configure: Default to 'cc', not 'gcc'
[qemu/pbrook.git] / hw / kvmvapic.c
blobe04c4011d789d52bef3620d0036f657c2d88db5a
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "sysemu.h"
12 #include "cpus.h"
13 #include "kvm.h"
14 #include "apic_internal.h"
16 #define APIC_DEFAULT_ADDRESS 0xfee00000
18 #define VAPIC_IO_PORT 0x7e
20 #define VAPIC_CPU_SHIFT 7
22 #define ROM_BLOCK_SIZE 512
23 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
25 typedef enum VAPICMode {
26 VAPIC_INACTIVE = 0,
27 VAPIC_ACTIVE = 1,
28 VAPIC_STANDBY = 2,
29 } VAPICMode;
31 typedef struct VAPICHandlers {
32 uint32_t set_tpr;
33 uint32_t set_tpr_eax;
34 uint32_t get_tpr[8];
35 uint32_t get_tpr_stack;
36 } QEMU_PACKED VAPICHandlers;
38 typedef struct GuestROMState {
39 char signature[8];
40 uint32_t vaddr;
41 uint32_t fixup_start;
42 uint32_t fixup_end;
43 uint32_t vapic_vaddr;
44 uint32_t vapic_size;
45 uint32_t vcpu_shift;
46 uint32_t real_tpr_addr;
47 VAPICHandlers up;
48 VAPICHandlers mp;
49 } QEMU_PACKED GuestROMState;
51 typedef struct VAPICROMState {
52 SysBusDevice busdev;
53 MemoryRegion io;
54 MemoryRegion rom;
55 uint32_t state;
56 uint32_t rom_state_paddr;
57 uint32_t rom_state_vaddr;
58 uint32_t vapic_paddr;
59 uint32_t real_tpr_addr;
60 GuestROMState rom_state;
61 size_t rom_size;
62 bool rom_mapped_writable;
63 } VAPICROMState;
65 #define TPR_INSTR_ABS_MODRM 0x1
66 #define TPR_INSTR_MATCH_MODRM_REG 0x2
68 typedef struct TPRInstruction {
69 uint8_t opcode;
70 uint8_t modrm_reg;
71 unsigned int flags;
72 TPRAccess access;
73 size_t length;
74 off_t addr_offset;
75 } TPRInstruction;
77 /* must be sorted by length, shortest first */
78 static const TPRInstruction tpr_instr[] = {
79 { /* mov abs to eax */
80 .opcode = 0xa1,
81 .access = TPR_ACCESS_READ,
82 .length = 5,
83 .addr_offset = 1,
85 { /* mov eax to abs */
86 .opcode = 0xa3,
87 .access = TPR_ACCESS_WRITE,
88 .length = 5,
89 .addr_offset = 1,
91 { /* mov r32 to r/m32 */
92 .opcode = 0x89,
93 .flags = TPR_INSTR_ABS_MODRM,
94 .access = TPR_ACCESS_WRITE,
95 .length = 6,
96 .addr_offset = 2,
98 { /* mov r/m32 to r32 */
99 .opcode = 0x8b,
100 .flags = TPR_INSTR_ABS_MODRM,
101 .access = TPR_ACCESS_READ,
102 .length = 6,
103 .addr_offset = 2,
105 { /* push r/m32 */
106 .opcode = 0xff,
107 .modrm_reg = 6,
108 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
109 .access = TPR_ACCESS_READ,
110 .length = 6,
111 .addr_offset = 2,
113 { /* mov imm32, r/m32 (c7/0) */
114 .opcode = 0xc7,
115 .modrm_reg = 0,
116 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
117 .access = TPR_ACCESS_WRITE,
118 .length = 10,
119 .addr_offset = 2,
123 static void read_guest_rom_state(VAPICROMState *s)
125 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
126 sizeof(GuestROMState), 0);
129 static void write_guest_rom_state(VAPICROMState *s)
131 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
132 sizeof(GuestROMState), 1);
135 static void update_guest_rom_state(VAPICROMState *s)
137 read_guest_rom_state(s);
139 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
140 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
142 write_guest_rom_state(s);
145 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
147 hwaddr paddr;
148 target_ulong addr;
150 if (s->state == VAPIC_ACTIVE) {
151 return 0;
154 * If there is no prior TPR access instruction we could analyze (which is
155 * the case after resume from hibernation), we need to scan the possible
156 * virtual address space for the APIC mapping.
