target-arm: convert check_ap to ap_to_rw_prot
[qemu/qmp-unstable.git] / target-sparc / ldst_helper.c
blobc7ad47d35c9842fc7643707e3239293721e2d8ae
1 /*
2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/cpu_ldst.h"
24 //#define DEBUG_MMU
25 //#define DEBUG_MXCC
26 //#define DEBUG_UNALIGNED
27 //#define DEBUG_UNASSIGNED
28 //#define DEBUG_ASI
29 //#define DEBUG_CACHE_CONTROL
31 #ifdef DEBUG_MMU
32 #define DPRINTF_MMU(fmt, ...) \
33 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF_MMU(fmt, ...) do {} while (0)
36 #endif
38 #ifdef DEBUG_MXCC
39 #define DPRINTF_MXCC(fmt, ...) \
40 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
43 #endif
45 #ifdef DEBUG_ASI
46 #define DPRINTF_ASI(fmt, ...) \
47 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
48 #endif
50 #ifdef DEBUG_CACHE_CONTROL
51 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
52 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
53 #else
54 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
55 #endif
57 #ifdef TARGET_SPARC64
58 #ifndef TARGET_ABI32
59 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
60 #else
61 #define AM_CHECK(env1) (1)
62 #endif
63 #endif
65 #define QT0 (env->qt0)
66 #define QT1 (env->qt1)
68 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
69 /* Calculates TSB pointer value for fault page size 8k or 64k */
70 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
71 uint64_t tag_access_register,
72 int page_size)
74 uint64_t tsb_base = tsb_register & ~0x1fffULL;
75 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
76 int tsb_size = tsb_register & 0xf;
78 /* discard lower 13 bits which hold tag access context */
79 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
81 /* now reorder bits */
82 uint64_t tsb_base_mask = ~0x1fffULL;
83 uint64_t va = tag_access_va;
85 /* move va bits to correct position */
86 if (page_size == 8*1024) {
87 va >>= 9;
88 } else if (page_size == 64*1024) {
89 va >>= 12;
92 if (tsb_size) {
93 tsb_base_mask <<= tsb_size;
96 /* calculate tsb_base mask and adjust va if split is in use */
97 if (tsb_split) {
98 if (page_size == 8*1024) {
99 va &= ~(1ULL << (13 + tsb_size));
100 } else if (page_size == 64*1024) {
101 va |= (1ULL << (13 + tsb_size));
103 tsb_base_mask <<= 1;
106 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
109 /* Calculates tag target register value by reordering bits
110 in tag access register */
111 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
113 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
116 static void replace_tlb_entry(SparcTLBEntry *tlb,
117 uint64_t tlb_tag, uint64_t tlb_tte,
118 CPUSPARCState *env1)
120 target_ulong mask, size, va, offset;
122 /* flush page range if translation is valid */
123 if (TTE_IS_VALID(tlb->tte)) {
124 CPUState *cs = CPU(sparc_env_get_cpu(env1));
126 mask = 0xffffffffffffe000ULL;
127 mask <<= 3 * ((tlb->tte >> 61) & 3);
128 size = ~mask + 1;
130 va = tlb->tag & mask;
132 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
133 tlb_flush_page(cs, va + offset);
137 tlb->tag = tlb_tag;
138 tlb->tte = tlb_tte;
141 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
142 const char *strmmu, CPUSPARCState *env1)
144 unsigned int i;
145 target_ulong mask;
146 uint64_t context;
148 int is_demap_context = (demap_addr >> 6) & 1;
150 /* demap context */
151 switch ((demap_addr >> 4) & 3) {
152 case 0: /* primary */
153 context = env1->dmmu.mmu_primary_context;
154 break;
155 case 1: /* secondary */
156 context = env1->dmmu.mmu_secondary_context;
157 break;
158 case 2: /* nucleus */
159 context = 0;
160 break;
161 case 3: /* reserved */
162 default:
163 return;
166 for (i = 0; i < 64; i++) {
167 if (TTE_IS_VALID(tlb[i].tte)) {
169 if (is_demap_context) {
170 /* will remove non-global entries matching context value */
171 if (TTE_IS_GLOBAL(tlb[i].tte) ||
172 !tlb_compare_context(&tlb[i], context)) {
173 continue;
175 } else {
176 /* demap page
177 will remove any entry matching VA */
178 mask = 0xffffffffffffe000ULL;
179 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
181 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
182 continue;
185 /* entry should be global or matching context value */
186 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
187 !tlb_compare_context(&tlb[i], context)) {
188 continue;
192 replace_tlb_entry(&tlb[i], 0, 0, env1);
193 #ifdef DEBUG_MMU
194 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
195 dump_mmu(stdout, fprintf, env1);
196 #endif
201 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
202 uint64_t tlb_tag, uint64_t tlb_tte,
203 const char *strmmu, CPUSPARCState *env1)
205 unsigned int i, replace_used;
207 /* Try replacing invalid entry */
208 for (i = 0; i < 64; i++) {
209 if (!TTE_IS_VALID(tlb[i].tte)) {
210 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
211 #ifdef DEBUG_MMU
212 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
213 dump_mmu(stdout, fprintf, env1);
214 #endif
215 return;
219 /* All entries are valid, try replacing unlocked entry */
221 for (replace_used = 0; replace_used < 2; ++replace_used) {
223 /* Used entries are not replaced on first pass */
225 for (i = 0; i < 64; i++) {
226 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
228 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
229 #ifdef DEBUG_MMU
230 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
231 strmmu, (replace_used ? "used" : "unused"), i);
232 dump_mmu(stdout, fprintf, env1);
233 #endif
234 return;
238 /* Now reset used bit and search for unused entries again */
240 for (i = 0; i < 64; i++) {
241 TTE_SET_UNUSED(tlb[i].tte);
245 #ifdef DEBUG_MMU
246 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
247 #endif
248 /* error state? */
251 #endif
253 #if defined(TARGET_SPARC64) || defined(CONFIG_USER_ONLY)
254 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
256 #ifdef TARGET_SPARC64
257 if (AM_CHECK(env1)) {
258 addr &= 0xffffffffULL;
260 #endif
261 return addr;
263 #endif
265 #ifdef TARGET_SPARC64
266 /* returns true if access using this ASI is to have address translated by MMU
267 otherwise access is to raw physical address */
268 /* TODO: check sparc32 bits */
269 static inline int is_translating_asi(int asi)
271 /* Ultrasparc IIi translating asi
272 - note this list is defined by cpu implementation
274 switch (asi) {
275 case 0x04 ... 0x11:
276 case 0x16 ... 0x19:
277 case 0x1E ... 0x1F:
278 case 0x24 ... 0x2C:
279 case 0x70 ... 0x73:
280 case 0x78 ... 0x79:
281 case 0x80 ... 0xFF:
282 return 1;
284 default:
285 return 0;
289 static inline target_ulong asi_address_mask(CPUSPARCState *env,
290 int asi, target_ulong addr)
292 if (is_translating_asi(asi)) {
293 return address_mask(env, addr);
294 } else {
295 return addr;
298 #endif
300 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
302 if (addr & align) {
303 #ifdef DEBUG_UNALIGNED
304 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
305 "\n", addr, env->pc);
306 #endif
307 helper_raise_exception(env, TT_UNALIGNED);
311 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
312 defined(DEBUG_MXCC)
313 static void dump_mxcc(CPUSPARCState *env)
315 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
316 "\n",
317 env->mxccdata[0], env->mxccdata[1],
318 env->mxccdata[2], env->mxccdata[3]);
319 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
320 "\n"
321 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
322 "\n",
