
= base
+ KERNEL_ARGS_ADDR
;
307 WRITE_WORD(p
, 0x54410001);
309 WRITE_WORD(p
, 0x1000);
312 /* TODO: handle multiple chips on one ATAG list */
314 WRITE_WORD(p
, 0x54410002);
315 WRITE_WORD(p
, info
->ram_size
);
316 WRITE_WORD(p
, info
->loader_start
);
320 WRITE_WORD(p
, 0x54420005);
321 WRITE_WORD(p
, info
->initrd_start
);
322 WRITE_WORD(p
, initrd_size
);
324 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
328 cmdline_size
= strlen(info
->kernel_cmdline
);
329 address_space_write(as
, p
+ 8, MEMTXATTRS_UNSPECIFIED
,
330 info
->kernel_cmdline
, cmdline_size
+ 1);
331 cmdline_size
= (cmdline_size
>> 2) + 1;
332 WRITE_WORD(p
, cmdline_size
+ 2);
333 WRITE_WORD(p
, 0x54410009);
334 p
+= cmdline_size
* 4;
336 if (info
->atag_board
) {
339 uint8_t atag_board_buf
[0x1000];
341 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
342 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
343 WRITE_WORD(p
, 0x414f4d50);
344 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
345 atag_board_buf
, atag_board_len
);
353 static void set_kernel_args_old(const struct arm_boot_info
*info
,
358 int initrd_size
= info
->initrd_size
;
359 hwaddr base
= info
->loader_start
;
361 /* see linux/include/asm-arm/setup.h */
362 p
= base
+ KERNEL_ARGS_ADDR
;
366 WRITE_WORD(p
, info
->ram_size
/ 4096);
369 #define FLAG_READONLY 1
370 #define FLAG_RDLOAD 4
371 #define FLAG_RDPROMPT 8
373 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
375 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
384 /* memc_control_reg */
386 /* unsigned char sounddefault */
387 /* unsigned char adfsdrives */
388 /* unsigned char bytes_per_char_h */
389 /* unsigned char bytes_per_char_v */
391 /* pages_in_bank[4] */
400 WRITE_WORD(p
, info
->initrd_start
);
405 WRITE_WORD(p
, initrd_size
);
410 /* system_serial_low */
412 /* system_serial_high */
416 /* zero unused fields */
417 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
420 s
= info
->kernel_cmdline
;
422 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
, s
, strlen(s
) + 1);
428 static int fdt_add_memory_node(void *fdt
, uint32_t acells
, hwaddr mem_base
,
429 uint32_t scells
, hwaddr mem_len
,
435 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
436 qemu_fdt_add_subnode(fdt
, nodename
);
437 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
438 ret
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg", acells
, mem_base
,
444 /* only set the NUMA ID if it is specified */
445 if (numa_node_id
>= 0) {
446 ret
= qemu_fdt_setprop_cell(fdt
, nodename
,
447 "numa-node-id", numa_node_id
);
454 static void fdt_add_psci_node(void *fdt
)
456 uint32_t cpu_suspend_fn
;
460 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
461 const char *psci_method
;
462 int64_t psci_conduit
;
465 psci_conduit
= object_property_get_int(OBJECT(armcpu
),
468 switch (psci_conduit
) {
469 case QEMU_PSCI_CONDUIT_DISABLED
:
471 case QEMU_PSCI_CONDUIT_HVC
:
474 case QEMU_PSCI_CONDUIT_SMC
:
478 g_assert_not_reached();
482 * If /psci node is present in provided DTB, assume that no fixup
483 * is necessary and all PSCI configuration should be taken as-is
485 rc
= fdt_path_offset(fdt
, "/psci");
490 qemu_fdt_add_subnode(fdt
, "/psci");
491 if (armcpu
->psci_version
== 2) {
492 const char comp
[] = "arm,psci-0.2\0arm,psci";
493 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
495 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
496 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
497 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
498 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
499 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
501 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
502 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
503 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
506 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
508 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
509 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
510 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
511 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
514 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
515 * to the instruction that should be used to invoke PSCI functions.
516 * However, the device tree binding uses 'method' instead, so that is
517 * what we should use here.