158 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
159 paddr = cpu_get_phys_page_debug(env, addr);
160 if (paddr != APIC_DEFAULT_ADDRESS) {
161 continue;
163 s->real_tpr_addr = addr + 0x80;
164 update_guest_rom_state(s);
165 return 0;
167 return -1;
170 static uint8_t modrm_reg(uint8_t modrm)
172 return (modrm >> 3) & 7;
175 static bool is_abs_modrm(uint8_t modrm)
177 return (modrm & 0xc7) == 0x05;
180 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
182 return opcode[0] == instr->opcode &&
183 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
184 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
185 modrm_reg(opcode[1]) == instr->modrm_reg);
188 static int evaluate_tpr_instruction(VAPICROMState *s, CPUX86State *env,
189 target_ulong *pip, TPRAccess access)
191 const TPRInstruction *instr;
192 target_ulong ip = *pip;
193 uint8_t opcode[2];
194 uint32_t real_tpr_addr;
195 int i;
197 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
198 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
199 return -1;
203 * Early Windows 2003 SMP initialization contains a
205 * mov imm32, r/m32
207 * instruction that is patched by TPR optimization. The problem is that
208 * RSP, used by the patched instruction, is zero, so the guest gets a
209 * double fault and dies.
211 if (env->regs[R_ESP] == 0) {
212 return -1;
215 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
217 * KVM without kernel-based TPR access reporting will pass an IP that
218 * points after the accessing instruction. So we need to look backward
219 * to find the reason.
221 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
222 instr = &tpr_instr[i];
223 if (instr->access != access) {
224 continue;
226 if (cpu_memory_rw_debug(env, ip - instr->length, opcode,
227 sizeof(opcode), 0) < 0) {
228 return -1;
230 if (opcode_matches(opcode, instr)) {
231 ip -= instr->length;
232 goto instruction_ok;
235 return -1;
236 } else {
237 if (cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0) < 0) {
238 return -1;
240 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
241 instr = &tpr_instr[i];
242 if (opcode_matches(opcode, instr)) {
243 goto instruction_ok;
246 return -1;
249 instruction_ok:
251 * Grab the virtual TPR address from the instruction
252 * and update the cached values.
254 if (cpu_memory_rw_debug(env, ip + instr->addr_offset,
255 (void *)&real_tpr_addr,
256 sizeof(real_tpr_addr), 0) < 0) {
257 return -1;
259 real_tpr_addr = le32_to_cpu(real_tpr_addr);
260 if ((real_tpr_addr & 0xfff) != 0x80) {
261 return -1;
263 s->real_tpr_addr = real_tpr_addr;
264 update_guest_rom_state(s);
266 *pip = ip;
267 return 0;
270 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
272 hwaddr paddr;
273 uint32_t rom_state_vaddr;
274 uint32_t pos, patch, offset;
276 /* nothing to do if already activated */
277 if (s->state == VAPIC_ACTIVE) {
278 return 0;
281 /* bail out if ROM init code was not executed (missing ROM?) */
282 if (s->state == VAPIC_INACTIVE) {
283 return -1;
286 /* find out virtual address of the ROM */
287 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
288 paddr = cpu_get_phys_page_debug(env, rom_state_vaddr);
289 if (paddr == -1) {
290 return -1;
292 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
293 if (paddr != s->rom_state_paddr) {
294 return -1;
296 read_guest_rom_state(s);
297 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
298 return -1;
300 s->rom_state_vaddr = rom_state_vaddr;
302 /* fixup addresses in ROM if needed */
303 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
304 return 0;
306 for (pos = le32_to_cpu(s->rom_state.fixup_start);
307 pos < le32_to_cpu(s->rom_state.fixup_end);
308 pos += 4) {
309 cpu_physical_memory_rw(paddr + pos - s->rom_state.vaddr,
310 (void *)&offset, sizeof(offset), 0);
311 offset = le32_to_cpu(offset);
312 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
313 sizeof(patch), 0);
314 patch = le32_to_cpu(patch);
315 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
316 patch = cpu_to_le32(patch);
317 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
318 sizeof(patch), 1);
320 read_guest_rom_state(s);
321 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
322 le32_to_cpu(s->rom_state.vaddr);
324 return 0;
328 * Tries to read the unique processor number from the Kernel Processor Control
329 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
330 * cannot be accessed or is considered invalid. This also ensures that we are
331 * not patching the wrong guest.
