qdev: Convert busses to QEMU Object Model
[qemu/opensuse.git] / target-alpha / cpu.h
blob99f9ee168d960a749cec4e53ea788a5182e5b9b0
1 /*
2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #if !defined (__CPU_ALPHA_H__)
21 #define __CPU_ALPHA_H__
23 #include "config.h"
24 #include "qemu-common.h"
26 #define TARGET_LONG_BITS 64
28 #define CPUArchState struct CPUAlphaState
30 #include "cpu-defs.h"
32 #include "softfloat.h"
34 #define TARGET_HAS_ICE 1
36 #define ELF_MACHINE EM_ALPHA
38 #define ICACHE_LINE_SIZE 32
39 #define DCACHE_LINE_SIZE 32
41 #define TARGET_PAGE_BITS 13
43 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
44 #define TARGET_PHYS_ADDR_SPACE_BITS 44
45 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
47 /* Alpha major type */
48 enum {
49 ALPHA_EV3 = 1,
50 ALPHA_EV4 = 2,
51 ALPHA_SIM = 3,
52 ALPHA_LCA = 4,
53 ALPHA_EV5 = 5, /* 21164 */
54 ALPHA_EV45 = 6, /* 21064A */
55 ALPHA_EV56 = 7, /* 21164A */
58 /* EV4 minor type */
59 enum {
60 ALPHA_EV4_2 = 0,
61 ALPHA_EV4_3 = 1,
64 /* LCA minor type */
65 enum {
66 ALPHA_LCA_1 = 1, /* 21066 */
67 ALPHA_LCA_2 = 2, /* 20166 */
68 ALPHA_LCA_3 = 3, /* 21068 */
69 ALPHA_LCA_4 = 4, /* 21068 */
70 ALPHA_LCA_5 = 5, /* 21066A */
71 ALPHA_LCA_6 = 6, /* 21068A */
74 /* EV5 minor type */
75 enum {
76 ALPHA_EV5_1 = 1, /* Rev BA, CA */
77 ALPHA_EV5_2 = 2, /* Rev DA, EA */
78 ALPHA_EV5_3 = 3, /* Pass 3 */
79 ALPHA_EV5_4 = 4, /* Pass 3.2 */
80 ALPHA_EV5_5 = 5, /* Pass 4 */
83 /* EV45 minor type */
84 enum {
85 ALPHA_EV45_1 = 1, /* Pass 1 */
86 ALPHA_EV45_2 = 2, /* Pass 1.1 */
87 ALPHA_EV45_3 = 3, /* Pass 2 */
90 /* EV56 minor type */
91 enum {
92 ALPHA_EV56_1 = 1, /* Pass 1 */
93 ALPHA_EV56_2 = 2, /* Pass 2 */
96 enum {
97 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
98 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
99 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
100 IMPLVER_21364 = 3, /* EV7 & EV79 */
103 enum {
104 AMASK_BWX = 0x00000001,
105 AMASK_FIX = 0x00000002,
106 AMASK_CIX = 0x00000004,
107 AMASK_MVI = 0x00000100,
108 AMASK_TRAP = 0x00000200,
109 AMASK_PREFETCH = 0x00001000,
112 enum {
113 VAX_ROUND_NORMAL = 0,
114 VAX_ROUND_CHOPPED,
117 enum {
118 IEEE_ROUND_NORMAL = 0,
119 IEEE_ROUND_DYNAMIC,
120 IEEE_ROUND_PLUS,
121 IEEE_ROUND_MINUS,
122 IEEE_ROUND_CHOPPED,
125 /* IEEE floating-point operations encoding */
126 /* Trap mode */
127 enum {
128 FP_TRAP_I = 0x0,
129 FP_TRAP_U = 0x1,
130 FP_TRAP_S = 0x4,
131 FP_TRAP_SU = 0x5,
132 FP_TRAP_SUI = 0x7,
135 /* Rounding mode */
136 enum {
137 FP_ROUND_CHOPPED = 0x0,
138 FP_ROUND_MINUS = 0x1,
139 FP_ROUND_NORMAL = 0x2,
140 FP_ROUND_DYNAMIC = 0x3,
143 /* FPCR bits */
144 #define FPCR_SUM (1ULL << 63)
145 #define FPCR_INED (1ULL << 62)
146 #define FPCR_UNFD (1ULL << 61)
147 #define FPCR_UNDZ (1ULL << 60)
148 #define FPCR_DYN_SHIFT 58
149 #define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT)
150 #define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT)
151 #define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT)
152 #define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT)
153 #define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT)
154 #define FPCR_IOV (1ULL << 57)
155 #define FPCR_INE (1ULL << 56)
156 #define FPCR_UNF (1ULL << 55)
157 #define FPCR_OVF (1ULL << 54)
158 #define FPCR_DZE (1ULL << 53)
159 #define FPCR_INV (1ULL << 52)
160 #define FPCR_OVFD (1ULL << 51)
161 #define FPCR_DZED (1ULL << 50)
162 #define FPCR_INVD (1ULL << 49)
163 #define FPCR_DNZ (1ULL << 48)
164 #define FPCR_DNOD (1ULL << 47)
165 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
166 | FPCR_OVF | FPCR_DZE | FPCR_INV)
168 /* The silly software trap enables implemented by the kernel emulation.