519 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
521 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
522 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
523 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
524 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
527 int arm_load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
528 hwaddr addr_limit
, AddressSpace
*as
, MachineState
*ms
)
532 uint32_t acells
, scells
;
534 hwaddr mem_base
, mem_len
;
538 if (binfo
->dtb_filename
) {
540 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
542 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
546 fdt
= load_device_tree(filename
, &size
);
548 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
554 fdt
= binfo
->get_dtb(binfo
, &size
);
556 fprintf(stderr
, "Board was unable to create a dtb blob\n");
561 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
562 /* Installing the device tree blob at addr would exceed addr_limit.
563 * Whether this constitutes failure is up to the caller to decide,
564 * so just return 0 as size, i.e., no error.
570 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
572 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
574 if (acells
== 0 || scells
== 0) {
575 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
579 if (scells
< 2 && binfo
->ram_size
>= 4 * GiB
) {
580 /* This is user error so deserves a friendlier error message
581 * than the failure of setprop_sized_cells would provide
583 fprintf(stderr
, "qemu: dtb file not compatible with "
588 /* nop all root nodes matching /memory or /memory@unit-address */
589 node_path
= qemu_fdt_node_unit_path(fdt
, "memory", &err
);
591 error_report_err(err
);
594 while (node_path
[n
]) {
595 if (g_str_has_prefix(node_path
[n
], "/memory")) {
596 qemu_fdt_nop_node(fdt
, node_path
[n
]);
600 g_strfreev(node_path
);
602 if (ms
->numa_state
!= NULL
&& ms
->numa_state
->num_nodes
> 0) {
603 mem_base
= binfo
->loader_start
;
604 for (i
= 0; i
< ms
->numa_state
->num_nodes
; i
++) {
605 mem_len
= ms
->numa_state
->nodes
[i
].node_mem
;
606 rc
= fdt_add_memory_node(fdt
, acells
, mem_base
,
609 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
617 rc
= fdt_add_memory_node(fdt
, acells
, binfo
->loader_start
,
618 scells
, binfo
->ram_size
, -1);
620 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
621 binfo
->loader_start
);
626 rc
= fdt_path_offset(fdt
, "/chosen");
628 qemu_fdt_add_subnode(fdt
, "/chosen");
631 if (ms
->kernel_cmdline
&& *ms
->kernel_cmdline
) {
632 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
635 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
640 if (binfo
->initrd_size
) {
641 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
642 binfo
->initrd_start
);
644 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
648 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
649 binfo
->initrd_start
+ binfo
->initrd_size
);
651 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
656 fdt_add_psci_node(fdt
);
658 if (binfo
->modify_dtb
) {
659 binfo
->modify_dtb(binfo
, fdt
);
662 qemu_fdt_dumpdtb(fdt
, size
);
664 /* Put the DTB into the memory map as a ROM image: this will ensure
665 * the DTB is copied again upon reset, even if addr points into RAM.
667 rom_add_blob_fixed_as("dtb", fdt
, size
, addr
, as
);
678 static void do_cpu_reset(void *opaque
)
680 ARMCPU
*cpu
= opaque
;
681 CPUState
*cs
= CPU(cpu
);
682 CPUARMState
*env
= &cpu
->env
;
683 const struct arm_boot_info
*info
= env
->boot_info
;
687 if (!info
->is_linux
) {
689 /* Jump to the entry point. */
690 uint64_t entry
= info
->entry
;
692 switch (info
->endianness
) {
693 case ARM_ENDIANNESS_LE
:
694 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
695 for (i
= 1; i
< 4; ++i
) {
696 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
698 env
->uncached_cpsr
&= ~CPSR_E
;
700 case ARM_ENDIANNESS_BE8
:
701 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
702 for (i
= 1; i
< 4; ++i
) {
703 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
705 env
->uncached_cpsr
|= CPSR_E
;
707 case ARM_ENDIANNESS_BE32
:
708 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
710 case ARM_ENDIANNESS_UNKNOWN
:
711 break; /* Board's decision */
713 g_assert_not_reached();
716 cpu_set_pc(cs
, entry
);
718 /* If we are booting Linux then we need to check whether we are
719 * booting into secure or non-secure state and adjust the state
720 * accordingly. Out of reset, ARM is defined to be in secure state
721 * (SCR.NS = 0), we change that here if non-secure boot has been
724 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
725 /* AArch64 is defined to come out of reset into EL3 if enabled.
