2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/helper-proto.h"
26 #include "helper_regs.h"
27 #include "exec/cpu_ldst.h"
30 #include "qemu/atomic128.h"
32 /* #define DEBUG_OP */
34 static inline bool needs_byteswap(const CPUPPCState
*env
)
36 #if defined(TARGET_WORDS_BIGENDIAN)
43 /*****************************************************************************/
44 /* Memory load and stores */
46 static inline target_ulong
addr_add(CPUPPCState
*env
, target_ulong addr
,
49 #if defined(TARGET_PPC64)
50 if (!msr_is_64bit(env
, env
->msr
)) {
51 return (uint32_t)(addr
+ arg
);
59 void helper_lmw(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
)
61 for (; reg
< 32; reg
++) {
62 if (needs_byteswap(env
)) {
63 env
->gpr
[reg
] = bswap32(cpu_ldl_data_ra(env
, addr
, GETPC()));
65 env
->gpr
[reg
] = cpu_ldl_data_ra(env
, addr
, GETPC());
67 addr
= addr_add(env
, addr
, 4);
71 void helper_stmw(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
)
73 for (; reg
< 32; reg
++) {
74 if (needs_byteswap(env
)) {
75 cpu_stl_data_ra(env
, addr
, bswap32((uint32_t)env
->gpr
[reg
]),
78 cpu_stl_data_ra(env
, addr
, (uint32_t)env
->gpr
[reg
], GETPC());
80 addr
= addr_add(env
, addr
, 4);
84 static void do_lsw(CPUPPCState
*env
, target_ulong addr
, uint32_t nb
,
85 uint32_t reg
, uintptr_t raddr
)
89 for (; nb
> 3; nb
-= 4) {
90 env
->gpr
[reg
] = cpu_ldl_data_ra(env
, addr
, raddr
);
92 addr
= addr_add(env
, addr
, 4);
94 if (unlikely(nb
> 0)) {
96 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
97 env
->gpr
[reg
] |= cpu_ldub_data_ra(env
, addr
, raddr
) << sh
;
98 addr
= addr_add(env
, addr
, 1);
103 void helper_lsw(CPUPPCState
*env
, target_ulong addr
, uint32_t nb
, uint32_t reg
)
105 do_lsw(env
, addr
, nb
, reg
, GETPC());
109 * PPC32 specification says we must generate an exception if rA is in
110 * the range of registers to be loaded. In an other hand, IBM says
111 * this is valid, but rA won't be loaded. For now, I'll follow the
114 void helper_lswx(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
,
115 uint32_t ra
, uint32_t rb
)
117 if (likely(xer_bc
!= 0)) {
118 int num_used_regs
= DIV_ROUND_UP(xer_bc
, 4);
119 if (unlikely((ra
!= 0 && lsw_reg_in_range(reg
, num_used_regs
, ra
)) ||
120 lsw_reg_in_range(reg
, num_used_regs
, rb
))) {
121 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
123 POWERPC_EXCP_INVAL_LSWX
, GETPC());
125 do_lsw(env
, addr
, xer_bc
, reg
, GETPC());
130 void helper_stsw(CPUPPCState
*env
, target_ulong addr
, uint32_t nb
,
135 for (; nb
> 3; nb
-= 4) {
136 cpu_stl_data_ra(env
, addr
, env
->gpr
[reg
], GETPC());
137 reg
= (reg
+ 1) % 32;
138 addr
= addr_add(env
, addr
, 4);
140 if (unlikely(nb
> 0)) {
141 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
142 cpu_stb_data_ra(env
, addr
, (env
->gpr
[reg
] >> sh
) & 0xFF, GETPC());
143 addr
= addr_add(env
, addr
, 1);
148 static void dcbz_common(CPUPPCState
*env
, target_ulong addr
,
149 uint32_t opcode
, bool epid
, uintptr_t retaddr
)
151 target_ulong mask
, dcbz_size
= env
->dcache_line_size
;
154 int mmu_idx
= epid
? PPC_TLB_EPID_STORE
: env
->dmmu_idx
;
156 #if defined(TARGET_PPC64)
157 /* Check for dcbz vs dcbzl on 970 */
158 if (env
->excp_model
== POWERPC_EXCP_970
&&
159 !(opcode
& 0x00200000) && ((env
->spr
[SPR_970_HID5
] >> 7) & 0x3) == 1) {
165 mask
= ~(dcbz_size
- 1);
168 /* Check reservation */
169 if ((env
->reserve_addr
& mask
) == (addr
& mask
)) {
170 env
->reserve_addr
= (target_ulong
)-1ULL;
173 /* Try fast path translate */
174 haddr
= tlb_vaddr_to_host(env
, addr
, MMU_DATA_STORE
, mmu_idx
);
176 memset(haddr
, 0, dcbz_size
);
179 for (i
= 0; i
< dcbz_size
; i
+= 8) {
181 #if !defined(CONFIG_USER_ONLY)
182 /* Does not make sense on USER_ONLY config */
183 cpu_stq_eps_ra(env
, addr
+ i
, 0, retaddr
);
186 cpu_stq_data_ra(env
, addr
+ i
, 0, retaddr
);
192 void helper_dcbz(CPUPPCState
*env
, target_ulong addr
, uint32_t opcode
)
194 dcbz_common(env
, addr
, opcode
, false, GETPC());
197 void helper_dcbzep(CPUPPCState
*env
, target_ulong addr
, uint32_t opcode
)
199 dcbz_common(env
, addr
, opcode
, true, GETPC());
202 void helper_icbi(CPUPPCState
*env
, target_ulong addr
)
204 addr
&= ~(env
->dcache_line_size
- 1);
206 * Invalidate one cache line :
207 * PowerPC specification says this is to be treated like a load
208 * (not a fetch) by the MMU. To be sure it will be so,
209 * do the load "by hand".