323 env->mxccregs[0], env->mxccregs[1],
324 env->mxccregs[2], env->mxccregs[3],
325 env->mxccregs[4], env->mxccregs[5],
326 env->mxccregs[6], env->mxccregs[7]);
328 #endif
330 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
331 && defined(DEBUG_ASI)
332 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
333 uint64_t r1)
335 switch (size) {
336 case 1:
337 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
338 addr, asi, r1 & 0xff);
339 break;
340 case 2:
341 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
342 addr, asi, r1 & 0xffff);
343 break;
344 case 4:
345 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
346 addr, asi, r1 & 0xffffffff);
347 break;
348 case 8:
349 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
350 addr, asi, r1);
351 break;
354 #endif
356 #ifndef TARGET_SPARC64
357 #ifndef CONFIG_USER_ONLY
360 /* Leon3 cache control */
362 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
363 uint64_t val, int size)
365 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
366 addr, val, size);
368 if (size != 4) {
369 DPRINTF_CACHE_CONTROL("32bits only\n");
370 return;
373 switch (addr) {
374 case 0x00: /* Cache control */
376 /* These values must always be read as zeros */
377 val &= ~CACHE_CTRL_FD;
378 val &= ~CACHE_CTRL_FI;
379 val &= ~CACHE_CTRL_IB;
380 val &= ~CACHE_CTRL_IP;
381 val &= ~CACHE_CTRL_DP;
383 env->cache_control = val;
384 break;
385 case 0x04: /* Instruction cache configuration */
386 case 0x08: /* Data cache configuration */
387 /* Read Only */
388 break;
389 default:
390 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
391 break;
395 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
396 int size)
398 uint64_t ret = 0;
400 if (size != 4) {
401 DPRINTF_CACHE_CONTROL("32bits only\n");
402 return 0;
405 switch (addr) {
406 case 0x00: /* Cache control */
407 ret = env->cache_control;
408 break;
410 /* Configuration registers are read and only always keep those
411 predefined values */
413 case 0x04: /* Instruction cache configuration */
414 ret = 0x10220000;
415 break;
416 case 0x08: /* Data cache configuration */
417 ret = 0x18220000;
418 break;
419 default:
420 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
421 break;
423 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
424 addr, ret, size);
425 return ret;
428 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
429 int sign)
431 CPUState *cs = CPU(sparc_env_get_cpu(env));
432 uint64_t ret = 0;
433 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
434 uint32_t last_addr = addr;
435 #endif
437 helper_check_align(env, addr, size - 1);
438 switch (asi) {
439 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
440 switch (addr) {
441 case 0x00: /* Leon3 Cache Control */
442 case 0x08: /* Leon3 Instruction Cache config */
443 case 0x0C: /* Leon3 Date Cache config */
444 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
445 ret = leon3_cache_control_ld(env, addr, size);
447 break;
448 case 0x01c00a00: /* MXCC control register */
449 if (size == 8) {
450 ret = env->mxccregs[3];
451 } else {
452 qemu_log_mask(LOG_UNIMP,
453 "%08x: unimplemented access size: %d\n", addr,
454 size);
456 break;
457 case 0x01c00a04: /* MXCC control register */
458 if (size == 4) {
459 ret = env->mxccregs[3];
460 } else {
461 qemu_log_mask(LOG_UNIMP,
462 "%08x: unimplemented access size: %d\n", addr,
463 size);
465 break;
466 case 0x01c00c00: /* Module reset register */
467 if (size == 8) {
468 ret = env->mxccregs[5];
469 /* should we do something here? */
470 } else {
471 qemu_log_mask(LOG_UNIMP,
472 "%08x: unimplemented access size: %d\n", addr,
473 size);
475 break;
476 case 0x01c00f00: /* MBus port address register */
477 if (size == 8) {
478 ret = env->mxccregs[7];
479 } else {
480 qemu_log_mask(LOG_UNIMP,
481 "%08x: unimplemented access size: %d\n", addr,
482 size);
484 break;
485 default:
486 qemu_log_mask(LOG_UNIMP,
487 "%08x: unimplemented address, size: %d\n", addr,
488 size);
489 break;
491 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
492 "addr = %08x -> ret = %" PRIx64 ","
493 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
494 #ifdef DEBUG_MXCC
495 dump_mxcc(env);
496 #endif
497 break;
498 case 3: /* MMU probe */
499 case 0x18: /* LEON3 MMU probe */
501 int mmulev;
503 mmulev = (addr >> 8) & 15;
504 if (mmulev > 4) {
505 ret = 0;
506 } else {
507 ret = mmu_probe(env, addr, mmulev);
509 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
510 addr, mmulev, ret);
512 break;
513 case 4: /* read MMU regs */
514 case 0x19: /* LEON3 read MMU regs */
516 int reg = (addr >> 8) & 0x1f;
518 ret = env->mmuregs[reg];
519 if (reg == 3) { /* Fault status cleared on read */
520 env->mmuregs[3] = 0;
521 } else if (reg == 0x13) { /* Fault status read */
522 ret = env->mmuregs[3];
523 } else if (reg == 0x14) { /* Fault address read */
524 ret = env->mmuregs[4];
526 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
528 break;
529 case 5: /* Turbosparc ITLB Diagnostic */
530 case 6: /* Turbosparc DTLB Diagnostic */
531 case 7: /* Turbosparc IOTLB Diagnostic */
532 break;
533 case 9: /* Supervisor code access */
534 switch (size) {
535 case 1:
536 ret = cpu_ldub_code(env, addr);
537 break;
538 case 2:
539 ret = cpu_lduw_code(env, addr);
540 break;
541 default:
542 case 4:
543 ret = cpu_ldl_code(env, addr);
544 break;
545 case 8:
546 ret = cpu_ldq_code(env, addr);
547 break;
549 break;
550 case 0xa: /* User data access */
551 switch (size) {
552 case 1:
553 ret = cpu_ldub_user(env, addr);
554 break;
555 case 2:
556 ret = cpu_lduw_user(env, addr);
557 break;
558 default:
559 case 4:
560 ret = cpu_ldl_user(env, addr);
561 break;
562 case 8:
563 ret = cpu_ldq_user(env, addr);
564 break;
566 break;
567 case 0xb: /* Supervisor data access */
568 case 0x80:
569 switch (size) {
570 case 1:
571 ret = cpu_ldub_kernel(env, addr);
572 break;
573 case 2:
574 ret = cpu_lduw_kernel(env, addr);
575 break;
576 default:
577 case 4:
578 ret = cpu_ldl_kernel(env, addr);
579 break;
580 case 8:
581 ret = cpu_ldq_kernel(env, addr);
582 break;
584 break;
585 case 0xc: /* I-cache tag */
586 case 0xd: /* I-cache data */
587 case 0xe: /* D-cache tag */
588 case 0xf: /* D-cache data */
589 break;
590 case 0x20: /* MMU passthrough */
591 case 0x1c: /* LEON MMU passthrough */
592 switch (size) {
593 case 1:
594 ret = ldub_phys(cs->as, addr);
595 break;
596 case 2:
597 ret = lduw_phys(cs->as, addr);
598 break;
599 default:
600 case 4:
601 ret = ldl_phys(cs->as, addr);
602 break;
603 case 8:
604 ret = ldq_phys(cs->as, addr);
605 break;
607 break;
608 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
609 switch (size) {
610 case 1:
611 ret = ldub_phys(cs->as, (hwaddr)addr
612 | ((hwaddr)(asi & 0xf) << 32));
613 break;
614 case 2:
615 ret = lduw_phys(cs->as, (hwaddr)addr
616 | ((hwaddr)(asi & 0xf) << 32));
617 break;
618 default:
619 case 4:
620 ret = ldl_phys(cs->as, (hwaddr)addr
621 | ((hwaddr)(asi & 0xf) << 32));
622 break;
623 case 8:
624 ret = ldq_phys(cs->as, (hwaddr)addr
625 | ((hwaddr)(asi & 0xf) << 32));
626 break;
628 break;
629 case 0x30: /* Turbosparc secondary cache diagnostic */
630 case 0x31: /* Turbosparc RAM snoop */
631 case 0x32: /* Turbosparc page table descriptor diagnostic */
632 case 0x39: /* data cache diagnostic register */
633 ret = 0;
634 break;
635 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
637 int reg = (addr >> 8) & 3;
639 switch (reg) {
