2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
30 #include "hpet_emul.h"
31 #include "mc146818rtc.h"
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
41 #define RTC_REINJECT_ON_ACK_COUNT 20
44 #define RTC_SECONDS_ALARM 1
46 #define RTC_MINUTES_ALARM 3
48 #define RTC_HOURS_ALARM 5
49 #define RTC_ALARM_DONT_CARE 0xC0
51 #define RTC_DAY_OF_WEEK 6
52 #define RTC_DAY_OF_MONTH 7
61 #define REG_A_UIP 0x80
63 #define REG_B_SET 0x80
64 #define REG_B_PIE 0x40
65 #define REG_B_AIE 0x20
66 #define REG_B_UIE 0x10
67 #define REG_B_SQWE 0x08
71 #define REG_C_IRQF 0x80
75 typedef struct RTCState
{
77 uint8_t cmos_data
[128];
85 QEMUTimer
*periodic_timer
;
86 int64_t next_periodic_time
;
88 int64_t next_second_time
;
89 uint16_t irq_reinject_on_ack_count
;
90 uint32_t irq_coalesced
;
92 QEMUTimer
*coalesced_timer
;
93 QEMUTimer
*second_timer
;
94 QEMUTimer
*second_timer2
;
97 static void rtc_irq_raise(qemu_irq irq
)
99 /* When HPET is operating in legacy mode, RTC interrupts are disabled
100 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
101 * mode is established while interrupt is raised. We want it to
102 * be lowered in any case
104 #if defined TARGET_I386
105 if (!hpet_in_legacy_mode())
110 static void rtc_set_time(RTCState
*s
);
111 static void rtc_copy_date(RTCState
*s
);
114 static void rtc_coalesced_timer_update(RTCState
*s
)
116 if (s
->irq_coalesced
== 0) {
117 qemu_del_timer(s
->coalesced_timer
);
119 /* divide each RTC interval to 2 - 8 smaller intervals */
120 int c
= MIN(s
->irq_coalesced
, 7) + 1;
121 int64_t next_clock
= qemu_get_clock(rtc_clock
) +
122 muldiv64(s
->period
/ c
, get_ticks_per_sec(), 32768);
123 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
127 static void rtc_coalesced_timer(void *opaque
)
129 RTCState
*s
= opaque
;
131 if (s
->irq_coalesced
!= 0) {
132 apic_reset_irq_delivered();
133 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
134 rtc_irq_raise(s
->irq
);
135 if (apic_get_irq_delivered()) {
140 rtc_coalesced_timer_update(s
);
144 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
146 int period_code
, period
;
147 int64_t cur_clock
, next_irq_clock
;
150 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
151 #if defined TARGET_I386
152 /* disable periodic timer if hpet is in legacy mode, since interrupts are
155 enable_pie
= !hpet_in_legacy_mode();
160 && (((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) && enable_pie
)
161 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
162 if (period_code
<= 2)
164 /* period in 32 Khz cycles */
165 period
= 1 << (period_code
- 1);
167 if(period
!= s
->period
)
168 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
171 /* compute 32 khz clock */
172 cur_clock
= muldiv64(current_time
, 32768, get_ticks_per_sec());
173 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
174 s
->next_periodic_time
=
175 muldiv64(next_irq_clock
, get_ticks_per_sec(), 32768) + 1;
176 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
179 s
->irq_coalesced
= 0;
181 qemu_del_timer(s
->periodic_timer
);
185 static void rtc_periodic_timer(void *opaque
)
187 RTCState
*s
= opaque
;
189 rtc_timer_update(s
, s
->next_periodic_time
);
190 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
191 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
194 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
195 s
->irq_reinject_on_ack_count
= 0;
196 apic_reset_irq_delivered();
197 rtc_irq_raise(s
->irq
);
198 if (!apic_get_irq_delivered()) {
200 rtc_coalesced_timer_update(s
);
204 rtc_irq_raise(s
->irq
);
206 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
207 /* Not square wave at all but we don't want 2048Hz interrupts!
