Merge remote-tracking branch 'remotes/dgilbert-gitlab/tags/pull-migration-20210726a...
[qemu/armbru.git] / hw / net / imx_fec.c
blob9c7035bc948e4d4d6ea4d8b081e69e44fb409aa1
1 /*
2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/irq.h"
26 #include "hw/net/imx_fec.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/dma.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "net/checksum.h"
33 #include "net/eth.h"
34 #include "trace.h"
36 /* For crc32 */
37 #include <zlib.h>
39 #define IMX_MAX_DESC 1024
41 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
43 static char tmp[20];
44 sprintf(tmp, "index %d", index);
45 return tmp;
48 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
50 switch (index) {
51 case ENET_FRBR:
52 return "FRBR";
53 case ENET_FRSR:
54 return "FRSR";
55 case ENET_MIIGSK_CFGR:
56 return "MIIGSK_CFGR";
57 case ENET_MIIGSK_ENR:
58 return "MIIGSK_ENR";
59 default:
60 return imx_default_reg_name(s, index);
64 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
66 switch (index) {
67 case ENET_RSFL:
68 return "RSFL";
69 case ENET_RSEM:
70 return "RSEM";
71 case ENET_RAEM:
72 return "RAEM";
73 case ENET_RAFL:
74 return "RAFL";
75 case ENET_TSEM:
76 return "TSEM";
77 case ENET_TAEM:
78 return "TAEM";
79 case ENET_TAFL:
80 return "TAFL";
81 case ENET_TIPG:
82 return "TIPG";
83 case ENET_FTRL:
84 return "FTRL";
85 case ENET_TACC:
86 return "TACC";
87 case ENET_RACC:
88 return "RACC";
89 case ENET_ATCR:
90 return "ATCR";
91 case ENET_ATVR:
92 return "ATVR";
93 case ENET_ATOFF:
94 return "ATOFF";
95 case ENET_ATPER:
96 return "ATPER";
97 case ENET_ATCOR:
98 return "ATCOR";
99 case ENET_ATINC:
100 return "ATINC";
101 case ENET_ATSTMP:
102 return "ATSTMP";
103 case ENET_TGSR:
104 return "TGSR";
105 case ENET_TCSR0:
106 return "TCSR0";
107 case ENET_TCCR0:
108 return "TCCR0";
109 case ENET_TCSR1:
110 return "TCSR1";
111 case ENET_TCCR1:
112 return "TCCR1";
113 case ENET_TCSR2:
114 return "TCSR2";
115 case ENET_TCCR2:
116 return "TCCR2";
117 case ENET_TCSR3:
118 return "TCSR3";
119 case ENET_TCCR3:
120 return "TCCR3";
121 default:
122 return imx_default_reg_name(s, index);
126 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
128 switch (index) {
129 case ENET_EIR:
130 return "EIR";
131 case ENET_EIMR:
132 return "EIMR";
133 case ENET_RDAR:
134 return "RDAR";
135 case ENET_TDAR:
136 return "TDAR";
137 case ENET_ECR:
138 return "ECR";
139 case ENET_MMFR:
140 return "MMFR";
141 case ENET_MSCR:
142 return "MSCR";
143 case ENET_MIBC:
144 return "MIBC";
145 case ENET_RCR:
146 return "RCR";
147 case ENET_TCR:
148 return "TCR";
149 case ENET_PALR:
150 return "PALR";
151 case ENET_PAUR:
152 return "PAUR";
153 case ENET_OPD:
154 return "OPD";
155 case ENET_IAUR:
156 return "IAUR";
157 case ENET_IALR:
158 return "IALR";
159 case ENET_GAUR:
160 return "GAUR";
161 case ENET_GALR:
162 return "GALR";
163 case ENET_TFWR:
164 return "TFWR";
165 case ENET_RDSR:
166 return "RDSR";
167 case ENET_TDSR:
168 return "TDSR";
169 case ENET_MRBR:
170 return "MRBR";
171 default:
172 if (s->is_fec) {
173 return imx_fec_reg_name(s, index);
174 } else {
175 return imx_enet_reg_name(s, index);
181 * Versions of this device with more than one TX descriptor save the
182 * 2nd and 3rd descriptors in a subsection, to maintain migration
183 * compatibility with previous versions of the device that only
184 * supported a single descriptor.