726 * If we are booting Linux then we need to adjust our EL as
727 * Linux expects us to be in EL2 or EL1. AArch32 resets into
728 * SVC, which Linux expects, so no privilege/exception level to
732 env
->cp15
.scr_el3
|= SCR_RW
;
733 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
734 env
->cp15
.hcr_el2
|= HCR_RW
;
735 env
->pstate
= PSTATE_MODE_EL2h
;
737 env
->pstate
= PSTATE_MODE_EL1h
;
739 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
740 env
->cp15
.scr_el3
|= SCR_API
| SCR_APK
;
742 if (cpu_isar_feature(aa64_mte
, cpu
)) {
743 env
->cp15
.scr_el3
|= SCR_ATA
;
745 if (cpu_isar_feature(aa64_sve
, cpu
)) {
746 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
748 /* AArch64 kernels never boot in secure mode */
749 assert(!info
->secure_boot
);
750 /* This hook is only supported for AArch32 currently:
751 * bootloader_aarch64[] will not call the hook, and
752 * the code above has already dropped us into EL2 or EL1.
754 assert(!info
->secure_board_setup
);
757 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
758 /* If we have EL2 then Linux expects the HVC insn to work */
759 env
->cp15
.scr_el3
|= SCR_HCE
;
762 /* Set to non-secure if not a secure boot */
763 if (!info
->secure_boot
&&
764 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
765 /* Linux expects non-secure state */
766 env
->cp15
.scr_el3
|= SCR_NS
;
767 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
768 env
->cp15
.nsacr
|= 3 << 10;
772 if (!env
->aarch64
&& !info
->secure_boot
&&
773 arm_feature(env
, ARM_FEATURE_EL2
)) {
775 * This is an AArch32 boot not to Secure state, and
776 * we have Hyp mode available, so boot the kernel into
777 * Hyp mode. This is not how the CPU comes out of reset,
778 * so we need to manually put it there.
780 cpsr_write(env
, ARM_CPU_MODE_HYP
, CPSR_M
, CPSRWriteRaw
);
783 if (cs
== first_cpu
) {
784 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
786 cpu_set_pc(cs
, info
->loader_start
);
788 if (!have_dtb(info
)) {
790 set_kernel_args_old(info
, as
);
792 set_kernel_args(info
, as
);
796 info
->secondary_cpu_reset_hook(cpu
, info
);
799 arm_rebuild_hflags(env
);
804 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
806 * @fw_cfg: The firmware config instance to store the data in.
807 * @size_key: The firmware config key to store the size of the loaded
808 * data under, with fw_cfg_add_i32().
809 * @data_key: The firmware config key to store the loaded data under,
810 * with fw_cfg_add_bytes().
811 * @image_name: The name of the image file to load. If it is NULL, the
812 * function returns without doing anything.
813 * @try_decompress: Whether the image should be decompressed (gunzipped) before
814 * adding it to fw_cfg. If decompression fails, the image is
817 * In case of failure, the function prints an error message to stderr and the
818 * process exits with status 1.
820 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
821 uint16_t data_key
, const char *image_name
,
827 if (image_name
== NULL
) {
831 if (try_decompress
) {
832 size
= load_image_gzipped_buffer(image_name
,
833 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
836 if (size
== (size_t)-1) {
840 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
841 error_report("failed to load \"%s\"", image_name
);
845 data
= (uint8_t *)contents
;
848 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
849 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
852 static int do_arm_linux_init(Object
*obj
, void *opaque
)
854 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
855 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
856 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
857 struct arm_boot_info
*info
= opaque
;
859 if (albifc
->arm_linux_init
) {
860 albifc
->arm_linux_init(albif
, info
->secure_boot
);
866 static int64_t arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
867 uint64_t *lowaddr
, uint64_t *highaddr
,
868 int elf_machine
, AddressSpace
*as
)
881 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
888 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
889 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
892 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
894 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
895 info
->endianness
= ARM_ENDIANNESS_BE8
;
897 info
->endianness
= ARM_ENDIANNESS_BE32
;
898 /* In BE32, the CPU has a different view of the per-byte
899 * address map than the rest of the system. BE32 ELF files
900 * are organised such that they can be programmed through
901 * the CPU's per-word byte-reversed view of the world. QEMU
902 * however loads ELF files independently of the CPU. So
903 * tell the ELF loader to byte reverse the data for us.
