2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/tpm.h"
51 #include "sysemu/kvm.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/arm/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/pc-dimm.h"
75 #include "hw/mem/nvdimm.h"
76 #include "hw/acpi/generic_event_device.h"
77 #include "hw/virtio/virtio-iommu.h"
78 #include "hw/char/pl011.h"
79 #include "qemu/guest-random.h"
81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
82 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85 MachineClass *mc = MACHINE_CLASS(oc); \
86 virt_machine_##major##_##minor##_options(mc); \
87 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
92 static const TypeInfo machvirt_##major##_##minor##_info = { \
93 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
94 .parent = TYPE_VIRT_MACHINE, \
95 .class_init = virt_##major##_##minor##_class_init, \
97 static void machvirt_machine_##major##_##minor##_init(void) \
99 type_register_static(&machvirt_##major##_##minor##_info); \
101 type_init(machvirt_machine_##major##_##minor##_init);
103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
104 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
105 #define DEFINE_VIRT_MACHINE(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109 /* Number of external interrupt lines to configure the GIC with */
112 #define PLATFORM_BUS_NUM_IRQS 64
114 /* Legacy RAM limit in GB (< version 4.0) */
115 #define LEGACY_RAMLIMIT_GB 255
116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
118 /* Addresses and sizes of our components.
119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
120 * 128MB..256MB is used for miscellaneous device I/O.
121 * 256MB..1GB is reserved for possible future PCI support (ie where the
122 * PCI memory window will go if we add a PCI host controller).
123 * 1GB and up is RAM (which may happily spill over into the
124 * high memory region beyond 4GB).
125 * This represents a compromise between how much RAM can be given to
126 * a 32 bit VM and leaving space for expansion and in particular for PCI.
127 * Note that devices should generally be placed at multiples of 0x10000,
128 * to accommodate guests using 64K pages.
130 static const MemMapEntry base_memmap
[] = {
131 /* Space up to 0x8000000 is reserved for a boot ROM */
132 [VIRT_FLASH
] = { 0, 0x08000000 },
133 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
135 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
136 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
137 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
138 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
139 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
140 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
141 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
142 /* This redistributor space allows up to 2*64kB*123 CPUs */
143 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
144 [VIRT_UART
] = { 0x09000000, 0x00001000 },
145 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
146 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
147 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
148 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
149 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
150 [VIRT_PCDIMM_ACPI
] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN
},
151 [VIRT_ACPI_GED
] = { 0x09080000, ACPI_GED_EVT_SEL_LEN
},
152 [VIRT_NVDIMM_ACPI
] = { 0x09090000, NVDIMM_ACPI_IO_LEN
},
153 [VIRT_PVTIME
] = { 0x090a0000, 0x00010000 },
154 [VIRT_SECURE_GPIO
] = { 0x090b0000, 0x00001000 },
155 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
157 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
158 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
159 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
160 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
161 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
162 /* Actual RAM size depends on initial RAM and device memory settings */
163 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
167 * Highmem IO Regions: This memory map is floating, located after the RAM.
168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
169 * top of the RAM, so that its base get the same alignment as the size,
170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
172 * Note the extended_memmap is sized so that it eventually also includes the
173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
174 * index of base_memmap).
176 static MemMapEntry extended_memmap
[] = {
177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
178 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
179 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
180 /* Second PCIe window */
181 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
184 static const int a15irqmap
[] = {
187 [VIRT_PCIE
] = 3, /* ... to 6 */
189 [VIRT_SECURE_UART
] = 8,
191 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
192 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
193 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
194 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 static const char *valid_cpus
[] = {
198 ARM_CPU_TYPE_NAME("cortex-a7"),
199 ARM_CPU_TYPE_NAME("cortex-a15"),
200 ARM_CPU_TYPE_NAME("cortex-a53"),
201 ARM_CPU_TYPE_NAME("cortex-a57"),
202 ARM_CPU_TYPE_NAME("cortex-a72"),
203 ARM_CPU_TYPE_NAME("host"),
204 ARM_CPU_TYPE_NAME("max"),
207 static bool cpu_type_valid(const char *cpu
)
211 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
212 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
219 static void create_kaslr_seed(MachineState
*ms
, const char *node
)
223 if (qemu_guest_getrandom(&seed
, sizeof(seed
), NULL
)) {
226 qemu_fdt_setprop_u64(ms
->fdt
, node
, "kaslr-seed", seed
);
229 static void create_fdt(VirtMachineState
*vms
)
231 MachineState
*ms
= MACHINE(vms
);
232 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
233 void *fdt
= create_device_tree(&vms
->fdt_size
);
236 error_report("create_device_tree() failed");
243 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
244 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
245 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
247 /* /chosen must exist for load_dtb to fill in necessary properties later */
248 qemu_fdt_add_subnode(fdt
, "/chosen");
249 create_kaslr_seed(ms
, "/chosen");
252 qemu_fdt_add_subnode(fdt
, "/secure-chosen");
253 create_kaslr_seed(ms
, "/secure-chosen");
256 /* Clock node, for the benefit of the UART. The kernel device tree
257 * binding documentation claims the PL011 node clock properties are
258 * optional but in practice if you omit them the kernel refuses to
259 * probe for the device.
261 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
262 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
263 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
264 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
265 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
266 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
268 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
270 if (nb_numa_nodes
> 0 && ms
->numa_state
->have_numa_distance
) {
271 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
272 uint32_t *matrix
= g_malloc0(size
);
275 for (i
= 0; i
< nb_numa_nodes
; i
++) {
276 for (j
= 0; j
< nb_numa_nodes
; j
++) {
277 idx
= (i
* nb_numa_nodes
+ j
) * 3;
278 matrix
[idx
+ 0] = cpu_to_be32(i
);
279 matrix
[idx
+ 1] = cpu_to_be32(j
);
281 cpu_to_be32(ms
->numa_state
->nodes
[i
].distance
[j
]);
285 qemu_fdt_add_subnode(fdt
, "/distance-map");
286 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
287 "numa-distance-map-v1");
288 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
294 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
296 /* On real hardware these interrupts are level-triggered.
297 * On KVM they were edge-triggered before host kernel version 4.4,
298 * and level-triggered afterwards.
299 * On emulated QEMU they are level-triggered.
301 * Getting the DTB info about them wrong is awkward for some
303 * pre-4.8 ignore the DT and leave the interrupt configured
304 * with whatever the GIC reset value (or the bootloader) left it at
305 * 4.8 before rc6 honour the incorrect data by programming it back
306 * into the GIC, causing problems
307 * 4.8rc6 and later ignore the DT and always write "level triggered"
310 * For backwards-compatibility, virt-2.8 and earlier will continue
311 * to say these are edge-triggered, but later machines will report
312 * the correct information.
315 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
316 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
317 MachineState
*ms
= MACHINE(vms
);
319 if (vmc
->claim_edge_triggered_timers
) {
320 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
323 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
324 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
325 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
326 (1 << MACHINE(vms
)->smp
.cpus
) - 1);
329 qemu_fdt_add_subnode(ms
->fdt
, "/timer");
331 armcpu
= ARM_CPU(qemu_get_cpu(0));
332 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
333 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
334 qemu_fdt_setprop(ms
->fdt
, "/timer", "compatible",
335 compat
, sizeof(compat
));
337 qemu_fdt_setprop_string(ms
->fdt
, "/timer", "compatible",
340 qemu_fdt_setprop(ms
->fdt
, "/timer", "always-on", NULL
, 0);
341 qemu_fdt_setprop_cells(ms
->fdt
, "/timer", "interrupts",
342 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
343 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
344 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
345 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
348 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
352 const MachineState
*ms
= MACHINE(vms
);
353 int smp_cpus
= ms
->smp
.cpus
;
356 * From Documentation/devicetree/bindings/arm/cpus.txt
357 * On ARM v8 64-bit systems value should be set to 2,
358 * that corresponds to the MPIDR_EL1 register size.
359 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
360 * in the system, #address-cells can be set to 1, since
361 * MPIDR_EL1[63:32] bits are not used for CPUs
364 * Here we actually don't know whether our system is 32- or 64-bit one.
365 * The simplest way to go is to examine affinity IDs of all our CPUs. If
366 * at least one of them has Aff3 populated, we set #address-cells to 2.