186 static bool imx_eth_is_multi_tx_ring(void *opaque)
188 IMXFECState *s = IMX_FEC(opaque);
190 return s->tx_ring_num > 1;
193 static const VMStateDescription vmstate_imx_eth_txdescs = {
194 .name = "imx.fec/txdescs",
195 .version_id = 1,
196 .minimum_version_id = 1,
197 .needed = imx_eth_is_multi_tx_ring,
198 .fields = (VMStateField[]) {
199 VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
200 VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
201 VMSTATE_END_OF_LIST()
205 static const VMStateDescription vmstate_imx_eth = {
206 .name = TYPE_IMX_FEC,
207 .version_id = 2,
208 .minimum_version_id = 2,
209 .fields = (VMStateField[]) {
210 VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
211 VMSTATE_UINT32(rx_descriptor, IMXFECState),
212 VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
213 VMSTATE_UINT32(phy_status, IMXFECState),
214 VMSTATE_UINT32(phy_control, IMXFECState),
215 VMSTATE_UINT32(phy_advertise, IMXFECState),
216 VMSTATE_UINT32(phy_int, IMXFECState),
217 VMSTATE_UINT32(phy_int_mask, IMXFECState),
218 VMSTATE_END_OF_LIST()
220 .subsections = (const VMStateDescription * []) {
221 &vmstate_imx_eth_txdescs,
222 NULL
226 #define PHY_INT_ENERGYON (1 << 7)
227 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
228 #define PHY_INT_FAULT (1 << 5)
229 #define PHY_INT_DOWN (1 << 4)
230 #define PHY_INT_AUTONEG_LP (1 << 3)
231 #define PHY_INT_PARFAULT (1 << 2)
232 #define PHY_INT_AUTONEG_PAGE (1 << 1)
234 static void imx_eth_update(IMXFECState *s);
237 * The MII phy could raise a GPIO to the processor which in turn
238 * could be handled as an interrpt by the OS.
239 * For now we don't handle any GPIO/interrupt line, so the OS will
240 * have to poll for the PHY status.
242 static void imx_phy_update_irq(IMXFECState *s)
244 imx_eth_update(s);
247 static void imx_phy_update_link(IMXFECState *s)
249 /* Autonegotiation status mirrors link status. */
250 if (qemu_get_queue(s->nic)->link_down) {
251 trace_imx_phy_update_link("down");
252 s->phy_status &= ~0x0024;
253 s->phy_int |= PHY_INT_DOWN;
254 } else {
255 trace_imx_phy_update_link("up");
256 s->phy_status |= 0x0024;
257 s->phy_int |= PHY_INT_ENERGYON;
258 s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
260 imx_phy_update_irq(s);
263 static void imx_eth_set_link(NetClientState *nc)
265 imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
268 static void imx_phy_reset(IMXFECState *s)
270 trace_imx_phy_reset();
272 s->phy_status = 0x7809;
273 s->phy_control = 0x3000;
274 s->phy_advertise = 0x01e1;
275 s->phy_int_mask = 0;
276 s->phy_int = 0;
277 imx_phy_update_link(s);
280 static uint32_t imx_phy_read(IMXFECState *s, int reg)
282 uint32_t val;
283 uint32_t phy = reg / 32;
285 if (phy != s->phy_num) {
286 trace_imx_phy_read_num(phy, s->phy_num);
287 return 0xffff;
290 reg %= 32;
292 switch (reg) {
293 case 0: /* Basic Control */
294 val = s->phy_control;
295 break;
296 case 1: /* Basic Status */
297 val = s->phy_status;
298 break;
299 case 2: /* ID1 */
300 val = 0x0007;
301 break;
302 case 3: /* ID2 */
303 val = 0xc0d1;
304 break;
305 case 4: /* Auto-neg advertisement */
306 val = s->phy_advertise;
307 break;
308 case 5: /* Auto-neg Link Partner Ability */
309 val = 0x0f71;
310 break;
311 case 6: /* Auto-neg Expansion */
312 val = 1;
313 break;
314 case 29: /* Interrupt source. */
315 val = s->phy_int;
316 s->phy_int = 0;
317 imx_phy_update_irq(s);
318 break;
319 case 30: /* Interrupt mask */
320 val = s->phy_int_mask;
321 break;
322 case 17:
323 case 18:
324 case 27:
325 case 31:
326 qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
327 TYPE_IMX_FEC, __func__, reg);
328 val = 0;
329 break;
330 default:
331 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
332 TYPE_IMX_FEC, __func__, reg);
333 val = 0;
334 break;
337 trace_imx_phy_read(val, phy, reg);
339 return val;
342 static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
344 uint32_t phy = reg / 32;
346 if (phy != s->phy_num) {
347 trace_imx_phy_write_num(phy, s->phy_num);
348 return;
351 reg %= 32;
353 trace_imx_phy_write(val, phy, reg);
355 switch (reg) {
356 case 0: /* Basic Control */
357 if (val & 0x8000) {
358 imx_phy_reset(s);
359 } else {
360 s->phy_control = val & 0x7980;
361 /* Complete autonegotiation immediately. */
362 if (val & 0x1000) {
363 s->phy_status |= 0x0020;
366 break;
367 case 4: /* Auto-neg advertisement */
368 s->phy_advertise = (val & 0x2d7f) | 0x80;
369 break;
370 case 30: /* Interrupt mask */
371 s->phy_int_mask = val & 0xff;
372 imx_phy_update_irq(s);
373 break;
374 case 17:
375 case 18:
376 case 27:
377 case 31:
378 qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
379 TYPE_IMX_FEC, __func__, reg);
380 break;
381 default:
382 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
383 TYPE_IMX_FEC, __func__, reg);
384 break;
388 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
390 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
392 trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
395 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
397 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
400 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
402 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
404 trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
405 bd->option, bd->status);
408 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
410 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
413 static void imx_eth_update(IMXFECState *s)
416 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
417 * interrupts swapped. This worked with older versions of Linux (4.14
418 * and older) since Linux associated both interrupt lines with Ethernet
419 * MAC interrupts. Specifically,
420 * - Linux 4.15 and later have separate interrupt handlers for the MAC and
421 * timer interrupts. Those versions of Linux fail with versions of QEMU
422 * with swapped interrupt assignments.