640 case 0: /* Breakpoint Value (Addr) */
641 ret = env->mmubpregs[reg];
642 break;
643 case 1: /* Breakpoint Mask */
644 ret = env->mmubpregs[reg];
645 break;
646 case 2: /* Breakpoint Control */
647 ret = env->mmubpregs[reg];
648 break;
649 case 3: /* Breakpoint Status */
650 ret = env->mmubpregs[reg];
651 env->mmubpregs[reg] = 0ULL;
652 break;
654 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
655 ret);
657 break;
658 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
659 ret = env->mmubpctrv;
660 break;
661 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
662 ret = env->mmubpctrc;
663 break;
664 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
665 ret = env->mmubpctrs;
666 break;
667 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
668 ret = env->mmubpaction;
669 break;
670 case 8: /* User code access, XXX */
671 default:
672 cpu_unassigned_access(cs, addr, false, false, asi, size);
673 ret = 0;
674 break;
676 if (sign) {
677 switch (size) {
678 case 1:
679 ret = (int8_t) ret;
680 break;
681 case 2:
682 ret = (int16_t) ret;
683 break;
684 case 4:
685 ret = (int32_t) ret;
686 break;
687 default:
688 break;
691 #ifdef DEBUG_ASI
692 dump_asi("read ", last_addr, asi, size, ret);
693 #endif
694 return ret;
697 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
698 int size)
700 SPARCCPU *cpu = sparc_env_get_cpu(env);
701 CPUState *cs = CPU(cpu);
703 helper_check_align(env, addr, size - 1);
704 switch (asi) {
705 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
706 switch (addr) {
707 case 0x00: /* Leon3 Cache Control */
708 case 0x08: /* Leon3 Instruction Cache config */
709 case 0x0C: /* Leon3 Date Cache config */
710 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
711 leon3_cache_control_st(env, addr, val, size);
713 break;
715 case 0x01c00000: /* MXCC stream data register 0 */
716 if (size == 8) {
717 env->mxccdata[0] = val;
718 } else {
719 qemu_log_mask(LOG_UNIMP,
720 "%08x: unimplemented access size: %d\n", addr,
721 size);
723 break;
724 case 0x01c00008: /* MXCC stream data register 1 */
725 if (size == 8) {
726 env->mxccdata[1] = val;
727 } else {
728 qemu_log_mask(LOG_UNIMP,
729 "%08x: unimplemented access size: %d\n", addr,
730 size);
732 break;
733 case 0x01c00010: /* MXCC stream data register 2 */
734 if (size == 8) {
735 env->mxccdata[2] = val;
736 } else {
737 qemu_log_mask(LOG_UNIMP,
738 "%08x: unimplemented access size: %d\n", addr,
739 size);
741 break;
742 case 0x01c00018: /* MXCC stream data register 3 */
743 if (size == 8) {
744 env->mxccdata[3] = val;
745 } else {
746 qemu_log_mask(LOG_UNIMP,
747 "%08x: unimplemented access size: %d\n", addr,
748 size);
750 break;
751 case 0x01c00100: /* MXCC stream source */
752 if (size == 8) {
753 env->mxccregs[0] = val;
754 } else {
755 qemu_log_mask(LOG_UNIMP,
756 "%08x: unimplemented access size: %d\n", addr,
757 size);
759 env->mxccdata[0] = ldq_phys(cs->as,
760 (env->mxccregs[0] & 0xffffffffULL) +
762 env->mxccdata[1] = ldq_phys(cs->as,
763 (env->mxccregs[0] & 0xffffffffULL) +
765 env->mxccdata[2] = ldq_phys(cs->as,
766 (env->mxccregs[0] & 0xffffffffULL) +
767 16);
768 env->mxccdata[3] = ldq_phys(cs->as,
769 (env->mxccregs[0] & 0xffffffffULL) +
770 24);
771 break;
772 case 0x01c00200: /* MXCC stream destination */
773 if (size == 8) {
774 env->mxccregs[1] = val;
775 } else {
776 qemu_log_mask(LOG_UNIMP,
777 "%08x: unimplemented access size: %d\n", addr,
778 size);
780 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0,
781 env->mxccdata[0]);
782 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8,
783 env->mxccdata[1]);
784 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
785 env->mxccdata[2]);
786 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
787 env->mxccdata[3]);
788 break;
789 case 0x01c00a00: /* MXCC control register */
790 if (size == 8) {
791 env->mxccregs[3] = val;
792 } else {
793 qemu_log_mask(LOG_UNIMP,
794 "%08x: unimplemented access size: %d\n", addr,
795 size);
797 break;
798 case 0x01c00a04: /* MXCC control register */
799 if (size == 4) {
800 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
801 | val;
802 } else {
803 qemu_log_mask(LOG_UNIMP,
804 "%08x: unimplemented access size: %d\n", addr,
805 size);
807 break;
808 case 0x01c00e00: /* MXCC error register */
809 /* writing a 1 bit clears the error */
810 if (size == 8) {
811 env->mxccregs[6] &= ~val;
812 } else {
813 qemu_log_mask(LOG_UNIMP,
814 "%08x: unimplemented access size: %d\n", addr,
815 size);
817 break;
818 case 0x01c00f00: /* MBus port address register */
819 if (size == 8) {
820 env->mxccregs[7] = val;
821 } else {
822 qemu_log_mask(LOG_UNIMP,
823 "%08x: unimplemented access size: %d\n", addr,
824 size);
826 break;
827 default:
828 qemu_log_mask(LOG_UNIMP,
829 "%08x: unimplemented address, size: %d\n", addr,
830 size);
831 break;
833 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
834 asi, size, addr, val);
835 #ifdef DEBUG_MXCC
836 dump_mxcc(env);
837 #endif
838 break;
839 case 3: /* MMU flush */
840 case 0x18: /* LEON3 MMU flush */
842 int mmulev;
844 mmulev = (addr >> 8) & 15;
845 DPRINTF_MMU("mmu flush level %d\n", mmulev);
846 switch (mmulev) {
847 case 0: /* flush page */
848 tlb_flush_page(CPU(cpu), addr & 0xfffff000);
849 break;
850 case 1: /* flush segment (256k) */
851 case 2: /* flush region (16M) */
852 case 3: /* flush context (4G) */
853 case 4: /* flush entire */
854 tlb_flush(CPU(cpu), 1);
855 break;
856 default:
857 break;
859 #ifdef DEBUG_MMU
860 dump_mmu(stdout, fprintf, env);
861 #endif
863 break;
864 case 4: /* write MMU regs */
865 case 0x19: /* LEON3 write MMU regs */
867 int reg = (addr >> 8) & 0x1f;
868 uint32_t oldreg;
870 oldreg = env->mmuregs[reg];
871 switch (reg) {
872 case 0: /* Control Register */
873 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
874 (val & 0x00ffffff);
875 /* Mappings generated during no-fault mode or MMU
876 disabled mode are invalid in normal mode */
877 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
878 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
879 tlb_flush(CPU(cpu), 1);
881 break;
882 case 1: /* Context Table Pointer Register */
883 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
884 break;
885 case 2: /* Context Register */
886 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
887 if (oldreg != env->mmuregs[reg]) {
888 /* we flush when the MMU context changes because
889 QEMU has no MMU context support */
890 tlb_flush(CPU(cpu), 1);
892 break;
893 case 3: /* Synchronous Fault Status Register with Clear */
894 case 4: /* Synchronous Fault Address Register */
895 break;
896 case 0x10: /* TLB Replacement Control Register */
897 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
898 break;
899 case 0x13: /* Synchronous Fault Status Register with Read
900 and Clear */
901 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
902 break;
903 case 0x14: /* Synchronous Fault Address Register */
904 env->mmuregs[4] = val;
905 break;
906 default:
907 env->mmuregs[reg] = val;
908 break;
910 if (oldreg != env->mmuregs[reg]) {
911 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
912 reg, oldreg, env->mmuregs[reg]);
914 #ifdef DEBUG_MMU
915 dump_mmu(stdout, fprintf, env);
916 #endif
918 break;
919 case 5: /* Turbosparc ITLB Diagnostic */
920 case 6: /* Turbosparc DTLB Diagnostic */
921 case 7: /* Turbosparc IOTLB Diagnostic */
922 break;
923 case 0xa: /* User data access */
