2 * PA-RISC emulation cpu definitions for qemu.
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "exec/cpu-defs.h"
26 /* PA-RISC 1.x processors have a strong memory model. */
27 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
28 a weak memory model, but with TLB bits that force ordering on a per-page
29 basis. It's probably easier to fall back to a strong memory model. */
30 #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
32 #define MMU_KERNEL_IDX 0
33 #define MMU_USER_IDX 3
34 #define MMU_PHYS_IDX 4
35 #define TARGET_INSN_START_EXTRA_WORDS 1
37 /* Hardware exceptions, interupts, faults, and traps. */
38 #define EXCP_HPMC 1 /* high priority machine check */
39 #define EXCP_POWER_FAIL 2
40 #define EXCP_RC 3 /* recovery counter */
41 #define EXCP_EXT_INTERRUPT 4 /* external interrupt */
42 #define EXCP_LPMC 5 /* low priority machine check */
43 #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
44 #define EXCP_IMP 7 /* instruction memory protection trap */
45 #define EXCP_ILL 8 /* illegal instruction trap */
46 #define EXCP_BREAK 9 /* break instruction */
47 #define EXCP_PRIV_OPR 10 /* privileged operation trap */
48 #define EXCP_PRIV_REG 11 /* privileged register trap */
49 #define EXCP_OVERFLOW 12 /* signed overflow trap */
50 #define EXCP_COND 13 /* trap-on-condition */
51 #define EXCP_ASSIST 14 /* assist exception trap */
52 #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
53 #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
54 #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
55 #define EXCP_DMP 18 /* data memory protection trap */
56 #define EXCP_DMB 19 /* data memory break trap */
57 #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
58 #define EXCP_PAGE_REF 21 /* page reference trap */
59 #define EXCP_ASSIST_EMU 22 /* assist emulation trap */
60 #define EXCP_HPT 23 /* high-privilege transfer trap */
61 #define EXCP_LPT 24 /* low-privilege transfer trap */
62 #define EXCP_TB 25 /* taken branch trap */
63 #define EXCP_DMAR 26 /* data memory access rights trap */
64 #define EXCP_DMPI 27 /* data memory protection id trap */
65 #define EXCP_UNALIGN 28 /* unaligned data reference trap */
66 #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
68 /* Exceptions for linux-user emulation. */
69 #define EXCP_SYSCALL 30
70 #define EXCP_SYSCALL_LWS 31
72 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
73 #define PSW_I 0x00000001
74 #define PSW_D 0x00000002
75 #define PSW_P 0x00000004
76 #define PSW_Q 0x00000008
77 #define PSW_R 0x00000010
78 #define PSW_F 0x00000020
79 #define PSW_G 0x00000040 /* PA1.x only */
80 #define PSW_O 0x00000080 /* PA2.0 only */
81 #define PSW_CB 0x0000ff00
82 #define PSW_M 0x00010000
83 #define PSW_V 0x00020000
84 #define PSW_C 0x00040000
85 #define PSW_B 0x00080000
86 #define PSW_X 0x00100000
87 #define PSW_N 0x00200000
88 #define PSW_L 0x00400000
89 #define PSW_H 0x00800000
90 #define PSW_T 0x01000000
91 #define PSW_S 0x02000000
92 #define PSW_E 0x04000000
94 #define PSW_W 0x08000000 /* PA2.0 only */
98 #define PSW_Z 0x40000000 /* PA1.x only */
99 #define PSW_Y 0x80000000 /* PA1.x only */
101 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
102 | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
104 /* ssm/rsm instructions number PSW_W and PSW_E differently */
105 #define PSW_SM_I PSW_I /* Enable External Interrupts */
106 #define PSW_SM_D PSW_D
107 #define PSW_SM_P PSW_P
108 #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
109 #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
111 #define PSW_SM_E 0x100
112 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
136 typedef struct CPUHPPAState CPUHPPAState
;
138 #if TARGET_REGISTER_BITS == 32
139 typedef uint32_t target_ureg
;
140 typedef int32_t target_sreg
;
141 #define TREG_FMT_lx "%08"PRIx32
142 #define TREG_FMT_ld "%"PRId32
144 typedef uint64_t target_ureg
;
145 typedef int64_t target_sreg
;
146 #define TREG_FMT_lx "%016"PRIx64
147 #define TREG_FMT_ld "%"PRId64
158 unsigned page_size
: 4;
159 unsigned ar_type
: 3;
162 unsigned entry_valid
: 1;
163 unsigned access_id
: 16;
166 struct CPUHPPAState
{
169 uint64_t sr
[8]; /* stored shifted into place for gva */
171 target_ureg psw
; /* All psw bits except the following: */
172 target_ureg psw_n
; /* boolean */
173 target_sreg psw_v
; /* in most significant bit */
175 /* Splitting the carry-borrow field into the MSB and "the rest", allows
176 * for "the rest" to be deleted when it is unused, but the MSB is in use.
177 * In addition, it's easier to compute carry-in for bit B+1 than it is to
178 * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
179 * host has the appropriate add-with-carry insn to compute the msb).
