Replace all setjmp()/longjmp() with sigsetjmp()/siglongjmp()
[qemu/pbrook.git] / hw / m25p80.c
blob461b41c4ac6093b4189ee014d82eda40edfaf6cd
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "hw.h"
25 #include "sysemu/blockdev.h"
26 #include "ssi.h"
27 #include "devices.h"
29 #ifdef M25P80_ERR_DEBUG
30 #define DB_PRINT(...) do { \
31 fprintf(stderr, ": %s: ", __func__); \
32 fprintf(stderr, ## __VA_ARGS__); \
33 } while (0);
34 #else
35 #define DB_PRINT(...)
36 #endif
38 /* Fields for FlashPartInfo->flags */
40 /* erase capabilities */
41 #define ER_4K 1
42 #define ER_32K 2
43 /* set to allow the page program command to write 0s back to 1. Useful for
44 * modelling EEPROM with SPI flash command set
46 #define WR_1 0x100
48 typedef struct FlashPartInfo {
49 const char *part_name;
50 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
51 uint32_t jedec;
52 /* extended jedec code */
53 uint16_t ext_jedec;
54 /* there is confusion between manufacturers as to what a sector is. In this
55 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
56 * command (opcode 0xd8).
58 uint32_t sector_size;
59 uint32_t n_sectors;
60 uint32_t page_size;
61 uint8_t flags;
62 } FlashPartInfo;
64 /* adapted from linux */
66 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
67 .part_name = (_part_name),\
68 .jedec = (_jedec),\
69 .ext_jedec = (_ext_jedec),\
70 .sector_size = (_sector_size),\
71 .n_sectors = (_n_sectors),\
72 .page_size = 256,\
73 .flags = (_flags),\
75 #define JEDEC_NUMONYX 0x20
76 #define JEDEC_WINBOND 0xEF
77 #define JEDEC_SPANSION 0x01
79 static const FlashPartInfo known_devices[] = {
80 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
81 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
82 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
84 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
85 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
86 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
88 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
89 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
90 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
91 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
93 /* EON -- en25xxx */
94 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
95 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
96 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
97 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
99 /* Intel/Numonyx -- xxxs33b */
100 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
101 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
102 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
104 /* Macronix */
105 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
106 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
107 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
108 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
109 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
110 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
111 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
112 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
113 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
115 /* Spansion -- single (large) sector size only, at least
116 * for the chips listed here (without boot sectors).
118 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
119 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
120 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
121 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
122 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
123 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
124 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
125 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
126 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
127 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
128 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
129 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
130 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
131 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
132 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
133 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
135 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
136 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
137 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
138 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
139 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
140 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
141 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
142 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
143 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
145 /* ST Microelectronics -- newer production may have feature updates */
146 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
147 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
148 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
149 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
150 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
151 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
152 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
153 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
154 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
156 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
157 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
158 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
160 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
161 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
163 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
164 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
165 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
166 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
168 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
169 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
170 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
171 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
172 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
173 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
174 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
175 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
176 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
177 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
179 /* Numonyx -- n25q128 */
180 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
182 { },
185 typedef enum {
186 NOP = 0,
187 WRSR = 0x1,
188 WRDI = 0x4,
189 RDSR = 0x5,
190 WREN = 0x6,
191 JEDEC_READ = 0x9f,
192 BULK_ERASE = 0xc7,
194 READ = 0x3,
195 FAST_READ = 0xb,
196 DOR = 0x3b,
197 QOR = 0x6b,
198 DIOR = 0xbb,
199 QIOR = 0xeb,
201 PP = 0x2,
202 DPP = 0xa2,
203 QPP = 0x32,
205 ERASE_4K = 0x20,
206 ERASE_32K = 0x52,
207 ERASE_SECTOR = 0xd8,
208 } FlashCMD;
210 typedef enum {
211 STATE_IDLE,
212 STATE_PAGE_PROGRAM,
213 STATE_READ,
214 STATE_COLLECTING_DATA,
215 STATE_READING_DATA,
216 } CMDState;
218 typedef struct Flash {
219 SSISlave ssidev;
220 uint32_t r;
222 BlockDriverState *bdrv;
224 uint8_t *storage;
225 uint32_t size;
226 int page_size;
228 uint8_t state;
229 uint8_t data[16];
230 uint32_t len;
231 uint32_t pos;
232 uint8_t needed_bytes;
233 uint8_t cmd_in_progress;
234 uint64_t cur_addr;
235 bool write_enable;
237 int64_t dirty_page;
239 char *part_name;
240 const FlashPartInfo *pi;
242 } Flash;
244 static void bdrv_sync_complete(void *opaque, int ret)
246 /* do nothing. Masters do not directly interact with the backing store,
247 * only the working copy so no mutexing required.