333 static int get_kpcr_number(CPUX86State *env)
335 struct kpcr {
336 uint8_t fill1[0x1c];
337 uint32_t self;
338 uint8_t fill2[0x31];
339 uint8_t number;
340 } QEMU_PACKED kpcr;
342 if (cpu_memory_rw_debug(env, env->segs[R_FS].base,
343 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
344 kpcr.self != env->segs[R_FS].base) {
345 return -1;
347 return kpcr.number;
350 static int vapic_enable(VAPICROMState *s, CPUX86State *env)
352 int cpu_number = get_kpcr_number(env);
353 hwaddr vapic_paddr;
354 static const uint8_t enabled = 1;
356 if (cpu_number < 0) {
357 return -1;
359 vapic_paddr = s->vapic_paddr +
360 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
361 cpu_physical_memory_rw(vapic_paddr + offsetof(VAPICState, enabled),
362 (void *)&enabled, sizeof(enabled), 1);
363 apic_enable_vapic(env->apic_state, vapic_paddr);
365 s->state = VAPIC_ACTIVE;
367 return 0;
370 static void patch_byte(CPUX86State *env, target_ulong addr, uint8_t byte)
372 cpu_memory_rw_debug(env, addr, &byte, 1, 1);
375 static void patch_call(VAPICROMState *s, CPUX86State *env, target_ulong ip,
376 uint32_t target)
378 uint32_t offset;
380 offset = cpu_to_le32(target - ip - 5);
381 patch_byte(env, ip, 0xe8); /* call near */
382 cpu_memory_rw_debug(env, ip + 1, (void *)&offset, sizeof(offset), 1);
385 static void patch_instruction(VAPICROMState *s, CPUX86State *env, target_ulong ip)
387 VAPICHandlers *handlers;
388 uint8_t opcode[2];
389 uint32_t imm32;
390 TranslationBlock *current_tb;
391 target_ulong current_pc = 0;
392 target_ulong current_cs_base = 0;
393 int current_flags = 0;
395 if (smp_cpus == 1) {
396 handlers = &s->rom_state.up;
397 } else {
398 handlers = &s->rom_state.mp;
401 if (!kvm_enabled()) {
402 current_tb = tb_find_pc(env->mem_io_pc);
403 cpu_restore_state(current_tb, env, env->mem_io_pc);
404 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
405 &current_flags);
408 pause_all_vcpus();
410 cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0);
412 switch (opcode[0]) {
413 case 0x89: /* mov r32 to r/m32 */
414 patch_byte(env, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
415 patch_call(s, env, ip + 1, handlers->set_tpr);
416 break;
417 case 0x8b: /* mov r/m32 to r32 */
418 patch_byte(env, ip, 0x90);
419 patch_call(s, env, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
420 break;
421 case 0xa1: /* mov abs to eax */
422 patch_call(s, env, ip, handlers->get_tpr[0]);
423 break;
424 case 0xa3: /* mov eax to abs */
425 patch_call(s, env, ip, handlers->set_tpr_eax);
426 break;
427 case 0xc7: /* mov imm32, r/m32 (c7/0) */
428 patch_byte(env, ip, 0x68); /* push imm32 */
429 cpu_memory_rw_debug(env, ip + 6, (void *)&imm32, sizeof(imm32), 0);
430 cpu_memory_rw_debug(env, ip + 1, (void *)&imm32, sizeof(imm32), 1);
431 patch_call(s, env, ip + 5, handlers->set_tpr);
432 break;
433 case 0xff: /* push r/m32 */
434 patch_byte(env, ip, 0x50); /* push eax */
435 patch_call(s, env, ip + 1, handlers->get_tpr_stack);
436 break;
437 default:
438 abort();
441 resume_all_vcpus();
443 if (!kvm_enabled()) {
444 env->current_tb = NULL;
445 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
446 cpu_resume_from_signal(env, NULL);
450 void vapic_report_tpr_access(DeviceState *dev, void *cpu, target_ulong ip,
451 TPRAccess access)
453 VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
454 CPUX86State *env = cpu;
456 cpu_synchronize_state(env);
458 if (evaluate_tpr_instruction(s, env, &ip, access) < 0) {
459 if (s->state == VAPIC_ACTIVE) {
460 vapic_enable(s, env);
462 return;
464 if (update_rom_mapping(s, env, ip) < 0) {
465 return;
467 if (vapic_enable(s, env) < 0) {
468 return;
470 patch_instruction(s, env, ip);
473 typedef struct VAPICEnableTPRReporting {
474 DeviceState *apic;
475 bool enable;
476 } VAPICEnableTPRReporting;
478 static void vapic_do_enable_tpr_reporting(void *data)
480 VAPICEnableTPRReporting *info = data;
482 apic_enable_tpr_access_reporting(info->apic, info->enable);
485 static void vapic_enable_tpr_reporting(bool enable)
487 VAPICEnableTPRReporting info = {
488 .enable = enable,
490 X86CPU *cpu;
491 CPUX86State *env;
493 for (env = first_cpu; env != NULL; env = env->next_cpu) {
494 cpu = x86_env_get_cpu(env);
495 info.apic = env->apic_state;
496 run_on_cpu(CPU(cpu), vapic_do_enable_tpr_reporting, &info);
500 static void vapic_reset(DeviceState *dev)
502 VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
504 if (s->state == VAPIC_ACTIVE) {
505 s->state = VAPIC_STANDBY;
507 vapic_enable_tpr_reporting(false);
511 * Set the IRQ polling hypercalls to the supported variant:
512 * - vmcall if using KVM in-kernel irqchip
513 * - 32-bit VAPIC port write otherwise
515 static int patch_hypercalls(VAPICROMState *s)
517 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
518 static const uint8_t vmcall_pattern[] = { /* vmcall */
519 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
521 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
522 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
524 uint8_t alternates[2];
525 const uint8_t *pattern;
526 const uint8_t *patch;
527 int patches = 0;
528 off_t pos;
529 uint8_t *rom;
531 rom = g_malloc(s->rom_size);
532 cpu_physical_memory_rw(rom_paddr, rom, s->rom_size, 0);
534 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
535 if (kvm_irqchip_in_kernel()) {
536 pattern = outl_pattern;
537 alternates[0] = outl_pattern[7];
538 alternates[1] = outl_pattern[7];
539 patch = &vmcall_pattern[5];
540 } else {
541 pattern = vmcall_pattern;
542 alternates[0] = vmcall_pattern[7];
543 alternates[1] = 0xd9; /* AMD's VMMCALL */
544 patch = &outl_pattern[5];
546 if (memcmp(rom + pos, pattern, 7) == 0 &&
547 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
548 cpu_physical_memory_rw(rom_paddr + pos + 5, (uint8_t *)patch,
549 3, 1);
551 * Don't flush the tb here. Under ordinary conditions, the patched
552 * calls are miles away from the current IP. Under malicious
553 * conditions, the guest could trick us to crash.