908 info
->endianness
= ARM_ENDIANNESS_LE
;
912 ret
= load_elf_as(info
->kernel_filename
, NULL
, NULL
, NULL
,
913 pentry
, lowaddr
, highaddr
, NULL
, big_endian
, elf_machine
,
916 /* The header loaded but the image didn't */
923 static uint64_t load_aarch64_image(const char *filename
, hwaddr mem_base
,
924 hwaddr
*entry
, AddressSpace
*as
)
926 hwaddr kernel_load_offset
= KERNEL64_LOAD_ADDR
;
927 uint64_t kernel_size
= 0;
931 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
932 size
= load_image_gzipped_buffer(filename
, LOAD_IMAGE_MAX_GUNZIP_BYTES
,
938 /* Load as raw file otherwise */
939 if (!g_file_get_contents(filename
, (char **)&buffer
, &len
, NULL
)) {
945 /* check the arm64 magic header value -- very old kernels may not have it */
946 if (size
> ARM64_MAGIC_OFFSET
+ 4 &&
947 memcmp(buffer
+ ARM64_MAGIC_OFFSET
, "ARM\x64", 4) == 0) {
950 /* The arm64 Image header has text_offset and image_size fields at 8 and
951 * 16 bytes into the Image header, respectively. The text_offset field
952 * is only valid if the image_size is non-zero.
954 memcpy(&hdrvals
, buffer
+ ARM64_TEXT_OFFSET_OFFSET
, sizeof(hdrvals
));
956 kernel_size
= le64_to_cpu(hdrvals
[1]);
958 if (kernel_size
!= 0) {
959 kernel_load_offset
= le64_to_cpu(hdrvals
[0]);
962 * We write our startup "bootloader" at the very bottom of RAM,
963 * so that bit can't be used for the image. Luckily the Image
964 * format specification is that the image requests only an offset
965 * from a 2MB boundary, not an absolute load address. So if the
966 * image requests an offset that might mean it overlaps with the
967 * bootloader, we can just load it starting at 2MB+offset rather
970 if (kernel_load_offset
< BOOTLOADER_MAX_SIZE
) {
971 kernel_load_offset
+= 2 * MiB
;
977 * Kernels before v3.17 don't populate the image_size field, and
978 * raw images have no header. For those our best guess at the size
979 * is the size of the Image file itself.
981 if (kernel_size
== 0) {
985 *entry
= mem_base
+ kernel_load_offset
;
986 rom_add_blob_fixed_as(filename
, buffer
, size
, *entry
, as
);
993 static void arm_setup_direct_kernel_boot(ARMCPU
*cpu
,
994 struct arm_boot_info
*info
)
996 /* Set up for a direct boot of a kernel image file. */
998 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1003 /* Addresses of first byte used and first byte not used by the image */
1004 uint64_t image_low_addr
= 0, image_high_addr
= 0;
1007 static const ARMInsnFixup
*primary_loader
;
1008 uint64_t ram_end
= info
->loader_start
+ info
->ram_size
;
1010 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1011 primary_loader
= bootloader_aarch64
;
1012 elf_machine
= EM_AARCH64
;
1014 primary_loader
= bootloader
;
1015 if (!info
->write_board_setup
) {
1016 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
1018 elf_machine
= EM_ARM
;
1021 if (!info
->secondary_cpu_reset_hook
) {
1022 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
1024 if (!info
->write_secondary_boot
) {
1025 info
->write_secondary_boot
= default_write_secondary
;
1028 if (info
->nb_cpus
== 0)
1031 /* Assume that raw images are linux kernels, and ELF images are not. */
1032 kernel_size
= arm_load_elf(info
, &elf_entry
, &image_low_addr
,
1033 &image_high_addr
, elf_machine
, as
);
1034 if (kernel_size
> 0 && have_dtb(info
)) {
1036 * If there is still some room left at the base of RAM, try and put
1037 * the DTB there like we do for images loaded with -bios or -pflash.