924 switch (size) {
925 case 1:
926 cpu_stb_user(env, addr, val);
927 break;
928 case 2:
929 cpu_stw_user(env, addr, val);
930 break;
931 default:
932 case 4:
933 cpu_stl_user(env, addr, val);
934 break;
935 case 8:
936 cpu_stq_user(env, addr, val);
937 break;
939 break;
940 case 0xb: /* Supervisor data access */
941 case 0x80:
942 switch (size) {
943 case 1:
944 cpu_stb_kernel(env, addr, val);
945 break;
946 case 2:
947 cpu_stw_kernel(env, addr, val);
948 break;
949 default:
950 case 4:
951 cpu_stl_kernel(env, addr, val);
952 break;
953 case 8:
954 cpu_stq_kernel(env, addr, val);
955 break;
957 break;
958 case 0xc: /* I-cache tag */
959 case 0xd: /* I-cache data */
960 case 0xe: /* D-cache tag */
961 case 0xf: /* D-cache data */
962 case 0x10: /* I/D-cache flush page */
963 case 0x11: /* I/D-cache flush segment */
964 case 0x12: /* I/D-cache flush region */
965 case 0x13: /* I/D-cache flush context */
966 case 0x14: /* I/D-cache flush user */
967 break;
968 case 0x17: /* Block copy, sta access */
970 /* val = src
971 addr = dst
972 copy 32 bytes */
973 unsigned int i;
974 uint32_t src = val & ~3, dst = addr & ~3, temp;
976 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
977 temp = cpu_ldl_kernel(env, src);
978 cpu_stl_kernel(env, dst, temp);
981 break;
982 case 0x1f: /* Block fill, stda access */
984 /* addr = dst
985 fill 32 bytes with val */
986 unsigned int i;
987 uint32_t dst = addr & 7;
989 for (i = 0; i < 32; i += 8, dst += 8) {
990 cpu_stq_kernel(env, dst, val);
993 break;
994 case 0x20: /* MMU passthrough */
995 case 0x1c: /* LEON MMU passthrough */
997 switch (size) {
998 case 1:
999 stb_phys(cs->as, addr, val);
1000 break;
1001 case 2:
1002 stw_phys(cs->as, addr, val);
1003 break;
1004 case 4:
1005 default:
1006 stl_phys(cs->as, addr, val);
1007 break;
1008 case 8:
1009 stq_phys(cs->as, addr, val);
1010 break;
1013 break;
1014 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1016 switch (size) {
1017 case 1:
1018 stb_phys(cs->as, (hwaddr)addr
1019 | ((hwaddr)(asi & 0xf) << 32), val);
1020 break;
1021 case 2:
1022 stw_phys(cs->as, (hwaddr)addr
1023 | ((hwaddr)(asi & 0xf) << 32), val);
1024 break;
1025 case 4:
1026 default:
1027 stl_phys(cs->as, (hwaddr)addr
1028 | ((hwaddr)(asi & 0xf) << 32), val);
1029 break;
1030 case 8:
1031 stq_phys(cs->as, (hwaddr)addr
1032 | ((hwaddr)(asi & 0xf) << 32), val);
1033 break;
1036 break;
1037 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1038 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1039 Turbosparc snoop RAM */
1040 case 0x32: /* store buffer control or Turbosparc page table
1041 descriptor diagnostic */
1042 case 0x36: /* I-cache flash clear */
1043 case 0x37: /* D-cache flash clear */
1044 break;
1045 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1047 int reg = (addr >> 8) & 3;
1049 switch (reg) {
1050 case 0: /* Breakpoint Value (Addr) */
1051 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1052 break;
1053 case 1: /* Breakpoint Mask */
1054 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1055 break;
1056 case 2: /* Breakpoint Control */
1057 env->mmubpregs[reg] = (val & 0x7fULL);
1058 break;
1059 case 3: /* Breakpoint Status */
1060 env->mmubpregs[reg] = (val & 0xfULL);
1061 break;
1063 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1064 env->mmuregs[reg]);
1066 break;
1067 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1068 env->mmubpctrv = val & 0xffffffff;
1069 break;
1070 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1071 env->mmubpctrc = val & 0x3;
1072 break;
1073 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1074 env->mmubpctrs = val & 0x3;
1075 break;
1076 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1077 env->mmubpaction = val & 0x1fff;
1078 break;
1079 case 8: /* User code access, XXX */
1080 case 9: /* Supervisor code access, XXX */
1081 default:
1082 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
1083 addr, true, false, asi, size);
1084 break;
1086 #ifdef DEBUG_ASI
1087 dump_asi("write", addr, asi, size, val);
1088 #endif
1091 #endif /* CONFIG_USER_ONLY */
1092 #else /* TARGET_SPARC64 */
1094 #ifdef CONFIG_USER_ONLY
1095 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1096 int sign)
1098 uint64_t ret = 0;
1099 #if defined(DEBUG_ASI)
1100 target_ulong last_addr = addr;
1101 #endif
1103 if (asi < 0x80) {
1104 helper_raise_exception(env, TT_PRIV_ACT);
1107 helper_check_align(env, addr, size - 1);
1108 addr = asi_address_mask(env, asi, addr);
1110 switch (asi) {
1111 case 0x82: /* Primary no-fault */
1112 case 0x8a: /* Primary no-fault LE */
1113 if (page_check_range(addr, size, PAGE_READ) == -1) {
1114 #ifdef DEBUG_ASI
1115 dump_asi("read ", last_addr, asi, size, ret);
1116 #endif
1117 return 0;
1119 /* Fall through */
1120 case 0x80: /* Primary */
1121 case 0x88: /* Primary LE */
1123 switch (size) {
1124 case 1:
1125 ret = cpu_ldub_data(env, addr);
1126 break;
1127 case 2:
1128 ret = cpu_lduw_data(env, addr);
1129 break;
1130 case 4:
1131 ret = cpu_ldl_data(env, addr);
1132 break;
1133 default:
1134 case 8:
1135 ret = cpu_ldq_data(env, addr);
1136 break;
1139 break;
1140 case 0x83: /* Secondary no-fault */
1141 case 0x8b: /* Secondary no-fault LE */
1142 if (page_check_range(addr, size, PAGE_READ) == -1) {
1143 #ifdef DEBUG_ASI
1144 dump_asi("read ", last_addr, asi, size, ret);
1145 #endif
1146 return 0;
1148 /* Fall through */
1149 case 0x81: /* Secondary */
1150 case 0x89: /* Secondary LE */
1151 /* XXX */
1152 break;
1153 default:
1154 break;
1157 /* Convert from little endian */
1158 switch (asi) {
1159 case 0x88: /* Primary LE */
1160 case 0x89: /* Secondary LE */
1161 case 0x8a: /* Primary no-fault LE */
1162 case 0x8b: /* Secondary no-fault LE */
1163 switch (size) {
1164 case 2:
1165 ret = bswap16(ret);
1166 break;
1167 case 4:
1168 ret = bswap32(ret);
1169 break;
1170 case 8:
1171 ret = bswap64(ret);
1172 break;
1173 default:
1174 break;
1176 default:
1177 break;
1180 /* Convert to signed number */
1181 if (sign) {
1182 switch (size) {
1183 case 1:
1184 ret = (int8_t) ret;
1185 break;
1186 case 2:
1187 ret = (int16_t) ret;
1188 break;
1189 case 4:
1190 ret = (int32_t) ret;
1191 break;
1192 default:
1193 break;
1196 #ifdef DEBUG_ASI
1197 dump_asi("read ", last_addr, asi, size, ret);
1198 #endif
1199 return ret;
1202 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1203 int asi, int size)
1205 #ifdef DEBUG_ASI
1206 dump_asi("write", addr, asi, size, val);
1207 #endif
1208 if (asi < 0x80) {
1209 helper_raise_exception(env, TT_PRIV_ACT);
1212 helper_check_align(env, addr, size - 1);
1213 addr = asi_address_mask(env, asi, addr);
1215 /* Convert to little endian */
1216 switch (asi) {
1217 case 0x88: /* Primary LE */
1218 case 0x89: /* Secondary LE */
1219 switch (size) {
1220 case 2:
1221 val = bswap16(val);
1222 break;
1223 case 4:
1224 val = bswap32(val);
1225 break;
1226 case 8:
1227 val = bswap64(val);
1228 break;
1229 default:
1230 break;
1232 default:
1233 break;
1236 switch (asi) {
1237 case 0x80: /* Primary */
1238 case 0x88: /* Primary LE */
1240 switch (size) {
1241 case 1:
1242 cpu_stb_data(env, addr, val);
1243 break;
1244 case 2:
1245 cpu_stw_data(env, addr, val);
1246 break;
1247 case 4:
1248 cpu_stl_data(env, addr, val);
1249 break;
1250 case 8:
1251 default:
1252 cpu_stq_data(env, addr, val);
1253 break;
1256 break;
1257 case 0x81: /* Secondary */
1258 case 0x89: /* Secondary LE */
1259 /* XXX */