558 g_free(rom);
560 if (patches != 0 && patches != 2) {
561 return -1;
564 return 0;
568 * For TCG mode or the time KVM honors read-only memory regions, we need to
569 * enable write access to the option ROM so that variables can be updated by
570 * the guest.
572 static void vapic_map_rom_writable(VAPICROMState *s)
574 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
575 MemoryRegionSection section;
576 MemoryRegion *as;
577 size_t rom_size;
578 uint8_t *ram;
580 as = sysbus_address_space(&s->busdev);
582 if (s->rom_mapped_writable) {
583 memory_region_del_subregion(as, &s->rom);
584 memory_region_destroy(&s->rom);
587 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
588 section = memory_region_find(as, 0, 1);
590 /* read ROM size from RAM region */
591 ram = memory_region_get_ram_ptr(section.mr);
592 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
593 s->rom_size = rom_size;
595 /* We need to round to avoid creating subpages
596 * from which we cannot run code. */
597 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
598 rom_paddr &= TARGET_PAGE_MASK;
599 rom_size = TARGET_PAGE_ALIGN(rom_size);
601 memory_region_init_alias(&s->rom, "kvmvapic-rom", section.mr, rom_paddr,
602 rom_size);
603 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
604 s->rom_mapped_writable = true;
607 static int vapic_prepare(VAPICROMState *s)
609 vapic_map_rom_writable(s);
611 if (patch_hypercalls(s) < 0) {
612 return -1;
615 vapic_enable_tpr_reporting(true);
617 return 0;
620 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
621 unsigned int size)
623 CPUX86State *env = cpu_single_env;
624 hwaddr rom_paddr;
625 VAPICROMState *s = opaque;
627 cpu_synchronize_state(env);
630 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
631 * o 16-bit write access:
632 * Reports the option ROM initialization to the hypervisor. Written
633 * value is the offset of the state structure in the ROM.
634 * o 8-bit write access:
635 * Reactivates the VAPIC after a guest hibernation, i.e. after the
636 * option ROM content has been re-initialized by a guest power cycle.
637 * o 32-bit write access:
638 * Poll for pending IRQs, considering the current VAPIC state.
640 switch (size) {
641 case 2:
642 if (s->state == VAPIC_INACTIVE) {
643 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
644 s->rom_state_paddr = rom_paddr + data;
646 s->state = VAPIC_STANDBY;
648 if (vapic_prepare(s) < 0) {
649 s->state = VAPIC_INACTIVE;
650 break;
652 break;
653 case 1:
654 if (kvm_enabled()) {
656 * Disable triggering instruction in ROM by writing a NOP.
658 * We cannot do this in TCG mode as the reported IP is not
659 * accurate.