211 cpu_ldl_data_ra(env
, addr
, GETPC());
214 void helper_icbiep(CPUPPCState
*env
, target_ulong addr
)
216 #if !defined(CONFIG_USER_ONLY)
217 /* See comments above */
218 addr
&= ~(env
->dcache_line_size
- 1);
219 cpu_ldl_epl_ra(env
, addr
, GETPC());
223 /* XXX: to be tested */
224 target_ulong
helper_lscbx(CPUPPCState
*env
, target_ulong addr
, uint32_t reg
,
225 uint32_t ra
, uint32_t rb
)
230 for (i
= 0; i
< xer_bc
; i
++) {
231 c
= cpu_ldub_data_ra(env
, addr
, GETPC());
232 addr
= addr_add(env
, addr
, 1);
233 /* ra (if not 0) and rb are never modified */
234 if (likely(reg
!= rb
&& (ra
== 0 || reg
!= ra
))) {
235 env
->gpr
[reg
] = (env
->gpr
[reg
] & ~(0xFF << d
)) | (c
<< d
);
237 if (unlikely(c
== xer_cmp
)) {
240 if (likely(d
!= 0)) {
252 uint64_t helper_lq_le_parallel(CPUPPCState
*env
, target_ulong addr
,
257 /* We will have raised EXCP_ATOMIC from the translator. */
258 assert(HAVE_ATOMIC128
);
259 ret
= helper_atomic_ldo_le_mmu(env
, addr
, opidx
, GETPC());
260 env
->retxh
= int128_gethi(ret
);
261 return int128_getlo(ret
);
264 uint64_t helper_lq_be_parallel(CPUPPCState
*env
, target_ulong addr
,
269 /* We will have raised EXCP_ATOMIC from the translator. */
270 assert(HAVE_ATOMIC128
);
271 ret
= helper_atomic_ldo_be_mmu(env
, addr
, opidx
, GETPC());
272 env
->retxh
= int128_gethi(ret
);
273 return int128_getlo(ret
);
276 void helper_stq_le_parallel(CPUPPCState
*env
, target_ulong addr
,
277 uint64_t lo
, uint64_t hi
, uint32_t opidx
)
281 /* We will have raised EXCP_ATOMIC from the translator. */
282 assert(HAVE_ATOMIC128
);
283 val
= int128_make128(lo
, hi
);
284 helper_atomic_sto_le_mmu(env
, addr
, val
, opidx
, GETPC());
287 void helper_stq_be_parallel(CPUPPCState
*env
, target_ulong addr
,
288 uint64_t lo
, uint64_t hi
, uint32_t opidx
)
292 /* We will have raised EXCP_ATOMIC from the translator. */
293 assert(HAVE_ATOMIC128
);
294 val
= int128_make128(lo
, hi
);
295 helper_atomic_sto_be_mmu(env
, addr
, val
, opidx
, GETPC());
298 uint32_t helper_stqcx_le_parallel(CPUPPCState
*env
, target_ulong addr
,
299 uint64_t new_lo
, uint64_t new_hi
,
302 bool success
= false;
304 /* We will have raised EXCP_ATOMIC from the translator. */
305 assert(HAVE_CMPXCHG128
);
307 if (likely(addr
== env
->reserve_addr
)) {
308 Int128 oldv
, cmpv
, newv
;
310 cmpv
= int128_make128(env
->reserve_val2
, env
->reserve_val
);
311 newv
= int128_make128(new_lo
, new_hi
);
312 oldv
= helper_atomic_cmpxchgo_le_mmu(env
, addr
, cmpv
, newv
,
314 success
= int128_eq(oldv
, cmpv
);
316 env
->reserve_addr
= -1;
317 return env
->so
+ success
* CRF_EQ_BIT
;
320 uint32_t helper_stqcx_be_parallel(CPUPPCState
*env
, target_ulong addr
,
321 uint64_t new_lo
, uint64_t new_hi
,
324 bool success
= false;
326 /* We will have raised EXCP_ATOMIC from the translator. */
327 assert(HAVE_CMPXCHG128
);
329 if (likely(addr
== env
->reserve_addr
)) {
330 Int128 oldv
, cmpv
, newv
;
332 cmpv
= int128_make128(env
->reserve_val2
, env
->reserve_val
);
333 newv
= int128_make128(new_lo
, new_hi
);
334 oldv
= helper_atomic_cmpxchgo_be_mmu(env
, addr
, cmpv
, newv
,
336 success
= int128_eq(oldv
, cmpv
);
338 env
->reserve_addr
= -1;
339 return env
->so
+ success
* CRF_EQ_BIT
;
343 /*****************************************************************************/
344 /* Altivec extension helpers */
345 #if defined(HOST_WORDS_BIGENDIAN)
354 * We use msr_le to determine index ordering in a vector. However,
355 * byteswapping is not simply controlled by msr_le. We also need to
356 * take into account endianness of the target. This is done for the
357 * little-endian PPC64 user-mode target.