368 for (cpu
= 0; cpu
< smp_cpus
; cpu
++) {
369 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
371 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
377 qemu_fdt_add_subnode(ms
->fdt
, "/cpus");
378 qemu_fdt_setprop_cell(ms
->fdt
, "/cpus", "#address-cells", addr_cells
);
379 qemu_fdt_setprop_cell(ms
->fdt
, "/cpus", "#size-cells", 0x0);
381 for (cpu
= smp_cpus
- 1; cpu
>= 0; cpu
--) {
382 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
383 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
384 CPUState
*cs
= CPU(armcpu
);
386 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
387 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "device_type", "cpu");
388 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible",
389 armcpu
->dtb_compatible
);
391 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
&& smp_cpus
> 1) {
392 qemu_fdt_setprop_string(ms
->fdt
, nodename
,
393 "enable-method", "psci");
396 if (addr_cells
== 2) {
397 qemu_fdt_setprop_u64(ms
->fdt
, nodename
, "reg",
398 armcpu
->mp_affinity
);
400 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "reg",
401 armcpu
->mp_affinity
);
404 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
405 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "numa-node-id",
406 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
413 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
416 MachineState
*ms
= MACHINE(vms
);
418 vms
->msi_phandle
= qemu_fdt_alloc_phandle(ms
->fdt
);
419 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
420 vms
->memmap
[VIRT_GIC_ITS
].base
);
421 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
422 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible",
424 qemu_fdt_setprop(ms
->fdt
, nodename
, "msi-controller", NULL
, 0);
425 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
426 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
427 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
428 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
432 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
434 MachineState
*ms
= MACHINE(vms
);
437 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
438 vms
->memmap
[VIRT_GIC_V2M
].base
);
439 vms
->msi_phandle
= qemu_fdt_alloc_phandle(ms
->fdt
);
440 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
441 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible",
442 "arm,gic-v2m-frame");
443 qemu_fdt_setprop(ms
->fdt
, nodename
, "msi-controller", NULL
, 0);
444 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
445 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
446 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
447 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
451 static void fdt_add_gic_node(VirtMachineState
*vms
)
453 MachineState
*ms
= MACHINE(vms
);
456 vms
->gic_phandle
= qemu_fdt_alloc_phandle(ms
->fdt
);
457 qemu_fdt_setprop_cell(ms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
459 nodename
= g_strdup_printf("/intc@%" PRIx64
,
460 vms
->memmap
[VIRT_GIC_DIST
].base
);
461 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
462 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "#interrupt-cells", 3);
463 qemu_fdt_setprop(ms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
464 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "#address-cells", 0x2);
465 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "#size-cells", 0x2);
466 qemu_fdt_setprop(ms
->fdt
, nodename
, "ranges", NULL
, 0);
467 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
468 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
470 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible",
473 qemu_fdt_setprop_cell(ms
->fdt
, nodename
,
474 "#redistributor-regions", nb_redist_regions
);
476 if (nb_redist_regions
== 1) {
477 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
478 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
479 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
480 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
481 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
483 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
484 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
485 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
486 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
487 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
488 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
489 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
493 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "interrupts",
494 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
495 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
498 /* 'cortex-a15-gic' means 'GIC v2' */
499 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible",
500 "arm,cortex-a15-gic");
502 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
503 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
504 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
505 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
506 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
508 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
509 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
510 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
511 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
512 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
513 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
514 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
515 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
516 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
517 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "interrupts",
518 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
519 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
523 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
527 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
529 ARMCPU
*armcpu
= ARM_CPU(first_cpu
);
530 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
531 MachineState
*ms
= MACHINE(vms
);
533 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
534 assert(!object_property_get_bool(OBJECT(armcpu
), "pmu", NULL
));
538 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
539 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
540 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
541 (1 << MACHINE(vms
)->smp
.cpus
) - 1);
544 qemu_fdt_add_subnode(ms
->fdt
, "/pmu");
545 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
546 const char compat
[] = "arm,armv8-pmuv3";
547 qemu_fdt_setprop(ms
->fdt
, "/pmu", "compatible",
548 compat
, sizeof(compat
));
549 qemu_fdt_setprop_cells(ms
->fdt
, "/pmu", "interrupts",
550 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
554 static inline DeviceState
*create_acpi_ged(VirtMachineState
*vms
)
557 MachineState
*ms
= MACHINE(vms
);
558 int irq
= vms
->irqmap
[VIRT_ACPI_GED
];
559 uint32_t event
= ACPI_GED_PWR_DOWN_EVT
;
562 event
|= ACPI_GED_MEM_HOTPLUG_EVT
;
565 if (ms
->nvdimms_state
->is_enabled
) {
566 event
|= ACPI_GED_NVDIMM_HOTPLUG_EVT
;
569 dev
= qdev_new(TYPE_ACPI_GED
);
570 qdev_prop_set_uint32(dev
, "ged-event", event
);
572 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_ACPI_GED
].base
);
573 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 1, vms
->memmap
[VIRT_PCDIMM_ACPI
].base
);
574 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), 0, qdev_get_gpio_in(vms
->gic
, irq
));
576 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
581 static void create_its(VirtMachineState
*vms
)
583 const char *itsclass
= its_class_name();
587 /* Do nothing if not supported */
591 dev
= qdev_new(itsclass
);
593 object_property_set_link(OBJECT(dev
), "parent-gicv3", OBJECT(vms
->gic
),
595 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
596 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
598 fdt_add_its_gic_node(vms
);
599 vms
->msi_controller
= VIRT_MSI_CTRL_ITS
;
602 static void create_v2m(VirtMachineState
*vms
)
605 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
608 dev
= qdev_new("arm-gicv2m");
609 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
610 qdev_prop_set_uint32(dev
, "base-spi", irq
);
611 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
612 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
614 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
615 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
616 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
619 fdt_add_v2m_gic_node(vms
);
620 vms
->msi_controller
= VIRT_MSI_CTRL_GICV2M
;
623 static void create_gic(VirtMachineState
*vms
)
625 MachineState
*ms
= MACHINE(vms
);
626 /* We create a standalone GIC */
627 SysBusDevice
*gicbusdev
;
629 int type
= vms
->gic_version
, i
;
630 unsigned int smp_cpus
= ms
->smp
.cpus
;
631 uint32_t nb_redist_regions
= 0;
633 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
635 vms
->gic
= qdev_new(gictype
);
636 qdev_prop_set_uint32(vms
->gic
, "revision", type
);
637 qdev_prop_set_uint32(vms
->gic
, "num-cpu", smp_cpus
);
638 /* Note that the num-irq property counts both internal and external
639 * interrupts; there are always 32 of the former (mandated by GIC spec).
641 qdev_prop_set_uint32(vms
->gic
, "num-irq", NUM_IRQS
+ 32);
642 if (!kvm_irqchip_in_kernel()) {
643 qdev_prop_set_bit(vms
->gic
, "has-security-extensions", vms
->secure
);
647 uint32_t redist0_capacity
=
648 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
649 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
651 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
653 qdev_prop_set_uint32(vms
->gic
, "len-redist-region-count",
655 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[0]", redist0_count
);
657 if (nb_redist_regions
== 2) {
658 uint32_t redist1_capacity
=
659 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
661 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[1]",
662 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
665 if (!kvm_irqchip_in_kernel()) {
666 qdev_prop_set_bit(vms
->gic
, "has-virtualization-extensions",
670 gicbusdev
= SYS_BUS_DEVICE(vms
->gic
);
671 sysbus_realize_and_unref(gicbusdev
, &error_fatal
);
672 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
674 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
675 if (nb_redist_regions
== 2) {
676 sysbus_mmio_map(gicbusdev
, 2,
677 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
680 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
682 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
683 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
687 /* Wire the outputs from each CPU's generic timer and the GICv3
688 * maintenance interrupt signal to the appropriate GIC PPI inputs,
689 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
691 for (i
= 0; i
< smp_cpus
; i
++) {
692 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
693 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
695 /* Mapping from the output timer irq lines from the CPU to the
696 * GIC PPI inputs we use for the virt board.
698 const int timer_irq
[] = {
699 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
700 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
701 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
702 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
705 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
706 qdev_connect_gpio_out(cpudev
, irq
,
707 qdev_get_gpio_in(vms
->gic
,
708 ppibase
+ timer_irq
[irq
]));
712 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
713 ppibase
+ ARCH_GIC_MAINT_IRQ
);
714 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
716 } else if (vms
->virt
) {
717 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
718 ppibase
+ ARCH_GIC_MAINT_IRQ
);
719 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
722 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
723 qdev_get_gpio_in(vms
->gic
, ppibase
726 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
727 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
728 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
729 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
730 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
731 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
732 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
735 fdt_add_gic_node(vms
);
737 if (type
== 3 && vms
->its
) {
739 } else if (type
== 2) {
744 static void create_uart(const VirtMachineState
*vms
, int uart
,
745 MemoryRegion
*mem
, Chardev
*chr
)
748 hwaddr base
= vms
->memmap
[uart
].base
;
749 hwaddr size
= vms
->memmap
[uart
].size
;
750 int irq
= vms
->irqmap
[uart
];
751 const char compat
[] = "arm,pl011\0arm,primecell";
752 const char clocknames
[] = "uartclk\0apb_pclk";
753 DeviceState
*dev
= qdev_new(TYPE_PL011
);
754 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
755 MachineState
*ms
= MACHINE(vms
);
