2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
19 #include <sys/ioctl.h>
22 #include <linux/kvm.h>
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/hw_accel.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/device_tree.h"
34 #include "mmu-hash64.h"
36 #include "hw/sysbus.h"
37 #include "hw/ppc/spapr.h"
38 #include "hw/ppc/spapr_cpu_core.h"
40 #include "hw/ppc/ppc.h"
41 #include "migration/qemu-file-types.h"
42 #include "sysemu/watchdog.h"
44 #include "exec/gdbstub.h"
45 #include "exec/memattrs.h"
46 #include "exec/ram_addr.h"
47 #include "sysemu/hostmem.h"
48 #include "qemu/cutils.h"
49 #include "qemu/main-loop.h"
50 #include "qemu/mmap-alloc.h"
52 #include "sysemu/kvm_int.h"
54 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
56 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
60 static int cap_interrupt_unset
;
61 static int cap_interrupt_level
;
62 static int cap_segstate
;
63 static int cap_booke_sregs
;
64 static int cap_ppc_smt
;
65 static int cap_ppc_smt_possible
;
66 static int cap_spapr_tce
;
67 static int cap_spapr_tce_64
;
68 static int cap_spapr_multitce
;
69 static int cap_spapr_vfio
;
71 static int cap_one_reg
;
73 static int cap_ppc_watchdog
;
75 static int cap_htab_fd
;
76 static int cap_fixup_hcalls
;
77 static int cap_htm
; /* Hardware transactional memory support */
78 static int cap_mmu_radix
;
79 static int cap_mmu_hash_v3
;
81 static int cap_resize_hpt
;
82 static int cap_ppc_pvr_compat
;
83 static int cap_ppc_safe_cache
;
84 static int cap_ppc_safe_bounds_check
;
85 static int cap_ppc_safe_indirect_branch
;
86 static int cap_ppc_count_cache_flush_assist
;
87 static int cap_ppc_nested_kvm_hv
;
88 static int cap_large_decr
;
90 static uint32_t debug_inst_opcode
;
93 * XXX We have a race condition where we actually have a level triggered
94 * interrupt, but the infrastructure can't expose that yet, so the guest
95 * takes but ignores it, goes to sleep and never gets notified that there's
96 * still an interrupt pending.
98 * As a quick workaround, let's just wake up again 20 ms after we injected
99 * an interrupt. That way we can assure that we're always reinjecting
100 * interrupts in case the guest swallowed them.
102 static QEMUTimer
*idle_timer
;
104 static void kvm_kick_cpu(void *opaque
)
106 PowerPCCPU
*cpu
= opaque
;
108 qemu_cpu_kick(CPU(cpu
));
112 * Check whether we are running with KVM-PR (instead of KVM-HV). This
113 * should only be used for fallback tests - generally we should use
114 * explicit capabilities for the features we want, rather than
115 * assuming what is/isn't available depending on the KVM variant.
117 static bool kvmppc_is_pr(KVMState
*ks
)
119 /* Assume KVM-PR if the GET_PVINFO capability is available */
120 return kvm_vm_check_extension(ks
, KVM_CAP_PPC_GET_PVINFO
) != 0;
123 static int kvm_ppc_register_host_cpu_type(MachineState
*ms
);
124 static void kvmppc_get_cpu_characteristics(KVMState
*s
);
125 static int kvmppc_get_dec_bits(void);
127 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
129 cap_interrupt_unset
= kvm_check_extension(s
, KVM_CAP_PPC_UNSET_IRQ
);
130 cap_interrupt_level
= kvm_check_extension(s
, KVM_CAP_PPC_IRQ_LEVEL
);
131 cap_segstate
= kvm_check_extension(s
, KVM_CAP_PPC_SEGSTATE
);
132 cap_booke_sregs
= kvm_check_extension(s
, KVM_CAP_PPC_BOOKE_SREGS
);
133 cap_ppc_smt_possible
= kvm_vm_check_extension(s
, KVM_CAP_PPC_SMT_POSSIBLE
);
134 cap_spapr_tce
= kvm_check_extension(s
, KVM_CAP_SPAPR_TCE
);
135 cap_spapr_tce_64
= kvm_check_extension(s
, KVM_CAP_SPAPR_TCE_64
);
136 cap_spapr_multitce
= kvm_check_extension(s
, KVM_CAP_SPAPR_MULTITCE
);
137 cap_spapr_vfio
= kvm_vm_check_extension(s
, KVM_CAP_SPAPR_TCE_VFIO
);
138 cap_one_reg
= kvm_check_extension(s
, KVM_CAP_ONE_REG
);
139 cap_hior
= kvm_check_extension(s
, KVM_CAP_PPC_HIOR
);
140 cap_epr
= kvm_check_extension(s
, KVM_CAP_PPC_EPR
);
141 cap_ppc_watchdog
= kvm_check_extension(s
, KVM_CAP_PPC_BOOKE_WATCHDOG
);
143 * Note: we don't set cap_papr here, because this capability is
144 * only activated after this by kvmppc_set_papr()
146 cap_htab_fd
= kvm_vm_check_extension(s
, KVM_CAP_PPC_HTAB_FD
);
147 cap_fixup_hcalls
= kvm_check_extension(s
, KVM_CAP_PPC_FIXUP_HCALL
);
148 cap_ppc_smt
= kvm_vm_check_extension(s
, KVM_CAP_PPC_SMT
);
149 cap_htm
= kvm_vm_check_extension(s
, KVM_CAP_PPC_HTM
);
150 cap_mmu_radix
= kvm_vm_check_extension(s
, KVM_CAP_PPC_MMU_RADIX
);
151 cap_mmu_hash_v3
= kvm_vm_check_extension(s
, KVM_CAP_PPC_MMU_HASH_V3
);
152 cap_xive
= kvm_vm_check_extension(s
, KVM_CAP_PPC_IRQ_XIVE
);
153 cap_resize_hpt
= kvm_vm_check_extension(s
, KVM_CAP_SPAPR_RESIZE_HPT
);
154 kvmppc_get_cpu_characteristics(s
);
155 cap_ppc_nested_kvm_hv
= kvm_vm_check_extension(s
, KVM_CAP_PPC_NESTED_HV
);
156 cap_large_decr
= kvmppc_get_dec_bits();
158 * Note: setting it to false because there is not such capability
159 * in KVM at this moment.
161 * TODO: call kvm_vm_check_extension() with the right capability
162 * after the kernel starts implementing it.
164 cap_ppc_pvr_compat
= false;
166 if (!cap_interrupt_level
) {
167 fprintf(stderr
, "KVM: Couldn't find level irq capability. Expect the "
168 "VM to stall at times!\n");
171 kvm_ppc_register_host_cpu_type(ms
);
176 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
181 static int kvm_arch_sync_sregs(PowerPCCPU
*cpu
)
183 CPUPPCState
*cenv
= &cpu
->env
;
184 CPUState
*cs
= CPU(cpu
);
185 struct kvm_sregs sregs
;
188 if (cenv
->excp_model
== POWERPC_EXCP_BOOKE
) {
190 * What we're really trying to say is "if we're on BookE, we
191 * use the native PVR for now". This is the only sane way to
192 * check it though, so we potentially confuse users that they
193 * can run BookE guests on BookS. Let's hope nobody dares
199 fprintf(stderr
, "kvm error: missing PVR setting capability\n");
204 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
209 sregs
.pvr
= cenv
->spr
[SPR_PVR
];
210 return kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
213 /* Set up a shared TLB array with KVM */
214 static int kvm_booke206_tlb_init(PowerPCCPU
*cpu
)
216 CPUPPCState
*env
= &cpu
->env
;
217 CPUState
*cs
= CPU(cpu
);
218 struct kvm_book3e_206_tlb_params params
= {};
219 struct kvm_config_tlb cfg
= {};
220 unsigned int entries
= 0;
223 if (!kvm_enabled() ||
224 !kvm_check_extension(cs
->kvm_state
, KVM_CAP_SW_TLB
)) {
228 assert(ARRAY_SIZE(params
.tlb_sizes
) == BOOKE206_MAX_TLBN
);
230 for (i
= 0; i
< BOOKE206_MAX_TLBN
; i
++) {
231 params
.tlb_sizes
[i
] = booke206_tlb_size(env
, i
);
232 params
.tlb_ways
[i
] = booke206_tlb_ways(env
, i
);
233 entries
+= params
.tlb_sizes
[i
];
236 assert(entries
== env
->nb_tlb
);
237 assert(sizeof(struct kvm_book3e_206_tlb_entry
) == sizeof(ppcmas_tlb_t
));
239 env
->tlb_dirty
= true;
241 cfg
.array
= (uintptr_t)env
->tlb
.tlbm
;
242 cfg
.array_len
= sizeof(ppcmas_tlb_t
) * entries
;
243 cfg
.params
= (uintptr_t)¶ms
;
244 cfg
.mmu_type
= KVM_MMU_FSL_BOOKE_NOHV
;
246 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_SW_TLB
, 0, (uintptr_t)&cfg
);
248 fprintf(stderr
, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
249 __func__
, strerror(-ret
));
253 env
->kvm_sw_tlb
= true;
258 #if defined(TARGET_PPC64)
259 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info
*info
, Error
**errp
)
263 assert(kvm_state
!= NULL
);
265 if (!kvm_check_extension(kvm_state
, KVM_CAP_PPC_GET_SMMU_INFO
)) {
266 error_setg(errp
, "KVM doesn't expose the MMU features it supports");
267 error_append_hint(errp
, "Consider switching to a newer KVM\n");
271 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_GET_SMMU_INFO
, info
);
276 error_setg_errno(errp
, -ret
,
277 "KVM failed to provide the MMU features it supports");
280 struct ppc_radix_page_info
*kvm_get_radix_page_info(void)
282 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
283 struct ppc_radix_page_info
*radix_page_info
;
284 struct kvm_ppc_rmmu_info rmmu_info
;
287 if (!kvm_check_extension(s
, KVM_CAP_PPC_MMU_RADIX
)) {
290 if (kvm_vm_ioctl(s
, KVM_PPC_GET_RMMU_INFO
, &rmmu_info
)) {
293 radix_page_info
= g_malloc0(sizeof(*radix_page_info
));
294 radix_page_info
->count
= 0;
295 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
296 if (rmmu_info
.ap_encodings
[i
]) {