360 #define LVE(name, access, swap, element) \
361 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
364 size_t n_elems = ARRAY_SIZE(r->element); \
365 int adjust = HI_IDX * (n_elems - 1); \
366 int sh = sizeof(r->element[0]) >> 1; \
367 int index = (addr & 0xf) >> sh; \
369 index = n_elems - index - 1; \
372 if (needs_byteswap(env)) { \
373 r->element[LO_IDX ? index : (adjust - index)] = \
374 swap(access(env, addr, GETPC())); \
376 r->element[LO_IDX ? index : (adjust - index)] = \
377 access(env, addr, GETPC()); \
381 LVE(lvebx
, cpu_ldub_data_ra
, I
, u8
)
382 LVE(lvehx
, cpu_lduw_data_ra
, bswap16
, u16
)
383 LVE(lvewx
, cpu_ldl_data_ra
, bswap32
, u32
)
387 #define STVE(name, access, swap, element) \
388 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
391 size_t n_elems = ARRAY_SIZE(r->element); \
392 int adjust = HI_IDX * (n_elems - 1); \
393 int sh = sizeof(r->element[0]) >> 1; \
394 int index = (addr & 0xf) >> sh; \
396 index = n_elems - index - 1; \
399 if (needs_byteswap(env)) { \
400 access(env, addr, swap(r->element[LO_IDX ? index : \
401 (adjust - index)]), \
404 access(env, addr, r->element[LO_IDX ? index : \
405 (adjust - index)], GETPC()); \
409 STVE(stvebx
, cpu_stb_data_ra
, I
, u8
)
410 STVE(stvehx
, cpu_stw_data_ra
, bswap16
, u16
)
411 STVE(stvewx
, cpu_stl_data_ra
, bswap32
, u32
)
416 #define GET_NB(rb) ((rb >> 56) & 0xFF)
418 #define VSX_LXVL(name, lj) \
419 void helper_##name(CPUPPCState *env, target_ulong addr, \
420 ppc_vsr_t *xt, target_ulong rb) \
423 uint64_t nb = GET_NB(rb); \
426 t.s128 = int128_zero(); \
428 nb = (nb >= 16) ? 16 : nb; \
429 if (msr_le && !lj) { \
430 for (i = 16; i > 16 - nb; i--) { \
431 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \
432 addr = addr_add(env, addr, 1); \
435 for (i = 0; i < nb; i++) { \
436 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \
437 addr = addr_add(env, addr, 1); \
448 #define VSX_STXVL(name, lj) \
449 void helper_##name(CPUPPCState *env, target_ulong addr, \
450 ppc_vsr_t *xt, target_ulong rb) \
452 target_ulong nb = GET_NB(rb); \
459 nb = (nb >= 16) ? 16 : nb; \
460 if (msr_le && !lj) { \
461 for (i = 16; i > 16 - nb; i--) { \
462 cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
463 addr = addr_add(env, addr, 1); \
466 for (i = 0; i < nb; i++) { \
467 cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \
468 addr = addr_add(env, addr, 1); \
477 #endif /* TARGET_PPC64 */
482 void helper_tbegin(CPUPPCState
*env
)
485 * As a degenerate implementation, always fail tbegin. The reason
486 * given is "Nesting overflow". The "persistent" bit is set,
487 * providing a hint to the error handler to not retry. The TFIAR
488 * captures the address of the failure, which is this tbegin
489 * instruction. Instruction execution will continue with the next
490 * instruction in memory, which is precisely what we want.
493 env
->spr
[SPR_TEXASR
] =
494 (1ULL << TEXASR_FAILURE_PERSISTENT
) |
495 (1ULL << TEXASR_NESTING_OVERFLOW
) |
496 (msr_hv
<< TEXASR_PRIVILEGE_HV
) |
497 (msr_pr
<< TEXASR_PRIVILEGE_PR
) |
498 (1ULL << TEXASR_FAILURE_SUMMARY
) |
499 (1ULL << TEXASR_TFIAR_EXACT
);
500 env
->spr
[SPR_TFIAR
] = env
->nip
| (msr_hv
<< 1) | msr_pr
;
501 env
->spr
[SPR_TFHAR
] = env
->nip
+ 4;
502 env
->crf
[0] = 0xB; /* 0b1010 = transaction failure */