hppa: specify target_phys_bits in configure script
[qemu/hppa.git] / hw / mc146818rtc.c
blob888b85a9d6d51c28b6c54263b9d6791d7c79e736
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29 #include "hpet_emul.h"
31 //#define DEBUG_CMOS
33 #define RTC_SECONDS 0
34 #define RTC_SECONDS_ALARM 1
35 #define RTC_MINUTES 2
36 #define RTC_MINUTES_ALARM 3
37 #define RTC_HOURS 4
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
43 #define RTC_MONTH 8
44 #define RTC_YEAR 9
46 #define RTC_REG_A 10
47 #define RTC_REG_B 11
48 #define RTC_REG_C 12
49 #define RTC_REG_D 13
51 #define REG_A_UIP 0x80
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
57 #define REG_B_SQWE 0x08
58 #define REG_B_DM 0x04
60 struct RTCState {
61 uint8_t cmos_data[128];
62 uint8_t cmos_index;
63 struct tm current_tm;
64 int base_year;
65 qemu_irq irq;
66 qemu_irq sqw_irq;
67 int it_shift;
68 /* periodic timer */
69 QEMUTimer *periodic_timer;
70 int64_t next_periodic_time;
71 /* second update */
72 int64_t next_second_time;
73 #ifdef TARGET_I386
74 uint32_t irq_coalesced;
75 uint32_t period;
76 QEMUTimer *coalesced_timer;
77 #endif
78 QEMUTimer *second_timer;
79 QEMUTimer *second_timer2;
82 static void rtc_irq_raise(qemu_irq irq) {
83 /* When HPET is operating in legacy mode, RTC interrupts are disabled
84 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
85 * mode is established while interrupt is raised. We want it to
86 * be lowered in any case
88 #if defined TARGET_I386 || defined TARGET_X86_64
89 if (!hpet_in_legacy_mode())
90 #endif
91 qemu_irq_raise(irq);
94 static void rtc_set_time(RTCState *s);
95 static void rtc_copy_date(RTCState *s);
97 #ifdef TARGET_I386
98 static void rtc_coalesced_timer_update(RTCState *s)
100 if (s->irq_coalesced == 0) {
101 qemu_del_timer(s->coalesced_timer);
102 } else {
103 /* divide each RTC interval to 2 - 8 smaller intervals */
104 int c = MIN(s->irq_coalesced, 7) + 1;
105 int64_t next_clock = qemu_get_clock(vm_clock) +
106 muldiv64(s->period / c, ticks_per_sec, 32768);
107 qemu_mod_timer(s->coalesced_timer, next_clock);
111 static void rtc_coalesced_timer(void *opaque)
113 RTCState *s = opaque;
115 if (s->irq_coalesced != 0) {
116 apic_reset_irq_delivered();
117 s->cmos_data[RTC_REG_C] |= 0xc0;
118 rtc_irq_raise(s->irq);
119 if (apic_get_irq_delivered()) {
120 s->irq_coalesced--;
124 rtc_coalesced_timer_update(s);
126 #endif
128 static void rtc_timer_update(RTCState *s, int64_t current_time)
130 int period_code, period;
131 int64_t cur_clock, next_irq_clock;
132 int enable_pie;
134 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
135 #if defined TARGET_I386 || defined TARGET_X86_64
136 /* disable periodic timer if hpet is in legacy mode, since interrupts are
137 * disabled anyway.
139 enable_pie = !hpet_in_legacy_mode();
140 #else
141 enable_pie = 1;
142 #endif
143 if (period_code != 0
144 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
145 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
146 if (period_code <= 2)
147 period_code += 7;
148 /* period in 32 Khz cycles */
149 period = 1 << (period_code - 1);
150 #ifdef TARGET_I386
151 if(period != s->period)
152 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
153 s->period = period;
154 #endif
155 /* compute 32 khz clock */
156 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
157 next_irq_clock = (cur_clock & ~(period - 1)) + period;
158 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
159 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
160 } else {
161 #ifdef TARGET_I386
162 s->irq_coalesced = 0;
163 #endif
164 qemu_del_timer(s->periodic_timer);
168 static void rtc_periodic_timer(void *opaque)
170 RTCState *s = opaque;
172 rtc_timer_update(s, s->next_periodic_time);
173 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
174 s->cmos_data[RTC_REG_C] |= 0xc0;
175 #ifdef TARGET_I386
176 if(rtc_td_hack) {
177 apic_reset_irq_delivered();
178 rtc_irq_raise(s->irq);
179 if (!apic_get_irq_delivered()) {
180 s->irq_coalesced++;
181 rtc_coalesced_timer_update(s);
183 } else
184 #endif
185 rtc_irq_raise(s->irq);
187 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
188 /* Not square wave at all but we don't want 2048Hz interrupts!