297 radix_page_info
->entries
[i
] = rmmu_info
.ap_encodings
[i
];
298 radix_page_info
->count
++;
301 return radix_page_info
;
304 target_ulong
kvmppc_configure_v3_mmu(PowerPCCPU
*cpu
,
305 bool radix
, bool gtse
,
308 CPUState
*cs
= CPU(cpu
);
311 struct kvm_ppc_mmuv3_cfg cfg
= {
312 .process_table
= proc_tbl
,
316 flags
|= KVM_PPC_MMUV3_RADIX
;
319 flags
|= KVM_PPC_MMUV3_GTSE
;
322 ret
= kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_CONFIGURE_V3_MMU
, &cfg
);
329 return H_NOT_AVAILABLE
;
335 bool kvmppc_hpt_needs_host_contiguous_pages(void)
337 static struct kvm_ppc_smmu_info smmu_info
;
339 if (!kvm_enabled()) {
343 kvm_get_smmu_info(&smmu_info
, &error_fatal
);
344 return !!(smmu_info
.flags
& KVM_PPC_PAGE_SIZES_REAL
);
347 void kvm_check_mmu(PowerPCCPU
*cpu
, Error
**errp
)
349 struct kvm_ppc_smmu_info smmu_info
;
351 Error
*local_err
= NULL
;
353 /* For now, we only have anything to check on hash64 MMUs */
354 if (!cpu
->hash64_opts
|| !kvm_enabled()) {
358 kvm_get_smmu_info(&smmu_info
, &local_err
);
360 error_propagate(errp
, local_err
);
364 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)
365 && !(smmu_info
.flags
& KVM_PPC_1T_SEGMENTS
)) {
367 "KVM does not support 1TiB segments which guest expects");
371 if (smmu_info
.slb_size
< cpu
->hash64_opts
->slb_size
) {
372 error_setg(errp
, "KVM only supports %u SLB entries, but guest needs %u",
373 smmu_info
.slb_size
, cpu
->hash64_opts
->slb_size
);
378 * Verify that every pagesize supported by the cpu model is
379 * supported by KVM with the same encodings
381 for (iq
= 0; iq
< ARRAY_SIZE(cpu
->hash64_opts
->sps
); iq
++) {
382 PPCHash64SegmentPageSizes
*qsps
= &cpu
->hash64_opts
->sps
[iq
];
383 struct kvm_ppc_one_seg_page_size
*ksps
;
385 for (ik
= 0; ik
< ARRAY_SIZE(smmu_info
.sps
); ik
++) {
386 if (qsps
->page_shift
== smmu_info
.sps
[ik
].page_shift
) {
390 if (ik
>= ARRAY_SIZE(smmu_info
.sps
)) {
391 error_setg(errp
, "KVM doesn't support for base page shift %u",
396 ksps
= &smmu_info
.sps
[ik
];
397 if (ksps
->slb_enc
!= qsps
->slb_enc
) {
399 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
400 ksps
->slb_enc
, ksps
->page_shift
, qsps
->slb_enc
);
404 for (jq
= 0; jq
< ARRAY_SIZE(qsps
->enc
); jq
++) {
405 for (jk
= 0; jk
< ARRAY_SIZE(ksps
->enc
); jk
++) {
406 if (qsps
->enc
[jq
].page_shift
== ksps
->enc
[jk
].page_shift
) {
411 if (jk
>= ARRAY_SIZE(ksps
->enc
)) {
412 error_setg(errp
, "KVM doesn't support page shift %u/%u",
413 qsps
->enc
[jq
].page_shift
, qsps
->page_shift
);
416 if (qsps
->enc
[jq
].pte_enc
!= ksps
->enc
[jk
].pte_enc
) {
418 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
419 ksps
->enc
[jk
].pte_enc
, qsps
->enc
[jq
].page_shift
,
420 qsps
->page_shift
, qsps
->enc
[jq
].pte_enc
);
426 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
428 * Mostly what guest pagesizes we can use are related to the
429 * host pages used to map guest RAM, which is handled in the
430 * platform code. Cache-Inhibited largepages (64k) however are
431 * used for I/O, so if they're mapped to the host at all it
432 * will be a normal mapping, not a special hugepage one used
435 if (getpagesize() < 0x10000) {
437 "KVM can't supply 64kiB CI pages, which guest expects");
441 #endif /* !defined (TARGET_PPC64) */
443 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
445 return POWERPC_CPU(cpu
)->vcpu_id
;
449 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
450 * only 1 watchpoint, so array size of 4 is sufficient for now.
452 #define MAX_HW_BKPTS 4
454 static struct HWBreakpoint
{
457 } hw_debug_points
[MAX_HW_BKPTS
];
459 static CPUWatchpoint hw_watchpoint
;
461 /* Default there is no breakpoint and watchpoint supported */
462 static int max_hw_breakpoint
;
463 static int max_hw_watchpoint
;
464 static int nb_hw_breakpoint
;
465 static int nb_hw_watchpoint
;
467 static void kvmppc_hw_debug_points_init(CPUPPCState
*cenv
)
469 if (cenv
->excp_model
== POWERPC_EXCP_BOOKE
) {
470 max_hw_breakpoint
= 2;
471 max_hw_watchpoint
= 2;
474 if ((max_hw_breakpoint
+ max_hw_watchpoint
) > MAX_HW_BKPTS
) {
475 fprintf(stderr
, "Error initializing h/w breakpoints\n");
480 int kvm_arch_init_vcpu(CPUState
*cs
)
482 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
483 CPUPPCState
*cenv
= &cpu
->env
;
486 /* Synchronize sregs with kvm */
487 ret
= kvm_arch_sync_sregs(cpu
);
489 if (ret
== -EINVAL
) {
490 error_report("Register sync failed... If you're using kvm-hv.ko,"
491 " only \"-cpu host\" is possible");
496 idle_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, kvm_kick_cpu
, cpu
);
498 switch (cenv
->mmu_model
) {
499 case POWERPC_MMU_BOOKE206
:
500 /* This target supports access to KVM's guest TLB */
501 ret
= kvm_booke206_tlb_init(cpu
);
503 case POWERPC_MMU_2_07
:
504 if (!cap_htm
&& !kvmppc_is_pr(cs
->kvm_state
)) {
506 * KVM-HV has transactional memory on POWER8 also without
507 * the KVM_CAP_PPC_HTM extension, so enable it here
508 * instead as long as it's availble to userspace on the
511 if (qemu_getauxval(AT_HWCAP2
) & PPC_FEATURE2_HAS_HTM
) {
520 kvm_get_one_reg(cs
, KVM_REG_PPC_DEBUG_INST
, &debug_inst_opcode
);
521 kvmppc_hw_debug_points_init(cenv
);
526 int kvm_arch_destroy_vcpu(CPUState
*cs
)
531 static void kvm_sw_tlb_put(PowerPCCPU
*cpu
)
533 CPUPPCState
*env
= &cpu
->env
;
534 CPUState
*cs
= CPU(cpu
);
535 struct kvm_dirty_tlb dirty_tlb
;
536 unsigned char *bitmap
;
539 if (!env
->kvm_sw_tlb
) {
543 bitmap
= g_malloc((env
->nb_tlb
+ 7) / 8);
544 memset(bitmap
, 0xFF, (env
->nb_tlb
+ 7) / 8);
546 dirty_tlb
.bitmap
= (uintptr_t)bitmap
;
547 dirty_tlb
.num_dirty
= env
->nb_tlb
;
549 ret
= kvm_vcpu_ioctl(cs
, KVM_DIRTY_TLB
, &dirty_tlb
);
551 fprintf(stderr
, "%s: KVM_DIRTY_TLB: %s\n",
552 __func__
, strerror(-ret
));
558 static void kvm_get_one_spr(CPUState
*cs
, uint64_t id
, int spr
)
560 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
561 CPUPPCState
*env
= &cpu
->env
;
566 struct kvm_one_reg reg
= {
568 .addr
= (uintptr_t) &val
,
572 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
574 trace_kvm_failed_spr_get(spr
, strerror(errno
));
576 switch (id
& KVM_REG_SIZE_MASK
) {
577 case KVM_REG_SIZE_U32
:
578 env
->spr
[spr
] = val
.u32
;
581 case KVM_REG_SIZE_U64
:
582 env
->spr
[spr
] = val
.u64
;
586 /* Don't handle this size yet */
592 static void kvm_put_one_spr(CPUState
*cs
, uint64_t id
, int spr
)
594 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
595 CPUPPCState
*env
= &cpu
->env
;
600 struct kvm_one_reg reg
= {
602 .addr
= (uintptr_t) &val
,
606 switch (id
& KVM_REG_SIZE_MASK
) {
607 case KVM_REG_SIZE_U32
:
608 val
.u32
= env
->spr
[spr
];
611 case KVM_REG_SIZE_U64
:
612 val
.u64
= env
->spr
[spr
];
616 /* Don't handle this size yet */
620 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
622 trace_kvm_failed_spr_set(spr
, strerror(errno
));
626 static int kvm_put_fp(CPUState
*cs
)
628 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
629 CPUPPCState
*env
= &cpu
->env
;
630 struct kvm_one_reg reg
;
634 if (env
->insns_flags
& PPC_FLOAT
) {
635 uint64_t fpscr
= env
->fpscr
;
636 bool vsx
= !!(env
->insns_flags2
& PPC2_VSX
);
638 reg
.id
= KVM_REG_PPC_FPSCR
;
639 reg
.addr
= (uintptr_t)&fpscr
;
640 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
642 trace_kvm_failed_fpscr_set(strerror(errno
));
646 for (i
= 0; i
< 32; i
++) {
648 uint64_t *fpr
= cpu_fpr_ptr(&cpu
->env
, i
);
649 uint64_t *vsrl
= cpu_vsrl_ptr(&cpu
->env
, i
);
651 #ifdef HOST_WORDS_BIGENDIAN
652 vsr
[0] = float64_val(*fpr
);
656 vsr
[1] = float64_val(*fpr
);
658 reg
.addr
= (uintptr_t) &vsr
;
659 reg
.id
= vsx
? KVM_REG_PPC_VSR(i
) : KVM_REG_PPC_FPR(i
);
661 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
663 trace_kvm_failed_fp_set(vsx
? "VSR" : "FPR", i
,
670 if (env
->insns_flags
& PPC_ALTIVEC
) {
671 reg
.id
= KVM_REG_PPC_VSCR
;
672 reg
.addr
= (uintptr_t)&env
->vscr
;
673 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
675 trace_kvm_failed_vscr_set(strerror(errno
));
679 for (i
= 0; i
< 32; i
++) {
680 reg
.id
= KVM_REG_PPC_VR(i
);
681 reg
.addr
= (uintptr_t)cpu_avr_ptr(env
, i
);
682 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
684 trace_kvm_failed_vr_set(i
, strerror(errno
));
693 static int kvm_get_fp(CPUState