251 static void flash_sync_page(Flash *s, int page)
253 if (s->bdrv) {
254 int bdrv_sector, nb_sectors;
255 QEMUIOVector iov;
257 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
258 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
259 qemu_iovec_init(&iov, 1);
260 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
261 nb_sectors * BDRV_SECTOR_SIZE);
262 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
263 bdrv_sync_complete, NULL);
267 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
269 int64_t start, end, nb_sectors;
270 QEMUIOVector iov;
272 if (!s->bdrv) {
273 return;
276 assert(!(len % BDRV_SECTOR_SIZE));
277 start = off / BDRV_SECTOR_SIZE;
278 end = (off + len) / BDRV_SECTOR_SIZE;
279 nb_sectors = end - start;
280 qemu_iovec_init(&iov, 1);
281 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
282 nb_sectors * BDRV_SECTOR_SIZE);
283 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
286 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
288 uint32_t len;
289 uint8_t capa_to_assert = 0;
291 switch (cmd) {
292 case ERASE_4K:
293 len = 4 << 10;
294 capa_to_assert = ER_4K;
295 break;
296 case ERASE_32K:
297 len = 32 << 10;
298 capa_to_assert = ER_32K;
299 break;
300 case ERASE_SECTOR:
301 len = s->pi->sector_size;
302 break;
303 case BULK_ERASE:
304 len = s->size;
305 break;
306 default:
307 abort();
310 DB_PRINT("offset = %#x, len = %d\n", offset, len);
311 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
312 hw_error("m25p80: %dk erase size not supported by device\n", len);
315 if (!s->write_enable) {
316 DB_PRINT("erase with write protect!\n");
317 return;
319 memset(s->storage + offset, 0xff, len);
320 flash_sync_area(s, offset, len);
323 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
325 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
326 flash_sync_page(s, s->dirty_page);
327 s->dirty_page = newpage;
331 static inline
332 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
334 int64_t page = addr / s->pi->page_size;
335 uint8_t prev = s->storage[s->cur_addr];
337 if (!s->write_enable) {
338 DB_PRINT("write with write protect!\n");
341 if ((prev ^ data) & data) {
342 DB_PRINT("programming zero to one! addr=%lx %x -> %x\n",
343 addr, prev, data);
346 if (s->pi->flags & WR_1) {
347 s->storage[s->cur_addr] = data;
348 } else {
349 s->storage[s->cur_addr] &= data;
352 flash_sync_dirty(s, page);
353 s->dirty_page = page;
356 static void complete_collecting_data(Flash *s)
358 s->cur_addr = s->data[0] << 16;
359 s->cur_addr |= s->data[1] << 8;
360 s->cur_addr |= s->data[2];
362 s->state = STATE_IDLE;
364 switch (s->cmd_in_progress) {
365 case DPP:
366 case QPP:
367 case PP:
368 s->state = STATE_PAGE_PROGRAM;
369 break;
370 case READ:
371 case FAST_READ:
372 case DOR:
373 case QOR:
374 case DIOR:
375 case QIOR:
376 s->state = STATE_READ;
377 break;
378 case ERASE_4K:
379 case ERASE_32K:
380 case ERASE_SECTOR:
381 flash_erase(s, s->cur_addr, s->cmd_in_progress);