189 Must be seen as a pulse. */
190 qemu_irq_raise(s->sqw_irq);
194 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
196 RTCState *s = opaque;
198 if ((addr & 1) == 0) {
199 s->cmos_index = data & 0x7f;
200 } else {
201 #ifdef DEBUG_CMOS
202 printf("cmos: write index=0x%02x val=0x%02x\n",
203 s->cmos_index, data);
204 #endif
205 switch(s->cmos_index) {
206 case RTC_SECONDS_ALARM:
207 case RTC_MINUTES_ALARM:
208 case RTC_HOURS_ALARM:
209 /* XXX: not supported */
210 s->cmos_data[s->cmos_index] = data;
211 break;
212 case RTC_SECONDS:
213 case RTC_MINUTES:
214 case RTC_HOURS:
215 case RTC_DAY_OF_WEEK:
216 case RTC_DAY_OF_MONTH:
217 case RTC_MONTH:
218 case RTC_YEAR:
219 s->cmos_data[s->cmos_index] = data;
220 /* if in set mode, do not update the time */
221 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
222 rtc_set_time(s);
224 break;
225 case RTC_REG_A:
226 /* UIP bit is read only */
227 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
228 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
229 rtc_timer_update(s, qemu_get_clock(vm_clock));
230 break;
231 case RTC_REG_B:
232 if (data & REG_B_SET) {
233 /* set mode: reset UIP mode */
234 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
235 data &= ~REG_B_UIE;
236 } else {
237 /* if disabling set mode, update the time */
238 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
239 rtc_set_time(s);
242 s->cmos_data[RTC_REG_B] = data;
243 rtc_timer_update(s, qemu_get_clock(vm_clock));
244 break;
245 case RTC_REG_C:
246 case RTC_REG_D:
247 /* cannot write to them */
248 break;
249 default:
250 s->cmos_data[s->cmos_index] = data;
251 break;
256 static inline int to_bcd(RTCState *s, int a)
258 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
259 return a;
260 } else {
261 return ((a / 10) << 4) | (a % 10);
265 static inline int from_bcd(RTCState *s, int a)
267 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
268 return a;
269 } else {
270 return ((a >> 4) * 10) + (a & 0x0f);
274 static void rtc_set_time(RTCState *s)
276 struct tm *tm = &s->current_tm;
278 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
279 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
280 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
281 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
282 (s->cmos_data[RTC_HOURS] & 0x80)) {
283 tm->tm_hour += 12;
285 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
286 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
287 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
288 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
291 static void rtc_copy_date(RTCState *s)
293 const struct tm *tm = &s->current_tm;
294 int year;
296 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
297 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
298 if (s->cmos_data[RTC_REG_B] & 0x02) {
299 /* 24 hour format */
300 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
301 } else {
302 /* 12 hour format */
303 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
304 if (tm->tm_hour >= 12)
305 s->cmos_data[RTC_HOURS] |= 0x80;
307 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
308 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
309 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
310 year = (tm->tm_year - s->base_year) % 100;
311 if (year < 0)
312 year += 100;
313 s->cmos_data[RTC_YEAR] = to_bcd(s, year);
316 /* month is between 0 and 11. */
317 static int get_days_in_month(int month, int year)
319 static const int days_tab[12] = {
320 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
322 int d;
323 if ((unsigned )month >= 12)
324 return 31;
325 d = days_tab[month];
326 if (month == 1) {
327 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
328 d++;
330 return d;
333 /* update 'tm' to the next second */
334 static void rtc_next_second(struct tm *tm)
336 int days_in_month;
338 tm->tm_sec++;
339 if ((unsigned)tm->tm_sec >= 60) {
340 tm->tm_sec = 0;
341 tm->tm_min++;
342 if ((unsigned)tm->tm_min >= 60) {
343 tm->tm_min = 0;
344 tm->tm_hour++;
345 if ((unsigned)tm->tm_hour >= 24) {
346 tm->tm_hour = 0;
347 /* next day */
348 tm->tm_wday++;
349 if ((unsigned)tm->tm_wday >= 7)
350 tm->tm_wday = 0;
351 days_in_month = get_days_in_month(tm->tm_mon,
352 tm->tm_year + 1900);
353 tm->tm_mday++;
354 if (tm->tm_mday < 1) {
355 tm->tm_mday = 1;
356 } else if (tm->tm_mday > days_in_month) {
357 tm->tm_mday = 1;
358 tm->tm_mon++;
359 if (tm->tm_mon >= 12) {