*cs
)
695 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
696 CPUPPCState
*env
= &cpu
->env
;
697 struct kvm_one_reg reg
;
701 if (env
->insns_flags
& PPC_FLOAT
) {
703 bool vsx
= !!(env
->insns_flags2
& PPC2_VSX
);
705 reg
.id
= KVM_REG_PPC_FPSCR
;
706 reg
.addr
= (uintptr_t)&fpscr
;
707 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
709 trace_kvm_failed_fpscr_get(strerror(errno
));
715 for (i
= 0; i
< 32; i
++) {
717 uint64_t *fpr
= cpu_fpr_ptr(&cpu
->env
, i
);
718 uint64_t *vsrl
= cpu_vsrl_ptr(&cpu
->env
, i
);
720 reg
.addr
= (uintptr_t) &vsr
;
721 reg
.id
= vsx
? KVM_REG_PPC_VSR(i
) : KVM_REG_PPC_FPR(i
);
723 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
725 trace_kvm_failed_fp_get(vsx
? "VSR" : "FPR", i
,
729 #ifdef HOST_WORDS_BIGENDIAN
744 if (env
->insns_flags
& PPC_ALTIVEC
) {
745 reg
.id
= KVM_REG_PPC_VSCR
;
746 reg
.addr
= (uintptr_t)&env
->vscr
;
747 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
749 trace_kvm_failed_vscr_get(strerror(errno
));
753 for (i
= 0; i
< 32; i
++) {
754 reg
.id
= KVM_REG_PPC_VR(i
);
755 reg
.addr
= (uintptr_t)cpu_avr_ptr(env
, i
);
756 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
758 trace_kvm_failed_vr_get(i
, strerror(errno
));
767 #if defined(TARGET_PPC64)
768 static int kvm_get_vpa(CPUState
*cs
)
770 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
771 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
772 struct kvm_one_reg reg
;
775 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
776 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
777 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
779 trace_kvm_failed_vpa_addr_get(strerror(errno
));
783 assert((uintptr_t)&spapr_cpu
->slb_shadow_size
784 == ((uintptr_t)&spapr_cpu
->slb_shadow_addr
+ 8));
785 reg
.id
= KVM_REG_PPC_VPA_SLB
;
786 reg
.addr
= (uintptr_t)&spapr_cpu
->slb_shadow_addr
;
787 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
789 trace_kvm_failed_slb_get(strerror(errno
));
793 assert((uintptr_t)&spapr_cpu
->dtl_size
794 == ((uintptr_t)&spapr_cpu
->dtl_addr
+ 8));
795 reg
.id
= KVM_REG_PPC_VPA_DTL
;
796 reg
.addr
= (uintptr_t)&spapr_cpu
->dtl_addr
;
797 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
799 trace_kvm_failed_dtl_get(strerror(errno
));
806 static int kvm_put_vpa(CPUState
*cs
)
808 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
809 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
810 struct kvm_one_reg reg
;
814 * SLB shadow or DTL can't be registered unless a master VPA is
815 * registered. That means when restoring state, if a VPA *is*
816 * registered, we need to set that up first. If not, we need to
817 * deregister the others before deregistering the master VPA
819 assert(spapr_cpu
->vpa_addr
820 || !(spapr_cpu
->slb_shadow_addr
|| spapr_cpu
->dtl_addr
));
822 if (spapr_cpu
->vpa_addr
) {
823 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
824 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
825 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
827 trace_kvm_failed_vpa_addr_set(strerror(errno
));
832 assert((uintptr_t)&spapr_cpu
->slb_shadow_size
833 == ((uintptr_t)&spapr_cpu
->slb_shadow_addr
+ 8));
834 reg
.id
= KVM_REG_PPC_VPA_SLB
;
835 reg
.addr
= (uintptr_t)&spapr_cpu
->slb_shadow_addr
;
836 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
838 trace_kvm_failed_slb_set(strerror(errno
));
842 assert((uintptr_t)&spapr_cpu
->dtl_size
843 == ((uintptr_t)&spapr_cpu
->dtl_addr
+ 8));
844 reg
.id
= KVM_REG_PPC_VPA_DTL
;
845 reg
.addr
= (uintptr_t)&spapr_cpu
->dtl_addr
;
846 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
848 trace_kvm_failed_dtl_set(strerror(errno
));
852 if (!spapr_cpu
->vpa_addr
) {
853 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
854 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
855 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
857 trace_kvm_failed_null_vpa_addr_set(strerror(errno
));
864 #endif /* TARGET_PPC64 */
866 int kvmppc_put_books_sregs(PowerPCCPU
*cpu
)
868 CPUPPCState
*env
= &cpu
->env
;
869 struct kvm_sregs sregs
;
872 sregs
.pvr
= env
->spr
[SPR_PVR
];
875 PPCVirtualHypervisorClass
*vhc
=
876 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
877 sregs
.u
.s
.sdr1
= vhc
->encode_hpt_for_kvm_pr(cpu
->vhyp
);
879 sregs
.u
.s
.sdr1
= env
->spr
[SPR_SDR1
];
884 for (i
= 0; i
< ARRAY_SIZE(env
->slb
); i
++) {
885 sregs
.u
.s
.ppc64
.slb
[i
].slbe
= env
->slb
[i
].esid
;
886 if (env
->slb
[i
].esid
& SLB_ESID_V
) {
887 sregs
.u
.s
.ppc64
.slb
[i
].slbe
|= i
;
889 sregs
.u
.s
.ppc64
.slb
[i
].slbv
= env
->slb
[i
].vsid
;
894 for (i
= 0; i
< 16; i
++) {
895 sregs
.u
.s
.ppc32
.sr
[i
] = env
->sr
[i
];
899 for (i
= 0; i
< 8; i
++) {
900 /* Beware. We have to swap upper and lower bits here */
901 sregs
.u
.s
.ppc32
.dbat
[i
] = ((uint64_t)env
->DBAT
[0][i
] << 32)
903 sregs
.u
.s
.ppc32
.ibat
[i
] = ((uint64_t)env
->IBAT
[0][i
] << 32)
907 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
910 int kvm_arch_put_registers(CPUState
*cs
, int level
)
912 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
913 CPUPPCState
*env
= &cpu
->env
;
914 struct kvm_regs regs
;
918 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
925 regs
.xer
= cpu_read_xer(env
);
929 regs
.srr0
= env
->spr
[SPR_SRR0
];
930 regs
.srr1
= env
->spr
[SPR_SRR1
];
932 regs
.sprg0
= env
->spr
[SPR_SPRG0
];
933 regs
.sprg1
= env
->spr
[SPR_SPRG1
];
934 regs
.sprg2
= env
->spr
[SPR_SPRG2
];
935 regs
.sprg3
= env
->spr
[SPR_SPRG3
];
936 regs
.sprg4
= env
->spr
[SPR_SPRG4
];
937 regs
.sprg5
= env
->spr
[SPR_SPRG5
];
938 regs
.sprg6
= env
->spr
[SPR_SPRG6
];
939 regs
.sprg7
= env
->spr
[SPR_SPRG7
];
941 regs
.pid
= env
->spr
[SPR_BOOKE_PID
];
943 for (i
= 0; i
< 32; i
++) {
944 regs
.gpr
[i
] = env
->gpr
[i
];
948 for (i
= 0; i
< 8; i
++) {
949 regs
.cr
|= (env
->crf
[i
] & 15) << (4 * (7 - i
));
952 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
959 if (env
->tlb_dirty
) {
961 env
->tlb_dirty
= false;
964 if (cap_segstate
&& (level
>= KVM_PUT_RESET_STATE
)) {
965 ret
= kvmppc_put_books_sregs(cpu
);
971 if (cap_hior
&& (level
>= KVM_PUT_RESET_STATE
)) {
972 kvm_put_one_spr(cs
, KVM_REG_PPC_HIOR
, SPR_HIOR
);
979 * We deliberately ignore errors here, for kernels which have
980 * the ONE_REG calls, but don't support the specific
981 * registers, there's a reasonable chance things will still
982 * work, at least until we try to migrate.
984 for (i
= 0; i
< 1024; i
++) {
985 uint64_t id
= env
->spr_cb
[i
].one_reg_id
;
988 kvm_put_one_spr(cs
, id
, i
);
994 for (i
= 0; i
< ARRAY_SIZE(env
->tm_gpr
); i
++) {
995 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_GPR(i
), &env
->tm_gpr
[i
]);
997 for (i
= 0; i
< ARRAY_SIZE(env
->tm_vsr
); i
++) {
998 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VSR(i
), &env
->tm_vsr
[i
]);
1000 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_CR
, &env
->tm_cr
);
1001 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_LR
, &env
->tm_lr
);
1002 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_CTR
, &env
->tm_ctr
);
1003 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_FPSCR
, &env
->tm_fpscr
);
1004 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_AMR
, &env
->tm_amr
);
1005 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_PPR
, &env
->tm_ppr
);
1006 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VRSAVE
, &env
->tm_vrsave
);
1007 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VSCR
, &env
->tm_vscr
);
1008 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_DSCR
, &env
->tm_dscr
);
1009 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_TAR
, &env
->tm_tar
);
1013 if (kvm_put_vpa(cs
) < 0) {
1014 trace_kvm_failed_put_vpa();
1018 kvm_set_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &env
->tb_env
->tb_offset
);
1019 #endif /* TARGET_PPC64 */
1025 static void kvm_sync_excp(CPUPPCState
*env
, int vector
, int ivor
)
1027 env
->excp_vectors
[vector
] = env
->spr
[ivor
] + env
->spr
[SPR_BOOKE_IVPR
];
1030 static int kvmppc_get_booke_sregs(PowerPCCPU
*cpu
)
1032 CPUPPCState
*env
= &cpu
->env
;
1033 struct kvm_sregs sregs
;
1036 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1041 if (sregs
.u
.e
.features