180 * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
182 target_ureg psw_cb
; /* in least significant bit of next nibble */
183 target_ureg psw_cb_msb
; /* boolean */
185 target_ureg iaoq_f
; /* front */
186 target_ureg iaoq_b
; /* back, aka next instruction */
190 uint32_t fr0_shadow
; /* flags, c, ca/cq, rm, d, enables */
191 float_status fp_status
;
193 target_ureg cr
[32]; /* control registers */
194 target_ureg cr_back
[2]; /* back of cr17/cr18 */
195 target_ureg shadow
[7]; /* shadow registers */
197 /* ??? The number of entries isn't specified by the architecture. */
198 #define HPPA_TLB_ENTRIES 256
199 #define HPPA_BTLB_ENTRIES 0
201 /* ??? Implement a unified itlb/dtlb for the moment. */
202 /* ??? We should use a more intelligent data structure. */
203 hppa_tlb_entry tlb
[HPPA_TLB_ENTRIES
];
209 * @env: #CPUHPPAState
218 CPUNegativeOffsetState neg
;
220 QEMUTimer
*alarm_timer
;
224 typedef CPUHPPAState CPUArchState
;
225 typedef HPPACPU ArchCPU
;
227 #include "exec/cpu-all.h"
229 static inline int cpu_mmu_index(CPUHPPAState
*env
, bool ifetch
)
231 #ifdef CONFIG_USER_ONLY
234 if (env
->psw
& (ifetch
? PSW_C
: PSW_D
)) {
235 return env
->iaoq_f
& 3;
237 return MMU_PHYS_IDX
; /* mmu disabled */
241 void hppa_translate_init(void);
243 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
245 static inline target_ulong
hppa_form_gva_psw(target_ureg psw
, uint64_t spc
,
248 #ifdef CONFIG_USER_ONLY
251 off
&= (psw
& PSW_W
? 0x3fffffffffffffffull
: 0xffffffffull
);
256 static inline target_ulong
hppa_form_gva(CPUHPPAState
*env
, uint64_t spc
,
259 return hppa_form_gva_psw(env
->psw
, spc
, off
);
262 /* Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
263 * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
266 #define TB_FLAG_SR_SAME PSW_I
267 #define TB_FLAG_PRIV_SHIFT 8
269 static inline void cpu_get_tb_cpu_state(CPUHPPAState
*env
, target_ulong
*pc
,
270 target_ulong
*cs_base
,
273 uint32_t flags
= env
->psw_n
* PSW_N
;
275 /* TB lookup assumes that PC contains the complete virtual address.
276 If we leave space+offset separate, we'll get ITLB misses to an
277 incomplete virtual address. This also means that we must separate
278 out current cpu priviledge from the low bits of IAOQ_F. */
279 #ifdef CONFIG_USER_ONLY
280 *pc
= env
->iaoq_f
& -4;
281 *cs_base
= env
->iaoq_b
& -4;
283 /* ??? E, T, H, L, B, P bits need to be here, when implemented. */
284 flags
|= env
->psw
& (PSW_W
| PSW_C
| PSW_D
);
285 flags
|= (env
->iaoq_f
& 3) << TB_FLAG_PRIV_SHIFT
;
287 *pc
= (env
->psw
& PSW_C
288 ? hppa_form_gva_psw(env
->psw
, env
->iasq_f
, env
->iaoq_f
& -4)
290 *cs_base
= env
->iasq_f
;
292 /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
293 low 32-bits of CS_BASE. This will succeed for all direct branches,
294 which is the primary case we care about -- using goto_tb within a page.
295 Failure is indicated by a zero difference. */
296 if (env
->iasq_f
== env
->iasq_b
) {
297 target_sreg diff
= env
->iaoq_b
- env
->iaoq_f
;
298 if (TARGET_REGISTER_BITS
== 32 || diff
== (int32_t)diff
) {
299 *cs_base
|= (uint32_t)diff
;
302 if ((env
->sr
[4] == env
->sr
[5])
303 & (env
->sr
[4] == env
->sr
[6])
304 & (env
->sr
[4] == env
->sr
[7])) {
305 flags
|= TB_FLAG_SR_SAME
;
312 target_ureg
cpu_hppa_get_psw(CPUHPPAState
*env
);
313 void cpu_hppa_put_psw(CPUHPPAState
*env
, target_ureg
);
314 void cpu_hppa_loaded_fr0(CPUHPPAState
*env
);
316 #ifdef CONFIG_USER_ONLY
317 static inline void cpu_hppa_change_prot_id(CPUHPPAState
*env
) { }
319 void cpu_hppa_change_prot_id(CPUHPPAState
*env
);
322 #define cpu_signal_handler cpu_hppa_signal_handler
324 int cpu_hppa_signal_handler(int host_signum
, void *pinfo
, void *puc
);
325 hwaddr
hppa_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
);
326 int hppa_cpu_gdb_read_register(CPUState
*cpu
, GByteArray
*buf
, int reg
);
327 int hppa_cpu_gdb_write_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
328 void hppa_cpu_do_interrupt(CPUState
*cpu
);
329 bool hppa_cpu_exec_interrupt(CPUState
*cpu
, int int_req
);
330 void hppa_cpu_dump_state(CPUState
*cs
, FILE *f
, int);
331 bool hppa_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
332 MMUAccessType access_type
, int mmu_idx
,
333 bool probe
, uintptr_t retaddr
);
334 #ifndef CONFIG_USER_ONLY
335 int hppa_get_physical_address(CPUHPPAState
*env
, vaddr addr
, int mmu_idx
,
336 int type
, hwaddr
*pphys
, int *pprot
);
337 extern const MemoryRegionOps hppa_io_eir_ops
;
338 extern const VMStateDescription vmstate_hppa_cpu
;
339 void hppa_cpu_alarm_timer(void *);
340 int hppa_artype_for_page(CPUHPPAState
*env
, target_ulong vaddr
);
342 void QEMU_NORETURN
hppa_dynamic_excp(CPUHPPAState
*env
, int excp
, uintptr_t ra
);
344 #endif /* HPPA_CPU_H */