169 These are more or less architecturally required, since the real hardware
170 has read-as-zero bits in the FPCR when the features aren't implemented.
171 For the purposes of QEMU, we pretend the FPCR can hold everything. */
172 #define SWCR_TRAP_ENABLE_INV (1ULL << 1)
173 #define SWCR_TRAP_ENABLE_DZE (1ULL << 2)
174 #define SWCR_TRAP_ENABLE_OVF (1ULL << 3)
175 #define SWCR_TRAP_ENABLE_UNF (1ULL << 4)
176 #define SWCR_TRAP_ENABLE_INE (1ULL << 5)
177 #define SWCR_TRAP_ENABLE_DNO (1ULL << 6)
178 #define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1))
180 #define SWCR_MAP_DMZ (1ULL << 12)
181 #define SWCR_MAP_UMZ (1ULL << 13)
182 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
184 #define SWCR_STATUS_INV (1ULL << 17)
185 #define SWCR_STATUS_DZE (1ULL << 18)
186 #define SWCR_STATUS_OVF (1ULL << 19)
187 #define SWCR_STATUS_UNF (1ULL << 20)
188 #define SWCR_STATUS_INE (1ULL << 21)
189 #define SWCR_STATUS_DNO (1ULL << 22)
190 #define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17))
192 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
194 /* MMU modes definitions */
196 /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
197 The Unix PALcode only exposes the kernel and user modes; presumably
198 executive and supervisor are used by VMS.
200 PALcode itself uses physical mode for code and kernel mode for data;
201 there are PALmode instructions that can access data via physical mode
202 or via an os-installed "alternate mode", which is one of the 4 above.
204 QEMU does not currently properly distinguish between code/data when
205 looking up addresses. To avoid having to address this issue, our
206 emulated PALcode will cheat and use the KSEG mapping for its code+data
207 rather than physical addresses.