757 qdev_prop_set_chr(dev
, "chardev", chr
);
758 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
759 memory_region_add_subregion(mem
, base
,
760 sysbus_mmio_get_region(s
, 0));
761 sysbus_connect_irq(s
, 0, qdev_get_gpio_in(vms
->gic
, irq
));
763 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
764 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
765 /* Note that we can't use setprop_string because of the embedded NUL */
766 qemu_fdt_setprop(ms
->fdt
, nodename
, "compatible",
767 compat
, sizeof(compat
));
768 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
770 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "interrupts",
771 GIC_FDT_IRQ_TYPE_SPI
, irq
,
772 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
773 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "clocks",
774 vms
->clock_phandle
, vms
->clock_phandle
);
775 qemu_fdt_setprop(ms
->fdt
, nodename
, "clock-names",
776 clocknames
, sizeof(clocknames
));
778 if (uart
== VIRT_UART
) {
779 qemu_fdt_setprop_string(ms
->fdt
, "/chosen", "stdout-path", nodename
);
781 /* Mark as not usable by the normal world */
782 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "status", "disabled");
783 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "secure-status", "okay");
785 qemu_fdt_setprop_string(ms
->fdt
, "/secure-chosen", "stdout-path",
792 static void create_rtc(const VirtMachineState
*vms
)
795 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
796 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
797 int irq
= vms
->irqmap
[VIRT_RTC
];
798 const char compat
[] = "arm,pl031\0arm,primecell";
799 MachineState
*ms
= MACHINE(vms
);
801 sysbus_create_simple("pl031", base
, qdev_get_gpio_in(vms
->gic
, irq
));
803 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
804 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
805 qemu_fdt_setprop(ms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
806 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
808 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "interrupts",
809 GIC_FDT_IRQ_TYPE_SPI
, irq
,
810 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
811 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
812 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "clock-names", "apb_pclk");
816 static DeviceState
*gpio_key_dev
;
817 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
819 VirtMachineState
*s
= container_of(n
, VirtMachineState
, powerdown_notifier
);
822 acpi_send_event(s
->acpi_dev
, ACPI_POWER_DOWN_STATUS
);
824 /* use gpio Pin 3 for power button event */
825 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
829 static void create_gpio_keys(char *fdt
, DeviceState
*pl061_dev
,
832 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
833 qdev_get_gpio_in(pl061_dev
, 3));
835 qemu_fdt_add_subnode(fdt
, "/gpio-keys");
836 qemu_fdt_setprop_string(fdt
, "/gpio-keys", "compatible", "gpio-keys");
837 qemu_fdt_setprop_cell(fdt
, "/gpio-keys", "#size-cells", 0);
838 qemu_fdt_setprop_cell(fdt
, "/gpio-keys", "#address-cells", 1);
840 qemu_fdt_add_subnode(fdt
, "/gpio-keys/poweroff");
841 qemu_fdt_setprop_string(fdt
, "/gpio-keys/poweroff",
842 "label", "GPIO Key Poweroff");
843 qemu_fdt_setprop_cell(fdt
, "/gpio-keys/poweroff", "linux,code",
845 qemu_fdt_setprop_cells(fdt
, "/gpio-keys/poweroff",
846 "gpios", phandle
, 3, 0);
849 #define SECURE_GPIO_POWEROFF 0
850 #define SECURE_GPIO_RESET 1
852 static void create_secure_gpio_pwr(char *fdt
, DeviceState
*pl061_dev
,
855 DeviceState
*gpio_pwr_dev
;
858 gpio_pwr_dev
= sysbus_create_simple("gpio-pwr", -1, NULL
);
860 /* connect secure pl061 to gpio-pwr */
861 qdev_connect_gpio_out(pl061_dev
, SECURE_GPIO_RESET
,
862 qdev_get_gpio_in_named(gpio_pwr_dev
, "reset", 0));
863 qdev_connect_gpio_out(pl061_dev
, SECURE_GPIO_POWEROFF
,
864 qdev_get_gpio_in_named(gpio_pwr_dev
, "shutdown", 0));
866 qemu_fdt_add_subnode(fdt
, "/gpio-poweroff");
867 qemu_fdt_setprop_string(fdt
, "/gpio-poweroff", "compatible",
869 qemu_fdt_setprop_cells(fdt
, "/gpio-poweroff",
870 "gpios", phandle
, SECURE_GPIO_POWEROFF
, 0);
871 qemu_fdt_setprop_string(fdt
, "/gpio-poweroff", "status", "disabled");
872 qemu_fdt_setprop_string(fdt
, "/gpio-poweroff", "secure-status",
875 qemu_fdt_add_subnode(fdt
, "/gpio-restart");
876 qemu_fdt_setprop_string(fdt
, "/gpio-restart", "compatible",
878 qemu_fdt_setprop_cells(fdt
, "/gpio-restart",
879 "gpios", phandle
, SECURE_GPIO_RESET
, 0);
880 qemu_fdt_setprop_string(fdt
, "/gpio-restart", "status", "disabled");
881 qemu_fdt_setprop_string(fdt
, "/gpio-restart", "secure-status",
885 static void create_gpio_devices(const VirtMachineState
*vms
, int gpio
,
889 DeviceState
*pl061_dev
;
890 hwaddr base
= vms
->memmap
[gpio
].base
;
891 hwaddr size
= vms
->memmap
[gpio
].size
;
892 int irq
= vms
->irqmap
[gpio
];
893 const char compat
[] = "arm,pl061\0arm,primecell";
895 MachineState
*ms
= MACHINE(vms
);
897 pl061_dev
= qdev_new("pl061");
898 /* Pull lines down to 0 if not driven by the PL061 */
899 qdev_prop_set_uint32(pl061_dev
, "pullups", 0);
900 qdev_prop_set_uint32(pl061_dev
, "pulldowns", 0xff);
901 s
= SYS_BUS_DEVICE(pl061_dev
);
902 sysbus_realize_and_unref(s
, &error_fatal
);
903 memory_region_add_subregion(mem
, base
, sysbus_mmio_get_region(s
, 0));
904 sysbus_connect_irq(s
, 0, qdev_get_gpio_in(vms
->gic
, irq
));
906 uint32_t phandle
= qemu_fdt_alloc_phandle(ms
->fdt
);
907 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
908 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
909 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
911 qemu_fdt_setprop(ms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
912 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "#gpio-cells", 2);
913 qemu_fdt_setprop(ms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
914 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "interrupts",
915 GIC_FDT_IRQ_TYPE_SPI
, irq
,
916 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
917 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
918 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "clock-names", "apb_pclk");
919 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "phandle", phandle
);
921 if (gpio
!= VIRT_GPIO
) {
922 /* Mark as not usable by the normal world */
923 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "status", "disabled");
924 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "secure-status", "okay");
928 /* Child gpio devices */
929 if (gpio
== VIRT_GPIO
) {
930 create_gpio_keys(ms
->fdt
, pl061_dev
, phandle
);
932 create_secure_gpio_pwr(ms
->fdt
, pl061_dev
, phandle
);
936 static void create_virtio_devices(const VirtMachineState
*vms
)
939 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
940 MachineState
*ms
= MACHINE(vms
);
942 /* We create the transports in forwards order. Since qbus_realize()
943 * prepends (not appends) new child buses, the incrementing loop below will
944 * create a list of virtio-mmio buses with decreasing base addresses.
946 * When a -device option is processed from the command line,
947 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
948 * order. The upshot is that -device options in increasing command line
949 * order are mapped to virtio-mmio buses with decreasing base addresses.
951 * When this code was originally written, that arrangement ensured that the
952 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
953 * the first -device on the command line. (The end-to-end order is a
954 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
955 * guest kernel's name-to-address assignment strategy.)
957 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
958 * the message, if not necessarily the code, of commit 70161ff336.
959 * Therefore the loop now establishes the inverse of the original intent.
961 * Unfortunately, we can't counteract the kernel change by reversing the
962 * loop; it would break existing command lines.
964 * In any case, the kernel makes no guarantee about the stability of
965 * enumeration order of virtio devices (as demonstrated by it changing
966 * between kernel versions). For reliable and stable identification
967 * of disks users must use UUIDs or similar mechanisms.
969 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
970 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
971 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
973 sysbus_create_simple("virtio-mmio", base
,
974 qdev_get_gpio_in(vms
->gic
, irq
));
977 /* We add dtb nodes in reverse order so that they appear in the finished
978 * device tree lowest address first.
980 * Note that this mapping is independent of the loop above. The previous
981 * loop influences virtio device to virtio transport assignment, whereas
982 * this loop controls how virtio transports are laid out in the dtb.
984 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
986 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
987 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
989 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
990 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
991 qemu_fdt_setprop_string(ms
->fdt
, nodename
,
992 "compatible", "virtio,mmio");
993 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
995 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "interrupts",
996 GIC_FDT_IRQ_TYPE_SPI
, irq
,
997 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
998 qemu_fdt_setprop(ms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1003 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1005 static PFlashCFI01
*virt_flash_create1(VirtMachineState
*vms
,
1007 const char *alias_prop_name
)
1010 * Create a single flash device. We use the same parameters as
1011 * the flash devices on the Versatile Express board.
1013 DeviceState
*dev
= qdev_new(TYPE_PFLASH_CFI01
);
1015 qdev_prop_set_uint64(dev
, "sector-length", VIRT_FLASH_SECTOR_SIZE
);
1016 qdev_prop_set_uint8(dev
, "width", 4);
1017 qdev_prop_set_uint8(dev
, "device-width", 2);
1018 qdev_prop_set_bit(dev
, "big-endian", false);
1019 qdev_prop_set_uint16(dev
, "id0", 0x89);
1020 qdev_prop_set_uint16(dev
, "id1", 0x18);
1021 qdev_prop_set_uint16(dev
, "id2", 0x00);
1022 qdev_prop_set_uint16(dev
, "id3", 0x00);
1023 qdev_prop_set_string(dev
, "name", name
);
1024 object_property_add_child(OBJECT(vms
), name
, OBJECT(dev
));
1025 object_property_add_alias(OBJECT(vms
), alias_prop_name
,
1026 OBJECT(dev
), "drive");
1027 return PFLASH_CFI01(dev
);
1030 static void virt_flash_create(VirtMachineState
*vms
)
1032 vms
->flash
[0] = virt_flash_create1(vms
, "virt.flash0", "pflash0");
1033 vms
->flash
[1] = virt_flash_create1(vms
, "virt.flash1", "pflash1");
1036 static void virt_flash_map1(PFlashCFI01
*flash
,
1037 hwaddr base
, hwaddr size
,
1038 MemoryRegion
*sysmem
)
1040 DeviceState
*dev
= DEVICE(flash
);
1042 assert(QEMU_IS_ALIGNED(size
, VIRT_FLASH_SECTOR_SIZE
));
1043 assert(size
/ VIRT_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
1044 qdev_prop_set_uint32(dev
, "num-blocks", size
/ VIRT_FLASH_SECTOR_SIZE
);
1045 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1047 memory_region_add_subregion(sysmem
, base
,
1048 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
1052 static void virt_flash_map(VirtMachineState
*vms
,
1053 MemoryRegion
*sysmem
,
1054 MemoryRegion
*secure_sysmem
)
1057 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1058 * sysmem is the system memory space. secure_sysmem is the secure view
1059 * of the system, and the first flash device should be made visible only
1060 * there. The second flash device is visible to both secure and nonsecure.
1061 * If sysmem == secure_sysmem this means there is no separate Secure
1062 * address space and both flash devices are generally visible.
1064 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
1065 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
1067 virt_flash_map1(vms
->flash
[0], flashbase
, flashsize
,
1069 virt_flash_map1(vms
->flash
[1], flashbase
+ flashsize
, flashsize
,
1073 static void virt_flash_fdt(VirtMachineState
*vms
,
1074 MemoryRegion
*sysmem
,
1075 MemoryRegion
*secure_sysmem
)
1077 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
1078 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
1079 MachineState
*ms
= MACHINE(vms
);
1082 if (sysmem
== secure_sysmem
) {
1083 /* Report both flash devices as a single node in the DT */
1084 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1085 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
1086 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible", "cfi-flash");
1087 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
1088 2, flashbase
, 2, flashsize
,
1089 2, flashbase
+ flashsize
, 2, flashsize
);
1090 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "bank-width", 4);
1094 * Report the devices as separate nodes so we can mark one as
1095 * only visible to the secure world.