208 Must be seen as a pulse. */
209 qemu_irq_raise(s
->sqw_irq
);
213 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
215 RTCState
*s
= opaque
;
217 if ((addr
& 1) == 0) {
218 s
->cmos_index
= data
& 0x7f;
220 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
221 s
->cmos_index
, data
);
222 switch(s
->cmos_index
) {
223 case RTC_SECONDS_ALARM
:
224 case RTC_MINUTES_ALARM
:
225 case RTC_HOURS_ALARM
:
226 /* XXX: not supported */
227 s
->cmos_data
[s
->cmos_index
] = data
;
232 case RTC_DAY_OF_WEEK
:
233 case RTC_DAY_OF_MONTH
:
236 s
->cmos_data
[s
->cmos_index
] = data
;
237 /* if in set mode, do not update the time */
238 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
243 /* UIP bit is read only */
244 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
245 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
246 rtc_timer_update(s
, qemu_get_clock(rtc_clock
));
249 if (data
& REG_B_SET
) {
250 /* set mode: reset UIP mode */
251 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
254 /* if disabling set mode, update the time */
255 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
259 s
->cmos_data
[RTC_REG_B
] = data
;
260 rtc_timer_update(s
, qemu_get_clock(rtc_clock
));
264 /* cannot write to them */
267 s
->cmos_data
[s
->cmos_index
] = data
;
273 static inline int rtc_to_bcd(RTCState
*s
, int a
)
275 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
278 return ((a
/ 10) << 4) | (a
% 10);
282 static inline int rtc_from_bcd(RTCState
*s
, int a
)
284 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
287 return ((a
>> 4) * 10) + (a
& 0x0f);
291 static void rtc_set_time(RTCState
*s
)
293 struct tm
*tm
= &s
->current_tm
;
295 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
296 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
297 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
298 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
299 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
302 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
303 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
304 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
305 tm
->tm_year
= rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
- 1900;
307 rtc_change_mon_event(tm
);
310 static void rtc_copy_date(RTCState
*s
)
312 const struct tm
*tm
= &s
->current_tm
;
315 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
316 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
317 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
319 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
322 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
% 12);
323 if (tm
->tm_hour
>= 12)
324 s
->cmos_data
[RTC_HOURS
] |= 0x80;
326 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
327 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
328 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
329 year
= (tm
->tm_year
- s
->base_year
) % 100;
332 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
);
335 /* month is between 0 and 11. */
336 static int get_days_in_month(int month
, int year
)
338 static const int days_tab
[12] = {
339 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
342 if ((unsigned )month
>= 12)
346 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
352 /* update 'tm' to the next second */
353 static void rtc_next_second(struct tm
*tm
)
358 if ((unsigned)tm
->tm_sec
>= 60) {
361 if ((unsigned)tm
->tm_min
>= 60) {
364 if ((unsigned)tm
->tm_hour
>= 24) {
368 if ((unsigned)tm
->tm_wday
>= 7)
370 days_in_month
= get_days_in_month(tm
->tm_mon
,
373 if (tm
->tm_mday
< 1) {
375 } else if (tm
->tm_mday
> days_in_month
) {
378 if (tm
->tm_mon
>= 12) {
389 static void rtc_update_second(void *opaque
)
391 RTCState
*s
= opaque
;
394 /* if the oscillator is not in normal operation, we do not update */
395 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
396 s
->next_second_time
+= get_ticks_per_sec();
397 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
399 rtc_next_second(&s
->current_tm
);
401 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
402 /* update in progress bit */
403 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
405 /* should be 244 us = 8 / 32768 seconds, but currently the
406 timers do not have the necessary resolution. */
407 delay
= (get_ticks_per_sec() * 1) / 100;
410 qemu_mod_timer(s
->second_timer2
,
411 s
->next_second_time
+ delay
);
415 static void rtc_update_second2(void *opaque
)
417 RTCState
*s
= opaque
;
419 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
424 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
425 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
426 s
->cmos_data
[RTC_SECONDS_ALARM
] == s
->current_tm
.tm_sec
) &&
427 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
428 s
->cmos_data
[RTC_MINUTES_ALARM
] == s
->current_tm
.tm_mon
) &&
429 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
430 s
->cmos_data
[RTC_HOURS_ALARM
] == s
->current_tm
.tm_hour