209 Moreover, we're only emulating Unix PALcode, and not attempting VMS.
211 All of which allows us to drop all but kernel and user modes.
212 Elide the unused MMU modes to save space. */
214 #define NB_MMU_MODES 2
216 #define MMU_MODE0_SUFFIX _kernel
217 #define MMU_MODE1_SUFFIX _user
218 #define MMU_KERNEL_IDX 0
219 #define MMU_USER_IDX 1
221 typedef struct CPUAlphaState CPUAlphaState;
223 struct CPUAlphaState {
224 uint64_t ir[31];
225 float64 fir[31];
226 uint64_t pc;
227 uint64_t unique;
228 uint64_t lock_addr;
229 uint64_t lock_st_addr;
230 uint64_t lock_value;
231 float_status fp_status;
232 /* The following fields make up the FPCR, but in FP_STATUS format. */
233 uint8_t fpcr_exc_status;
234 uint8_t fpcr_exc_mask;
235 uint8_t fpcr_dyn_round;
236 uint8_t fpcr_flush_to_zero;
237 uint8_t fpcr_dnod;
238 uint8_t fpcr_undz;
240 /* The Internal Processor Registers. Some of these we assume always
241 exist for use in user-mode. */
242 uint8_t ps;
243 uint8_t intr_flag;
244 uint8_t pal_mode;
245 uint8_t fen;
247 uint32_t pcc_ofs;
249 /* These pass data from the exception logic in the translator and
250 helpers to the OS entry point. This is used for both system
251 emulation and user-mode. */
252 uint64_t trap_arg0;
253 uint64_t trap_arg1;
254 uint64_t trap_arg2;
256 #if !defined(CONFIG_USER_ONLY)
257 /* The internal data required by our emulation of the Unix PALcode. */
258 uint64_t exc_addr;
259 uint64_t palbr;
260 uint64_t ptbr;
261 uint64_t vptptr;
262 uint64_t sysval;
263 uint64_t usp;
264 uint64_t shadow[8];
265 uint64_t scratch[24];
266 #endif
268 /* This alarm doesn't exist in real hardware; we wish it did. */
269 struct QEMUTimer *alarm_timer;
270 uint64_t alarm_expire;
272 #if TARGET_LONG_BITS > HOST_LONG_BITS
273 /* temporary fixed-point registers
274 * used to emulate 64 bits target on 32 bits hosts
276 target_ulong t0, t1;
277 #endif
279 /* Those resources are used only in QEMU core */
280 CPU_COMMON
282 int error_code;
284 uint32_t features;
285 uint32_t amask;
286 int implver;
289 #define cpu_init cpu_alpha_init
290 #define cpu_exec cpu_alpha_exec
291 #define cpu_gen_code cpu_alpha_gen_code
292 #define cpu_signal_handler cpu_alpha_signal_handler
294 #include "cpu-all.h"
295 #include "cpu-qom.h"
297 enum {
298 FEATURE_ASN = 0x00000001,
299 FEATURE_SPS = 0x00000002,
300 FEATURE_VIRBND = 0x00000004,
301 FEATURE_TBCHK = 0x00000008,
304 enum {
305 EXCP_RESET,
306 EXCP_MCHK,
307 EXCP_SMP_INTERRUPT,
308 EXCP_CLK_INTERRUPT,
309 EXCP_DEV_INTERRUPT,
310 EXCP_MMFAULT,
311 EXCP_UNALIGN,
312 EXCP_OPCDEC,
313 EXCP_ARITH,
314 EXCP_FEN,
315 EXCP_CALL_PAL,
316 /* For Usermode emulation. */
317 EXCP_STL_C,
318 EXCP_STQ_C,
321 /* Alpha-specific interrupt pending bits. */
322 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
323 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
324 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
326 /* OSF/1 Page table bits. */
327 enum {
328 PTE_VALID = 0x0001,
329 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
330 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
331 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
332 PTE_ASM = 0x0010,
333 PTE_KRE = 0x0100,
334 PTE_URE = 0x0200,
335 PTE_KWE = 0x1000,
336 PTE_UWE = 0x2000
339 /* Hardware interrupt (entInt) constants. */
340 enum {
341 INT_K_IP,
342 INT_K_CLK,
343 INT_K_MCHK,
344 INT_K_DEV,
345 INT_K_PERF,
348 /* Memory management (entMM) constants. */
349 enum {
350 MM_K_TNV,
351 MM_K_ACV,
352 MM_K_FOR,
353 MM_K_FOE,
354 MM_K_FOW
357 /* Arithmetic exception (entArith) constants. */
358 enum {
359 EXC_M_SWC = 1, /* Software completion */
360 EXC_M_INV = 2, /* Invalid operation */
361 EXC_M_DZE = 4, /* Division by zero */
362 EXC_M_FOV = 8, /* Overflow */
363 EXC_M_UNF = 16, /* Underflow */
364 EXC_M_INE = 32, /* Inexact result */
365 EXC_M_IOV = 64 /* Integer Overflow */
368 /* Processor status constants. */
369 enum {
370 /* Low 3 bits are interrupt mask level. */
371 PS_INT_MASK = 7,
373 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