1097 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
1098 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
1099 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible", "cfi-flash");
1100 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
1101 2, flashbase
, 2, flashsize
);
1102 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "bank-width", 4);
1103 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "status", "disabled");
1104 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "secure-status", "okay");
1107 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1108 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
1109 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "compatible", "cfi-flash");
1110 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
1111 2, flashbase
+ flashsize
, 2, flashsize
);
1112 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "bank-width", 4);
1117 static bool virt_firmware_init(VirtMachineState
*vms
,
1118 MemoryRegion
*sysmem
,
1119 MemoryRegion
*secure_sysmem
)
1122 const char *bios_name
;
1123 BlockBackend
*pflash_blk0
;
1125 /* Map legacy -drive if=pflash to machine properties */
1126 for (i
= 0; i
< ARRAY_SIZE(vms
->flash
); i
++) {
1127 pflash_cfi01_legacy_drive(vms
->flash
[i
],
1128 drive_get(IF_PFLASH
, 0, i
));
1131 virt_flash_map(vms
, sysmem
, secure_sysmem
);
1133 pflash_blk0
= pflash_cfi01_get_blk(vms
->flash
[0]);
1135 bios_name
= MACHINE(vms
)->firmware
;
1142 error_report("The contents of the first flash device may be "
1143 "specified with -bios or with -drive if=pflash... "
1144 "but you cannot use both options at once");
1148 /* Fall back to -bios */
1150 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1152 error_report("Could not find ROM image '%s'", bios_name
);
1155 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(vms
->flash
[0]), 0);
1156 image_size
= load_image_mr(fname
, mr
);
1158 if (image_size
< 0) {
1159 error_report("Could not load ROM image '%s'", bios_name
);
1164 return pflash_blk0
|| bios_name
;
1167 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1169 MachineState
*ms
= MACHINE(vms
);
1170 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1171 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1175 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1176 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)ms
->smp
.cpus
);
1178 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1179 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
1180 qemu_fdt_setprop_string(ms
->fdt
, nodename
,
1181 "compatible", "qemu,fw-cfg-mmio");
1182 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
1184 qemu_fdt_setprop(ms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1189 static void create_pcie_irq_map(const MachineState
*ms
,
1190 uint32_t gic_phandle
,
1191 int first_irq
, const char *nodename
)
1194 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1195 uint32_t *irq_map
= full_irq_map
;
1197 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1198 for (pin
= 0; pin
< 4; pin
++) {
1199 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1200 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1201 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1205 devfn
<< 8, 0, 0, /* devfn */
1206 pin
+ 1, /* PCI pin */
1207 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1209 /* Convert map to big endian */
1210 for (i
= 0; i
< 10; i
++) {
1211 irq_map
[i
] = cpu_to_be32(map
[i
]);
1217 qemu_fdt_setprop(ms
->fdt
, nodename
, "interrupt-map",
1218 full_irq_map
, sizeof(full_irq_map
));
1220 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "interrupt-map-mask",
1221 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1226 static void create_smmu(const VirtMachineState
*vms
,
1230 const char compat
[] = "arm,smmu-v3";
1231 int irq
= vms
->irqmap
[VIRT_SMMU
];
1233 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1234 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1235 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1237 MachineState
*ms
= MACHINE(vms
);
1239 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1243 dev
= qdev_new("arm-smmuv3");
1245 object_property_set_link(OBJECT(dev
), "primary-bus", OBJECT(bus
),
1247 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1248 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1249 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1250 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1251 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1254 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1255 qemu_fdt_add_subnode(ms
->fdt
, node
);
1256 qemu_fdt_setprop(ms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1257 qemu_fdt_setprop_sized_cells(ms
->fdt
, node
, "reg", 2, base
, 2, size
);
1259 qemu_fdt_setprop_cells(ms
->fdt
, node
, "interrupts",
1260 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1261 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1262 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1263 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1265 qemu_fdt_setprop(ms
->fdt
, node
, "interrupt-names", irq_names
,
1268 qemu_fdt_setprop_cell(ms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1269 qemu_fdt_setprop_string(ms
->fdt
, node
, "clock-names", "apb_pclk");
1270 qemu_fdt_setprop(ms
->fdt
, node
, "dma-coherent", NULL
, 0);
1272 qemu_fdt_setprop_cell(ms
->fdt
, node
, "#iommu-cells", 1);
1274 qemu_fdt_setprop_cell(ms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1278 static void create_virtio_iommu_dt_bindings(VirtMachineState
*vms
)
1280 const char compat
[] = "virtio,pci-iommu";
1281 uint16_t bdf
= vms
->virtio_iommu_bdf
;
1282 MachineState
*ms
= MACHINE(vms
);
1285 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(ms
->fdt
);
1287 node
= g_strdup_printf("%s/virtio_iommu@%d", vms
->pciehb_nodename
, bdf
);
1288 qemu_fdt_add_subnode(ms
->fdt
, node
);
1289 qemu_fdt_setprop(ms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1290 qemu_fdt_setprop_sized_cells(ms
->fdt
, node
, "reg",
1291 1, bdf
<< 8, 1, 0, 1, 0,
1294 qemu_fdt_setprop_cell(ms
->fdt
, node
, "#iommu-cells", 1);
1295 qemu_fdt_setprop_cell(ms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1298 qemu_fdt_setprop_cells(ms
->fdt
, vms
->pciehb_nodename
, "iommu-map",
1299 0x0, vms
->iommu_phandle
, 0x0, bdf
,
1300 bdf
+ 1, vms
->iommu_phandle
, bdf
+ 1, 0xffff - bdf
);
1303 static void create_pcie(VirtMachineState
*vms
)
1305 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1306 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1307 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1308 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1309 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1310 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1311 hwaddr base_ecam
, size_ecam
;
1312 hwaddr base
= base_mmio
;
1314 int irq
= vms
->irqmap
[VIRT_PCIE
];
1315 MemoryRegion
*mmio_alias
;
1316 MemoryRegion
*mmio_reg
;
1317 MemoryRegion
*ecam_alias
;
1318 MemoryRegion
*ecam_reg
;
1323 MachineState
*ms
= MACHINE(vms
);
1325 dev
= qdev_new(TYPE_GPEX_HOST
);
1326 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1328 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1329 base_ecam
= vms
->memmap
[ecam_id
].base
;
1330 size_ecam
= vms
->memmap
[ecam_id
].size
;
1331 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1332 /* Map only the first size_ecam bytes of ECAM space */
1333 ecam_alias
= g_new0(MemoryRegion
, 1);
1334 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1335 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1336 ecam_reg
, 0, size_ecam
);
1337 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1339 /* Map the MMIO window into system address space so as to expose
1340 * the section of PCI MMIO space which starts at the same base address
1341 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1344 mmio_alias
= g_new0(MemoryRegion
, 1);
1345 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1346 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1347 mmio_reg
, base_mmio
, size_mmio
);
1348 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1351 /* Map high MMIO space */
1352 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1354 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1355 mmio_reg
, base_mmio_high
, size_mmio_high
);
1356 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1360 /* Map IO port space */
1361 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1363 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1364 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1365 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1366 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1369 pci
= PCI_HOST_BRIDGE(dev
);
1370 pci
->bypass_iommu
= vms
->default_bus_bypass_iommu
;
1371 vms
->bus
= pci
->bus
;
1373 for (i
= 0; i
< nb_nics
; i
++) {
1374 NICInfo
*nd
= &nd_table
[i
];
1377 nd
->model
= g_strdup("virtio");
1380 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1384 nodename
= vms
->pciehb_nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1385 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
1386 qemu_fdt_setprop_string(ms
->fdt
, nodename
,
1387 "compatible", "pci-host-ecam-generic");
1388 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "device_type", "pci");
1389 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "#address-cells", 3);
1390 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "#size-cells", 2);
1391 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "linux,pci-domain", 0);
1392 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "bus-range", 0,
1394 qemu_fdt_setprop(ms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1396 if (vms
->msi_phandle
) {
1397 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "msi-parent",
1401 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg",
1402 2, base_ecam
, 2, size_ecam
);
1405 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "ranges",
1406 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1407 2, base_pio
, 2, size_pio
,
1408 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1409 2, base_mmio
, 2, size_mmio
,
1410 1, FDT_PCI_RANGE_MMIO_64BIT
,
1412 2, base_mmio_high
, 2, size_mmio_high
);
1414 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "ranges",
1415 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1416 2, base_pio
, 2, size_pio
,
1417 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1418 2, base_mmio
, 2, size_mmio
);
1421 qemu_fdt_setprop_cell(ms
->fdt
, nodename
, "#interrupt-cells", 1);
1422 create_pcie_irq_map(ms
, vms
->gic_phandle
, irq
, nodename
);
1425 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(ms
->fdt
);
1427 switch (vms
->iommu
) {
1428 case VIRT_IOMMU_SMMUV3
:
1429 create_smmu(vms
, vms
->bus
);
1430 qemu_fdt_setprop_cells(ms
->fdt
, nodename
, "iommu-map",
1431 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1434 g_assert_not_reached();
1439 static void create_platform_bus(VirtMachineState
*vms
)
1444 MemoryRegion
*sysmem
= get_system_memory();
1446 dev
= qdev_new(TYPE_PLATFORM_BUS_DEVICE
);
1447 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1448 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1449 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1450 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1451 vms
->platform_bus_dev
= dev
;
1453 s
= SYS_BUS_DEVICE(dev
);
1454 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1455 int irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1456 sysbus_connect_irq(s
, i
, qdev_get_gpio_in(vms
->gic
, irq
));
1459 memory_region_add_subregion(sysmem
,
1460 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1461 sysbus_mmio_get_region(s
, 0));
1464 static void create_tag_ram(MemoryRegion
*tag_sysmem
,
1465 hwaddr base
, hwaddr size
,
1468 MemoryRegion
*tagram
= g_new(MemoryRegion
, 1);
1470 memory_region_init_ram(tagram
, NULL
, name
, size
/ 32, &error_fatal
);
1471 memory_region_add_subregion(tag_sysmem
, base
/ 32, tagram
);
1474 static void create_secure_ram(VirtMachineState
*vms
,
1475 MemoryRegion
*secure_sysmem
,
1476 MemoryRegion
*secure_tag_sysmem
)
1478 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1480 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1481 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1482 MachineState
*ms
= MACHINE(vms
);
1484 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1486 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1488 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1489 qemu_fdt_add_subnode(ms
->fdt
, nodename
);
1490 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "device_type", "memory");
1491 qemu_fdt_setprop_sized_cells(ms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1492 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "status", "disabled");
1493 qemu_fdt_setprop_string(ms
->fdt
, nodename
, "secure-status", "okay");
1495 if (secure_tag_sysmem
) {
1496 create_tag_ram(secure_tag_sysmem
, base
, size
, "mach-virt.secure-tag");
1502 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1504 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1506 MachineState
*ms
= MACHINE(board
);
1509 *fdt_size
= board
->fdt_size
;
1513 static void virt_build_smbios(VirtMachineState
*vms
)
1515 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1516 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1517 uint8_t *smbios_tables
, *smbios_anchor
;
1518 size_t smbios_tables_len
, smbios_anchor_len
;
1519 const char *product
= "QEMU Virtual Machine";
1521 if (kvm_enabled()) {
1522 product
= "KVM Virtual Machine";
1525 smbios_set_defaults("QEMU", product
,
1526 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1527 true, SMBIOS_ENTRY_POINT_30
);
1529 smbios_get_tables(MACHINE(vms
), NULL
, 0,
1530 &smbios_tables
, &smbios_tables_len
,
1531 &smbios_anchor
, &smbios_anchor_len
,
1534 if (smbios_anchor
) {
1535 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1536 smbios_tables
, smbios_tables_len
);
1537 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1538 smbios_anchor
, smbios_anchor_len
);
1543 void virt_machine_done(Notifier
*notifier
, void *data
)
1545 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1547 MachineState
*ms
= MACHINE(vms
);
1548 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1549 struct arm_boot_info
*info
= &vms
->bootinfo
;
1550 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1553 * If the user provided a dtb, we assume the dynamic sysbus nodes
1554 * already are integrated there. This corresponds to a use case where
1555 * the dynamic sysbus nodes are complex and their generation is not yet
1556 * supported. In that case the user can take charge of the guest dt
1557 * while qemu takes charge of the qom stuff.