661 pause_all_vcpus();
662 patch_byte(env, env->eip - 2, 0x66);
663 patch_byte(env, env->eip - 1, 0x90);
664 resume_all_vcpus();
667 if (s->state == VAPIC_ACTIVE) {
668 break;
670 if (update_rom_mapping(s, env, env->eip) < 0) {
671 break;
673 if (find_real_tpr_addr(s, env) < 0) {
674 break;
676 vapic_enable(s, env);
677 break;
678 default:
679 case 4:
680 if (!kvm_irqchip_in_kernel()) {
681 apic_poll_irq(env->apic_state);
683 break;
687 static const MemoryRegionOps vapic_ops = {
688 .write = vapic_write,
689 .endianness = DEVICE_NATIVE_ENDIAN,
692 static int vapic_init(SysBusDevice *dev)
694 VAPICROMState *s = FROM_SYSBUS(VAPICROMState, dev);
696 memory_region_init_io(&s->io, &vapic_ops, s, "kvmvapic", 2);
697 sysbus_add_io(dev, VAPIC_IO_PORT, &s->io);
698 sysbus_init_ioports(dev, VAPIC_IO_PORT, 2);
700 option_rom[nb_option_roms].name = "kvmvapic.bin";
701 option_rom[nb_option_roms].bootindex = -1;
702 nb_option_roms++;
704 return 0;
707 static void do_vapic_enable(void *data)
709 VAPICROMState *s = data;
711 vapic_enable(s, first_cpu);
714 static int vapic_post_load(void *opaque, int version_id)
716 VAPICROMState *s = opaque;
717 uint8_t *zero;
720 * The old implementation of qemu-kvm did not provide the state
721 * VAPIC_STANDBY. Reconstruct it.
723 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
724 s->state = VAPIC_STANDBY;
727 if (s->state != VAPIC_INACTIVE) {
728 if (vapic_prepare(s) < 0) {
729 return -1;
732 if (s->state == VAPIC_ACTIVE) {
733 if (smp_cpus == 1) {
734 run_on_cpu(ENV_GET_CPU(first_cpu), do_vapic_enable, s);
735 } else {
736 zero = g_malloc0(s->rom_state.vapic_size);
737 cpu_physical_memory_rw(s->vapic_paddr, zero,
738 s->rom_state.vapic_size, 1);
739 g_free(zero);
743 return 0;
746 static const VMStateDescription vmstate_handlers = {
747 .name = "kvmvapic-handlers",
748 .version_id = 1,
749 .minimum_version_id = 1,
750 .minimum_version_id_old = 1,
751 .fields = (VMStateField[]) {
752 VMSTATE_UINT32(set_tpr, VAPICHandlers),
753 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
754 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
755 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
756 VMSTATE_END_OF_LIST()
760 static const VMStateDescription vmstate_guest_rom = {
761 .name = "kvmvapic-guest-rom",
762 .version_id = 1,
763 .minimum_version_id = 1,
764 .minimum_version_id_old = 1,
765 .fields = (VMStateField[]) {
766 VMSTATE_UNUSED(8), /* signature */
767 VMSTATE_UINT32(vaddr, GuestROMState),
768 VMSTATE_UINT32(fixup_start, GuestROMState),
769 VMSTATE_UINT32(fixup_end, GuestROMState),
770 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
771 VMSTATE_UINT32(vapic_size, GuestROMState),
772 VMSTATE_UINT32(vcpu_shift, GuestROMState),
773 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
774 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
775 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
776 VMSTATE_END_OF_LIST()
780 static const VMStateDescription vmstate_vapic = {
781 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
782 .version_id = 1,
783 .minimum_version_id = 1,
784 .minimum_version_id_old = 1,
785 .post_load = vapic_post_load,
786 .fields = (VMStateField[]) {
787 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
788 GuestROMState),
789 VMSTATE_UINT32(state, VAPICROMState),
790 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
791 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
792 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
793 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
794 VMSTATE_END_OF_LIST()
798 static void vapic_class_init(ObjectClass *klass, void *data)
800 SysBusDeviceClass *sc = SYS_BUS_DEVICE_CLASS(klass);
801 DeviceClass *dc = DEVICE_CLASS(klass);
803 dc->no_user = 1;
804 dc->reset = vapic_reset;
805 dc->vmsd = &vmstate_vapic;
806 sc->init = vapic_init;
809 static TypeInfo vapic_type = {
810 .name = "kvmvapic",
811 .parent = TYPE_SYS_BUS_DEVICE,
812 .instance_size = sizeof(VAPICROMState),
813 .class_init = vapic_class_init,
816 static void vapic_register(void)
818 type_register_static(&vapic_type);
821 type_init(vapic_register);