)) {
432 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
433 rtc_irq_raise(s
->irq
);
437 /* update ended interrupt */
438 s
->cmos_data
[RTC_REG_C
] |= REG_C_UF
;
439 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
440 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
441 rtc_irq_raise(s
->irq
);
444 /* clear update in progress bit */
445 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
447 s
->next_second_time
+= get_ticks_per_sec();
448 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
451 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
453 RTCState
*s
= opaque
;
455 if ((addr
& 1) == 0) {
458 switch(s
->cmos_index
) {
462 case RTC_DAY_OF_WEEK
:
463 case RTC_DAY_OF_MONTH
:
466 ret
= s
->cmos_data
[s
->cmos_index
];
469 ret
= s
->cmos_data
[s
->cmos_index
];
472 ret
= s
->cmos_data
[s
->cmos_index
];
473 qemu_irq_lower(s
->irq
);
475 if(s
->irq_coalesced
&&
476 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
477 s
->irq_reinject_on_ack_count
++;
478 apic_reset_irq_delivered();
479 qemu_irq_raise(s
->irq
);
480 if (apic_get_irq_delivered())
486 s
->cmos_data
[RTC_REG_C
] = 0x00;
489 ret
= s
->cmos_data
[s
->cmos_index
];
492 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
498 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
500 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
501 if (addr
>= 0 && addr
<= 127)
502 s
->cmos_data
[addr
] = val
;
505 void rtc_set_date(ISADevice
*dev
, const struct tm
*tm
)
507 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
512 /* PC cmos mappings */
513 #define REG_IBM_CENTURY_BYTE 0x32
514 #define REG_IBM_PS2_CENTURY_BYTE 0x37
516 static void rtc_set_date_from_host(ISADevice
*dev
)
518 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
522 /* set the CMOS date */
523 qemu_get_timedate(&tm
, 0);
524 rtc_set_date(dev
, &tm
);
526 val
= rtc_to_bcd(s
, (tm
.tm_year
/ 100) + 19);
527 rtc_set_memory(dev
, REG_IBM_CENTURY_BYTE
, val
);
528 rtc_set_memory(dev
, REG_IBM_PS2_CENTURY_BYTE
, val
);
531 static int rtc_post_load(void *opaque
, int version_id
)
534 RTCState
*s
= opaque
;
536 if (version_id
>= 2) {
538 rtc_coalesced_timer_update(s
);
545 static const VMStateDescription vmstate_rtc
= {
546 .name
= "mc146818rtc",
548 .minimum_version_id
= 1,
549 .minimum_version_id_old
= 1,
550 .post_load
= rtc_post_load
,
551 .fields
= (VMStateField
[]) {
552 VMSTATE_BUFFER(cmos_data
, RTCState
),
553 VMSTATE_UINT8(cmos_index
, RTCState
),
554 VMSTATE_INT32(current_tm
.tm_sec
, RTCState
),
555 VMSTATE_INT32(current_tm
.tm_min
, RTCState
),
556 VMSTATE_INT32(current_tm
.tm_hour
, RTCState
),
557 VMSTATE_INT32(current_tm
.tm_wday
, RTCState
),
558 VMSTATE_INT32(current_tm
.tm_mday
, RTCState
),
559 VMSTATE_INT32(current_tm
.tm_mon
, RTCState
),
560 VMSTATE_INT32(current_tm
.tm_year
, RTCState
),
561 VMSTATE_TIMER(periodic_timer
, RTCState
),
562 VMSTATE_INT64(next_periodic_time
, RTCState
),
563 VMSTATE_INT64(next_second_time
, RTCState
),
564 VMSTATE_TIMER(second_timer
, RTCState
),
565 VMSTATE_TIMER(second_timer2
, RTCState
),
566 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
567 VMSTATE_UINT32_V(period
, RTCState
, 2),
568 VMSTATE_END_OF_LIST()
572 static void rtc_reset(void *opaque
)
574 RTCState
*s
= opaque
;
576 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
577 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
579 qemu_irq_lower(s
->irq
);
583 s
->irq_coalesced
= 0;
587 static int rtc_initfn(ISADevice
*dev
)
589 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
593 isa_init_irq(dev
, &s
->irq
, isairq
);
595 s
->cmos_data
[RTC_REG_A
] = 0x26;
596 s
->cmos_data
[RTC_REG_B
] = 0x02;
597 s
->cmos_data
[RTC_REG_C
] = 0x00;
598 s
->cmos_data
[RTC_REG_D
] = 0x80;
600 rtc_set_date_from_host(dev
);
602 s
->periodic_timer
= qemu_new_timer(rtc_clock
, rtc_periodic_timer
, s
);
606 qemu_new_timer(rtc_clock
, rtc_coalesced_timer
, s
);
608 s
->second_timer
= qemu_new_timer(rtc_clock
, rtc_update_second
, s
);
609 s
->second_timer2
= qemu_new_timer(rtc_clock
, rtc_update_second2
, s
);
611 s
->next_second_time
=
612 qemu_get_clock(rtc_clock
) + (get_ticks_per_sec() * 99) / 100;
613 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
615 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
616 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
618 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 2);
619 qemu_register_reset(rtc_reset
, s
);
623 ISADevice
*rtc_init(int base_year
)
627 dev
= isa_create("mc146818rtc");
628 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
629 qdev_init_nofail(&dev
->qdev
);
633 static ISADeviceInfo mc146818rtc_info
= {
634 .qdev
.name
= "mc146818rtc",
635 .qdev
.size
= sizeof(RTCState
),
637 .qdev
.vmsd
= &vmstate_rtc
,
639 .qdev
.props
= (Property
[]) {
640 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
641 DEFINE_PROP_END_OF_LIST(),
645 static void mc146818rtc_register(void)
647 isa_qdev_register(&mc146818rtc_info
);
649 device_init(mc146818rtc_register
)