360 tm->tm_mon = 0;
361 tm->tm_year++;
370 static void rtc_update_second(void *opaque)
372 RTCState *s = opaque;
373 int64_t delay;
375 /* if the oscillator is not in normal operation, we do not update */
376 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
377 s->next_second_time += ticks_per_sec;
378 qemu_mod_timer(s->second_timer, s->next_second_time);
379 } else {
380 rtc_next_second(&s->current_tm);
382 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
383 /* update in progress bit */
384 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
386 /* should be 244 us = 8 / 32768 seconds, but currently the
387 timers do not have the necessary resolution. */
388 delay = (ticks_per_sec * 1) / 100;
389 if (delay < 1)
390 delay = 1;
391 qemu_mod_timer(s->second_timer2,
392 s->next_second_time + delay);
396 static void rtc_update_second2(void *opaque)
398 RTCState *s = opaque;
400 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
401 rtc_copy_date(s);
404 /* check alarm */
405 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
406 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
407 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
408 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
409 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
410 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
411 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
413 s->cmos_data[RTC_REG_C] |= 0xa0;
414 rtc_irq_raise(s->irq);
418 /* update ended interrupt */
419 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
420 s->cmos_data[RTC_REG_C] |= 0x90;
421 rtc_irq_raise(s->irq);
424 /* clear update in progress bit */
425 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
427 s->next_second_time += ticks_per_sec;
428 qemu_mod_timer(s->second_timer, s->next_second_time);
431 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
433 RTCState *s = opaque;
434 int ret;
435 if ((addr & 1) == 0) {
436 return 0xff;
437 } else {
438 switch(s->cmos_index) {
439 case RTC_SECONDS:
440 case RTC_MINUTES:
441 case RTC_HOURS:
442 case RTC_DAY_OF_WEEK:
443 case RTC_DAY_OF_MONTH:
444 case RTC_MONTH:
445 case RTC_YEAR:
446 ret = s->cmos_data[s->cmos_index];
447 break;
448 case RTC_REG_A:
449 ret = s->cmos_data[s->cmos_index];
450 break;
451 case RTC_REG_C:
452 ret = s->cmos_data[s->cmos_index];
453 qemu_irq_lower(s->irq);
454 s->cmos_data[RTC_REG_C] = 0x00;
455 break;
456 default:
457 ret = s->cmos_data[s->cmos_index];
458 break;
460 #ifdef DEBUG_CMOS
461 printf("cmos: read index=0x%02x val=0x%02x\n",
462 s->cmos_index, ret);
463 #endif
464 return ret;
468 void rtc_set_memory(RTCState *s, int addr, int val)
470 if (addr >= 0 && addr <= 127)
471 s->cmos_data[addr] = val;
474 void rtc_set_date(RTCState *s, const struct tm *tm)
476 s->current_tm = *tm;
477 rtc_copy_date(s);
480 /* PC cmos mappings */
481 #define REG_IBM_CENTURY_BYTE 0x32
482 #define REG_IBM_PS2_CENTURY_BYTE 0x37
484 static void rtc_set_date_from_host(RTCState *s)
486 struct tm tm;
487 int val;
489 /* set the CMOS date */
490 qemu_get_timedate(&tm, 0);
491 rtc_set_date(s, &tm);
493 val = to_bcd(s, (tm.tm_year / 100) + 19);
494 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
495 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
498 static void rtc_save(QEMUFile *f, void *opaque)
500 RTCState *s = opaque;
502 qemu_put_buffer(f, s->cmos_data, 128);
503 qemu_put_8s(f, &s->cmos_index);
505 qemu_put_be32(f, s->current_tm.tm_sec);
506 qemu_put_be32(f, s->current_tm.tm_min);
507 qemu_put_be32(f, s->current_tm.tm_hour);
508 qemu_put_be32(f, s->current_tm.tm_wday);
509 qemu_put_be32(f, s->current_tm.tm_mday);
510 qemu_put_be32(f, s->current_tm.tm_mon);
511 qemu_put_be32(f, s->current_tm.tm_year);
513 qemu_put_timer(f, s->periodic_timer);
514 qemu_put_be64(f, s->next_periodic_time);
516 qemu_put_be64(f, s->next_second_time);
517 qemu_put_timer(f, s->second_timer);
518 qemu_put_timer(f, s->second_timer2);
521 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
523 RTCState *s = opaque;
525 if (version_id != 1)
526 return -EINVAL;
528 qemu_get_buffer(f, s->cmos_data, 128);
529 qemu_get_8s(f, &s->cmos_index);
531 s->current_tm.tm_sec=qemu_get_be32(f);
532 s->current_tm.tm_min=qemu_get_be32(f);
533 s->current_tm.tm_hour=qemu_get_be32(f);
534 s->current_tm.tm_wday=qemu_get_be32(f);
535 s->current_tm.tm_mday=qemu_get_be32(f);
536 s->current_tm.tm_mon=qemu_get_be32(f);
537 s->current_tm.tm_year=qemu_get_be32(f);
539 qemu_get_timer(f, s->periodic_timer);