423 * - In linux 4.14, both interrupt lines were registered with the Ethernet
424 * MAC interrupt handler. As a result, all versions of qemu happen to
425 * work, though that is accidental.
426 * - In Linux 4.9 and older, the timer interrupt was registered directly
427 * with the Ethernet MAC interrupt handler. The MAC interrupt was
428 * redirected to a GPIO interrupt to work around erratum ERR006687.
429 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO
430 * interrupt never fired since IOMUX is currently not supported in qemu.
431 * Linux instead received MAC interrupts on the timer interrupt.
432 * As a result, qemu versions with the swapped interrupt assignment work,
433 * albeit accidentally, but qemu versions with the correct interrupt
434 * assignment fail.
436 * To ensure that all versions of Linux work, generate ENET_INT_MAC
437 * interrrupts on both interrupt lines. This should be changed if and when
438 * qemu supports IOMUX.
440 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
441 (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
442 qemu_set_irq(s->irq[1], 1);
443 } else {
444 qemu_set_irq(s->irq[1], 0);
447 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
448 qemu_set_irq(s->irq[0], 1);
449 } else {
450 qemu_set_irq(s->irq[0], 0);
454 static void imx_fec_do_tx(IMXFECState *s)
456 int frame_size = 0, descnt = 0;
457 uint8_t *ptr = s->frame;
458 uint32_t addr = s->tx_descriptor[0];
460 while (descnt++ < IMX_MAX_DESC) {
461 IMXFECBufDesc bd;
462 int len;
464 imx_fec_read_bd(&bd, addr);
465 if ((bd.flags & ENET_BD_R) == 0) {
467 /* Run out of descriptors to transmit. */
468 trace_imx_eth_tx_bd_busy();
470 break;
472 len = bd.length;
473 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
474 len = ENET_MAX_FRAME_SIZE - frame_size;
475 s->regs[ENET_EIR] |= ENET_INT_BABT;
477 dma_memory_read(&address_space_memory, bd.data, ptr, len);
478 ptr += len;
479 frame_size += len;
480 if (bd.flags & ENET_BD_L) {
481 /* Last buffer in frame. */
482 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
483 ptr = s->frame;
484 frame_size = 0;
485 s->regs[ENET_EIR] |= ENET_INT_TXF;
487 s->regs[ENET_EIR] |= ENET_INT_TXB;
488 bd.flags &= ~ENET_BD_R;
489 /* Write back the modified descriptor. */
490 imx_fec_write_bd(&bd, addr);
491 /* Advance to the next descriptor. */
492 if ((bd.flags & ENET_BD_W) != 0) {
493 addr = s->regs[ENET_TDSR];
494 } else {
495 addr += sizeof(bd);
499 s->tx_descriptor[0] = addr;
501 imx_eth_update(s);
504 static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
506 int frame_size = 0, descnt = 0;
508 uint8_t *ptr = s->frame;
509 uint32_t addr, int_txb, int_txf, tdsr;
510 size_t ring;
512 switch (index) {
513 case ENET_TDAR:
514 ring = 0;
515 int_txb = ENET_INT_TXB;
516 int_txf = ENET_INT_TXF;
517 tdsr = ENET_TDSR;
518 break;
519 case ENET_TDAR1:
520 ring = 1;
521 int_txb = ENET_INT_TXB1;
522 int_txf = ENET_INT_TXF1;
523 tdsr = ENET_TDSR1;
524 break;
525 case ENET_TDAR2:
526 ring = 2;
527 int_txb = ENET_INT_TXB2;
528 int_txf = ENET_INT_TXF2;
529 tdsr = ENET_TDSR2;
530 break;
531 default:
532 qemu_log_mask(LOG_GUEST_ERROR,
533 "%s: bogus value for index %x\n",
534 __func__, index);
535 abort();
536 break;
539 addr = s->tx_descriptor[ring];
541 while (descnt++ < IMX_MAX_DESC) {
542 IMXENETBufDesc bd;
543 int len;
545 imx_enet_read_bd(&bd, addr);
546 if ((bd.flags & ENET_BD_R) == 0) {
547 /* Run out of descriptors to transmit. */
549 trace_imx_eth_tx_bd_busy();
551 break;
553 len = bd.length;
554 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
555 len = ENET_MAX_FRAME_SIZE - frame_size;
556 s->regs[ENET_EIR] |= ENET_INT_BABT;
558 dma_memory_read(&address_space_memory, bd.data, ptr, len);
559 ptr += len;
560 frame_size += len;
561 if (bd.flags & ENET_BD_L) {
562 int csum = 0;
564 if (bd.option & ENET_BD_PINS) {