& KVM_SREGS_E_BASE
) {
1042 env
->spr
[SPR_BOOKE_CSRR0
] = sregs
.u
.e
.csrr0
;
1043 env
->spr
[SPR_BOOKE_CSRR1
] = sregs
.u
.e
.csrr1
;
1044 env
->spr
[SPR_BOOKE_ESR
] = sregs
.u
.e
.esr
;
1045 env
->spr
[SPR_BOOKE_DEAR
] = sregs
.u
.e
.dear
;
1046 env
->spr
[SPR_BOOKE_MCSR
] = sregs
.u
.e
.mcsr
;
1047 env
->spr
[SPR_BOOKE_TSR
] = sregs
.u
.e
.tsr
;
1048 env
->spr
[SPR_BOOKE_TCR
] = sregs
.u
.e
.tcr
;
1049 env
->spr
[SPR_DECR
] = sregs
.u
.e
.dec
;
1050 env
->spr
[SPR_TBL
] = sregs
.u
.e
.tb
& 0xffffffff;
1051 env
->spr
[SPR_TBU
] = sregs
.u
.e
.tb
>> 32;
1052 env
->spr
[SPR_VRSAVE
] = sregs
.u
.e
.vrsave
;
1055 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206
) {
1056 env
->spr
[SPR_BOOKE_PIR
] = sregs
.u
.e
.pir
;
1057 env
->spr
[SPR_BOOKE_MCSRR0
] = sregs
.u
.e
.mcsrr0
;
1058 env
->spr
[SPR_BOOKE_MCSRR1
] = sregs
.u
.e
.mcsrr1
;
1059 env
->spr
[SPR_BOOKE_DECAR
] = sregs
.u
.e
.decar
;
1060 env
->spr
[SPR_BOOKE_IVPR
] = sregs
.u
.e
.ivpr
;
1063 if (sregs
.u
.e
.features
& KVM_SREGS_E_64
) {
1064 env
->spr
[SPR_BOOKE_EPCR
] = sregs
.u
.e
.epcr
;
1067 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPRG8
) {
1068 env
->spr
[SPR_BOOKE_SPRG8
] = sregs
.u
.e
.sprg8
;
1071 if (sregs
.u
.e
.features
& KVM_SREGS_E_IVOR
) {
1072 env
->spr
[SPR_BOOKE_IVOR0
] = sregs
.u
.e
.ivor_low
[0];
1073 kvm_sync_excp(env
, POWERPC_EXCP_CRITICAL
, SPR_BOOKE_IVOR0
);
1074 env
->spr
[SPR_BOOKE_IVOR1
] = sregs
.u
.e
.ivor_low
[1];
1075 kvm_sync_excp(env
, POWERPC_EXCP_MCHECK
, SPR_BOOKE_IVOR1
);
1076 env
->spr
[SPR_BOOKE_IVOR2
] = sregs
.u
.e
.ivor_low
[2];
1077 kvm_sync_excp(env
, POWERPC_EXCP_DSI
, SPR_BOOKE_IVOR2
);
1078 env
->spr
[SPR_BOOKE_IVOR3
] = sregs
.u
.e
.ivor_low
[3];
1079 kvm_sync_excp(env
, POWERPC_EXCP_ISI
, SPR_BOOKE_IVOR3
);
1080 env
->spr
[SPR_BOOKE_IVOR4
] = sregs
.u
.e
.ivor_low
[4];
1081 kvm_sync_excp(env
, POWERPC_EXCP_EXTERNAL
, SPR_BOOKE_IVOR4
);
1082 env
->spr
[SPR_BOOKE_IVOR5
] = sregs
.u
.e
.ivor_low
[5];
1083 kvm_sync_excp(env
, POWERPC_EXCP_ALIGN
, SPR_BOOKE_IVOR5
);
1084 env
->spr
[SPR_BOOKE_IVOR6
] = sregs
.u
.e
.ivor_low
[6];
1085 kvm_sync_excp(env
, POWERPC_EXCP_PROGRAM
, SPR_BOOKE_IVOR6
);
1086 env
->spr
[SPR_BOOKE_IVOR7
] = sregs
.u
.e
.ivor_low
[7];
1087 kvm_sync_excp(env
, POWERPC_EXCP_FPU
, SPR_BOOKE_IVOR7
);
1088 env
->spr
[SPR_BOOKE_IVOR8
] = sregs
.u
.e
.ivor_low
[8];
1089 kvm_sync_excp(env
, POWERPC_EXCP_SYSCALL
, SPR_BOOKE_IVOR8
);
1090 env
->spr
[SPR_BOOKE_IVOR9
] = sregs
.u
.e
.ivor_low
[9];
1091 kvm_sync_excp(env
, POWERPC_EXCP_APU
, SPR_BOOKE_IVOR9
);
1092 env
->spr
[SPR_BOOKE_IVOR10
] = sregs
.u
.e
.ivor_low
[10];
1093 kvm_sync_excp(env
, POWERPC_EXCP_DECR
, SPR_BOOKE_IVOR10
);
1094 env
->spr
[SPR_BOOKE_IVOR11
] = sregs
.u
.e
.ivor_low
[11];
1095 kvm_sync_excp(env
, POWERPC_EXCP_FIT
, SPR_BOOKE_IVOR11
);
1096 env
->spr
[SPR_BOOKE_IVOR12
] = sregs
.u
.e
.ivor_low
[12];
1097 kvm_sync_excp(env
, POWERPC_EXCP_WDT
, SPR_BOOKE_IVOR12
);
1098 env
->spr
[SPR_BOOKE_IVOR13
] = sregs
.u
.e
.ivor_low
[13];
1099 kvm_sync_excp(env
, POWERPC_EXCP_DTLB
, SPR_BOOKE_IVOR13
);
1100 env
->spr
[SPR_BOOKE_IVOR14
] = sregs
.u
.e
.ivor_low
[14];
1101 kvm_sync_excp(env
, POWERPC_EXCP_ITLB
, SPR_BOOKE_IVOR14
);
1102 env
->spr
[SPR_BOOKE_IVOR15
] = sregs
.u
.e
.ivor_low
[15];
1103 kvm_sync_excp(env
, POWERPC_EXCP_DEBUG
, SPR_BOOKE_IVOR15
);
1105 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPE
) {
1106 env
->spr
[SPR_BOOKE_IVOR32
] = sregs
.u
.e
.ivor_high
[0];
1107 kvm_sync_excp(env
, POWERPC_EXCP_SPEU
, SPR_BOOKE_IVOR32
);
1108 env
->spr
[SPR_BOOKE_IVOR33
] = sregs
.u
.e
.ivor_high
[1];
1109 kvm_sync_excp(env
, POWERPC_EXCP_EFPDI
, SPR_BOOKE_IVOR33
);
1110 env
->spr
[SPR_BOOKE_IVOR34
] = sregs
.u
.e
.ivor_high
[2];
1111 kvm_sync_excp(env
, POWERPC_EXCP_EFPRI
, SPR_BOOKE_IVOR34
);
1114 if (sregs
.u
.e
.features
& KVM_SREGS_E_PM
) {
1115 env
->spr
[SPR_BOOKE_IVOR35
] = sregs
.u
.e
.ivor_high
[3];
1116 kvm_sync_excp(env
, POWERPC_EXCP_EPERFM
, SPR_BOOKE_IVOR35
);
1119 if (sregs
.u
.e
.features
& KVM_SREGS_E_PC
) {
1120 env
->spr
[SPR_BOOKE_IVOR36
] = sregs
.u
.e
.ivor_high
[4];
1121 kvm_sync_excp(env
, POWERPC_EXCP_DOORI
, SPR_BOOKE_IVOR36
);
1122 env
->spr
[SPR_BOOKE_IVOR37
] = sregs
.u
.e
.ivor_high
[5];
1123 kvm_sync_excp(env
, POWERPC_EXCP_DOORCI
, SPR_BOOKE_IVOR37
);
1127 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206_MMU
) {
1128 env
->spr
[SPR_BOOKE_MAS0
] = sregs
.u
.e
.mas0
;
1129 env
->spr
[SPR_BOOKE_MAS1
] = sregs
.u
.e
.mas1
;
1130 env
->spr
[SPR_BOOKE_MAS2
] = sregs
.u
.e
.mas2
;
1131 env
->spr
[SPR_BOOKE_MAS3
] = sregs
.u
.e
.mas7_3
& 0xffffffff;
1132 env
->spr
[SPR_BOOKE_MAS4
] = sregs
.u
.e
.mas4
;
1133 env
->spr
[SPR_BOOKE_MAS6
] = sregs
.u
.e
.mas6
;
1134 env
->spr
[SPR_BOOKE_MAS7
] = sregs
.u
.e
.mas7_3
>> 32;
1135 env
->spr
[SPR_MMUCFG
] = sregs
.u
.e
.mmucfg
;
1136 env
->spr
[SPR_BOOKE_TLB0CFG
] = sregs
.u
.e
.tlbcfg
[0];
1137 env
->spr
[SPR_BOOKE_TLB1CFG
] = sregs
.u
.e
.tlbcfg
[1];
1140 if (sregs
.u
.e
.features
& KVM_SREGS_EXP
) {
1141 env
->spr
[SPR_BOOKE_EPR
] = sregs
.u
.e
.epr
;
1144 if (sregs
.u
.e
.features
& KVM_SREGS_E_PD
) {
1145 env
->spr
[SPR_BOOKE_EPLC
] = sregs
.u
.e
.eplc
;
1146 env
->spr
[SPR_BOOKE_EPSC
] = sregs
.u
.e
.epsc
;
1149 if (sregs
.u
.e
.impl_id
== KVM_SREGS_E_IMPL_FSL
) {
1150 env
->spr
[SPR_E500_SVR
] = sregs
.u
.e
.impl
.fsl
.svr
;
1151 env
->spr
[SPR_Exxx_MCAR
] = sregs
.u
.e
.impl
.fsl
.mcar
;
1152 env
->spr
[SPR_HID0
] = sregs
.u
.e
.impl
.fsl
.hid0
;
1154 if (sregs
.u
.e
.impl
.fsl
.features
& KVM_SREGS_E_FSL_PIDn
) {
1155 env
->spr
[SPR_BOOKE_PID1
] = sregs
.u
.e
.impl
.fsl
.pid1
;
1156 env
->spr
[SPR_BOOKE_PID2
] = sregs
.u
.e
.impl
.fsl
.pid2
;
1163 static int kvmppc_get_books_sregs(PowerPCCPU
*cpu
)
1165 CPUPPCState
*env
= &cpu
->env
;
1166 struct kvm_sregs sregs
;
1170 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1176 ppc_store_sdr1(env
, sregs
.u
.s
.sdr1
);
1182 * The packed SLB array we get from KVM_GET_SREGS only contains
1183 * information about valid entries. So we flush our internal copy
1184 * to get rid of stale ones, then put all valid SLB entries back
1187 memset(env
->slb
, 0, sizeof(env
->slb
));
1188 for (i
= 0; i
< ARRAY_SIZE(env
->slb
); i
++) {
1189 target_ulong rb
= sregs
.u
.s
.ppc64
.slb
[i
].slbe
;
1190 target_ulong rs
= sregs
.u
.s
.ppc64
.slb
[i
].slbv
;
1192 * Only restore valid entries
1194 if (rb
& SLB_ESID_V
) {
1195 ppc_store_slb(cpu
, rb
& 0xfff, rb
& ~0xfffULL
, rs
);
1201 for (i
= 0; i
< 16; i
++) {
1202 env
->sr
[i
] = sregs
.u
.s
.ppc32
.sr
[i
];
1206 for (i
= 0; i
< 8; i
++) {
1207 env
->DBAT
[0][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] & 0xffffffff;
1208 env
->DBAT
[1][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] >> 32;
1209 env
->IBAT
[0][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] & 0xffffffff;
1210 env
->IBAT
[1][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] >> 32;
1216 int kvm_arch_get_registers(CPUState
*cs
)
1218 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1219 CPUPPCState
*env
= &cpu
->env
;
1220 struct kvm_regs regs
;
1224 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
1230 for (i
= 7; i
>= 0; i
--) {
1231 env
->crf
[i
] = cr
& 15;
1235 env
->ctr
= regs
.ctr
;
1237 cpu_write_xer(env
, regs
.xer
);
1238 env
->msr
= regs
.msr
;
1241 env
->spr
[SPR_SRR0
] = regs
.srr0
;
1242 env
->spr
[SPR_SRR1
] = regs
.srr1
;
1244 env
->spr
[SPR_SPRG0
] = regs
.sprg0
;
1245 env
->spr
[SPR_SPRG1
] = regs
.sprg1
;
1246 env
->spr
[SPR_SPRG2
] = regs
.sprg2
;
1247 env
->spr
[SPR_SPRG3
] = regs
.sprg3
;
1248 env
->spr
[SPR_SPRG4
] = regs
.sprg4
;
1249 env
->spr
[SPR_SPRG5
] = regs
.sprg5
;
1250 env
->spr
[SPR_SPRG6
] = regs
.sprg6
;
1251 env
->spr
[SPR_SPRG7
] = regs
.sprg7
;
1253 env
->spr
[SPR_BOOKE_PID
] = regs
.pid
;
1255 for (i
= 0; i
< 32; i
++) {
1256 env
->gpr
[i
] = regs
.gpr
[i
];
1261 if (cap_booke_sregs
) {
1262 ret
= kvmppc_get_booke_sregs(cpu
);
1269 ret
= kvmppc_get_books_sregs(cpu
);
1276 kvm_get_one_spr(cs
, KVM_REG_PPC_HIOR
, SPR_HIOR
);
1283 * We deliberately ignore errors here, for kernels which have
1284 * the ONE_REG calls, but don't support the specific
1285 * registers, there's a reasonable chance things will still
1286 * work, at least until we try to migrate.
