2 * QEMU SMBus EEPROM device
4 * Copyright (c) 2007 Arastra, Inc.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/i2c/i2c.h"
30 #include "hw/i2c/smbus_slave.h"
31 #include "hw/qdev-properties.h"
32 #include "migration/vmstate.h"
33 #include "hw/i2c/smbus_eeprom.h"
34 #include "qom/object.h"
38 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
40 OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice
, SMBUS_EEPROM
)
42 #define SMBUS_EEPROM_SIZE 256
44 struct SMBusEEPROMDevice
{
46 uint8_t data
[SMBUS_EEPROM_SIZE
];
52 static uint8_t eeprom_receive_byte(SMBusDevice
*dev
)
54 SMBusEEPROMDevice
*eeprom
= SMBUS_EEPROM(dev
);
55 uint8_t *data
= eeprom
->data
;
56 uint8_t val
= data
[eeprom
->offset
++];
58 eeprom
->accessed
= true;
60 printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
61 dev
->i2c
.address
, val
);
66 static int eeprom_write_data(SMBusDevice
*dev
, uint8_t *buf
, uint8_t len
)
68 SMBusEEPROMDevice
*eeprom
= SMBUS_EEPROM(dev
);
69 uint8_t *data
= eeprom
->data
;
71 eeprom
->accessed
= true;
73 printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
74 dev
->i2c
.address
, buf
[0], buf
[1]);
76 /* len is guaranteed to be > 0 */
77 eeprom
->offset
= buf
[0];
81 for (; len
> 0; len
--) {
82 data
[eeprom
->offset
] = *buf
++;
83 eeprom
->offset
= (eeprom
->offset
+ 1) % SMBUS_EEPROM_SIZE
;
89 static bool smbus_eeprom_vmstate_needed(void *opaque
)
91 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
92 SMBusEEPROMDevice
*eeprom
= opaque
;
94 return (eeprom
->accessed
|| smbus_vmstate_needed(&eeprom
->smbusdev
)) &&
95 !mc
->smbus_no_migration_support
;
98 static const VMStateDescription vmstate_smbus_eeprom
= {
99 .name
= "smbus-eeprom",
101 .minimum_version_id
= 1,
102 .needed
= smbus_eeprom_vmstate_needed
,
103 .fields
= (VMStateField
[]) {
104 VMSTATE_SMBUS_DEVICE(smbusdev
, SMBusEEPROMDevice
),
105 VMSTATE_UINT8_ARRAY(data
, SMBusEEPROMDevice
, SMBUS_EEPROM_SIZE
),
106 VMSTATE_UINT8(offset
, SMBusEEPROMDevice
),
107 VMSTATE_BOOL(accessed
, SMBusEEPROMDevice
),
108 VMSTATE_END_OF_LIST()
113 * Reset the EEPROM contents to the initial state on a reset. This
114 * isn't really how an EEPROM works, of course, but the general
115 * principle of QEMU is to restore function on reset to what it would
116 * be if QEMU was stopped and started.
118 * The proper thing to do would be to have a backing blockdev to hold
119 * the contents and restore that on startup, and not do this on reset.
120 * But until that time, act as if we had been stopped and restarted.
122 static void smbus_eeprom_reset(DeviceState
*dev
)
124 SMBusEEPROMDevice
*eeprom
= SMBUS_EEPROM(dev
);
126 memcpy(eeprom
->data
, eeprom
->init_data
, SMBUS_EEPROM_SIZE
);
130 static void smbus_eeprom_realize(DeviceState
*dev
, Error
**errp
)
132 SMBusEEPROMDevice
*eeprom
= SMBUS_EEPROM(dev
);
134 smbus_eeprom_reset(dev
);
135 if (eeprom
->init_data
== NULL
) {
136 error_setg(errp
, "init_data cannot be NULL");
140 static void smbus_eeprom_class_initfn(ObjectClass
*klass
, void *data
)
142 DeviceClass
*dc
= DEVICE_CLASS(klass
);
143 SMBusDeviceClass
*sc
= SMBUS_DEVICE_CLASS(klass
);
145 dc
->realize
= smbus_eeprom_realize
;
146 dc
->reset
= smbus_eeprom_reset
;
147 sc
->receive_byte
= eeprom_receive_byte
;
148 sc
->write_data
= eeprom_write_data
;
149 dc
->vmsd
= &vmstate_smbus_eeprom
;
150 /* Reason: init_data */
151 dc
->user_creatable
= false;
154 static const TypeInfo smbus_eeprom_info
= {
155 .name