565 csum |= (CSUM_TCP | CSUM_UDP);
567 if (bd.option & ENET_BD_IINS) {
568 csum |= CSUM_IP;
570 if (csum) {
571 net_checksum_calculate(s->frame, frame_size, csum);
574 /* Last buffer in frame. */
576 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
577 ptr = s->frame;
579 frame_size = 0;
580 if (bd.option & ENET_BD_TX_INT) {
581 s->regs[ENET_EIR] |= int_txf;
583 /* Indicate that we've updated the last buffer descriptor. */
584 bd.last_buffer = ENET_BD_BDU;
586 if (bd.option & ENET_BD_TX_INT) {
587 s->regs[ENET_EIR] |= int_txb;
589 bd.flags &= ~ENET_BD_R;
590 /* Write back the modified descriptor. */
591 imx_enet_write_bd(&bd, addr);
592 /* Advance to the next descriptor. */
593 if ((bd.flags & ENET_BD_W) != 0) {
594 addr = s->regs[tdsr];
595 } else {
596 addr += sizeof(bd);
600 s->tx_descriptor[ring] = addr;
602 imx_eth_update(s);
605 static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
607 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
608 imx_enet_do_tx(s, index);
609 } else {
610 imx_fec_do_tx(s);
614 static void imx_eth_enable_rx(IMXFECState *s, bool flush)
616 IMXFECBufDesc bd;
618 imx_fec_read_bd(&bd, s->rx_descriptor);
620 s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
622 if (!s->regs[ENET_RDAR]) {
623 trace_imx_eth_rx_bd_full();
624 } else if (flush) {
625 qemu_flush_queued_packets(qemu_get_queue(s->nic));
629 static void imx_eth_reset(DeviceState *d)
631 IMXFECState *s = IMX_FEC(d);
633 /* Reset the Device */
634 memset(s->regs, 0, sizeof(s->regs));
635 s->regs[ENET_ECR] = 0xf0000000;
636 s->regs[ENET_MIBC] = 0xc0000000;
637 s->regs[ENET_RCR] = 0x05ee0001;
638 s->regs[ENET_OPD] = 0x00010000;
640 s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24)
641 | (s->conf.macaddr.a[1] << 16)
642 | (s->conf.macaddr.a[2] << 8)
643 | s->conf.macaddr.a[3];
644 s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24)
645 | (s->conf.macaddr.a[5] << 16)
646 | 0x8808;
648 if (s->is_fec) {
649 s->regs[ENET_FRBR] = 0x00000600;
650 s->regs[ENET_FRSR] = 0x00000500;
651 s->regs[ENET_MIIGSK_ENR] = 0x00000006;
652 } else {
653 s->regs[ENET_RAEM] = 0x00000004;
654 s->regs[ENET_RAFL] = 0x00000004;
655 s->regs[ENET_TAEM] = 0x00000004;
656 s->regs[ENET_TAFL] = 0x00000008;
657 s->regs[ENET_TIPG] = 0x0000000c;
658 s->regs[ENET_FTRL] = 0x000007ff;
659 s->regs[ENET_ATPER] = 0x3b9aca00;
662 s->rx_descriptor = 0;
663 memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
665 /* We also reset the PHY */
666 imx_phy_reset(s);
669 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
671 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
672 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
673 return 0;
676 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
678 switch (index) {
679 case ENET_FRBR:
680 case ENET_FRSR:
681 case ENET_MIIGSK_CFGR:
682 case ENET_MIIGSK_ENR:
683 return s->regs[index];
684 default:
685 return imx_default_read(s, index);
689 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
691 switch (index) {
692 case ENET_RSFL:
693 case ENET_RSEM:
694 case ENET_RAEM:
695 case ENET_RAFL:
696 case ENET_TSEM:
697 case ENET_TAEM:
698 case ENET_TAFL:
699 case ENET_TIPG:
700 case ENET_FTRL:
701 case ENET_TACC:
702 case ENET_RACC:
703 case ENET_ATCR:
704 case ENET_ATVR:
705 case ENET_ATOFF:
706 case ENET_ATPER:
707 case ENET_ATCOR:
708 case ENET_ATINC:
709 case ENET_ATSTMP:
710 case ENET_TGSR:
711 case ENET_TCSR0:
712 case ENET_TCCR0:
713 case ENET_TCSR1:
714 case ENET_TCCR1:
715 case ENET_TCSR2:
716 case ENET_TCCR2:
717 case ENET_TCSR3:
718 case ENET_TCCR3:
719 return s->regs[index];
720 default:
721 return imx_default_read(s, index);
725 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
727 uint32_t value = 0;
728 IMXFECState *s = IMX_FEC(opaque);
729 uint32_t index = offset >> 2;
731 switch (index) {
732 case ENET_EIR:
733 case ENET_EIMR:
734 case ENET_RDAR:
735 case ENET_TDAR:
736 case ENET_ECR:
737 case ENET_MMFR:
738 case ENET_MSCR:
739 case ENET_MIBC:
740 case ENET_RCR:
741 case ENET_TCR:
742 case ENET_PALR:
743 case ENET_PAUR:
744 case ENET_OPD:
745 case ENET_IAUR:
746 case ENET_IALR:
747 case ENET_GAUR:
748 case ENET_GALR:
749 case ENET_TFWR:
750 case ENET_RDSR:
751 case ENET_TDSR:
752 case ENET_MRBR:
753 value = s->regs[index];
754 break;
755 default:
756 if (s->is_fec) {
757 value = imx_fec_read(s, index);
758 } else {
759 value = imx_enet_read(s, index);
761 break;
764 trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
766 return value;
769 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
771 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
772 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
773 return;
776 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
778 switch (index) {
779 case ENET_FRBR:
780 /* FRBR is read only */
781 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
782 TYPE_IMX_FEC, __func__);
783 break;
784 case ENET_FRSR:
785 s->regs[index] = (value & 0x000003fc) | 0x00000400;
786 break;
787 case ENET_MIIGSK_CFGR:
788 s->regs[index] = value & 0x00000053;
789 break;
790 case ENET_MIIGSK_ENR:
791 s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
792 break;
793 default:
794 imx_default_write(s, index, value);
795 break;
799 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
801 switch (index) {
802 case ENET_RSFL:
803 case ENET_RSEM:
804 case ENET_RAEM:
805 case ENET_RAFL:
806 case ENET_TSEM:
807 case ENET_TAEM:
808 case ENET_TAFL:
809 s->regs[index] = value & 0x000001ff;
810 break;
811 case ENET_TIPG:
812 s->regs[index] = value & 0x0000001f;
813 break;
814 case ENET_FTRL:
815 s->regs[index] = value & 0x00003fff;
816 break;
817 case ENET_TACC:
818 s->regs[index] = value & 0x00000019;
819 break;
820 case ENET_RACC:
821 s->regs[index] = value & 0x000000C7;
822 break;
823 case ENET_ATCR:
824 s->regs[index] = value & 0x00002a9d;
825 break;
826 case ENET_ATVR:
827 case ENET_ATOFF:
828 case ENET_ATPER:
829 s->regs[index] = value;
830 break;
831 case ENET_ATSTMP:
832 /* ATSTMP is read only */
833 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
834 TYPE_IMX_FEC, __func__);
835 break;
836 case ENET_ATCOR:
837 s->regs[index] = value & 0x7fffffff;
838 break;
839 case ENET_ATINC:
840 s->regs[index] = value & 0x00007f7f;
841 break;
842 case ENET_TGSR:
843 /* implement clear timer flag */
844 s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */
845 break;
846 case ENET_TCSR0:
847 case ENET_TCSR1:
848 case ENET_TCSR2:
849 case ENET_TCSR3:
850 s->regs[index] &= ~(value & 0x00000080); /* W1C bits */
851 s->regs[index] &= ~0x0000007d; /* writable fields */
852 s->regs[index] |= (value & 0x0000007d);
853 break;
854 case ENET_TCCR0:
855 case ENET_TCCR1:
856 case ENET_TCCR2:
857 case ENET_TCCR3:
858 s->regs[index] = value;
859 break;
860 default:
861 imx_default_write(s, index, value);
862 break;
866 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
867 unsigned size)
869 IMXFECState *s = IMX_FEC(opaque);
870 const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
871 uint32_t index = offset >> 2;
873 trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
875 switch (index) {
876 case ENET_EIR:
877 s->regs[index] &= ~value;
878 break;
879 case ENET_EIMR:
880 s->regs[index] = value;
881 break;
882 case ENET_RDAR:
883 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
884 if (!s->regs[index]) {
885 imx_eth_enable_rx(s, true);
887 } else {
888 s->regs[index] = 0;
890 break;
891 case ENET_TDAR1:
892 case ENET_TDAR2:
893 if (unlikely(single_tx_ring)) {
894 qemu_log_mask(LOG_GUEST_ERROR,
895 "[%s]%s: trying to access TDAR2 or TDAR1\n",
896 TYPE_IMX_FEC, __func__);
897 return;
899 /* fall through */
900 case ENET_TDAR:
901 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