1288 for (i
= 0; i
< 1024; i
++) {
1289 uint64_t id
= env
->spr_cb
[i
].one_reg_id
;
1292 kvm_get_one_spr(cs
, id
, i
);
1298 for (i
= 0; i
< ARRAY_SIZE(env
->tm_gpr
); i
++) {
1299 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_GPR(i
), &env
->tm_gpr
[i
]);
1301 for (i
= 0; i
< ARRAY_SIZE(env
->tm_vsr
); i
++) {
1302 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VSR(i
), &env
->tm_vsr
[i
]);
1304 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_CR
, &env
->tm_cr
);
1305 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_LR
, &env
->tm_lr
);
1306 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_CTR
, &env
->tm_ctr
);
1307 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_FPSCR
, &env
->tm_fpscr
);
1308 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_AMR
, &env
->tm_amr
);
1309 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_PPR
, &env
->tm_ppr
);
1310 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VRSAVE
, &env
->tm_vrsave
);
1311 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VSCR
, &env
->tm_vscr
);
1312 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_DSCR
, &env
->tm_dscr
);
1313 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_TAR
, &env
->tm_tar
);
1317 if (kvm_get_vpa(cs
) < 0) {
1318 trace_kvm_failed_get_vpa();
1322 kvm_get_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &env
->tb_env
->tb_offset
);
1329 int kvmppc_set_interrupt(PowerPCCPU
*cpu
, int irq
, int level
)
1331 unsigned virq
= level
? KVM_INTERRUPT_SET_LEVEL
: KVM_INTERRUPT_UNSET
;
1333 if (irq
!= PPC_INTERRUPT_EXT
) {
1337 if (!kvm_enabled() || !cap_interrupt_unset
|| !cap_interrupt_level
) {
1341 kvm_vcpu_ioctl(CPU(cpu
), KVM_INTERRUPT
, &virq
);
1346 #if defined(TARGET_PPC64)
1347 #define PPC_INPUT_INT PPC970_INPUT_INT
1349 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1352 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
1354 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1355 CPUPPCState
*env
= &cpu
->env
;
1359 qemu_mutex_lock_iothread();
1362 * PowerPC QEMU tracks the various core input pins (interrupt,
1363 * critical interrupt, reset, etc) in PPC-specific
1364 * env->irq_input_state.
1366 if (!cap_interrupt_level
&&
1367 run
->ready_for_interrupt_injection
&&
1368 (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1369 (env
->irq_input_state
& (1 << PPC_INPUT_INT
)))
1372 * For now KVM disregards the 'irq' argument. However, in the
1373 * future KVM could cache it in-kernel to avoid a heavyweight
1374 * exit when reading the UIC.
1376 irq
= KVM_INTERRUPT_SET
;
1378 trace_kvm_injected_interrupt(irq
);
1379 r
= kvm_vcpu_ioctl(cs
, KVM_INTERRUPT
, &irq
);
1381 printf("cpu %d fail inject %x\n", cs
->cpu_index
, irq
);
1384 /* Always wake up soon in case the interrupt was level based */
1385 timer_mod(idle_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1386 (NANOSECONDS_PER_SECOND
/ 50));
1390 * We don't know if there are more interrupts pending after
1391 * this. However, the guest will return to userspace in the course
1392 * of handling this one anyways, so we will get a chance to
1396 qemu_mutex_unlock_iothread();
1399 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
1401 return MEMTXATTRS_UNSPECIFIED
;
1404 int kvm_arch_process_async_events(CPUState
*cs
)
1409 static int kvmppc_handle_halt(PowerPCCPU
*cpu
)
1411 CPUState
*cs
= CPU(cpu
);
1412 CPUPPCState
*env
= &cpu
->env
;
1414 if (!(cs
->interrupt_request
& CPU_INTERRUPT_HARD
) && (msr_ee
)) {
1416 cs
->exception_index
= EXCP_HLT
;
1422 /* map dcr access to existing qemu dcr emulation */
1423 static int kvmppc_handle_dcr_read(CPUPPCState
*env
,
1424 uint32_t dcrn
, uint32_t *data
)
1426 if (ppc_dcr_read(env
->dcr_env
, dcrn
, data
) < 0) {
1427 fprintf(stderr
, "Read to unhandled DCR (0x%x)\n", dcrn
);
1433 static int kvmppc_handle_dcr_write(CPUPPCState
*env
,
1434 uint32_t dcrn
, uint32_t data
)
1436 if (ppc_dcr_write(env
->dcr_env
, dcrn
, data
) < 0) {
1437 fprintf(stderr
, "Write to unhandled DCR (0x%x)\n", dcrn
);
1443 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1445 /* Mixed endian case is not handled */
1446 uint32_t sc
= debug_inst_opcode
;
1448 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
1450 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&sc
, sizeof(sc
), 1)) {
1457 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1461 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&sc
, sizeof(sc
), 0) ||
1462 sc
!= debug_inst_opcode
||
1463 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
1471 static int find_hw_breakpoint(target_ulong addr
, int type
)
1475 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
)
1476 <= ARRAY_SIZE(hw_debug_points
));
1478 for (n
= 0; n
< nb_hw_breakpoint
+ nb_hw_watchpoint
; n
++) {
1479 if (hw_debug_points
[n
].addr
== addr
&&
1480 hw_debug_points
[n
].type
== type
) {
1488 static int find_hw_watchpoint(target_ulong addr
, int *flag
)
1492 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_ACCESS
);
1494 *flag
= BP_MEM_ACCESS
;
1498 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_WRITE
);
1500 *flag
= BP_MEM_WRITE
;
1504 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_READ
);
1506 *flag
= BP_MEM_READ
;
1513 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1514 target_ulong len
, int type
)
1516 if ((nb_hw_breakpoint
+ nb_hw_watchpoint
) >= ARRAY_SIZE(hw_debug_points
)) {
1520 hw_debug_points
[nb_hw_breakpoint
+ nb_hw_watchpoint
].addr
= addr
;
1521 hw_debug_points
[nb_hw_breakpoint
+ nb_hw_watchpoint
].type
= type
;
1524 case GDB_BREAKPOINT_HW
:
1525 if (nb_hw_breakpoint
>= max_hw_breakpoint
) {
1529 if (find_hw_breakpoint(addr
, type
) >= 0) {
1536 case GDB_WATCHPOINT_WRITE
:
1537 case GDB_WATCHPOINT_READ
:
1538 case GDB_WATCHPOINT_ACCESS
:
1539 if (nb_hw_watchpoint
>= max_hw_watchpoint
) {
1543 if (find_hw_breakpoint(addr
, type
) >= 0) {
1557 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1558 target_ulong len
, int type
)
1562 n
= find_hw_breakpoint(addr
, type
);
1568 case GDB_BREAKPOINT_HW
:
1572 case GDB_WATCHPOINT_WRITE
:
1573 case GDB_WATCHPOINT_READ
:
1574 case GDB_WATCHPOINT_ACCESS
:
1581 hw_debug_points
[n
] = hw_debug_points
[nb_hw_breakpoint
+ nb_hw_watchpoint
];
1586 void kvm_arch_remove_all_hw_breakpoints(void)
1588 nb_hw_breakpoint
= nb_hw_watchpoint
= 0;
1591 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
1595 /* Software Breakpoint updates */
1596 if (kvm_sw_breakpoints_active(cs
)) {
1597 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1600 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
)
1601 <= ARRAY_SIZE(hw_debug_points
));
1602 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
) <= ARRAY_SIZE(dbg
->arch
.bp
));
1604 if (nb_hw_breakpoint
+ nb_hw_watchpoint
> 0) {
1605 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1606 memset(dbg
->arch
.bp
, 0, sizeof(dbg
->arch
.bp
));
1607 for (n
= 0; n
< nb_hw_breakpoint
+ nb_hw_watchpoint
; n
++) {
1608 switch (hw_debug_points
[n
].type
) {
1609 case GDB_BREAKPOINT_HW
:
1610 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_BREAKPOINT
;
1612 case GDB_WATCHPOINT_WRITE
:
1613 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_WRITE
;
1615 case GDB_WATCHPOINT_READ
:
1616 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_READ
;
1618 case GDB_WATCHPOINT_ACCESS
:
1619 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_WRITE
|
1620 KVMPPC_DEBUG_WATCH_READ
;
1623 cpu_abort(cs
, "Unsupported breakpoint type\n");
1625 dbg
->arch
.bp
[n
].addr
= hw_debug_points
[n
].addr
;
1630 static int kvm_handle_hw_breakpoint(CPUState
*cs
,
1631 struct kvm_debug_exit_arch
*arch_info
)
1637 if (nb_hw_breakpoint
+ nb_hw_watchpoint
> 0) {
1638 if (arch_info
->status
& KVMPPC_DEBUG_BREAKPOINT
) {
1639 n
= find_hw_breakpoint(arch_info
->address
, GDB_BREAKPOINT_HW
);
1643 } else if (arch_info
->status
& (KVMPPC_DEBUG_WATCH_READ
|
1644 KVMPPC_DEBUG_WATCH_WRITE
)) {
1645 n
= find_hw_watchpoint(arch_info
->address
, &flag
);
1648 cs
->watchpoint_hit
= &hw_watchpoint
;
1649 hw_watchpoint
.vaddr
= hw_debug_points
[n
].addr
;
1650 hw_watchpoint
.flags
= flag
;
1657 static int kvm_handle_singlestep(void)
1662 static int kvm_handle_sw_breakpoint(void)
1667 static int kvm_handle_debug(PowerPCCPU
*cpu
, struct kvm_run
*run
)
1669 CPUState
*cs
= CPU(cpu
);
1670 CPUPPCState
*env
= &cpu
->env
;
1671 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1673 if (cs
->singlestep_enabled
) {
1674 return kvm_handle_singlestep();
1677 if (arch_info
->status
) {
1678 return kvm_handle_hw_breakpoint(cs
, arch_info
);
1681 if (kvm_find_sw_breakpoint(cs
, arch_info
->address
)) {
1682 return kvm_handle_sw_breakpoint();
1686 * QEMU is not able to handle debug exception, so inject
1687 * program exception to guest;
1688 * Yes program exception NOT debug exception !!