1260 return;
1262 case 0x82: /* Primary no-fault, RO */
1263 case 0x83: /* Secondary no-fault, RO */
1264 case 0x8a: /* Primary no-fault LE, RO */
1265 case 0x8b: /* Secondary no-fault LE, RO */
1266 default:
1267 helper_raise_exception(env, TT_DATA_ACCESS);
1268 return;
1272 #else /* CONFIG_USER_ONLY */
1274 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1275 int sign)
1277 CPUState *cs = CPU(sparc_env_get_cpu(env));
1278 uint64_t ret = 0;
1279 #if defined(DEBUG_ASI)
1280 target_ulong last_addr = addr;
1281 #endif
1283 asi &= 0xff;
1285 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1286 || (cpu_has_hypervisor(env)
1287 && asi >= 0x30 && asi < 0x80
1288 && !(env->hpstate & HS_PRIV))) {
1289 helper_raise_exception(env, TT_PRIV_ACT);
1292 helper_check_align(env, addr, size - 1);
1293 addr = asi_address_mask(env, asi, addr);
1295 /* process nonfaulting loads first */
1296 if ((asi & 0xf6) == 0x82) {
1297 int mmu_idx;
1299 /* secondary space access has lowest asi bit equal to 1 */
1300 if (env->pstate & PS_PRIV) {
1301 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1302 } else {
1303 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1306 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1307 #ifdef DEBUG_ASI
1308 dump_asi("read ", last_addr, asi, size, ret);
1309 #endif
1310 /* env->exception_index is set in get_physical_address_data(). */
1311 helper_raise_exception(env, cs->exception_index);
1314 /* convert nonfaulting load ASIs to normal load ASIs */
1315 asi &= ~0x02;
1318 switch (asi) {
1319 case 0x10: /* As if user primary */
1320 case 0x11: /* As if user secondary */
1321 case 0x18: /* As if user primary LE */
1322 case 0x19: /* As if user secondary LE */
1323 case 0x80: /* Primary */
1324 case 0x81: /* Secondary */
1325 case 0x88: /* Primary LE */
1326 case 0x89: /* Secondary LE */
1327 case 0xe2: /* UA2007 Primary block init */
1328 case 0xe3: /* UA2007 Secondary block init */
1329 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1330 if (cpu_hypervisor_mode(env)) {
1331 switch (size) {
1332 case 1:
1333 ret = cpu_ldub_hypv(env, addr);
1334 break;
1335 case 2:
1336 ret = cpu_lduw_hypv(env, addr);
1337 break;
1338 case 4:
1339 ret = cpu_ldl_hypv(env, addr);
1340 break;
1341 default:
1342 case 8:
1343 ret = cpu_ldq_hypv(env, addr);
1344 break;
1346 } else {
1347 /* secondary space access has lowest asi bit equal to 1 */
1348 if (asi & 1) {
1349 switch (size) {
1350 case 1:
1351 ret = cpu_ldub_kernel_secondary(env, addr);
1352 break;
1353 case 2:
1354 ret = cpu_lduw_kernel_secondary(env, addr);
1355 break;
1356 case 4:
1357 ret = cpu_ldl_kernel_secondary(env, addr);
1358 break;
1359 default:
1360 case 8:
1361 ret = cpu_ldq_kernel_secondary(env, addr);
1362 break;
1364 } else {
1365 switch (size) {
1366 case 1:
1367 ret = cpu_ldub_kernel(env, addr);
1368 break;
1369 case 2:
1370 ret = cpu_lduw_kernel(env, addr);
1371 break;
1372 case 4:
1373 ret = cpu_ldl_kernel(env, addr);
1374 break;
1375 default:
1376 case 8:
1377 ret = cpu_ldq_kernel(env, addr);
1378 break;
1382 } else {
1383 /* secondary space access has lowest asi bit equal to 1 */
1384 if (asi & 1) {
1385 switch (size) {
1386 case 1:
1387 ret = cpu_ldub_user_secondary(env, addr);
1388 break;
1389 case 2:
1390 ret = cpu_lduw_user_secondary(env, addr);
1391 break;
1392 case 4:
1393 ret = cpu_ldl_user_secondary(env, addr);
1394 break;
1395 default:
1396 case 8:
1397 ret = cpu_ldq_user_secondary(env, addr);
1398 break;
1400 } else {
1401 switch (size) {
1402 case 1:
1403 ret = cpu_ldub_user(env, addr);
1404 break;
1405 case 2:
1406 ret = cpu_lduw_user(env, addr);
1407 break;
1408 case 4:
1409 ret = cpu_ldl_user(env, addr);
1410 break;
1411 default:
1412 case 8:
1413 ret = cpu_ldq_user(env, addr);
1414 break;
1418 break;
1419 case 0x14: /* Bypass */
1420 case 0x15: /* Bypass, non-cacheable */
1421 case 0x1c: /* Bypass LE */
1422 case 0x1d: /* Bypass, non-cacheable LE */
1424 switch (size) {
1425 case 1:
1426 ret = ldub_phys(cs->as, addr);
1427 break;
1428 case 2:
1429 ret = lduw_phys(cs->as, addr);
1430 break;
1431 case 4:
1432 ret = ldl_phys(cs->as, addr);
1433 break;
1434 default:
1435 case 8:
1436 ret = ldq_phys(cs->as, addr);
1437 break;
1439 break;
1441 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1442 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1443 Only ldda allowed */
1444 helper_raise_exception(env, TT_ILL_INSN);
1445 return 0;
1446 case 0x04: /* Nucleus */
1447 case 0x0c: /* Nucleus Little Endian (LE) */
1449 switch (size) {
1450 case 1:
1451 ret = cpu_ldub_nucleus(env, addr);
1452 break;
1453 case 2:
1454 ret = cpu_lduw_nucleus(env, addr);
1455 break;
1456 case 4:
1457 ret = cpu_ldl_nucleus(env, addr);
1458 break;
1459 default:
1460 case 8:
1461 ret = cpu_ldq_nucleus(env, addr);
1462 break;
1464 break;
1466 case 0x4a: /* UPA config */
1467 /* XXX */
1468 break;
1469 case 0x45: /* LSU */
1470 ret = env->lsu;
1471 break;
1472 case 0x50: /* I-MMU regs */
1474 int reg = (addr >> 3) & 0xf;
1476 if (reg == 0) {
1477 /* I-TSB Tag Target register */
1478 ret = ultrasparc_tag_target(env->immu.tag_access);
1479 } else {
1480 ret = env->immuregs[reg];
1483 break;
1485 case 0x51: /* I-MMU 8k TSB pointer */
1487 /* env->immuregs[5] holds I-MMU TSB register value
1488 env->immuregs[6] holds I-MMU Tag Access register value */
1489 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1490 8*1024);
1491 break;
1493 case 0x52: /* I-MMU 64k TSB pointer */
1495 /* env->immuregs[5] holds I-MMU TSB register value
1496 env->immuregs[6] holds I-MMU Tag Access register value */
1497 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1498 64*1024);
1499 break;
1501 case 0x55: /* I-MMU data access */
1503 int reg = (addr >> 3) & 0x3f;
1505 ret = env->itlb[reg].tte;
1506 break;
1508 case 0x56: /* I-MMU tag read */
1510 int reg = (addr >> 3) & 0x3f;
1512 ret = env->itlb[reg].tag;
1513 break;
1515 case 0x58: /* D-MMU regs */
1517 int reg = (addr >> 3) & 0xf;
1519 if (reg == 0) {
1520 /* D-TSB Tag Target register */
1521 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1522 } else {
1523 ret = env->dmmuregs[reg];
1525 break;
1527 case 0x59: /* D-MMU 8k TSB pointer */
1529 /* env->dmmuregs[5] holds D-MMU TSB register value
1530 env->dmmuregs[6] holds D-MMU Tag Access register value */
1531 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1532 8*1024);
1533 break;
1535 case 0x5a: /* D-MMU 64k TSB pointer */
1537 /* env->dmmuregs[5] holds D-MMU TSB register value
1538 env->dmmuregs[6] holds D-MMU Tag Access register value */
1539 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1540 64*1024);
1541 break;
1543 case 0x5d: /* D-MMU data access */
1545 int reg = (addr >> 3) & 0x3f;
1547 ret = env->dtlb[reg].tte;
1548 break;
1550 case 0x5e: /* D-MMU tag read */
1552 int reg = (addr >> 3) & 0x3f;
1554 ret = env->dtlb[reg].tag;
1555 break;
1557 case 0x48: /* Interrupt dispatch, RO */
1558 break;
1559 case 0x49: /* Interrupt data receive */
1560 ret = env->ivec_status;
1561 break;
1562 case 0x7f: /* Incoming interrupt vector, RO */
1564 int reg = (addr >> 4) & 0x3;
1565 if (reg < 3) {
1566 ret = env->ivec_data[reg];
1568 break;
1570 case 0x46: /* D-cache data */
1571 case 0x47: /* D-cache tag access */
1572 case 0x4b: /* E-cache error enable */
1573 case 0x4c: /* E-cache asynchronous fault status */
1574 case 0x4d: /* E-cache asynchronous fault address */
1575 case 0x4e: /* E-cache tag data */