382 break;
383 case WRSR:
384 if (s->write_enable) {
385 s->write_enable = false;
387 break;
388 default:
389 break;
393 static void decode_new_cmd(Flash *s, uint32_t value)
395 s->cmd_in_progress = value;
396 DB_PRINT("decoded new command:%x\n", value);
398 switch (value) {
400 case ERASE_4K:
401 case ERASE_32K:
402 case ERASE_SECTOR:
403 case READ:
404 case DPP:
405 case QPP:
406 case PP:
407 s->needed_bytes = 3;
408 s->pos = 0;
409 s->len = 0;
410 s->state = STATE_COLLECTING_DATA;
411 break;
413 case FAST_READ:
414 case DOR:
415 case QOR:
416 s->needed_bytes = 4;
417 s->pos = 0;
418 s->len = 0;
419 s->state = STATE_COLLECTING_DATA;
420 break;
422 case DIOR:
423 switch ((s->pi->jedec >> 16) & 0xFF) {
424 case JEDEC_WINBOND:
425 case JEDEC_SPANSION:
426 s->needed_bytes = 4;
427 break;
428 case JEDEC_NUMONYX:
429 default:
430 s->needed_bytes = 5;
432 s->pos = 0;
433 s->len = 0;
434 s->state = STATE_COLLECTING_DATA;
435 break;
437 case QIOR:
438 switch ((s->pi->jedec >> 16) & 0xFF) {
439 case JEDEC_WINBOND:
440 case JEDEC_SPANSION:
441 s->needed_bytes = 6;
442 break;
443 case JEDEC_NUMONYX:
444 default:
445 s->needed_bytes = 8;
447 s->pos = 0;
448 s->len = 0;
449 s->state = STATE_COLLECTING_DATA;
450 break;
452 case WRSR:
453 if (s->write_enable) {
454 s->needed_bytes = 1;
455 s->pos = 0;
456 s->len = 0;
457 s->state = STATE_COLLECTING_DATA;
459 break;
461 case WRDI:
462 s->write_enable = false;
463 break;
464 case WREN:
465 s->write_enable = true;
466 break;
468 case RDSR:
469 s->data[0] = (!!s->write_enable) << 1;
470 s->pos = 0;
471 s->len = 1;
472 s->state = STATE_READING_DATA;
473 break;
475 case JEDEC_READ:
476 DB_PRINT("populated jedec code\n");
477 s->data[0] = (s->pi->jedec >> 16) & 0xff;
478 s->data[1] = (s->pi->jedec >> 8) & 0xff;
479 s->data[2] = s->pi->jedec & 0xff;
480 if (s->pi->ext_jedec) {
481 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
482 s->data[4] = s->pi->ext_jedec & 0xff;
483 s->len = 5;
484 } else {
485 s->len = 3;
487 s->pos = 0;
488 s->state = STATE_READING_DATA;
489 break;
491 case BULK_ERASE:
492 if (s->write_enable) {
493 DB_PRINT("chip erase\n");
494 flash_erase(s, 0, BULK_ERASE);
495 } else {
496 DB_PRINT("chip erase with write protect!\n");
498 break;
499 case NOP:
500 break;
501 default:
502 DB_PRINT("Unknown cmd %x\n", value);
503 break;
507 static int m25p80_cs(SSISlave *ss, bool select)
509 Flash *s = FROM_SSI_SLAVE(Flash, ss);
511 if (select) {
512 s->len = 0;
513 s->pos = 0;
514 s->state = STATE_IDLE;
515 flash_sync_dirty(s, -1);
518 DB_PRINT("%sselect\n", select ? "de" : "");
520 return 0;
523 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
525 Flash *s = FROM_SSI_SLAVE(Flash, ss);
526 uint32_t r = 0;
528 switch (s->state) {
530 case STATE_PAGE_PROGRAM:
531 DB_PRINT("page program cur_addr=%lx data=%x\n", s->cur_addr,
532 (uint8_t)tx);
533 flash_write8(s, s->cur_addr, (uint8_t)tx);
534 s->cur_addr++;
535 break;
537 case STATE_READ:
538 r = s->storage[s->cur_addr];