1689 * When QEMU is using debug resources then debug exception must
1690 * be always set. To achieve this we set MSR_DE and also set
1691 * MSRP_DEP so guest cannot change MSR_DE.
1692 * When emulating debug resource for guest we want guest
1693 * to control MSR_DE (enable/disable debug interrupt on need).
1694 * Supporting both configurations are NOT possible.
1695 * So the result is that we cannot share debug resources
1696 * between QEMU and Guest on BOOKE architecture.
1697 * In the current design QEMU gets the priority over guest,
1698 * this means that if QEMU is using debug resources then guest
1700 * For software breakpoint QEMU uses a privileged instruction;
1701 * So there cannot be any reason that we are here for guest
1702 * set debug exception, only possibility is guest executed a
1703 * privileged / illegal instruction and that's why we are
1704 * injecting a program interrupt.
1706 cpu_synchronize_state(cs
);
1708 * env->nip is PC, so increment this by 4 to use
1709 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1712 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
1713 env
->error_code
= POWERPC_EXCP_INVAL
;
1714 ppc_cpu_do_interrupt(cs
);
1719 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1721 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1722 CPUPPCState
*env
= &cpu
->env
;
1725 qemu_mutex_lock_iothread();
1727 switch (run
->exit_reason
) {
1729 if (run
->dcr
.is_write
) {
1730 trace_kvm_handle_dcr_write();
1731 ret
= kvmppc_handle_dcr_write(env
, run
->dcr
.dcrn
, run
->dcr
.data
);
1733 trace_kvm_handle_dcr_read();
1734 ret
= kvmppc_handle_dcr_read(env
, run
->dcr
.dcrn
, &run
->dcr
.data
);
1738 trace_kvm_handle_halt();
1739 ret
= kvmppc_handle_halt(cpu
);
1741 #if defined(TARGET_PPC64)
1742 case KVM_EXIT_PAPR_HCALL
:
1743 trace_kvm_handle_papr_hcall();
1744 run
->papr_hcall
.ret
= spapr_hypercall(cpu
,
1746 run
->papr_hcall
.args
);
1751 trace_kvm_handle_epr();
1752 run
->epr
.epr
= ldl_phys(cs
->as
, env
->mpic_iack
);
1755 case KVM_EXIT_WATCHDOG
:
1756 trace_kvm_handle_watchdog_expiry();
1757 watchdog_perform_action();
1761 case KVM_EXIT_DEBUG
:
1762 trace_kvm_handle_debug_exception();
1763 if (kvm_handle_debug(cpu
, run
)) {
1767 /* re-enter, this exception was guest-internal */
1772 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
1777 qemu_mutex_unlock_iothread();
1781 int kvmppc_or_tsr_bits(PowerPCCPU
*cpu
, uint32_t tsr_bits
)
1783 CPUState
*cs
= CPU(cpu
);
1784 uint32_t bits
= tsr_bits
;
1785 struct kvm_one_reg reg
= {
1786 .id
= KVM_REG_PPC_OR_TSR
,
1787 .addr
= (uintptr_t) &bits
,
1790 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1793 int kvmppc_clear_tsr_bits(PowerPCCPU
*cpu
, uint32_t tsr_bits
)
1796 CPUState
*cs
= CPU(cpu
);
1797 uint32_t bits
= tsr_bits
;
1798 struct kvm_one_reg reg
= {
1799 .id
= KVM_REG_PPC_CLEAR_TSR
,
1800 .addr
= (uintptr_t) &bits
,
1803 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1806 int kvmppc_set_tcr(PowerPCCPU
*cpu
)
1808 CPUState
*cs
= CPU(cpu
);
1809 CPUPPCState
*env
= &cpu
->env
;
1810 uint32_t tcr
= env
->spr
[SPR_BOOKE_TCR
];
1812 struct kvm_one_reg reg
= {
1813 .id
= KVM_REG_PPC_TCR
,
1814 .addr
= (uintptr_t) &tcr
,
1817 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1820 int kvmppc_booke_watchdog_enable(PowerPCCPU
*cpu
)
1822 CPUState
*cs
= CPU(cpu
);
1825 if (!kvm_enabled()) {
1829 if (!cap_ppc_watchdog
) {
1830 printf("warning: KVM does not support watchdog");
1834 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_BOOKE_WATCHDOG
, 0);
1836 fprintf(stderr
, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1837 __func__
, strerror(-ret
));
1844 static int read_cpuinfo(const char *field
, char *value
, int len
)
1848 int field_len
= strlen(field
);
1851 f
= fopen("/proc/cpuinfo", "r");
1857 if (!fgets(line
, sizeof(line
), f
)) {
1860 if (!strncmp(line
, field
, field_len
)) {
1861 pstrcpy(value
, len
, line
);
1872 uint32_t kvmppc_get_tbfreq(void)
1876 uint32_t retval
= NANOSECONDS_PER_SECOND
;
1878 if (read_cpuinfo("timebase", line
, sizeof(line
))) {
1882 ns
= strchr(line
, ':');
1892 bool kvmppc_get_host_serial(char **value
)
1894 return g_file_get_contents("/proc/device-tree/system-id", value
, NULL
,
1898 bool kvmppc_get_host_model(char **value
)
1900 return g_file_get_contents("/proc/device-tree/model", value
, NULL
, NULL
);
1903 /* Try to find a device tree node for a CPU with clock-frequency property */
1904 static int kvmppc_find_cpu_dt(char *buf
, int buf_len
)
1906 struct dirent
*dirp
;
1909 dp
= opendir(PROC_DEVTREE_CPU
);
1911 printf("Can't open directory " PROC_DEVTREE_CPU
"\n");
1916 while ((dirp
= readdir(dp
)) != NULL
) {
1918 snprintf(buf
, buf_len
, "%s%s/clock-frequency", PROC_DEVTREE_CPU
,
1920 f
= fopen(buf
, "r");
1922 snprintf(buf
, buf_len
, "%s%s", PROC_DEVTREE_CPU
, dirp
->d_name
);
1929 if (buf
[0] == '\0') {
1930 printf("Unknown host!\n");
1937 static uint64_t kvmppc_read_int_dt(const char *filename
)
1946 f
= fopen(filename
, "rb");
1951 len
= fread(&u
, 1, sizeof(u
), f
);
1955 /* property is a 32-bit quantity */
1956 return be32_to_cpu(u
.v32
);
1958 return be64_to_cpu(u
.v64
);
1965 * Read a CPU node property from the host device tree that's a single
1966 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1967 * (can't find or open the property, or doesn't understand the format)
1969 static uint64_t kvmppc_read_int_cpu_dt(const char *propname
)
1971 char buf
[PATH_MAX
], *tmp
;
1974 if (kvmppc_find_cpu_dt(buf
, sizeof(buf
))) {
1978 tmp
= g_strdup_printf("%s/%s", buf
, propname
);
1979 val
= kvmppc_read_int_dt(tmp
);
1985 uint64_t kvmppc_get_clockfreq(void)
1987 return kvmppc_read_int_cpu_dt("clock-frequency");
1990 static int kvmppc_get_dec_bits(void)
1992 int nr_bits
= kvmppc_read_int_cpu_dt("ibm,dec-bits");
2000 static int kvmppc_get_pvinfo(CPUPPCState
*env
, struct kvm_ppc_pvinfo
*pvinfo
)
2002 CPUState
*cs
= env_cpu(env
);
2004 if (kvm_vm_check_extension(cs
->kvm_state
, KVM_CAP_PPC_GET_PVINFO
) &&
2005 !kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_GET_PVINFO
, pvinfo
)) {
2012 int kvmppc_get_hasidle(CPUPPCState
*env
)
2014 struct kvm_ppc_pvinfo pvinfo
;
2016 if (!kvmppc_get_pvinfo(env
, &pvinfo
) &&
2017 (pvinfo
.flags
& KVM_PPC_PVINFO_FLAGS_EV_IDLE
)) {
2024 int kvmppc_get_hypercall(CPUPPCState
*env
, uint8_t *buf
, int buf_len
)
2026 uint32_t *hc
= (uint32_t *)buf
;
2027 struct kvm_ppc_pvinfo pvinfo
;
2029 if (!kvmppc_get_pvinfo(env
, &pvinfo
)) {
2030 memcpy(buf
, pvinfo
.hcall
, buf_len
);
2035 * Fallback to always fail hypercalls regardless of endianness:
2037 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2039 * b .+8 (becomes nop in wrong endian)
2040 * bswap32(li r3, -1)
2043 hc
[0] = cpu_to_be32(0x08000048);
2044 hc
[1] = cpu_to_be32(0x3860ffff);
2045 hc
[2] = cpu_to_be32(0x48000008);
2046 hc
[3] = cpu_to_be32(bswap32(0x3860ffff));
2051 static inline int kvmppc_enable_hcall(KVMState
*s
, target_ulong hcall
)
2053 return kvm_vm_enable_cap(s
, KVM_CAP_PPC_ENABLE_HCALL
, 0, hcall
, 1);
2056 void kvmppc_enable_logical_ci_hcalls(void)
2059 * FIXME: it would be nice if we could detect the cases where
2060 * we're using a device which requires the in kernel
2061 * implementation of these hcalls, but the kernel lacks them and
2062 * produce a warning.