1576 case 0x66: /* I-cache instruction access */
1577 case 0x67: /* I-cache tag access */
1578 case 0x6e: /* I-cache predecode */
1579 case 0x6f: /* I-cache LRU etc. */
1580 case 0x76: /* E-cache tag */
1581 case 0x7e: /* E-cache tag */
1582 break;
1583 case 0x5b: /* D-MMU data pointer */
1584 case 0x54: /* I-MMU data in, WO */
1585 case 0x57: /* I-MMU demap, WO */
1586 case 0x5c: /* D-MMU data in, WO */
1587 case 0x5f: /* D-MMU demap, WO */
1588 case 0x77: /* Interrupt vector, WO */
1589 default:
1590 cpu_unassigned_access(cs, addr, false, false, 1, size);
1591 ret = 0;
1592 break;
1595 /* Convert from little endian */
1596 switch (asi) {
1597 case 0x0c: /* Nucleus Little Endian (LE) */
1598 case 0x18: /* As if user primary LE */
1599 case 0x19: /* As if user secondary LE */
1600 case 0x1c: /* Bypass LE */
1601 case 0x1d: /* Bypass, non-cacheable LE */
1602 case 0x88: /* Primary LE */
1603 case 0x89: /* Secondary LE */
1604 switch(size) {
1605 case 2:
1606 ret = bswap16(ret);
1607 break;
1608 case 4:
1609 ret = bswap32(ret);
1610 break;
1611 case 8:
1612 ret = bswap64(ret);
1613 break;
1614 default:
1615 break;
1617 default:
1618 break;
1621 /* Convert to signed number */
1622 if (sign) {
1623 switch (size) {
1624 case 1:
1625 ret = (int8_t) ret;
1626 break;
1627 case 2:
1628 ret = (int16_t) ret;
1629 break;
1630 case 4:
1631 ret = (int32_t) ret;
1632 break;
1633 default:
1634 break;
1637 #ifdef DEBUG_ASI
1638 dump_asi("read ", last_addr, asi, size, ret);
1639 #endif
1640 return ret;
1643 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1644 int asi, int size)
1646 SPARCCPU *cpu = sparc_env_get_cpu(env);
1647 CPUState *cs = CPU(cpu);
1649 #ifdef DEBUG_ASI
1650 dump_asi("write", addr, asi, size, val);
1651 #endif
1653 asi &= 0xff;
1655 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1656 || (cpu_has_hypervisor(env)
1657 && asi >= 0x30 && asi < 0x80
1658 && !(env->hpstate & HS_PRIV))) {
1659 helper_raise_exception(env, TT_PRIV_ACT);
1662 helper_check_align(env, addr, size - 1);
1663 addr = asi_address_mask(env, asi, addr);
1665 /* Convert to little endian */
1666 switch (asi) {
1667 case 0x0c: /* Nucleus Little Endian (LE) */
1668 case 0x18: /* As if user primary LE */
1669 case 0x19: /* As if user secondary LE */
1670 case 0x1c: /* Bypass LE */
1671 case 0x1d: /* Bypass, non-cacheable LE */
1672 case 0x88: /* Primary LE */
1673 case 0x89: /* Secondary LE */
1674 switch (size) {
1675 case 2:
1676 val = bswap16(val);
1677 break;
1678 case 4:
1679 val = bswap32(val);
1680 break;
1681 case 8:
1682 val = bswap64(val);
1683 break;
1684 default:
1685 break;
1687 default:
1688 break;
1691 switch (asi) {
1692 case 0x10: /* As if user primary */
1693 case 0x11: /* As if user secondary */
1694 case 0x18: /* As if user primary LE */
1695 case 0x19: /* As if user secondary LE */
1696 case 0x80: /* Primary */
1697 case 0x81: /* Secondary */
1698 case 0x88: /* Primary LE */
1699 case 0x89: /* Secondary LE */
1700 case 0xe2: /* UA2007 Primary block init */
1701 case 0xe3: /* UA2007 Secondary block init */
1702 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1703 if (cpu_hypervisor_mode(env)) {
1704 switch (size) {
1705 case 1:
1706 cpu_stb_hypv(env, addr, val);
1707 break;
1708 case 2:
1709 cpu_stw_hypv(env, addr, val);
1710 break;
1711 case 4:
1712 cpu_stl_hypv(env, addr, val);
1713 break;
1714 case 8:
1715 default:
1716 cpu_stq_hypv(env, addr, val);
1717 break;
1719 } else {
1720 /* secondary space access has lowest asi bit equal to 1 */
1721 if (asi & 1) {
1722 switch (size) {
1723 case 1:
1724 cpu_stb_kernel_secondary(env, addr, val);
1725 break;
1726 case 2:
1727 cpu_stw_kernel_secondary(env, addr, val);
1728 break;
1729 case 4:
1730 cpu_stl_kernel_secondary(env, addr, val);
1731 break;
1732 case 8:
1733 default:
1734 cpu_stq_kernel_secondary(env, addr, val);
1735 break;
1737 } else {
1738 switch (size) {
1739 case 1:
1740 cpu_stb_kernel(env, addr, val);
1741 break;
1742 case 2:
1743 cpu_stw_kernel(env, addr, val);
1744 break;
1745 case 4:
1746 cpu_stl_kernel(env, addr, val);
1747 break;
1748 case 8:
1749 default:
1750 cpu_stq_kernel(env, addr, val);
1751 break;
1755 } else {
1756 /* secondary space access has lowest asi bit equal to 1 */
1757 if (asi & 1) {
1758 switch (size) {
1759 case 1:
1760 cpu_stb_user_secondary(env, addr, val);
1761 break;
1762 case 2:
1763 cpu_stw_user_secondary(env, addr, val);
1764 break;
1765 case 4:
1766 cpu_stl_user_secondary(env, addr, val);
1767 break;
1768 case 8:
1769 default:
1770 cpu_stq_user_secondary(env, addr, val);
1771 break;
1773 } else {
1774 switch (size) {
1775 case 1:
1776 cpu_stb_user(env, addr, val);
1777 break;
1778 case 2:
1779 cpu_stw_user(env, addr, val);
1780 break;
1781 case 4:
1782 cpu_stl_user(env, addr, val);
1783 break;
1784 case 8:
1785 default:
1786 cpu_stq_user(env, addr, val);
1787 break;
1791 break;
1792 case 0x14: /* Bypass */
1793 case 0x15: /* Bypass, non-cacheable */
1794 case 0x1c: /* Bypass LE */
1795 case 0x1d: /* Bypass, non-cacheable LE */
1797 switch (size) {
1798 case 1:
1799 stb_phys(cs->as, addr, val);
1800 break;
1801 case 2:
1802 stw_phys(cs->as, addr, val);
1803 break;
1804 case 4:
1805 stl_phys(cs->as, addr, val);
1806 break;
1807 case 8:
1808 default:
1809 stq_phys(cs->as, addr, val);
1810 break;
1813 return;
1814 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1815 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1816 Only ldda allowed */
1817 helper_raise_exception(env, TT_ILL_INSN);
1818 return;
1819 case 0x04: /* Nucleus */
1820 case 0x0c: /* Nucleus Little Endian (LE) */
1822 switch (size) {
1823 case 1:
1824 cpu_stb_nucleus(env, addr, val);
1825 break;
1826 case 2:
1827 cpu_stw_nucleus(env, addr, val);
1828 break;
1829 case 4:
1830 cpu_stl_nucleus(env, addr, val);
1831 break;
1832 default:
1833 case 8:
1834 cpu_stq_nucleus(env, addr, val);
1835 break;
1837 break;
1840 case 0x4a: /* UPA config */
1841 /* XXX */
1842 return;
1843 case 0x45: /* LSU */
1845 uint64_t oldreg;
1847 oldreg = env->lsu;
1848 env->lsu = val & (DMMU_E | IMMU_E);
1849 /* Mappings generated during D/I MMU disabled mode are
1850 invalid in normal mode */
1851 if (oldreg != env->lsu) {
1852 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1853 oldreg, env->lsu);
1854 #ifdef DEBUG_MMU
1855 dump_mmu(stdout, fprintf, env);
1856 #endif
1857 tlb_flush(CPU(cpu), 1);
1859 return;
1861 case 0x50: /* I-MMU regs */
1863 int reg = (addr >> 3) & 0xf;
1864 uint64_t oldreg;
1866 oldreg = env->immuregs[reg];
1867 switch (reg) {
1868 case 0: /* RO */
1869 return;
1870 case 1: /* Not in I-MMU */
1871 case 2:
1872 return;
1873 case 3: /* SFSR */
1874 if ((val & 1) == 0) {
1875 val = 0; /* Clear SFSR */
1877 env->immu.sfsr = val;
1878 break;
1879 case 4: /* RO */
1880 return;
1881 case 5: /* TSB access */
1882 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1883 PRIx64 "\n", env->immu.tsb, val);
1884 env->immu.tsb = val;
1885 break;
1886 case 6: /* Tag access */
1887 env->immu.tag_access = val;
1888 break;
1889 case 7:
1890 case 8:
1891 return;
1892 default:
1893 break;
1896 if (oldreg != env->immuregs[reg]) {
1897 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1898 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1900 #ifdef DEBUG_MMU
1901 dump_mmu(stdout, fprintf, env);
1902 #endif
1903 return;
1905 case 0x54: /* I-MMU data in */
1906 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1907 return;