1039 if (image_low_addr
> info
->loader_start
1040 || image_high_addr
< info
->loader_start
) {
1042 * Set image_low_addr as address limit for arm_load_dtb if it may be
1043 * pointing into RAM, otherwise pass '0' (no limit)
1045 if (image_low_addr
< info
->loader_start
) {
1048 info
->dtb_start
= info
->loader_start
;
1049 info
->dtb_limit
= image_low_addr
;
1053 if (kernel_size
< 0) {
1054 uint64_t loadaddr
= info
->loader_start
+ KERNEL_NOLOAD_ADDR
;
1055 kernel_size
= load_uimage_as(info
->kernel_filename
, &entry
, &loadaddr
,
1056 &is_linux
, NULL
, NULL
, as
);
1057 if (kernel_size
>= 0) {
1058 image_low_addr
= loadaddr
;
1059 image_high_addr
= image_low_addr
+ kernel_size
;
1062 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
1063 kernel_size
= load_aarch64_image(info
->kernel_filename
,
1064 info
->loader_start
, &entry
, as
);
1066 if (kernel_size
>= 0) {
1067 image_low_addr
= entry
;
1068 image_high_addr
= image_low_addr
+ kernel_size
;
1070 } else if (kernel_size
< 0) {
1072 entry
= info
->loader_start
+ KERNEL_LOAD_ADDR
;
1073 kernel_size
= load_image_targphys_as(info
->kernel_filename
, entry
,
1074 ram_end
- KERNEL_LOAD_ADDR
, as
);
1076 if (kernel_size
>= 0) {
1077 image_low_addr
= entry
;
1078 image_high_addr
= image_low_addr
+ kernel_size
;
1081 if (kernel_size
< 0) {
1082 error_report("could not load kernel '%s'", info
->kernel_filename
);
1086 if (kernel_size
> info
->ram_size
) {
1087 error_report("kernel '%s' is too large to fit in RAM "
1088 "(kernel size %d, RAM size %" PRId64
")",
1089 info
->kernel_filename
, kernel_size
, info
->ram_size
);
1093 info
->entry
= entry
;
1096 * We want to put the initrd far enough into RAM that when the
1097 * kernel is uncompressed it will not clobber the initrd. However
1098 * on boards without much RAM we must ensure that we still leave
1099 * enough room for a decent sized initrd, and on boards with large
1100 * amounts of RAM we must avoid the initrd being so far up in RAM
1101 * that it is outside lowmem and inaccessible to the kernel.
1102 * So for boards with less than 256MB of RAM we put the initrd
1103 * halfway into RAM, and for boards with 256MB of RAM or more we put
1104 * the initrd at 128MB.
1105 * We also refuse to put the initrd somewhere that will definitely
1106 * overlay the kernel we just loaded, though for kernel formats which
1107 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1108 * we might still make a bad choice here.
1110 info
->initrd_start
= info
->loader_start
+
1111 MIN(info
->ram_size
/ 2, 128 * MiB
);
1112 if (image_high_addr
) {
1113 info
->initrd_start
= MAX(info
->initrd_start
, image_high_addr
);
1115 info
->initrd_start
= TARGET_PAGE_ALIGN(info
->initrd_start
);
1118 uint32_t fixupcontext
[FIXUP_MAX
];
1120 if (info
->initrd_filename
) {
1122 if (info
->initrd_start
>= ram_end
) {
1123 error_report("not enough space after kernel to load initrd");
1127 initrd_size
= load_ramdisk_as(info
->initrd_filename
,
1129 ram_end
- info
->initrd_start
, as
);
1130 if (initrd_size
< 0) {
1131 initrd_size
= load_image_targphys_as(info
->initrd_filename
,
1137 if (initrd_size
< 0) {
1138 error_report("could not load initrd '%s'",
1139 info
->initrd_filename
);
1142 if (info
->initrd_start
+ initrd_size
> ram_end
) {
1143 error_report("could not load initrd '%s': "
1144 "too big to fit into RAM after the kernel",
1145 info
->initrd_filename
);
1151 info
->initrd_size
= initrd_size
;
1153 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
1154 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
1157 * for device tree boot, we pass the DTB directly in r2. Otherwise
1158 * we point to the kernel args.
1160 if (have_dtb(info
)) {
1163 if (elf_machine
== EM_AARCH64
) {
1165 * Some AArch64 kernels on early bootup map the fdt region as
1167 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1169 * Let's play safe and prealign it to 2MB to give us some space.
1174 * Some 32bit kernels will trash anything in the 4K page the
1175 * initrd ends in, so make sure the DTB isn't caught up in that.