1559 if (info
->dtb_filename
== NULL
) {
1560 platform_bus_add_all_fdt_nodes(ms
->fdt
, "/intc",
1561 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1562 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1563 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1565 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1569 fw_cfg_add_extra_pci_roots(vms
->bus
, vms
->fw_cfg
);
1571 virt_acpi_setup(vms
);
1572 virt_build_smbios(vms
);
1575 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1577 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1578 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1580 if (!vmc
->disallow_affinity_adjustment
) {
1581 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1582 * GIC's target-list limitations. 32-bit KVM hosts currently
1583 * always create clusters of 4 CPUs, but that is expected to
1584 * change when they gain support for gicv3. When KVM is enabled
1585 * it will override the changes we make here, therefore our
1586 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1587 * and to improve SGI efficiency.
1589 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1590 clustersz
= GICV3_TARGETLIST_BITS
;
1592 clustersz
= GIC_TARGETLIST_BITS
;
1595 return arm_cpu_mp_affinity(idx
, clustersz
);
1598 static void virt_set_memmap(VirtMachineState
*vms
)
1600 MachineState
*ms
= MACHINE(vms
);
1601 hwaddr base
, device_memory_base
, device_memory_size
;
1604 vms
->memmap
= extended_memmap
;
1606 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1607 vms
->memmap
[i
] = base_memmap
[i
];
1610 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1611 error_report("unsupported number of memory slots: %"PRIu64
,
1617 * We compute the base of the high IO region depending on the
1618 * amount of initial and device memory. The device memory start/size
1619 * is aligned on 1GiB. We never put the high IO region below 256GiB
1620 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1621 * The device region size assumes 1GiB page max alignment per slot.
1623 device_memory_base
=
1624 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1625 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1627 /* Base address of the high IO region */
1628 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1629 if (base
< device_memory_base
) {
1630 error_report("maxmem/slots too huge");
1633 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1634 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1637 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1638 hwaddr size
= extended_memmap
[i
].size
;
1640 base
= ROUND_UP(base
, size
);
1641 vms
->memmap
[i
].base
= base
;
1642 vms
->memmap
[i
].size
= size
;
1645 vms
->highest_gpa
= base
- 1;
1646 if (device_memory_size
> 0) {
1647 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1648 ms
->device_memory
->base
= device_memory_base
;
1649 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1650 "device-memory", device_memory_size
);
1655 * finalize_gic_version - Determines the final gic_version
1656 * according to the gic-version property
1658 * Default GIC type is v2
1660 static void finalize_gic_version(VirtMachineState
*vms
)
1662 unsigned int max_cpus
= MACHINE(vms
)->smp
.max_cpus
;
1664 if (kvm_enabled()) {
1667 if (!kvm_irqchip_in_kernel()) {
1668 switch (vms
->gic_version
) {
1669 case VIRT_GIC_VERSION_HOST
:
1671 "gic-version=host not relevant with kernel-irqchip=off "
1672 "as only userspace GICv2 is supported. Using v2 ...");
1674 case VIRT_GIC_VERSION_MAX
:
1675 case VIRT_GIC_VERSION_NOSEL
:
1676 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1678 case VIRT_GIC_VERSION_2
:
1680 case VIRT_GIC_VERSION_3
:
1682 "gic-version=3 is not supported with kernel-irqchip=off");
1687 probe_bitmap
= kvm_arm_vgic_probe();
1688 if (!probe_bitmap
) {
1689 error_report("Unable to determine GIC version supported by host");
1693 switch (vms
->gic_version
) {
1694 case VIRT_GIC_VERSION_HOST
:
1695 case VIRT_GIC_VERSION_MAX
:
1696 if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1697 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1699 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1702 case VIRT_GIC_VERSION_NOSEL
:
1703 if ((probe_bitmap
& KVM_ARM_VGIC_V2
) && max_cpus
<= GIC_NCPU
) {
1704 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1705 } else if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1707 * in case the host does not support v2 in-kernel emulation or
1708 * the end-user requested more than 8 VCPUs we now default
1709 * to v3. In any case defaulting to v2 would be broken.
1711 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1712 } else if (max_cpus
> GIC_NCPU
) {
1713 error_report("host only supports in-kernel GICv2 emulation "
1714 "but more than 8 vcpus are requested");
1718 case VIRT_GIC_VERSION_2
:
1719 case VIRT_GIC_VERSION_3
:
1723 /* Check chosen version is effectively supported by the host */
1724 if (vms
->gic_version
== VIRT_GIC_VERSION_2
&&
1725 !(probe_bitmap
& KVM_ARM_VGIC_V2
)) {
1726 error_report("host does not support in-kernel GICv2 emulation");
1728 } else if (vms
->gic_version
== VIRT_GIC_VERSION_3
&&
1729 !(probe_bitmap
& KVM_ARM_VGIC_V3
)) {
1730 error_report("host does not support in-kernel GICv3 emulation");
1737 switch (vms
->gic_version
) {
1738 case VIRT_GIC_VERSION_NOSEL
:
1739 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1741 case VIRT_GIC_VERSION_MAX
:
1742 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1744 case VIRT_GIC_VERSION_HOST
:
1745 error_report("gic-version=host requires KVM");
1747 case VIRT_GIC_VERSION_2
:
1748 case VIRT_GIC_VERSION_3
:
1754 * virt_cpu_post_init() must be called after the CPUs have
1755 * been realized and the GIC has been created.
1757 static void virt_cpu_post_init(VirtMachineState
*vms
, MemoryRegion
*sysmem
)
1759 int max_cpus
= MACHINE(vms
)->smp
.max_cpus
;
1760 bool aarch64
, pmu
, steal_time
;
1763 aarch64
= object_property_get_bool(OBJECT(first_cpu
), "aarch64", NULL
);
1764 pmu
= object_property_get_bool(OBJECT(first_cpu
), "pmu", NULL
);
1765 steal_time
= object_property_get_bool(OBJECT(first_cpu
),
1766 "kvm-steal-time", NULL
);
1768 if (kvm_enabled()) {
1769 hwaddr pvtime_reg_base
= vms
->memmap
[VIRT_PVTIME
].base
;
1770 hwaddr pvtime_reg_size
= vms
->memmap
[VIRT_PVTIME
].size
;
1773 MemoryRegion
*pvtime
= g_new(MemoryRegion
, 1);
1774 hwaddr pvtime_size
= max_cpus
* PVTIME_SIZE_PER_CPU
;
1776 /* The memory region size must be a multiple of host page size. */
1777 pvtime_size
= REAL_HOST_PAGE_ALIGN(pvtime_size
);
1779 if (pvtime_size
> pvtime_reg_size
) {
1780 error_report("pvtime requires a %" HWADDR_PRId
1781 " byte memory region for %d CPUs,"
1782 " but only %" HWADDR_PRId
" has been reserved",
1783 pvtime_size
, max_cpus
, pvtime_reg_size
);
1787 memory_region_init_ram(pvtime
, NULL
, "pvtime", pvtime_size
, NULL
);
1788 memory_region_add_subregion(sysmem
, pvtime_reg_base
, pvtime
);
1793 assert(arm_feature(&ARM_CPU(cpu
)->env
, ARM_FEATURE_PMU
));
1794 if (kvm_irqchip_in_kernel()) {
1795 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
1797 kvm_arm_pmu_init(cpu
);
1800 kvm_arm_pvtime_init(cpu
, pvtime_reg_base
+
1801 cpu
->cpu_index
* PVTIME_SIZE_PER_CPU
);
1805 if (aarch64
&& vms
->highmem
) {
1806 int requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1807 int pamax
= arm_pamax(ARM_CPU(first_cpu
));
1809 if (pamax
< requested_pa_size
) {
1810 error_report("VCPU supports less PA bits (%d) than "
1811 "requested by the memory map (%d)",
1812 pamax
, requested_pa_size
);
1819 static void machvirt_init(MachineState
*machine
)
1821 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1822 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1823 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1824 const CPUArchIdList
*possible_cpus
;
1825 MemoryRegion
*sysmem
= get_system_memory();
1826 MemoryRegion
*secure_sysmem
= NULL
;
1827 MemoryRegion
*tag_sysmem
= NULL
;
1828 MemoryRegion
*secure_tag_sysmem
= NULL
;
1829 int n
, virt_max_cpus
;
1830 bool firmware_loaded
;
1831 bool aarch64
= true;
1832 bool has_ged
= !vmc
->no_ged
;
1833 unsigned int smp_cpus
= machine
->smp
.cpus
;
1834 unsigned int max_cpus
= machine
->smp
.max_cpus
;
1837 * In accelerated mode, the memory map is computed earlier in kvm_type()
1838 * to create a VM with the right number of IPA bits.