1908 case 0x55: /* I-MMU data access */
1910 /* TODO: auto demap */
1912 unsigned int i = (addr >> 3) & 0x3f;
1914 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1916 #ifdef DEBUG_MMU
1917 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1918 dump_mmu(stdout, fprintf, env);
1919 #endif
1920 return;
1922 case 0x57: /* I-MMU demap */
1923 demap_tlb(env->itlb, addr, "immu", env);
1924 return;
1925 case 0x58: /* D-MMU regs */
1927 int reg = (addr >> 3) & 0xf;
1928 uint64_t oldreg;
1930 oldreg = env->dmmuregs[reg];
1931 switch (reg) {
1932 case 0: /* RO */
1933 case 4:
1934 return;
1935 case 3: /* SFSR */
1936 if ((val & 1) == 0) {
1937 val = 0; /* Clear SFSR, Fault address */
1938 env->dmmu.sfar = 0;
1940 env->dmmu.sfsr = val;
1941 break;
1942 case 1: /* Primary context */
1943 env->dmmu.mmu_primary_context = val;
1944 /* can be optimized to only flush MMU_USER_IDX
1945 and MMU_KERNEL_IDX entries */
1946 tlb_flush(CPU(cpu), 1);
1947 break;
1948 case 2: /* Secondary context */
1949 env->dmmu.mmu_secondary_context = val;
1950 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1951 and MMU_KERNEL_SECONDARY_IDX entries */
1952 tlb_flush(CPU(cpu), 1);
1953 break;
1954 case 5: /* TSB access */
1955 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1956 PRIx64 "\n", env->dmmu.tsb, val);
1957 env->dmmu.tsb = val;
1958 break;
1959 case 6: /* Tag access */
1960 env->dmmu.tag_access = val;
1961 break;
1962 case 7: /* Virtual Watchpoint */
1963 case 8: /* Physical Watchpoint */
1964 default:
1965 env->dmmuregs[reg] = val;
1966 break;
1969 if (oldreg != env->dmmuregs[reg]) {
1970 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1971 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1973 #ifdef DEBUG_MMU
1974 dump_mmu(stdout, fprintf, env);
1975 #endif
1976 return;
1978 case 0x5c: /* D-MMU data in */
1979 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1980 return;
1981 case 0x5d: /* D-MMU data access */
1983 unsigned int i = (addr >> 3) & 0x3f;
1985 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
1987 #ifdef DEBUG_MMU
1988 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1989 dump_mmu(stdout, fprintf, env);
1990 #endif
1991 return;
1993 case 0x5f: /* D-MMU demap */
1994 demap_tlb(env->dtlb, addr, "dmmu", env);
1995 return;
1996 case 0x49: /* Interrupt data receive */
1997 env->ivec_status = val & 0x20;
1998 return;
1999 case 0x46: /* D-cache data */
2000 case 0x47: /* D-cache tag access */
2001 case 0x4b: /* E-cache error enable */
2002 case 0x4c: /* E-cache asynchronous fault status */
2003 case 0x4d: /* E-cache asynchronous fault address */
2004 case 0x4e: /* E-cache tag data */
2005 case 0x66: /* I-cache instruction access */
2006 case 0x67: /* I-cache tag access */
2007 case 0x6e: /* I-cache predecode */
2008 case 0x6f: /* I-cache LRU etc. */
2009 case 0x76: /* E-cache tag */
2010 case 0x7e: /* E-cache tag */
2011 return;
2012 case 0x51: /* I-MMU 8k TSB pointer, RO */
2013 case 0x52: /* I-MMU 64k TSB pointer, RO */
2014 case 0x56: /* I-MMU tag read, RO */
2015 case 0x59: /* D-MMU 8k TSB pointer, RO */
2016 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2017 case 0x5b: /* D-MMU data pointer, RO */
2018 case 0x5e: /* D-MMU tag read, RO */
2019 case 0x48: /* Interrupt dispatch, RO */
2020 case 0x7f: /* Incoming interrupt vector, RO */
2021 case 0x82: /* Primary no-fault, RO */
2022 case 0x83: /* Secondary no-fault, RO */
2023 case 0x8a: /* Primary no-fault LE, RO */
2024 case 0x8b: /* Secondary no-fault LE, RO */
2025 default:
2026 cpu_unassigned_access(cs, addr, true, false, 1, size);
2027 return;
2030 #endif /* CONFIG_USER_ONLY */
2032 void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
2034 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2035 || (cpu_has_hypervisor(env)
2036 && asi >= 0x30 && asi < 0x80
2037 && !(env->hpstate & HS_PRIV))) {
2038 helper_raise_exception(env, TT_PRIV_ACT);
2041 addr = asi_address_mask(env, asi, addr);
2043 switch (asi) {
2044 #if !defined(CONFIG_USER_ONLY)
2045 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2046 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2047 helper_check_align(env, addr, 0xf);
2048 if (rd == 0) {
2049 env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
2050 if (asi == 0x2c) {
2051 bswap64s(&env->gregs[1]);
2053 } else if (rd < 8) {
2054 env->gregs[rd] = cpu_ldq_nucleus(env, addr);
2055 env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2056 if (asi == 0x2c) {
2057 bswap64s(&env->gregs[rd]);
2058 bswap64s(&env->gregs[rd + 1]);
2060 } else {
2061 env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
2062 env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2063 if (asi == 0x2c) {
2064 bswap64s(&env->regwptr[rd]);
2065 bswap64s(&env->regwptr[rd + 1]);
2068 break;
2069 #endif
2070 default:
2071 helper_check_align(env, addr, 0x3);
2072 if (rd == 0) {
2073 env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2074 } else if (rd < 8) {
2075 env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2076 env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2077 } else {
2078 env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2079 env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2081 break;
2085 void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2086 int rd)
2088 unsigned int i;
2089 target_ulong val;
2091 helper_check_align(env, addr, 3);
2092 addr = asi_address_mask(env, asi, addr);
2094 switch (asi) {
2095 case 0xf0: /* UA2007/JPS1 Block load primary */
2096 case 0xf1: /* UA2007/JPS1 Block load secondary */
2097 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2098 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2099 if (rd & 7) {
2100 helper_raise_exception(env, TT_ILL_INSN);
2101 return;
2103 helper_check_align(env, addr, 0x3f);
2104 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2105 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
2107 return;
2109 case 0x16: /* UA2007 Block load primary, user privilege */
2110 case 0x17: /* UA2007 Block load secondary, user privilege */
2111 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2112 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2113 case 0x70: /* JPS1 Block load primary, user privilege */
2114 case 0x71: /* JPS1 Block load secondary, user privilege */
2115 case 0x78: /* JPS1 Block load primary LE, user privilege */
2116 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2117 if (rd & 7) {
2118 helper_raise_exception(env, TT_ILL_INSN);
2119 return;
2121 helper_check_align(env, addr, 0x3f);
2122 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2123 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
2125 return;
2127 default:
2128 break;
2131 switch (size) {
2132 default:
2133 case 4:
2134 val = helper_ld_asi(env, addr, asi, size, 0);
2135 if (rd & 1) {
2136 env->fpr[rd / 2].l.lower = val;
2137 } else {
2138 env->fpr[rd / 2].l.upper = val;
2140 break;
2141 case 8:
2142 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
2143 break;
2144 case 16:
2145 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
2146 env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
2147 break;
2151 void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2152 int rd)
2154 unsigned int i;
2155 target_ulong val;
2157 addr = asi_address_mask(env, asi, addr);
2159 switch (asi) {