2064 kvmppc_enable_hcall(kvm_state
, H_LOGICAL_CI_LOAD
);
2065 kvmppc_enable_hcall(kvm_state
, H_LOGICAL_CI_STORE
);
2068 void kvmppc_enable_set_mode_hcall(void)
2070 kvmppc_enable_hcall(kvm_state
, H_SET_MODE
);
2073 void kvmppc_enable_clear_ref_mod_hcalls(void)
2075 kvmppc_enable_hcall(kvm_state
, H_CLEAR_REF
);
2076 kvmppc_enable_hcall(kvm_state
, H_CLEAR_MOD
);
2079 void kvmppc_enable_h_page_init(void)
2081 kvmppc_enable_hcall(kvm_state
, H_PAGE_INIT
);
2084 void kvmppc_set_papr(PowerPCCPU
*cpu
)
2086 CPUState
*cs
= CPU(cpu
);
2089 if (!kvm_enabled()) {
2093 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_PAPR
, 0);
2095 error_report("This vCPU type or KVM version does not support PAPR");
2100 * Update the capability flag so we sync the right information
2106 int kvmppc_set_compat(PowerPCCPU
*cpu
, uint32_t compat_pvr
)
2108 return kvm_set_one_reg(CPU(cpu
), KVM_REG_PPC_ARCH_COMPAT
, &compat_pvr
);
2111 void kvmppc_set_mpic_proxy(PowerPCCPU
*cpu
, int mpic_proxy
)
2113 CPUState
*cs
= CPU(cpu
);
2116 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_EPR
, 0, mpic_proxy
);
2117 if (ret
&& mpic_proxy
) {
2118 error_report("This KVM version does not support EPR");
2123 int kvmppc_smt_threads(void)
2125 return cap_ppc_smt
? cap_ppc_smt
: 1;
2128 int kvmppc_set_smt_threads(int smt
)
2132 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_SMT
, 0, smt
, 0);
2139 void kvmppc_hint_smt_possible(Error
**errp
)
2145 assert(kvm_enabled());
2146 if (cap_ppc_smt_possible
) {
2147 g
= g_string_new("Available VSMT modes:");
2148 for (i
= 63; i
>= 0; i
--) {
2149 if ((1UL << i
) & cap_ppc_smt_possible
) {
2150 g_string_append_printf(g
, " %lu", (1UL << i
));
2153 s
= g_string_free(g
, false);
2154 error_append_hint(errp
, "%s.\n", s
);
2157 error_append_hint(errp
,
2158 "This KVM seems to be too old to support VSMT.\n");
2164 uint64_t kvmppc_rma_size(uint64_t current_size
, unsigned int hash_shift
)
2166 struct kvm_ppc_smmu_info info
;
2167 long rampagesize
, best_page_shift
;
2171 * Find the largest hardware supported page size that's less than
2172 * or equal to the (logical) backing page size of guest RAM
2174 kvm_get_smmu_info(&info
, &error_fatal
);
2175 rampagesize
= qemu_minrampagesize();
2176 best_page_shift
= 0;
2178 for (i
= 0; i
< KVM_PPC_PAGE_SIZES_MAX_SZ
; i
++) {
2179 struct kvm_ppc_one_seg_page_size
*sps
= &info
.sps
[i
];
2181 if (!sps
->page_shift
) {
2185 if ((sps
->page_shift
> best_page_shift
)
2186 && ((1UL << sps
->page_shift
) <= rampagesize
)) {
2187 best_page_shift
= sps
->page_shift
;
2191 return MIN(current_size
,
2192 1ULL << (best_page_shift
+ hash_shift
- 7));
2196 bool kvmppc_spapr_use_multitce(void)
2198 return cap_spapr_multitce
;
2201 int kvmppc_spapr_enable_inkernel_multitce(void)
2205 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_ENABLE_HCALL
, 0,
2206 H_PUT_TCE_INDIRECT
, 1);
2208 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_ENABLE_HCALL
, 0,
2215 void *kvmppc_create_spapr_tce(uint32_t liobn
, uint32_t page_shift
,
2216 uint64_t bus_offset
, uint32_t nb_table
,
2217 int *pfd
, bool need_vfio
)
2224 * Must set fd to -1 so we don't try to munmap when called for
2225 * destroying the table, which the upper layers -will- do
2228 if (!cap_spapr_tce
|| (need_vfio
&& !cap_spapr_vfio
)) {
2232 if (cap_spapr_tce_64
) {
2233 struct kvm_create_spapr_tce_64 args
= {
2235 .page_shift
= page_shift
,
2236 .offset
= bus_offset
>> page_shift
,
2240 fd
= kvm_vm_ioctl(kvm_state
, KVM_CREATE_SPAPR_TCE_64
, &args
);
2243 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2247 } else if (cap_spapr_tce
) {
2248 uint64_t window_size
= (uint64_t) nb_table
<< page_shift
;
2249 struct kvm_create_spapr_tce args
= {
2251 .window_size
= window_size
,
2253 if ((window_size
!= args
.window_size
) || bus_offset
) {
2256 fd
= kvm_vm_ioctl(kvm_state
, KVM_CREATE_SPAPR_TCE
, &args
);
2258 fprintf(stderr
, "KVM: Failed to create TCE table for liobn 0x%x\n",
2266 len
= nb_table
* sizeof(uint64_t);
2267 /* FIXME: round this up to page size */
2269 table
= mmap(NULL
, len
, PROT_READ
| PROT_WRITE
, MAP_SHARED
, fd
, 0);
2270 if (table
== MAP_FAILED
) {
2271 fprintf(stderr
, "KVM: Failed to map TCE table for liobn 0x%x\n",
2281 int kvmppc_remove_spapr_tce(void *table
, int fd
, uint32_t nb_table
)
2289 len
= nb_table
* sizeof(uint64_t);
2290 if ((munmap(table
, len
) < 0) ||
2292 fprintf(stderr
, "KVM: Unexpected error removing TCE table: %s",
2294 /* Leak the table */
2300 int kvmppc_reset_htab(int shift_hint
)
2302 uint32_t shift
= shift_hint
;
2304 if (!kvm_enabled()) {
2305 /* Full emulation, tell caller to allocate htab itself */
2308 if (kvm_vm_check_extension(kvm_state
, KVM_CAP_PPC_ALLOC_HTAB
)) {
2310 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_ALLOCATE_HTAB
, &shift
);
2311 if (ret
== -ENOTTY
) {
2313 * At least some versions of PR KVM advertise the
2314 * capability, but don't implement the ioctl(). Oops.
2315 * Return 0 so that we allocate the htab in qemu, as is
2319 } else if (ret
< 0) {
2326 * We have a kernel that predates the htab reset calls. For PR
2327 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2328 * this era, it has allocated a 16MB fixed size hash table
2331 if (kvmppc_is_pr(kvm_state
)) {
2332 /* PR - tell caller to allocate htab */
2335 /* HV - assume 16MB kernel allocated htab */
2340 static inline uint32_t mfpvr(void)
2349 static void alter_insns(uint64_t *word
, uint64_t flags
, bool on
)
2358 static void kvmppc_host_cpu_class_init(ObjectClass
*oc
, void *data
)
2360 PowerPCCPUClass
*pcc
= POWERPC_CPU_CLASS(oc
);
2361 uint32_t dcache_size
= kvmppc_read_int_cpu_dt("d-cache-size");
2362 uint32_t icache_size
= kvmppc_read_int_cpu_dt("i-cache-size");
2364 /* Now fix up the class with information we can query from the host */
2367 alter_insns(&pcc
->insns_flags
, PPC_ALTIVEC
,
2368 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_ALTIVEC
);
2369 alter_insns(&pcc
->insns_flags2
, PPC2_VSX
,
2370 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_VSX
);
2371 alter_insns(&pcc
->insns_flags2
, PPC2_DFP
,
2372 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_DFP
);
2374 if (dcache_size
!= -1) {
2375 pcc
->l1_dcache_size
= dcache_size
;
2378 if (icache_size
!= -1) {
2379 pcc
->l1_icache_size
= icache_size
;
2382 #if defined(TARGET_PPC64)
2383 pcc
->radix_page_info
= kvm_get_radix_page_info();
2385 if ((pcc
->pvr
& 0xffffff00) == CPU_POWERPC_POWER9_DD1
) {
2387 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2388 * compliant. More importantly, advertising ISA 3.00
2389 * architected mode may prevent guests from activating
2390 * necessary DD1 workarounds.
2392 pcc
->pcr_supported
&= ~(PCR_COMPAT_3_00
| PCR_COMPAT_2_07
2393 | PCR_COMPAT_2_06
| PCR_COMPAT_2_05
);
2395 #endif /* defined(TARGET_PPC64) */
2398 bool kvmppc_has_cap_epr(void)
2403 bool kvmppc_has_cap_fixup_hcalls(void)
2405 return cap_fixup_hcalls
;
2408 bool kvmppc_has_cap_htm(void)
2413 bool kvmppc_has_cap_mmu_radix(void)
2415 return cap_mmu_radix
;
2418 bool kvmppc_has_cap_mmu_hash_v3(void)
2420 return cap_mmu_hash_v3
;
2423 static bool kvmppc_power8_host(void)
2428 uint32_t base_pvr
= CPU_POWERPC_POWER_SERVER_MASK
& mfpvr();
2429 ret
= (base_pvr
== CPU_POWERPC_POWER8E_BASE
) ||
2430 (base_pvr
== CPU_POWERPC_POWER8NVL_BASE
) ||
2431 (base_pvr
== CPU_POWERPC_POWER8_BASE
);
2433 #endif /* TARGET_PPC64 */
2437 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c
)
2439 bool l1d_thread_priv_req
= !kvmppc_power8_host();
2441 if (~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_L1D_FLUSH_PR
) {
2443 } else if ((!l1d_thread_priv_req
||
2444 c
.character
& c
.character_mask
& H_CPU_CHAR_L1D_THREAD_PRIV
) &&
2445 (c
.character
& c
.character_mask
2446 & (H_CPU_CHAR_L1D_FLUSH_ORI30
| H_CPU_CHAR_L1D_FLUSH_TRIG2
))) {
2453 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c
)
2455 if (~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
) {
2457 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_SPEC_BAR_ORI31
) {
2464 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c
)
2466 if ((~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_FLUSH_COUNT_CACHE
) &&
2467 (~c
.character
& c
.character_mask
& H_CPU_CHAR_CACHE_COUNT_DIS
) &&
2468 (~c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTRL_SERIALISED
)) {
2469 return SPAPR_CAP_FIXED_NA
;
2470 } else if (c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_FLUSH_COUNT_CACHE
) {
2471 return SPAPR_CAP_WORKAROUND
;
2472 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_CACHE_COUNT_DIS
) {
2473 return SPAPR_CAP_FIXED_CCD
;
2474 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTRL_SERIALISED
) {
2475 return SPAPR_CAP_FIXED_IBS
;
2481 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c
)
2483 if (c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTR_FLUSH_ASSIST
) {
2489 bool kvmppc_has_cap_xive(void)
2494 static void kvmppc_get_cpu_characteristics(KVMState
*s
)
2496 struct kvm_ppc_cpu_char c
;
2500 cap_ppc_safe_cache
= 0;
2501 cap_ppc_safe_bounds_check
= 0;
2502 cap_ppc_safe_indirect_branch
= 0;
2504 ret
= kvm_vm_check_extension(s
, KVM_CAP_PPC_GET_CPU_CHAR
);
2508 ret
= kvm_vm_ioctl(s
, KVM_PPC_GET_CPU_CHAR
, &c
);
2513 cap_ppc_safe_cache
= parse_cap_ppc_safe_cache(c
);
2514 cap_ppc_safe_bounds_check