1841 virt_set_memmap(vms
);
1844 /* We can probe only here because during property set
1845 * KVM is not available yet
1847 finalize_gic_version(vms
);
1849 if (!cpu_type_valid(machine
->cpu_type
)) {
1850 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1855 if (kvm_enabled()) {
1856 error_report("mach-virt: KVM does not support Security extensions");
1861 * The Secure view of the world is the same as the NonSecure,
1862 * but with a few extra devices. Create it as a container region
1863 * containing the system memory at low priority; any secure-only
1864 * devices go in at higher priority and take precedence.
1866 secure_sysmem
= g_new(MemoryRegion
, 1);
1867 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1869 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1872 firmware_loaded
= virt_firmware_init(vms
, sysmem
,
1873 secure_sysmem
?: sysmem
);
1875 /* If we have an EL3 boot ROM then the assumption is that it will
1876 * implement PSCI itself, so disable QEMU's internal implementation
1877 * so it doesn't get in the way. Instead of starting secondary
1878 * CPUs in PSCI powerdown state we will start them all running and
1879 * let the boot ROM sort them out.
1880 * The usual case is that we do use QEMU's PSCI implementation;
1881 * if the guest has EL2 then we will use SMC as the conduit,
1882 * and otherwise we will use HVC (for backwards compatibility and
1883 * because if we're using KVM then we must use HVC).
1885 if (vms
->secure
&& firmware_loaded
) {
1886 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1887 } else if (vms
->virt
) {
1888 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1890 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1893 /* The maximum number of CPUs depends on the GIC version, or on how
1894 * many redistributors we can fit into the memory map.
1896 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1898 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1900 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1902 virt_max_cpus
= GIC_NCPU
;
1905 if (max_cpus
> virt_max_cpus
) {
1906 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1907 "supported by machine 'mach-virt' (%d)",
1908 max_cpus
, virt_max_cpus
);
1912 if (vms
->virt
&& kvm_enabled()) {
1913 error_report("mach-virt: KVM does not support providing "
1914 "Virtualization extensions to the guest CPU");
1918 if (vms
->mte
&& kvm_enabled()) {
1919 error_report("mach-virt: KVM does not support providing "
1920 "MTE to the guest CPU");
1926 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1927 assert(possible_cpus
->len
== max_cpus
);
1928 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1932 if (n
>= smp_cpus
) {
1936 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1937 object_property_set_int(cpuobj
, "mp-affinity",
1938 possible_cpus
->cpus
[n
].arch_id
, NULL
);
1943 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1946 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1949 object_property_set_bool(cpuobj
, "has_el3", false, NULL
);
1952 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2")) {
1953 object_property_set_bool(cpuobj
, "has_el2", false, NULL
);
1956 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1957 object_property_set_int(cpuobj
, "psci-conduit", vms
->psci_conduit
,
1960 /* Secondary CPUs start in PSCI powered-down state */
1962 object_property_set_bool(cpuobj
, "start-powered-off", true,
1967 if (vmc
->kvm_no_adjvtime
&&
1968 object_property_find(cpuobj
, "kvm-no-adjvtime")) {
1969 object_property_set_bool(cpuobj
, "kvm-no-adjvtime", true, NULL
);
1972 if (vmc
->no_kvm_steal_time
&&
1973 object_property_find(cpuobj
, "kvm-steal-time")) {
1974 object_property_set_bool(cpuobj
, "kvm-steal-time", false, NULL
);
1977 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu")) {
1978 object_property_set_bool(cpuobj
, "pmu", false, NULL
);
1981 if (object_property_find(cpuobj
, "reset-cbar")) {
1982 object_property_set_int(cpuobj
, "reset-cbar",
1983 vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1987 object_property_set_link(cpuobj
, "memory", OBJECT(sysmem
),
1990 object_property_set_link(cpuobj
, "secure-memory",
1991 OBJECT(secure_sysmem
), &error_abort
);
1995 /* Create the memory region only once, but link to all cpus. */
1998 * The property exists only if MemTag is supported.
1999 * If it is, we must allocate the ram to back that up.
2001 if (!object_property_find(cpuobj
, "tag-memory")) {
2002 error_report("MTE requested, but not supported "
2003 "by the guest CPU");
2007 tag_sysmem
= g_new(MemoryRegion
, 1);
2008 memory_region_init(tag_sysmem
, OBJECT(machine
),
2009 "tag-memory", UINT64_MAX
/ 32);
2012 secure_tag_sysmem
= g_new(MemoryRegion
, 1);
2013 memory_region_init(secure_tag_sysmem
, OBJECT(machine
),
2014 "secure-tag-memory", UINT64_MAX
/ 32);
2016 /* As with ram, secure-tag takes precedence over tag. */
2017 memory_region_add_subregion_overlap(secure_tag_sysmem
, 0,
2022 object_property_set_link(cpuobj
, "tag-memory", OBJECT(tag_sysmem
),
2025 object_property_set_link(cpuobj
, "secure-tag-memory",
2026 OBJECT(secure_tag_sysmem
),
2031 qdev_realize(DEVICE(cpuobj
), NULL
, &error_fatal
);
2032 object_unref(cpuobj
);
2034 fdt_add_timer_nodes(vms
);
2035 fdt_add_cpu_nodes(vms
);
2037 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
,
2039 if (machine
->device_memory
) {
2040 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2041 &machine
->device_memory
->mr
);
2044 virt_flash_fdt(vms
, sysmem
, secure_sysmem
?: sysmem
);
2048 virt_cpu_post_init(vms
, sysmem
);
2050 fdt_add_pmu_nodes(vms
);
2052 create_uart(vms
, VIRT_UART
, sysmem
, serial_hd(0));
2055 create_secure_ram(vms
, secure_sysmem
, secure_tag_sysmem
);
2056 create_uart(vms
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
2060 create_tag_ram(tag_sysmem
, vms
->memmap
[VIRT_MEM
].base
,
2061 machine
->ram_size
, "mach-virt.tag");
2064 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
2070 if (has_ged
&& aarch64
&& firmware_loaded
&& virt_is_acpi_enabled(vms
)) {
2071 vms
->acpi_dev
= create_acpi_ged(vms
);
2073 create_gpio_devices(vms
, VIRT_GPIO
, sysmem
);
2076 if (vms
->secure
&& !vmc
->no_secure_gpio
) {
2077 create_gpio_devices(vms
, VIRT_SECURE_GPIO
, secure_sysmem
);
2080 /* connect powerdown request */
2081 vms
->powerdown_notifier
.notify
= virt_powerdown_req
;
2082 qemu_register_powerdown_notifier(&vms
->powerdown_notifier
);
2084 /* Create mmio transports, so the user can create virtio backends
2085 * (which will be automatically plugged in to the transports). If
2086 * no backend is created the transport will just sit harmlessly idle.