902 s->regs[index] = ENET_TDAR_TDAR;
903 imx_eth_do_tx(s, index);
905 s->regs[index] = 0;
906 break;
907 case ENET_ECR:
908 if (value & ENET_ECR_RESET) {
909 return imx_eth_reset(DEVICE(s));
911 s->regs[index] = value;
912 if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
913 s->regs[ENET_RDAR] = 0;
914 s->rx_descriptor = s->regs[ENET_RDSR];
915 s->regs[ENET_TDAR] = 0;
916 s->regs[ENET_TDAR1] = 0;
917 s->regs[ENET_TDAR2] = 0;
918 s->tx_descriptor[0] = s->regs[ENET_TDSR];
919 s->tx_descriptor[1] = s->regs[ENET_TDSR1];
920 s->tx_descriptor[2] = s->regs[ENET_TDSR2];
922 break;
923 case ENET_MMFR:
924 s->regs[index] = value;
925 if (extract32(value, 29, 1)) {
926 /* This is a read operation */
927 s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
928 imx_phy_read(s,
929 extract32(value,
930 18, 10)));
931 } else {
932 /* This is a write operation */
933 imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
935 /* raise the interrupt as the PHY operation is done */
936 s->regs[ENET_EIR] |= ENET_INT_MII;
937 break;
938 case ENET_MSCR:
939 s->regs[index] = value & 0xfe;
940 break;
941 case ENET_MIBC:
942 /* TODO: Implement MIB. */
943 s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
944 break;
945 case ENET_RCR:
946 s->regs[index] = value & 0x07ff003f;
947 /* TODO: Implement LOOP mode. */
948 break;
949 case ENET_TCR:
950 /* We transmit immediately, so raise GRA immediately. */
951 s->regs[index] = value;
952 if (value & 1) {
953 s->regs[ENET_EIR] |= ENET_INT_GRA;
955 break;
956 case ENET_PALR:
957 s->regs[index] = value;
958 s->conf.macaddr.a[0] = value >> 24;
959 s->conf.macaddr.a[1] = value >> 16;
960 s->conf.macaddr.a[2] = value >> 8;
961 s->conf.macaddr.a[3] = value;
962 break;
963 case ENET_PAUR:
964 s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
965 s->conf.macaddr.a[4] = value >> 24;
966 s->conf.macaddr.a[5] = value >> 16;
967 break;
968 case ENET_OPD:
969 s->regs[index] = (value & 0x0000ffff) | 0x00010000;
970 break;
971 case ENET_IAUR:
972 case ENET_IALR:
973 case ENET_GAUR:
974 case ENET_GALR:
975 /* TODO: implement MAC hash filtering. */
976 break;
977 case ENET_TFWR:
978 if (s->is_fec) {
979 s->regs[index] = value & 0x3;
980 } else {
981 s->regs[index] = value & 0x13f;
983 break;
984 case ENET_RDSR:
985 if (s->is_fec) {
986 s->regs[index] = value & ~3;
987 } else {
988 s->regs[index] = value & ~7;
990 s->rx_descriptor = s->regs[index];
991 break;
992 case ENET_TDSR:
993 if (s->is_fec) {
994 s->regs[index] = value & ~3;
995 } else {
996 s->regs[index] = value & ~7;
998 s->tx_descriptor[0] = s->regs[index];
999 break;
1000 case ENET_TDSR1:
1001 if (unlikely(single_tx_ring)) {
1002 qemu_log_mask(LOG_GUEST_ERROR,
1003 "[%s]%s: trying to access TDSR1\n",
1004 TYPE_IMX_FEC, __func__);
1005 return;
1008 s->regs[index] = value & ~7;
1009 s->tx_descriptor[1] = s->regs[index];
1010 break;
1011 case ENET_TDSR2:
1012 if (unlikely(single_tx_ring)) {
1013 qemu_log_mask(LOG_GUEST_ERROR,
1014 "[%s]%s: trying to access TDSR2\n",
1015 TYPE_IMX_FEC, __func__);
1016 return;
1019 s->regs[index] = value & ~7;
1020 s->tx_descriptor[2] = s->regs[index];
1021 break;
1022 case ENET_MRBR:
1023 s->regs[index] = value & 0x00003ff0;
1024 break;
1025 default:
1026 if (s->is_fec) {
1027 imx_fec_write(s, index, value);
1028 } else {
1029 imx_enet_write(s, index, value);
1031 return;
1034 imx_eth_update(s);
1037 static bool imx_eth_can_receive(NetClientState *nc)
1039 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1041 return !!s->regs[ENET_RDAR];
1044 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1045 size_t len)
1047 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1048 IMXFECBufDesc bd;
1049 uint32_t flags = 0;
1050 uint32_t addr;
1051 uint32_t crc;
1052 uint32_t buf_addr;
1053 uint8_t *crc_ptr;
1054 unsigned int buf_len;
1055 size_t size = len;