= parse_cap_ppc_safe_bounds_check(c
);
2515 cap_ppc_safe_indirect_branch
= parse_cap_ppc_safe_indirect_branch(c
);
2516 cap_ppc_count_cache_flush_assist
=
2517 parse_cap_ppc_count_cache_flush_assist(c
);
2520 int kvmppc_get_cap_safe_cache(void)
2522 return cap_ppc_safe_cache
;
2525 int kvmppc_get_cap_safe_bounds_check(void)
2527 return cap_ppc_safe_bounds_check
;
2530 int kvmppc_get_cap_safe_indirect_branch(void)
2532 return cap_ppc_safe_indirect_branch
;
2535 int kvmppc_get_cap_count_cache_flush_assist(void)
2537 return cap_ppc_count_cache_flush_assist
;
2540 bool kvmppc_has_cap_nested_kvm_hv(void)
2542 return !!cap_ppc_nested_kvm_hv
;
2545 int kvmppc_set_cap_nested_kvm_hv(int enable
)
2547 return kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_NESTED_HV
, 0, enable
);
2550 bool kvmppc_has_cap_spapr_vfio(void)
2552 return cap_spapr_vfio
;
2555 int kvmppc_get_cap_large_decr(void)
2557 return cap_large_decr
;
2560 int kvmppc_enable_cap_large_decr(PowerPCCPU
*cpu
, int enable
)
2562 CPUState
*cs
= CPU(cpu
);
2565 kvm_get_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2566 /* Do we need to modify the LPCR? */
2567 if (!!(lpcr
& LPCR_LD
) != !!enable
) {
2573 kvm_set_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2574 kvm_get_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2576 if (!!(lpcr
& LPCR_LD
) != !!enable
) {
2584 PowerPCCPUClass
*kvm_ppc_get_host_cpu_class(void)
2586 uint32_t host_pvr
= mfpvr();
2587 PowerPCCPUClass
*pvr_pcc
;
2589 pvr_pcc
= ppc_cpu_class_by_pvr(host_pvr
);
2590 if (pvr_pcc
== NULL
) {
2591 pvr_pcc
= ppc_cpu_class_by_pvr_mask(host_pvr
);
2597 static int kvm_ppc_register_host_cpu_type(MachineState
*ms
)
2599 TypeInfo type_info
= {
2600 .name
= TYPE_HOST_POWERPC_CPU
,
2601 .class_init
= kvmppc_host_cpu_class_init
,
2603 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2604 PowerPCCPUClass
*pvr_pcc
;
2609 pvr_pcc
= kvm_ppc_get_host_cpu_class();
2610 if (pvr_pcc
== NULL
) {
2613 type_info
.parent
= object_class_get_name(OBJECT_CLASS(pvr_pcc
));
2614 type_register(&type_info
);
2615 if (object_dynamic_cast(OBJECT(ms
), TYPE_SPAPR_MACHINE
)) {
2616 /* override TCG default cpu type with 'host' cpu model */
2617 mc
->default_cpu_type
= TYPE_HOST_POWERPC_CPU
;
2620 oc
= object_class_by_name(type_info
.name
);
2624 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2625 * we want "POWER8" to be a "family" alias that points to the current
2626 * host CPU type, too)
2628 dc
= DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc
));
2629 for (i
= 0; ppc_cpu_aliases
[i
].alias
!= NULL
; i
++) {
2630 if (strcasecmp(ppc_cpu_aliases
[i
].alias
, dc
->desc
) == 0) {
2633 ppc_cpu_aliases
[i
].model
= g_strdup(object_class_get_name(oc
));
2634 suffix
= strstr(ppc_cpu_aliases
[i
].model
, POWERPC_CPU_TYPE_SUFFIX
);
2645 int kvmppc_define_rtas_kernel_token(uint32_t token
, const char *function
)
2647 struct kvm_rtas_token_args args
= {
2651 if (!kvm_check_extension(kvm_state
, KVM_CAP_PPC_RTAS
)) {
2655 strncpy(args
.name
, function
, sizeof(args
.name
) - 1);
2657 return kvm_vm_ioctl(kvm_state
, KVM_PPC_RTAS_DEFINE_TOKEN
, &args
);
2660 int kvmppc_get_htab_fd(bool write
, uint64_t index
, Error
**errp
)
2662 struct kvm_get_htab_fd s
= {
2663 .flags
= write
? KVM_GET_HTAB_WRITE
: 0,
2664 .start_index
= index
,
2669 error_setg(errp
, "KVM version doesn't support %s the HPT",
2670 write
? "writing" : "reading");
2674 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_GET_HTAB_FD
, &s
);
2676 error_setg(errp
, "Unable to open fd for %s HPT %s KVM: %s",
2677 write
? "writing" : "reading", write
? "to" : "from",
2685 int kvmppc_save_htab(QEMUFile
*f
, int fd
, size_t bufsize
, int64_t max_ns
)
2687 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2688 uint8_t buf
[bufsize
];
2692 rc
= read(fd
, buf
, bufsize
);
2694 fprintf(stderr
, "Error reading data from KVM HTAB fd: %s\n",
2698 uint8_t *buffer
= buf
;
2701 struct kvm_get_htab_header
*head
=
2702 (struct kvm_get_htab_header
*) buffer
;
2703 size_t chunksize
= sizeof(*head
) +
2704 HASH_PTE_SIZE_64
* head
->n_valid
;
2706 qemu_put_be32(f
, head
->index
);
2707 qemu_put_be16(f
, head
->n_valid
);
2708 qemu_put_be16(f
, head
->n_invalid
);
2709 qemu_put_buffer(f
, (void *)(head
+ 1),
2710 HASH_PTE_SIZE_64
* head
->n_valid
);
2712 buffer
+= chunksize
;
2718 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) < max_ns
)));
2720 return (rc
== 0) ? 1 : 0;
2723 int kvmppc_load_htab_chunk(QEMUFile
*f
, int fd
, uint32_t index
,
2724 uint16_t n_valid
, uint16_t n_invalid
)
2726 struct kvm_get_htab_header
*buf
;
2727 size_t chunksize
= sizeof(*buf
) + n_valid
* HASH_PTE_SIZE_64
;
2730 buf
= alloca(chunksize
);
2732 buf
->n_valid
= n_valid
;
2733 buf
->n_invalid
= n_invalid
;
2735 qemu_get_buffer(f
, (void *)(buf
+ 1), HASH_PTE_SIZE_64
* n_valid
);
2737 rc
= write(fd
, buf
, chunksize
);
2739 fprintf(stderr
, "Error writing KVM hash table: %s\n",
2743 if (rc
!= chunksize
) {
2744 /* We should never get a short write on a single chunk */
2745 fprintf(stderr
, "Short write, restoring KVM hash table\n");
2751 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2756 void kvm_arch_init_irq_routing(KVMState
*s
)
2760 void kvmppc_read_hptes(ppc_hash_pte64_t
*hptes
, hwaddr ptex
, int n
)
2765 fd
= kvmppc_get_htab_fd(false, ptex
, &error_abort
);
2769 struct kvm_get_htab_header
*hdr
;
2770 int m
= n
< HPTES_PER_GROUP
? n
: HPTES_PER_GROUP
;
2771 char buf
[sizeof(*hdr
) + m
* HASH_PTE_SIZE_64
];
2773 rc
= read(fd
, buf
, sizeof(buf
));
2775 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2778 hdr
= (struct kvm_get_htab_header
*)buf
;
2779 while ((i
< n
) && ((char *)hdr
< (buf
+ rc
))) {
2780 int invalid
= hdr
->n_invalid
, valid
= hdr
->n_valid
;
2782 if (hdr
->index
!= (ptex
+ i
)) {
2783 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2784 " != (%"HWADDR_PRIu
" + %d", hdr
->index
, ptex
, i
);
2787 if (n
- i
< valid
) {
2790 memcpy(hptes
+ i
, hdr
+ 1, HASH_PTE_SIZE_64
* valid
);
2793 if ((n
- i
) < invalid
) {
2796 memset(hptes
+ i
, 0, invalid
* HASH_PTE_SIZE_64
);
2799 hdr
= (struct kvm_get_htab_header
*)
2800 ((char *)(hdr
+ 1) + HASH_PTE_SIZE_64
* hdr
->n_valid
);
2807 void kvmppc_write_hpte(hwaddr ptex
, uint64_t pte0
, uint64_t pte1
)
2811 struct kvm_get_htab_header hdr
;
2816 fd
= kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort
);
2818 buf
.hdr
.n_valid
= 1;
2819 buf
.hdr
.n_invalid
= 0;
2820 buf
.hdr
.index
= ptex
;
2821 buf
.pte0
= cpu_to_be64(pte0
);
2822 buf
.pte1
= cpu_to_be64(pte1
);
2824 rc
= write(fd
, &buf
, sizeof(buf
));
2825 if (rc
!= sizeof(buf
)) {
2826 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2831 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2832 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2837 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
2838 int vector
, PCIDevice
*dev
)
2843 int kvm_arch_release_virq_post(int virq
)
2848 int kvm_arch_msi_data_to_gsi(uint32_t data
)
2850 return data
& 0xffff;
2853 int kvmppc_enable_hwrng(void)
2855 if (!kvm_enabled() || !kvm_check_extension(kvm_state
, KVM_CAP_PPC_HWRNG
)) {
2859 return kvmppc_enable_hcall(kvm_state
, H_RANDOM
);
2862 void kvmppc_check_papr_resize_hpt(Error
**errp
)
2864 if (!kvm_enabled()) {
2865 return; /* No KVM, we're good */
2868 if (cap_resize_hpt
) {
2869 return; /* Kernel has explicit support, we're good */
2872 /* Otherwise fallback on looking for PR KVM */
2873 if (kvmppc_is_pr(kvm_state
)) {
2878 "Hash page table resizing not available with this KVM version");
2881 int kvmppc_resize_hpt_prepare(PowerPCCPU
*cpu
, target_ulong flags
, int shift
)
2883 CPUState
*cs
= CPU(cpu
);
2884 struct kvm_ppc_resize_hpt rhpt
= {
2889 if (!cap_resize_hpt
) {
2893 return kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_RESIZE_HPT_PREPARE
, &rhpt
);
2896 int kvmppc_resize_hpt_commit(PowerPCCPU
*cpu
, target_ulong flags
, int shift
)
2898 CPUState
*cs
= CPU(cpu
);
2899 struct kvm_ppc_resize_hpt rhpt
= {
2904 if (!cap_resize_hpt
) {
2908 return kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_RESIZE_HPT_COMMIT
, &rhpt
);
2912 * This is a helper function to detect a post migration scenario
2913 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2914 * the guest kernel can't handle a PVR value other than the actual host
2915 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2917 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2918 * (so, we're HV), return true. The workaround itself is done in
2921 * The order here is important: we'll only check for KVM PR as a
2922 * fallback if the guest kernel can't handle the situation itself.
2923 * We need to avoid as much as possible querying the running KVM type
2926 bool kvmppc_pvr_workaround_required(PowerPCCPU
*cpu
)
2928 CPUState
*cs
= CPU(cpu
);
2930 if (!kvm_enabled()) {
2934 if (cap_ppc_pvr_compat
) {
2938 return !kvmppc_is_pr(cs
->kvm_state
);
2941 void kvmppc_set_reg_ppc_online(PowerPCCPU
*cpu
, unsigned int online
)
2943 CPUState
*cs
= CPU(cpu
);
2945 if (kvm_enabled()) {
2946 kvm_set_one_reg(cs
, KVM_REG_PPC_ONLINE
, &online
);
2950 void kvmppc_set_reg_tb_offset(PowerPCCPU
*cpu
, int64_t tb_offset
)
2952 CPUState
*cs
= CPU(cpu
);
2954 if (kvm_enabled()) {
2955 kvm_set_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &tb_offset
);