2088 create_virtio_devices(vms
);
2090 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
2091 rom_set_fw(vms
->fw_cfg
);
2093 create_platform_bus(vms
);
2095 if (machine
->nvdimms_state
->is_enabled
) {
2096 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio
= {
2097 .space_id
= AML_AS_SYSTEM_MEMORY
,
2098 .address
= vms
->memmap
[VIRT_NVDIMM_ACPI
].base
,
2099 .bit_width
= NVDIMM_ACPI_IO_LEN
<< 3
2102 nvdimm_init_acpi_state(machine
->nvdimms_state
, sysmem
,
2103 arm_virt_nvdimm_acpi_dsmio
,
2104 vms
->fw_cfg
, OBJECT(vms
));
2107 vms
->bootinfo
.ram_size
= machine
->ram_size
;
2108 vms
->bootinfo
.nb_cpus
= smp_cpus
;
2109 vms
->bootinfo
.board_id
= -1;
2110 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
2111 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
2112 vms
->bootinfo
.skip_dtb_autoload
= true;
2113 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
2114 arm_load_kernel(ARM_CPU(first_cpu
), machine
, &vms
->bootinfo
);
2116 vms
->machine_done
.notify
= virt_machine_done
;
2117 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
2120 static bool virt_get_secure(Object
*obj
, Error
**errp
)
2122 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2127 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
2129 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2131 vms
->secure
= value
;
2134 static bool virt_get_virt(Object
*obj
, Error
**errp
)
2136 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2141 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
2143 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2148 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
2150 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2152 return vms
->highmem
;
2155 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
2157 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2159 vms
->highmem
= value
;
2162 static bool virt_get_its(Object
*obj
, Error
**errp
)
2164 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2169 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
2171 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2176 static char *virt_get_oem_id(Object
*obj
, Error
**errp
)
2178 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2180 return g_strdup(vms
->oem_id
);
2183 static void virt_set_oem_id(Object
*obj
, const char *value
, Error
**errp
)
2185 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2186 size_t len
= strlen(value
);
2190 "User specified oem-id value is bigger than 6 bytes in size");
2194 strncpy(vms
->oem_id
, value
, 6);
2197 static char *virt_get_oem_table_id(Object
*obj
, Error
**errp
)
2199 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2201 return g_strdup(vms
->oem_table_id
);
2204 static void virt_set_oem_table_id(Object
*obj
, const char *value
,
2207 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2208 size_t len
= strlen(value
);
2212 "User specified oem-table-id value is bigger than 8 bytes in size");
2215 strncpy(vms
->oem_table_id
, value
, 8);
2219 bool virt_is_acpi_enabled(VirtMachineState
*vms
)
2221 if (vms
->acpi
== ON_OFF_AUTO_OFF
) {
2227 static void virt_get_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2228 void *opaque
, Error
**errp
)
2230 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2231 OnOffAuto acpi
= vms
->acpi
;
2233 visit_type_OnOffAuto(v
, name
, &acpi
, errp
);
2236 static void virt_set_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2237 void *opaque
, Error
**errp
)
2239 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2241 visit_type_OnOffAuto(v
, name
, &vms
->acpi
, errp
);
2244 static bool virt_get_ras(Object
*obj
, Error
**errp
)
2246 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2251 static void virt_set_ras(Object
*obj
, bool value
, Error
**errp
)
2253 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2258 static bool virt_get_mte(Object
*obj
, Error
**errp
)
2260 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2265 static void virt_set_mte(Object
*obj
, bool value
, Error
**errp
)
2267 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2272 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
2274 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2275 const char *val
= vms
->gic_version
== VIRT_GIC_VERSION_3
? "3" : "2";
2277 return g_strdup(val
);
2280 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
2282 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2284 if (!strcmp(value
, "3")) {
2285 vms
->gic_version
= VIRT_GIC_VERSION_3
;
2286 } else if (!strcmp(value
, "2")) {
2287 vms
->gic_version
= VIRT_GIC_VERSION_2
;
2288 } else if (!strcmp(value
, "host")) {
2289 vms
->gic_version
= VIRT_GIC_VERSION_HOST
; /* Will probe later */
2290 } else if (!strcmp(value
, "max")) {
2291 vms
->gic_version
= VIRT_GIC_VERSION_MAX
; /* Will probe later */
2293 error_setg(errp
, "Invalid gic-version value");
2294 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
2298 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
2300 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2302 switch (vms
->iommu
) {
2303 case VIRT_IOMMU_NONE
:
2304 return g_strdup("none");
2305 case VIRT_IOMMU_SMMUV3
:
2306 return g_strdup("smmuv3");
2308 g_assert_not_reached();
2312 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
2314 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2316 if (!strcmp(value
, "smmuv3")) {
2317 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
2318 } else if (!strcmp(value
, "none")) {
2319 vms
->iommu
= VIRT_IOMMU_NONE
;
2321 error_setg(errp
, "Invalid iommu value");
2322 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
2326 static bool virt_get_default_bus_bypass_iommu(Object
*obj
, Error
**errp
)
2328 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2330 return vms
->default_bus_bypass_iommu
;
2333 static void virt_set_default_bus_bypass_iommu(Object
*obj
, bool value
,
2336 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2338 vms
->default_bus_bypass_iommu
= value
;
2341 static CpuInstanceProperties
2342 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
2344 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2345 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
2347 assert(cpu_index
< possible_cpus
->len
);
2348 return possible_cpus
->cpus
[cpu_index
].props
;
2351 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
2353 return idx
% ms
->numa_state
->num_nodes
;
2356 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
2359 unsigned int max_cpus
= ms
->smp
.max_cpus
;
2360 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2362 if (ms
->possible_cpus
) {
2363 assert(ms
->possible_cpus
->len
== max_cpus
);
2364 return ms
->possible_cpus
;
2367 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2368 sizeof(CPUArchId
) * max_cpus
);
2369 ms
->possible_cpus
->len
= max_cpus
;
2370 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
2371 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
2372 ms
->possible_cpus
->cpus
[n
].arch_id
=
2373 virt_cpu_mp_affinity(vms
, n
);
2374 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
2375 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
2377 return ms
->possible_cpus
;
2380 static void virt_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2383 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2384 const MachineState
*ms
= MACHINE(hotplug_dev
);
2385 const bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2387 if (!vms
->acpi_dev
) {
2389 "memory hotplug is not enabled: missing acpi-ged device");
2394 error_setg(errp
, "memory hotplug is not enabled: MTE is enabled");
2398 if (is_nvdimm
&& !ms
->nvdimms_state
->is_enabled
) {
2399 error_setg(errp
, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2403 pc_dimm_pre_plug(PC_DIMM(dev
), MACHINE(hotplug_dev
), NULL
, errp
);
2406 static void virt_memory_plug(HotplugHandler
*hotplug_dev
,
2407 DeviceState
*dev
, Error
**errp
)
2409 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2410 MachineState
*ms
= MACHINE(hotplug_dev
);
2411 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2413 pc_dimm_plug(PC_DIMM(dev
), MACHINE(vms
));
2416 nvdimm_plug(ms
->nvdimms_state
);
2419 hotplug_handler_plug(HOTPLUG_HANDLER(vms
->acpi_dev
),
2423 static void virt_machine_device_pre_plug_cb(HotplugHandler
*hotplug_dev
,
2424 DeviceState
*dev
, Error
**errp
)
2426 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2428 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2429 virt_memory_pre_plug(hotplug_dev
, dev
, errp
);
2430 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2431 hwaddr db_start
= 0, db_end
= 0;
2432 char *resv_prop_str
;
2434 switch (vms
->msi_controller
) {
2435 case VIRT_MSI_CTRL_NONE
:
2437 case VIRT_MSI_CTRL_ITS
:
2438 /* GITS_TRANSLATER page */
2439 db_start
= base_memmap
[VIRT_GIC_ITS
].base
+ 0x10000;
2440 db_end
= base_memmap
[VIRT_GIC_ITS
].base
+
2441 base_memmap
[VIRT_GIC_ITS
].size
- 1;
2443 case VIRT_MSI_CTRL_GICV2M
:
2444 /* MSI_SETSPI_NS page */
2445 db_start
= base_memmap
[VIRT_GIC_V2M
].base
;
2446 db_end
= db_start
+ base_memmap
[VIRT_GIC_V2M
].size
- 1;
2449 resv_prop_str
= g_strdup_printf("0x%"PRIx64
":0x%"PRIx64
":%u",
2451 VIRTIO_IOMMU_RESV_MEM_T_MSI
);
2453 qdev_prop_set_uint32(dev
, "len-reserved-regions", 1);
2454 qdev_prop_set_string(dev
, "reserved-regions[0]", resv_prop_str
);
2455 g_free(resv_prop_str
);
2459 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
2460 DeviceState
*dev
, Error
**errp
)
2462 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2464 if (vms
->platform_bus_dev
) {
2465 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
2467 if (device_is_dynamic_sysbus(mc
, dev
)) {
2468 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
2469 SYS_BUS_DEVICE(dev
));
2472 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2473 virt_memory_plug(hotplug_dev
, dev
, errp
);
2475 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2476 PCIDevice
*pdev
= PCI_DEVICE(dev
);
2478 vms
->iommu
= VIRT_IOMMU_VIRTIO
;
2479 vms
->virtio_iommu_bdf
= pci_get_bdf(pdev
);
2480 create_virtio_iommu_dt_bindings(vms
);
2484 static void virt_dimm_unplug_request(HotplugHandler
*hotplug_dev
,
2485 DeviceState
*dev
, Error
**errp
)
2487 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2488 Error
*local_err
= NULL
;
2490 if (!vms
->acpi_dev
) {
2491 error_setg(&local_err
,
2492 "memory hotplug is not enabled: missing acpi-ged device");
2496 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
2497 error_setg(&local_err
,
2498 "nvdimm device hot unplug is not supported yet.");
2502 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
,
2505 error_propagate(errp
, local_err
);
2508 static void virt_dimm_unplug(HotplugHandler
*hotplug_dev
,
2509 DeviceState
*dev
, Error
**errp
)
2511 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2512 Error
*local_err
= NULL
;
2514 hotplug_handler_unplug(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
, &local_err
);
2519 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(vms
));
2520 qdev_unrealize(dev
);
2523 error_propagate(errp
, local_err
);
2526 static void virt_machine_device_unplug_request_cb(HotplugHandler
*hotplug_dev
,
2527 DeviceState
*dev
, Error
**errp
)
2529 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2530 virt_dimm_unplug_request(hotplug_dev
, dev
, errp
);
2532 error_setg(errp
, "device unplug request for unsupported device"
2533 " type: %s", object_get_typename(OBJECT(dev
)));
2537 static void virt_machine_device_unplug_cb(HotplugHandler
*hotplug_dev
,
2538 DeviceState
*dev
, Error
**errp
)
2540 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2541 virt_dimm_unplug(hotplug_dev
, dev
, errp
);
2543 error_setg(errp
, "virt: device unplug for unsupported device"
2544 " type: %s", object_get_typename(OBJECT(dev
)));
2548 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
2551 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2553 if (device_is_dynamic_sysbus(mc
, dev
) ||
2554 (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
))) {
2555 return HOTPLUG_HANDLER(machine
);
2557 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2558 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
2560 if (!vms
->bootinfo
.firmware_loaded
|| !virt_is_acpi_enabled(vms
)) {
2561 return HOTPLUG_HANDLER(machine
);
2568 * for arm64 kvm_type [7-0] encodes the requested number of bits
2569 * in the IPA address space
2571 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
2573 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2574 int max_vm_pa_size
, requested_pa_size
;
2577 max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
, &fixed_ipa
);
2579 /* we freeze the memory map to compute the highest gpa */
2580 virt_set_memmap(vms
);
2582 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
2585 * KVM requires the IPA size to be at least 32 bits.
2587 if (requested_pa_size
< 32) {
2588 requested_pa_size
= 32;
2591 if (requested_pa_size
> max_vm_pa_size
) {
2592 error_report("-m and ,maxmem option values "
2593 "require an IPA range (%d bits) larger than "
2594 "the one supported by the host (%d bits)",
2595 requested_pa_size
, max_vm_pa_size
);
2599 * We return the requested PA log size, unless KVM only supports
2600 * the implicit legacy 40b IPA setting, in which case the kvm_type
2603 return fixed_ipa
? 0 : requested_pa_size
;
2606 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
2608 MachineClass
*mc
= MACHINE_CLASS(oc
);
2609 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2611 mc
->init
= machvirt_init
;
2612 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2613 * The value may be reduced later when we have more information about the
2614 * configuration of the particular instance.