1057 trace_imx_fec_receive(size);
1059 if (!s->regs[ENET_RDAR]) {
1060 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1061 TYPE_IMX_FEC, __func__);
1062 return 0;
1065 /* 4 bytes for the CRC. */
1066 size += 4;
1067 crc = cpu_to_be32(crc32(~0, buf, size));
1068 crc_ptr = (uint8_t *) &crc;
1070 /* Huge frames are truncated. */
1071 if (size > ENET_MAX_FRAME_SIZE) {
1072 size = ENET_MAX_FRAME_SIZE;
1073 flags |= ENET_BD_TR | ENET_BD_LG;
1076 /* Frames larger than the user limit just set error flags. */
1077 if (size > (s->regs[ENET_RCR] >> 16)) {
1078 flags |= ENET_BD_LG;
1081 addr = s->rx_descriptor;
1082 while (size > 0) {
1083 imx_fec_read_bd(&bd, addr);
1084 if ((bd.flags & ENET_BD_E) == 0) {
1085 /* No descriptors available. Bail out. */
1087 * FIXME: This is wrong. We should probably either
1088 * save the remainder for when more RX buffers are
1089 * available, or flag an error.
1091 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1092 TYPE_IMX_FEC, __func__);
1093 break;
1095 buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1096 bd.length = buf_len;
1097 size -= buf_len;
1099 trace_imx_fec_receive_len(addr, bd.length);
1101 /* The last 4 bytes are the CRC. */
1102 if (size < 4) {
1103 buf_len += size - 4;
1105 buf_addr = bd.data;
1106 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1107 buf += buf_len;
1108 if (size < 4) {
1109 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1110 crc_ptr, 4 - size);
1111 crc_ptr += 4 - size;
1113 bd.flags &= ~ENET_BD_E;
1114 if (size == 0) {
1115 /* Last buffer in frame. */
1116 bd.flags |= flags | ENET_BD_L;
1118 trace_imx_fec_receive_last(bd.flags);
1120 s->regs[ENET_EIR] |= ENET_INT_RXF;
1121 } else {
1122 s->regs[ENET_EIR] |= ENET_INT_RXB;
1124 imx_fec_write_bd(&bd, addr);
1125 /* Advance to the next descriptor. */
1126 if ((bd.flags & ENET_BD_W) != 0) {
1127 addr = s->regs[ENET_RDSR];
1128 } else {
1129 addr += sizeof(bd);
1132 s->rx_descriptor = addr;
1133 imx_eth_enable_rx(s, false);
1134 imx_eth_update(s);
1135 return len;
1138 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1139 size_t len)
1141 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1142 IMXENETBufDesc bd;
1143 uint32_t flags = 0;
1144 uint32_t addr;
1145 uint32_t crc;
1146 uint32_t buf_addr;
1147 uint8_t *crc_ptr;
1148 unsigned int buf_len;
1149 size_t size = len;
1150 bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1152 trace_imx_enet_receive(size);
1154 if (!s->regs[ENET_RDAR]) {
1155 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1156 TYPE_IMX_FEC, __func__);
1157 return 0;
1160 /* 4 bytes for the CRC. */
1161 size += 4;
1162 crc = cpu_to_be32(crc32(~0, buf, size));
1163 crc_ptr = (uint8_t *) &crc;
1165 if (shift16) {
1166 size += 2;
1169 /* Huge frames are truncated. */
1170 if (size > s->regs[ENET_FTRL]) {
1171 size = s->regs[ENET_FTRL];
1172 flags |= ENET_BD_TR | ENET_BD_LG;
1175 /* Frames larger than the user limit just set error flags. */
1176 if (size > (s->regs[ENET_RCR] >> 16)) {
1177 flags |= ENET_BD_LG;
1180 addr = s->rx_descriptor;
1181 while (size > 0) {
1182 imx_enet_read_bd(&bd, addr);
1183 if ((bd.flags & ENET_BD_E) == 0) {
1184 /* No descriptors available. Bail out. */
1186 * FIXME: This is wrong. We should probably either
1187 * save the remainder for when more RX buffers are
1188 * available, or flag an error.
1190 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1191 TYPE_IMX_FEC, __func__);
1192 break;
1194 buf_len = MIN(size, s->regs[ENET_MRBR]);
1195 bd.length = buf_len;
1196 size -= buf_len;
1198 trace_imx_enet_receive_len(addr, bd.length);
1200 /* The last 4 bytes are the CRC. */
1201 if (size < 4) {
1202 buf_len += size - 4;
1204 buf_addr = bd.data;
1206 if (shift16) {
1208 * If SHIFT16 bit of ENETx_RACC register is set we need to
1209 * align the payload to 4-byte boundary.