539 DB_PRINT("READ 0x%lx=%x\n", s->cur_addr, r);
540 s->cur_addr = (s->cur_addr + 1) % s->size;
541 break;
543 case STATE_COLLECTING_DATA:
544 s->data[s->len] = (uint8_t)tx;
545 s->len++;
547 if (s->len == s->needed_bytes) {
548 complete_collecting_data(s);
550 break;
552 case STATE_READING_DATA:
553 r = s->data[s->pos];
554 s->pos++;
555 if (s->pos == s->len) {
556 s->pos = 0;
557 s->state = STATE_IDLE;
559 break;
561 default:
562 case STATE_IDLE:
563 decode_new_cmd(s, (uint8_t)tx);
564 break;
567 return r;
570 static int m25p80_init(SSISlave *ss)
572 DriveInfo *dinfo;
573 Flash *s = FROM_SSI_SLAVE(Flash, ss);
574 const FlashPartInfo *i;
576 if (!s->part_name) { /* default to actual m25p80 if no partname given */
577 s->part_name = (char *)"m25p80";
580 i = known_devices;
581 for (i = known_devices;; i++) {
582 assert(i);
583 if (!i->part_name) {
584 fprintf(stderr, "Unknown SPI flash part: \"%s\"\n", s->part_name);
585 return 1;
586 } else if (!strcmp(i->part_name, s->part_name)) {
587 s->pi = i;
588 break;
592 s->size = s->pi->sector_size * s->pi->n_sectors;
593 s->dirty_page = -1;
594 s->storage = qemu_blockalign(s->bdrv, s->size);
596 dinfo = drive_get_next(IF_MTD);
598 if (dinfo && dinfo->bdrv) {
599 DB_PRINT("Binding to IF_MTD drive\n");
600 s->bdrv = dinfo->bdrv;
601 /* FIXME: Move to late init */
602 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
603 BDRV_SECTOR_SIZE))) {
604 fprintf(stderr, "Failed to initialize SPI flash!\n");
605 return 1;
607 } else {
608 memset(s->storage, 0xFF, s->size);
611 return 0;
614 static void m25p80_pre_save(void *opaque)
616 flash_sync_dirty((Flash *)opaque, -1);
619 static const VMStateDescription vmstate_m25p80 = {
620 .name = "xilinx_spi",
621 .version_id = 1,
622 .minimum_version_id = 1,
623 .minimum_version_id_old = 1,
624 .pre_save = m25p80_pre_save,
625 .fields = (VMStateField[]) {
626 VMSTATE_UINT8(state, Flash),
627 VMSTATE_UINT8_ARRAY(data, Flash, 16),
628 VMSTATE_UINT32(len, Flash),
629 VMSTATE_UINT32(pos, Flash),
630 VMSTATE_UINT8(needed_bytes, Flash),
631 VMSTATE_UINT8(cmd_in_progress, Flash),
632 VMSTATE_UINT64(cur_addr, Flash),
633 VMSTATE_BOOL(write_enable, Flash),
634 VMSTATE_END_OF_LIST()
638 static Property m25p80_properties[] = {
639 DEFINE_PROP_STRING("partname", Flash, part_name),
640 DEFINE_PROP_END_OF_LIST(),
643 static void m25p80_class_init(ObjectClass *klass, void *data)
645 DeviceClass *dc = DEVICE_CLASS(klass);
646 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
648 k->init = m25p80_init;
649 k->transfer = m25p80_transfer8;
650 k->set_cs = m25p80_cs;
651 k->cs_polarity = SSI_CS_LOW;
652 dc->props = m25p80_properties;
653 dc->vmsd = &vmstate_m25p80;
656 static const TypeInfo m25p80_info = {
657 .name = "m25p80",
658 .parent = TYPE_SSI_SLAVE,
659 .instance_size = sizeof(Flash),
660 .class_init = m25p80_class_init,
663 static void m25p80_register_types(void)
665 type_register_static(&m25p80_info);
668 type_init(m25p80_register_types)