1180 /* Place the DTB after the initrd in memory with alignment. */
1181 info
->dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
,
1183 if (info
->dtb_start
>= ram_end
) {
1184 error_report("Not enough space for DTB after kernel/initrd");
1187 fixupcontext
[FIXUP_ARGPTR_LO
] = info
->dtb_start
;
1188 fixupcontext
[FIXUP_ARGPTR_HI
] = info
->dtb_start
>> 32;
1190 fixupcontext
[FIXUP_ARGPTR_LO
] =
1191 info
->loader_start
+ KERNEL_ARGS_ADDR
;
1192 fixupcontext
[FIXUP_ARGPTR_HI
] =
1193 (info
->loader_start
+ KERNEL_ARGS_ADDR
) >> 32;
1194 if (info
->ram_size
>= 4 * GiB
) {
1195 error_report("RAM size must be less than 4GB to boot"
1196 " Linux kernel using ATAGS (try passing a device tree"
1201 fixupcontext
[FIXUP_ENTRYPOINT_LO
] = entry
;
1202 fixupcontext
[FIXUP_ENTRYPOINT_HI
] = entry
>> 32;
1204 write_bootloader("bootloader", info
->loader_start
,
1205 primary_loader
, fixupcontext
, as
);
1207 if (info
->nb_cpus
> 1) {
1208 info
->write_secondary_boot(cpu
, info
);
1210 if (info
->write_board_setup
) {
1211 info
->write_board_setup(cpu
, info
);
1215 * Notify devices which need to fake up firmware initialization
1216 * that we're doing a direct kernel boot.
1218 object_child_foreach_recursive(object_get_root(),
1219 do_arm_linux_init
, info
);
1221 info
->is_linux
= is_linux
;
1223 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1224 ARM_CPU(cs
)->env
.boot_info
= info
;
1228 static void arm_setup_firmware_boot(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1230 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1232 if (have_dtb(info
)) {
1234 * If we have a device tree blob, but no kernel to supply it to (or
1235 * the kernel is supposed to be loaded by the bootloader), copy the
1236 * DTB to the base of RAM for the bootloader to pick up.
1238 info
->dtb_start
= info
->loader_start
;
1241 if (info
->kernel_filename
) {
1243 bool try_decompressing_kernel
;
1245 fw_cfg
= fw_cfg_find();
1246 try_decompressing_kernel
= arm_feature(&cpu
->env
,
1247 ARM_FEATURE_AARCH64
);
1250 * Expose the kernel, the command line, and the initrd in fw_cfg.
1251 * We don't process them here at all, it's all left to the
1254 load_image_to_fw_cfg(fw_cfg
,
1255 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
1256 info
->kernel_filename
,
1257 try_decompressing_kernel
);
1258 load_image_to_fw_cfg(fw_cfg
,
1259 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
1260 info
->initrd_filename
, false);
1262 if (info
->kernel_cmdline
) {
1263 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
1264 strlen(info
->kernel_cmdline
) + 1);
1265 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
1266 info
->kernel_cmdline
);
1271 * We will start from address 0 (typically a boot ROM image) in the
1272 * same way as hardware. Leave env->boot_info NULL, so that
1273 * do_cpu_reset() knows it does not need to alter the PC on reset.
1277 void arm_load_kernel(ARMCPU
*cpu
, MachineState
*ms
, struct arm_boot_info
*info
)
1280 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1283 * CPU objects (unlike devices) are not automatically reset on system
1284 * reset, so we must always register a handler to do so. If we're
1285 * actually loading a kernel, the handler is also responsible for
1286 * arranging that we start it correctly.
1288 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1289 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
1293 * The board code is not supposed to set secure_board_setup unless
1294 * running its code in secure mode is actually possible, and KVM
1295 * doesn't support secure.
1297 assert(!(info
->secure_board_setup
&& kvm_enabled()));
1298 info
->kernel_filename
= ms
->kernel_filename
;
1299 info
->kernel_cmdline
= ms
->kernel_cmdline
;
1300 info
->initrd_filename
= ms
->initrd_filename
;
1301 info
->dtb_filename
= ms
->dtb
;
1302 info
->dtb_limit
= 0;
1304 /* Load the kernel. */
1305 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
1306 arm_setup_firmware_boot(cpu
, info
);
1308 arm_setup_direct_kernel_boot(cpu
, info
);
1311 if (!info
->skip_dtb_autoload
&& have_dtb(info
)) {
1312 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1318 static const TypeInfo arm_linux_boot_if_info
= {
1319 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1320 .parent
= TYPE_INTERFACE
,
1321 .class_size
= sizeof(ARMLinuxBootIfClass
),
1324 static void arm_linux_boot_register_types(void)
1326 type_register_static(&arm_linux_boot_if_info
);
1329 type_init(arm_linux_boot_register_types
)