2617 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
2618 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
2619 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
2620 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
2622 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_TPM_TIS_SYSBUS
);
2624 mc
->block_default_type
= IF_VIRTIO
;
2626 mc
->pci_allow_0_address
= true;
2627 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2628 mc
->minimum_page_bits
= 12;
2629 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
2630 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
2631 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
2632 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
2633 mc
->kvm_type
= virt_kvm_type
;
2634 assert(!mc
->get_hotplug_handler
);
2635 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
2636 hc
->pre_plug
= virt_machine_device_pre_plug_cb
;
2637 hc
->plug
= virt_machine_device_plug_cb
;
2638 hc
->unplug_request
= virt_machine_device_unplug_request_cb
;
2639 hc
->unplug
= virt_machine_device_unplug_cb
;
2640 mc
->nvdimm_supported
= true;
2641 mc
->auto_enable_numa_with_memhp
= true;
2642 mc
->auto_enable_numa_with_memdev
= true;
2643 mc
->default_ram_id
= "mach-virt.ram";
2645 object_class_property_add(oc
, "acpi", "OnOffAuto",
2646 virt_get_acpi
, virt_set_acpi
,
2648 object_class_property_set_description(oc
, "acpi",
2650 object_class_property_add_bool(oc
, "secure", virt_get_secure
,
2652 object_class_property_set_description(oc
, "secure",
2653 "Set on/off to enable/disable the ARM "
2654 "Security Extensions (TrustZone)");
2656 object_class_property_add_bool(oc
, "virtualization", virt_get_virt
,
2658 object_class_property_set_description(oc
, "virtualization",
2659 "Set on/off to enable/disable emulating a "
2660 "guest CPU which implements the ARM "
2661 "Virtualization Extensions");
2663 object_class_property_add_bool(oc
, "highmem", virt_get_highmem
,
2665 object_class_property_set_description(oc
, "highmem",
2666 "Set on/off to enable/disable using "
2667 "physical address space above 32 bits");
2669 object_class_property_add_str(oc
, "gic-version", virt_get_gic_version
,
2670 virt_set_gic_version
);
2671 object_class_property_set_description(oc
, "gic-version",
2673 "Valid values are 2, 3, host and max");
2675 object_class_property_add_str(oc
, "iommu", virt_get_iommu
, virt_set_iommu
);
2676 object_class_property_set_description(oc
, "iommu",
2677 "Set the IOMMU type. "
2678 "Valid values are none and smmuv3");
2680 object_class_property_add_bool(oc
, "default_bus_bypass_iommu",
2681 virt_get_default_bus_bypass_iommu
,
2682 virt_set_default_bus_bypass_iommu
);
2683 object_class_property_set_description(oc
, "default_bus_bypass_iommu",
2684 "Set on/off to enable/disable "
2685 "bypass_iommu for default root bus");
2687 object_class_property_add_bool(oc
, "ras", virt_get_ras
,
2689 object_class_property_set_description(oc
, "ras",
2690 "Set on/off to enable/disable reporting host memory errors "
2691 "to a KVM guest using ACPI and guest external abort exceptions");
2693 object_class_property_add_bool(oc
, "mte", virt_get_mte
, virt_set_mte
);
2694 object_class_property_set_description(oc
, "mte",
2695 "Set on/off to enable/disable emulating a "
2696 "guest CPU which implements the ARM "
2697 "Memory Tagging Extension");
2699 object_class_property_add_bool(oc
, "its", virt_get_its
,
2701 object_class_property_set_description(oc
, "its",
2702 "Set on/off to enable/disable "
2703 "ITS instantiation");
2705 object_class_property_add_str(oc
, "x-oem-id",
2708 object_class_property_set_description(oc
, "x-oem-id",
2709 "Override the default value of field OEMID "
2710 "in ACPI table header."
2711 "The string may be up to 6 bytes in size");
2714 object_class_property_add_str(oc
, "x-oem-table-id",
2715 virt_get_oem_table_id
,
2716 virt_set_oem_table_id
);
2717 object_class_property_set_description(oc
, "x-oem-table-id",
2718 "Override the default value of field OEM Table ID "
2719 "in ACPI table header."
2720 "The string may be up to 8 bytes in size");
2724 static void virt_instance_init(Object
*obj
)
2726 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2727 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
2729 /* EL3 is disabled by default on virt: this makes us consistent
2730 * between KVM and TCG for this board, and it also allows us to
2731 * boot UEFI blobs which assume no TrustZone support.
2733 vms
->secure
= false;
2735 /* EL2 is also disabled by default, for similar reasons */
2738 /* High memory is enabled by default */
2739 vms
->highmem
= true;
2740 vms
->gic_version
= VIRT_GIC_VERSION_NOSEL
;
2742 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
2747 /* Default allows ITS instantiation */
2751 /* Default disallows iommu instantiation */
2752 vms
->iommu
= VIRT_IOMMU_NONE
;
2754 /* The default root bus is attached to iommu by default */
2755 vms
->default_bus_bypass_iommu
= false;
2757 /* Default disallows RAS instantiation */
2760 /* MTE is disabled by default. */
2763 vms
->irqmap
= a15irqmap
;
2765 virt_flash_create(vms
);
2767 vms
->oem_id
= g_strndup(ACPI_BUILD_APPNAME6
, 6);
2768 vms
->oem_table_id
= g_strndup(ACPI_BUILD_APPNAME8
, 8);
2771 static const TypeInfo virt_machine_info
= {
2772 .name
= TYPE_VIRT_MACHINE
,
2773 .parent
= TYPE_MACHINE
,
2775 .instance_size
= sizeof(VirtMachineState
),
2776 .class_size
= sizeof(VirtMachineClass
),
2777 .class_init
= virt_machine_class_init
,
2778 .instance_init
= virt_instance_init
,
2779 .interfaces
= (InterfaceInfo
[]) {
2780 { TYPE_HOTPLUG_HANDLER
},
2785 static void machvirt_machine_init(void)
2787 type_register_static(&virt_machine_info
);
2789 type_init(machvirt_machine_init
);
2791 static void virt_machine_6_1_options(MachineClass
*mc
)
2794 DEFINE_VIRT_MACHINE_AS_LATEST(6, 1)
2796 static void virt_machine_6_0_options(MachineClass
*mc
)
2798 virt_machine_6_1_options(mc
);
2799 compat_props_add(mc
->compat_props
, hw_compat_6_0
, hw_compat_6_0_len
);
2801 DEFINE_VIRT_MACHINE(6, 0)
2803 static void virt_machine_5_2_options(MachineClass
*mc
)
2805 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2807 virt_machine_6_0_options(mc
);
2808 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
2809 vmc
->no_secure_gpio
= true;
2811 DEFINE_VIRT_MACHINE(5, 2)
2813 static void virt_machine_5_1_options(MachineClass
*mc
)
2815 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2817 virt_machine_5_2_options(mc
);
2818 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
2819 vmc
->no_kvm_steal_time
= true;
2821 DEFINE_VIRT_MACHINE(5, 1)
2823 static void virt_machine_5_0_options(MachineClass
*mc
)
2825 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2827 virt_machine_5_1_options(mc
);
2828 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
2829 mc
->numa_mem_supported
= true;
2830 vmc
->acpi_expose_flash
= true;
2831 mc
->auto_enable_numa_with_memdev
= false;
2833 DEFINE_VIRT_MACHINE(5, 0)
2835 static void virt_machine_4_2_options(MachineClass
*mc
)
2837 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2839 virt_machine_5_0_options(mc
);
2840 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
2841 vmc
->kvm_no_adjvtime
= true;
2843 DEFINE_VIRT_MACHINE(4, 2)
2845 static void virt_machine_4_1_options(MachineClass
*mc
)
2847 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2849 virt_machine_4_2_options(mc
);
2850 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
2852 mc
->auto_enable_numa_with_memhp
= false;
2854 DEFINE_VIRT_MACHINE(4, 1)
2856 static void virt_machine_4_0_options(MachineClass
*mc
)
2858 virt_machine_4_1_options(mc
);
2859 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
2861 DEFINE_VIRT_MACHINE(4, 0)
2863 static void virt_machine_3_1_options(MachineClass
*mc
)
2865 virt_machine_4_0_options(mc
);
2866 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2868 DEFINE_VIRT_MACHINE(3, 1)
2870 static void virt_machine_3_0_options(MachineClass
*mc
)
2872 virt_machine_3_1_options(mc
);
2873 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2875 DEFINE_VIRT_MACHINE(3, 0)
2877 static void virt_machine_2_12_options(MachineClass
*mc
)
2879 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2881 virt_machine_3_0_options(mc
);
2882 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2883 vmc
->no_highmem_ecam
= true;
2886 DEFINE_VIRT_MACHINE(2, 12)
2888 static void virt_machine_2_11_options(MachineClass
*mc
)
2890 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2892 virt_machine_2_12_options(mc
);
2893 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2894 vmc
->smbios_old_sys_ver
= true;
2896 DEFINE_VIRT_MACHINE(2, 11)
2898 static void virt_machine_2_10_options(MachineClass
*mc
)
2900 virt_machine_2_11_options(mc
);
2901 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2902 /* before 2.11 we never faulted accesses to bad addresses */
2903 mc
->ignore_memory_transaction_failures
= true;
2905 DEFINE_VIRT_MACHINE(2, 10)
2907 static void virt_machine_2_9_options(MachineClass
*mc
)
2909 virt_machine_2_10_options(mc
);
2910 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2912 DEFINE_VIRT_MACHINE(2, 9)
2914 static void virt_machine_2_8_options(MachineClass
*mc
)
2916 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2918 virt_machine_2_9_options(mc
);
2919 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2920 /* For 2.8 and earlier we falsely claimed in the DT that
2921 * our timers were edge-triggered, not level-triggered.
2923 vmc
->claim_edge_triggered_timers
= true;
2925 DEFINE_VIRT_MACHINE(2, 8)
2927 static void virt_machine_2_7_options(MachineClass
*mc
)
2929 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2931 virt_machine_2_8_options(mc
);
2932 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2933 /* ITS was introduced with 2.8 */
2935 /* Stick with 1K pages for migration compatibility */
2936 mc
->minimum_page_bits
= 0;
2938 DEFINE_VIRT_MACHINE(2, 7)
2940 static void virt_machine_2_6_options(MachineClass
*mc
)
2942 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2944 virt_machine_2_7_options(mc
);
2945 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2946 vmc
->disallow_affinity_adjustment
= true;
2947 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2950 DEFINE_VIRT_MACHINE(2, 6)