374 The Unix PALcode only uses bit 4. */
375 PS_USER_MODE = 8
378 static inline int cpu_mmu_index(CPUAlphaState *env)
380 if (env->pal_mode) {
381 return MMU_KERNEL_IDX;
382 } else if (env->ps & PS_USER_MODE) {
383 return MMU_USER_IDX;
384 } else {
385 return MMU_KERNEL_IDX;
389 enum {
390 IR_V0 = 0,
391 IR_T0 = 1,
392 IR_T1 = 2,
393 IR_T2 = 3,
394 IR_T3 = 4,
395 IR_T4 = 5,
396 IR_T5 = 6,
397 IR_T6 = 7,
398 IR_T7 = 8,
399 IR_S0 = 9,
400 IR_S1 = 10,
401 IR_S2 = 11,
402 IR_S3 = 12,
403 IR_S4 = 13,
404 IR_S5 = 14,
405 IR_S6 = 15,
406 IR_FP = IR_S6,
407 IR_A0 = 16,
408 IR_A1 = 17,
409 IR_A2 = 18,
410 IR_A3 = 19,
411 IR_A4 = 20,
412 IR_A5 = 21,
413 IR_T8 = 22,
414 IR_T9 = 23,
415 IR_T10 = 24,
416 IR_T11 = 25,
417 IR_RA = 26,
418 IR_T12 = 27,
419 IR_PV = IR_T12,
420 IR_AT = 28,
421 IR_GP = 29,
422 IR_SP = 30,
423 IR_ZERO = 31,
426 CPUAlphaState * cpu_alpha_init (const char *cpu_model);
427 int cpu_alpha_exec(CPUAlphaState *s);
428 /* you can call this signal handler from your SIGBUS and SIGSEGV
429 signal handlers to inform the virtual CPU of exceptions. non zero
430 is returned if the signal was handled by the virtual CPU. */
431 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
432 void *puc);
433 int cpu_alpha_handle_mmu_fault (CPUAlphaState *env, uint64_t address, int rw,
434 int mmu_idx);
435 #define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
436 void do_interrupt (CPUAlphaState *env);
437 void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
438 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
439 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
441 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
442 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
443 #ifndef CONFIG_USER_ONLY
444 void swap_shadow_regs(CPUAlphaState *env);
445 QEMU_NORETURN void cpu_unassigned_access(CPUAlphaState *env1,
446 target_phys_addr_t addr, int is_write,
447 int is_exec, int unused, int size);
448 #endif
450 /* Bits in TB->FLAGS that control how translation is processed. */
451 enum {
452 TB_FLAGS_PAL_MODE = 1,
453 TB_FLAGS_FEN = 2,
454 TB_FLAGS_USER_MODE = 8,
456 TB_FLAGS_AMASK_SHIFT = 4,
457 TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
458 TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
459 TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
460 TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
461 TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
462 TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
465 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
466 target_ulong *cs_base, int *pflags)
468 int flags = 0;
470 *pc = env->pc;
471 *cs_base = 0;
473 if (env->pal_mode) {
474 flags = TB_FLAGS_PAL_MODE;
475 } else {
476 flags = env->ps & PS_USER_MODE;
478 if (env->fen) {
479 flags |= TB_FLAGS_FEN;
481 flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
483 *pflags = flags;
486 #if defined(CONFIG_USER_ONLY)
487 static inline void cpu_clone_regs(CPUAlphaState *env, target_ulong newsp)
489 if (newsp) {
490 env->ir[IR_SP] = newsp;
492 env->ir[IR_V0] = 0;
493 env->ir[IR_A3] = 0;
496 static inline void cpu_set_tls(CPUAlphaState *env, target_ulong newtls)
498 env->unique = newtls;
500 #endif
502 static inline bool cpu_has_work(CPUAlphaState *env)
504 /* Here we are checking to see if the CPU should wake up from HALT.
505 We will have gotten into this state only for WTINT from PALmode. */
506 /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
507 asleep even if (some) interrupts have been asserted. For now,
508 assume that if a CPU really wants to stay asleep, it will mask
509 interrupts at the chipset level, which will prevent these bits
510 from being set in the first place. */
511 return env->interrupt_request & (CPU_INTERRUPT_HARD
512 | CPU_INTERRUPT_TIMER
513 | CPU_INTERRUPT_SMP
514 | CPU_INTERRUPT_MCHK);
517 #include "exec-all.h"
519 static inline void cpu_pc_from_tb(CPUAlphaState *env, TranslationBlock *tb)
521 env->pc = tb->pc;
524 #endif /* !defined (__CPU_ALPHA_H__) */