= TYPE_SMBUS_EEPROM
,
156 .parent
= TYPE_SMBUS_DEVICE
,
157 .instance_size
= sizeof(SMBusEEPROMDevice
),
158 .class_init
= smbus_eeprom_class_initfn
,
161 static void smbus_eeprom_register_types(void)
163 type_register_static(&smbus_eeprom_info
);
166 type_init(smbus_eeprom_register_types
)
168 void smbus_eeprom_init_one(I2CBus
*smbus
, uint8_t address
, uint8_t *eeprom_buf
)
172 dev
= qdev_new(TYPE_SMBUS_EEPROM
);
173 qdev_prop_set_uint8(dev
, "address", address
);
174 /* FIXME: use an array of byte or block backend property? */
175 SMBUS_EEPROM(dev
)->init_data
= eeprom_buf
;
176 qdev_realize_and_unref(dev
, (BusState
*)smbus
, &error_fatal
);
179 void smbus_eeprom_init(I2CBus
*smbus
, int nb_eeprom
,
180 const uint8_t *eeprom_spd
, int eeprom_spd_size
)
183 /* XXX: make this persistent */
185 assert(nb_eeprom
<= 8);
186 uint8_t *eeprom_buf
= g_malloc0(8 * SMBUS_EEPROM_SIZE
);
187 if (eeprom_spd_size
> 0) {
188 memcpy(eeprom_buf
, eeprom_spd
, eeprom_spd_size
);
191 for (i
= 0; i
< nb_eeprom
; i
++) {
192 smbus_eeprom_init_one(smbus
, 0x50 + i
,
193 eeprom_buf
+ (i
* SMBUS_EEPROM_SIZE
));
197 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
198 uint8_t *spd_data_generate(enum sdram_type type
, ram_addr_t ram_size
)
204 int min_log2
, max_log2
, sz_log2
;
221 g_assert_not_reached();
223 size
= ram_size
>> 20; /* work in terms of megabytes */
224 sz_log2
= 31 - clz32(size
);
225 size
= 1U << sz_log2
;
226 assert(ram_size
== size
* MiB
);
227 assert(sz_log2
>= min_log2
);
230 while (sz_log2
> max_log2
&& nbanks
< 8) {
235 assert(size
== (1ULL << sz_log2
) * nbanks
);
237 /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
238 if (nbanks
== 1 && sz_log2
> min_log2
) {
243 density
= 1ULL << (sz_log2
- 2);
246 density
= (density
& 0xe0) | (density
>> 8 & 0x1f);
249 density
= (density
& 0xf8) | (density
>> 8 & 0x07);
257 spd
= g_malloc0(256);
258 spd
[0] = 128; /* data bytes in EEPROM */
259 spd
[1] = 8; /* log2 size of EEPROM */
261 spd
[3] = 13; /* row address bits */
262 spd
[4] = 10; /* column address bits */
263 spd
[5] = (type
== DDR2
? nbanks
- 1 : nbanks
);
264 spd
[6] = 64; /* module data width */
265 /* reserved / data width high */
266 spd
[8] = 4; /* interface voltage level */
267 spd
[9] = 0x25; /* highest CAS latency */
268 spd
[10] = 1; /* access time */
269 /* DIMM configuration 0 = non-ECC */
270 spd
[12] = 0x82; /* refresh requirements */
271 spd
[13] = 8; /* primary SDRAM width */
272 /* ECC SDRAM width */
273 spd
[15] = (type
== DDR2
? 0 : 1); /* reserved / delay for random col rd */
274 spd
[16] = 12; /* burst lengths supported */
275 spd
[17] = 4; /* banks per SDRAM device */
276 spd
[18] = 12; /* ~CAS latencies supported */
277 spd
[19] = (type
== DDR2
? 0 : 1); /* reserved / ~CS latencies supported */
278 spd
[20] = 2; /* DIMM type / ~WE latencies */
279 /* module features */
280 /* memory chip features */
281 spd
[23] = 0x12; /* clock cycle time @ medium CAS latency */
282 /* data access time */
283 /* clock cycle time @ short CAS latency */
284 /* data access time */
285 spd
[27] = 20; /* min. row precharge time */
286 spd
[28] = 15; /* min. row active row delay */
287 spd
[29] = 20; /* min. ~RAS to ~CAS delay */
288 spd
[30] = 45; /* min. active to precharge time */
290 spd
[32] = 20; /* addr/cmd setup time */
291 spd
[33] = 8; /* addr/cmd hold time */
292 spd
[34] = 20; /* data input setup time */
293 spd
[35] = 8; /* data input hold time */
296 for (i
= 0; i
< 63; i
++) {