1211 const uint8_t zeros[2] = { 0 };
1213 dma_memory_write(&address_space_memory, buf_addr,
1214 zeros, sizeof(zeros));
1216 buf_addr += sizeof(zeros);
1217 buf_len -= sizeof(zeros);
1219 /* We only do this once per Ethernet frame */
1220 shift16 = false;
1223 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1224 buf += buf_len;
1225 if (size < 4) {
1226 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1227 crc_ptr, 4 - size);
1228 crc_ptr += 4 - size;
1230 bd.flags &= ~ENET_BD_E;
1231 if (size == 0) {
1232 /* Last buffer in frame. */
1233 bd.flags |= flags | ENET_BD_L;
1235 trace_imx_enet_receive_last(bd.flags);
1237 /* Indicate that we've updated the last buffer descriptor. */
1238 bd.last_buffer = ENET_BD_BDU;
1239 if (bd.option & ENET_BD_RX_INT) {
1240 s->regs[ENET_EIR] |= ENET_INT_RXF;
1242 } else {
1243 if (bd.option & ENET_BD_RX_INT) {
1244 s->regs[ENET_EIR] |= ENET_INT_RXB;
1247 imx_enet_write_bd(&bd, addr);
1248 /* Advance to the next descriptor. */
1249 if ((bd.flags & ENET_BD_W) != 0) {
1250 addr = s->regs[ENET_RDSR];
1251 } else {
1252 addr += sizeof(bd);
1255 s->rx_descriptor = addr;
1256 imx_eth_enable_rx(s, false);
1257 imx_eth_update(s);
1258 return len;
1261 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1262 size_t len)
1264 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1266 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1267 return imx_enet_receive(nc, buf, len);
1268 } else {
1269 return imx_fec_receive(nc, buf, len);
1273 static const MemoryRegionOps imx_eth_ops = {
1274 .read = imx_eth_read,
1275 .write = imx_eth_write,
1276 .valid.min_access_size = 4,
1277 .valid.max_access_size = 4,
1278 .endianness = DEVICE_NATIVE_ENDIAN,
1281 static void imx_eth_cleanup(NetClientState *nc)
1283 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1285 s->nic = NULL;
1288 static NetClientInfo imx_eth_net_info = {
1289 .type = NET_CLIENT_DRIVER_NIC,
1290 .size = sizeof(NICState),
1291 .can_receive = imx_eth_can_receive,
1292 .receive = imx_eth_receive,
1293 .cleanup = imx_eth_cleanup,
1294 .link_status_changed = imx_eth_set_link,
1298 static void imx_eth_realize(DeviceState *dev, Error **errp)
1300 IMXFECState *s = IMX_FEC(dev);
1301 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1303 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1304 TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1305 sysbus_init_mmio(sbd, &s->iomem);
1306 sysbus_init_irq(sbd, &s->irq[0]);
1307 sysbus_init_irq(sbd, &s->irq[1]);
1309 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1311 s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1312 object_get_typename(OBJECT(dev)),
1313 dev->id, s);
1315 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1318 static Property imx_eth_properties[] = {
1319 DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1320 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1321 DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0),
1322 DEFINE_PROP_END_OF_LIST(),
1325 static void imx_eth_class_init(ObjectClass *klass, void *data)
1327 DeviceClass *dc = DEVICE_CLASS(klass);
1329 dc->vmsd = &vmstate_imx_eth;
1330 dc->reset = imx_eth_reset;
1331 device_class_set_props(dc, imx_eth_properties);
1332 dc->realize = imx_eth_realize;
1333 dc->desc = "i.MX FEC/ENET Ethernet Controller";
1336 static void imx_fec_init(Object *obj)
1338 IMXFECState *s = IMX_FEC(obj);
1340 s->is_fec = true;
1343 static void imx_enet_init(Object *obj)
1345 IMXFECState *s = IMX_FEC(obj);
1347 s->is_fec = false;
1350 static const TypeInfo imx_fec_info = {
1351 .name = TYPE_IMX_FEC,
1352 .parent = TYPE_SYS_BUS_DEVICE,
1353 .instance_size = sizeof(IMXFECState),
1354 .instance_init = imx_fec_init,
1355 .class_init = imx_eth_class_init,
1358 static const TypeInfo imx_enet_info = {
1359 .name = TYPE_IMX_ENET,
1360 .parent = TYPE_IMX_FEC,
1361 .instance_init = imx_enet_init,
1364 static void imx_eth_register_types(void)
1366 type_register_static(&imx_fec_info);
1367 type_register_static(&imx_enet_info);
1370 type_init(imx_eth_register_types)