540 s->next_periodic_time=qemu_get_be64(f);
542 s->next_second_time=qemu_get_be64(f);
543 qemu_get_timer(f, s->second_timer);
544 qemu_get_timer(f, s->second_timer2);
545 return 0;
548 #ifdef TARGET_I386
549 static void rtc_save_td(QEMUFile *f, void *opaque)
551 RTCState *s = opaque;
553 qemu_put_be32(f, s->irq_coalesced);
554 qemu_put_be32(f, s->period);
557 static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
559 RTCState *s = opaque;
561 if (version_id != 1)
562 return -EINVAL;
564 s->irq_coalesced = qemu_get_be32(f);
565 s->period = qemu_get_be32(f);
566 rtc_coalesced_timer_update(s);
567 return 0;
569 #endif
571 RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
573 RTCState *s;
575 s = qemu_mallocz(sizeof(RTCState));
577 s->irq = irq;
578 s->sqw_irq = sqw_irq;
579 s->cmos_data[RTC_REG_A] = 0x26;
580 s->cmos_data[RTC_REG_B] = 0x02;
581 s->cmos_data[RTC_REG_C] = 0x00;
582 s->cmos_data[RTC_REG_D] = 0x80;
584 s->base_year = base_year;
585 rtc_set_date_from_host(s);
587 s->periodic_timer = qemu_new_timer(vm_clock,
588 rtc_periodic_timer, s);
589 #ifdef TARGET_I386
590 if (rtc_td_hack)
591 s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s);
592 #endif
593 s->second_timer = qemu_new_timer(vm_clock,
594 rtc_update_second, s);
595 s->second_timer2 = qemu_new_timer(vm_clock,
596 rtc_update_second2, s);
598 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
599 qemu_mod_timer(s->second_timer2, s->next_second_time);
601 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
602 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
604 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
605 #ifdef TARGET_I386
606 if (rtc_td_hack)
607 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
608 #endif
609 return s;
612 RTCState *rtc_init(int base, qemu_irq irq, int base_year)
614 return rtc_init_sqw(base, irq, NULL, base_year);
617 /* Memory mapped interface */
618 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
620 RTCState *s = opaque;
622 return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
625 static void cmos_mm_writeb (void *opaque,
626 target_phys_addr_t addr, uint32_t value)
628 RTCState *s = opaque;
630 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
633 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
635 RTCState *s = opaque;
636 uint32_t val;
638 val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
639 #ifdef TARGET_WORDS_BIGENDIAN
640 val = bswap16(val);
641 #endif
642 return val;
645 static void cmos_mm_writew (void *opaque,
646 target_phys_addr_t addr, uint32_t value)
648 RTCState *s = opaque;
649 #ifdef TARGET_WORDS_BIGENDIAN
650 value = bswap16(value);
651 #endif
652 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
655 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
657 RTCState *s = opaque;
658 uint32_t val;
660 val = cmos_ioport_read(s, addr >> s->it_shift);
661 #ifdef TARGET_WORDS_BIGENDIAN
662 val = bswap32(val);
663 #endif
664 return val;
667 static void cmos_mm_writel (void *opaque,
668 target_phys_addr_t addr, uint32_t value)
670 RTCState *s = opaque;
671 #ifdef TARGET_WORDS_BIGENDIAN
672 value = bswap32(value);
673 #endif
674 cmos_ioport_write(s, addr >> s->it_shift, value);
677 static CPUReadMemoryFunc *rtc_mm_read[] = {
678 &cmos_mm_readb,
679 &cmos_mm_readw,
680 &cmos_mm_readl,
683 static CPUWriteMemoryFunc *rtc_mm_write[] = {
684 &cmos_mm_writeb,
685 &cmos_mm_writew,
686 &cmos_mm_writel,
689 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
690 int base_year)
692 RTCState *s;
693 int io_memory;
695 s = qemu_mallocz(sizeof(RTCState));
697 s->irq = irq;
698 s->cmos_data[RTC_REG_A] = 0x26;
699 s->cmos_data[RTC_REG_B] = 0x02;
700 s->cmos_data[RTC_REG_C] = 0x00;
701 s->cmos_data[RTC_REG_D] = 0x80;
703 s->base_year = base_year;
704 rtc_set_date_from_host(s);
706 s->periodic_timer = qemu_new_timer(vm_clock,
707 rtc_periodic_timer, s);
708 s->second_timer = qemu_new_timer(vm_clock,
709 rtc_update_second, s);
710 s->second_timer2 = qemu_new_timer(vm_clock,
711 rtc_update_second2, s);
713 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
714 qemu_mod_timer(s->second_timer2, s->next_second_time);
716 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
717 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
719 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
720 #ifdef TARGET_I386
721 if (rtc_td_hack)
722 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
723 #endif
724 return s;