2160 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2161 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2162 case 0xf0: /* UA2007/JPS1 Block store primary */
2163 case 0xf1: /* UA2007/JPS1 Block store secondary */
2164 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2165 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2166 if (rd & 7) {
2167 helper_raise_exception(env, TT_ILL_INSN);
2168 return;
2170 helper_check_align(env, addr, 0x3f);
2171 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2172 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
2175 return;
2176 case 0x16: /* UA2007 Block load primary, user privilege */
2177 case 0x17: /* UA2007 Block load secondary, user privilege */
2178 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2179 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2180 case 0x70: /* JPS1 Block store primary, user privilege */
2181 case 0x71: /* JPS1 Block store secondary, user privilege */
2182 case 0x78: /* JPS1 Block load primary LE, user privilege */
2183 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2184 if (rd & 7) {
2185 helper_raise_exception(env, TT_ILL_INSN);
2186 return;
2188 helper_check_align(env, addr, 0x3f);
2189 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2190 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
2193 return;
2194 case 0xd2: /* 16-bit floating point load primary */
2195 case 0xd3: /* 16-bit floating point load secondary */
2196 case 0xda: /* 16-bit floating point load primary, LE */
2197 case 0xdb: /* 16-bit floating point load secondary, LE */
2198 helper_check_align(env, addr, 1);
2199 /* Fall through */
2200 case 0xd0: /* 8-bit floating point load primary */
2201 case 0xd1: /* 8-bit floating point load secondary */
2202 case 0xd8: /* 8-bit floating point load primary, LE */
2203 case 0xd9: /* 8-bit floating point load secondary, LE */
2204 val = env->fpr[rd / 2].l.lower;
2205 helper_st_asi(env, addr, val, asi & 0x8d, ((asi & 2) >> 1) + 1);
2206 return;
2207 default:
2208 helper_check_align(env, addr, 3);
2209 break;
2212 switch (size) {
2213 default:
2214 case 4:
2215 if (rd & 1) {
2216 val = env->fpr[rd / 2].l.lower;
2217 } else {
2218 val = env->fpr[rd / 2].l.upper;
2220 helper_st_asi(env, addr, val, asi, size);
2221 break;
2222 case 8:
2223 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
2224 break;
2225 case 16:
2226 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
2227 helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
2228 break;
2232 target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
2233 target_ulong val1, target_ulong val2,
2234 uint32_t asi)
2236 target_ulong ret;
2238 ret = helper_ld_asi(env, addr, asi, 8, 0);
2239 if (val2 == ret) {
2240 helper_st_asi(env, addr, val1, asi, 8);
2242 return ret;
2244 #endif /* TARGET_SPARC64 */
2246 #if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
2247 target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
2248 target_ulong val1, target_ulong val2, uint32_t asi)
2250 target_ulong ret;
2252 val2 &= 0xffffffffUL;
2253 ret = helper_ld_asi(env, addr, asi, 4, 0);
2254 ret &= 0xffffffffUL;
2255 if (val2 == ret) {
2256 helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
2258 return ret;
2260 #endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
2262 void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2264 /* XXX add 128 bit load */
2265 CPU_QuadU u;
2267 helper_check_align(env, addr, 7);
2268 #if !defined(CONFIG_USER_ONLY)
2269 switch (mem_idx) {
2270 case MMU_USER_IDX:
2271 u.ll.upper = cpu_ldq_user(env, addr);
2272 u.ll.lower = cpu_ldq_user(env, addr + 8);
2273 QT0 = u.q;
2274 break;
2275 case MMU_KERNEL_IDX:
2276 u.ll.upper = cpu_ldq_kernel(env, addr);
2277 u.ll.lower = cpu_ldq_kernel(env, addr + 8);
2278 QT0 = u.q;
2279 break;
2280 #ifdef TARGET_SPARC64
2281 case MMU_HYPV_IDX:
2282 u.ll.upper = cpu_ldq_hypv(env, addr);
2283 u.ll.lower = cpu_ldq_hypv(env, addr + 8);
2284 QT0 = u.q;
2285 break;
2286 #endif
2287 default:
2288 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
2289 break;
2291 #else
2292 u.ll.upper = cpu_ldq_data(env, address_mask(env, addr));
2293 u.ll.lower = cpu_ldq_data(env, address_mask(env, addr + 8));
2294 QT0 = u.q;
2295 #endif
2298 void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2300 /* XXX add 128 bit store */
2301 CPU_QuadU u;
2303 helper_check_align(env, addr, 7);
2304 #if !defined(CONFIG_USER_ONLY)
2305 switch (mem_idx) {
2306 case MMU_USER_IDX:
2307 u.q = QT0;
2308 cpu_stq_user(env, addr, u.ll.upper);
2309 cpu_stq_user(env, addr + 8, u.ll.lower);
2310 break;
2311 case MMU_KERNEL_IDX:
2312 u.q = QT0;
2313 cpu_stq_kernel(env, addr, u.ll.upper);
2314 cpu_stq_kernel(env, addr + 8, u.ll.lower);
2315 break;
2316 #ifdef TARGET_SPARC64
2317 case MMU_HYPV_IDX:
2318 u.q = QT0;
2319 cpu_stq_hypv(env, addr, u.ll.upper);
2320 cpu_stq_hypv(env, addr + 8, u.ll.lower);
2321 break;
2322 #endif
2323 default:
2324 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
2325 break;
2327 #else
2328 u.q = QT0;
2329 cpu_stq_data(env, address_mask(env, addr), u.ll.upper);
2330 cpu_stq_data(env, address_mask(env, addr + 8), u.ll.lower);
2331 #endif
2334 #if !defined(CONFIG_USER_ONLY)
2335 #ifndef TARGET_SPARC64
2336 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2337 bool is_write, bool is_exec, int is_asi,
2338 unsigned size)
2340 SPARCCPU *cpu = SPARC_CPU(cs);
2341 CPUSPARCState *env = &cpu->env;
2342 int fault_type;
2344 #ifdef DEBUG_UNASSIGNED
2345 if (is_asi) {
2346 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2347 " asi 0x%02x from " TARGET_FMT_lx "\n",
2348 is_exec ? "exec" : is_write ? "write" : "read", size,
2349 size == 1 ? "" : "s", addr, is_asi, env->pc);
2350 } else {
2351 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2352 " from " TARGET_FMT_lx "\n",
2353 is_exec ? "exec" : is_write ? "write" : "read", size,
2354 size == 1 ? "" : "s", addr, env->pc);
2356 #endif
2357 /* Don't overwrite translation and access faults */
2358 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
2359 if ((fault_type > 4) || (fault_type == 0)) {
2360 env->mmuregs[3] = 0; /* Fault status register */
2361 if (is_asi) {
2362 env->mmuregs[3] |= 1 << 16;
2364 if (env->psrs) {
2365 env->mmuregs[3] |= 1 << 5;
2367 if (is_exec) {
2368 env->mmuregs[3] |= 1 << 6;
2370 if (is_write) {
2371 env->mmuregs[3] |= 1 << 7;
2373 env->mmuregs[3] |= (5 << 2) | 2;
2374 /* SuperSPARC will never place instruction fault addresses in the FAR */
2375 if (!is_exec) {
2376 env->mmuregs[4] = addr; /* Fault address register */
2379 /* overflow (same type fault was not read before another fault) */
2380 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
2381 env->mmuregs[3] |= 1;
2384 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2385 if (is_exec) {
2386 helper_raise_exception(env, TT_CODE_ACCESS);
2387 } else {
2388 helper_raise_exception(env, TT_DATA_ACCESS);
2392 /* flush neverland mappings created during no-fault mode,
2393 so the sequential MMU faults report proper fault types */
2394 if (env->mmuregs[0] & MMU_NF) {
2395 tlb_flush(cs, 1);
2398 #else
2399 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2400 bool is_write, bool is_exec, int is_asi,
2401 unsigned size)
2403 SPARCCPU *cpu = SPARC_CPU(cs);
2404 CPUSPARCState *env = &cpu->env;
2406 #ifdef DEBUG_UNASSIGNED
2407 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2408 "\n", addr, env->pc);
2409 #endif
2411 if (is_exec) {
2412 helper_raise_exception(env, TT_CODE_ACCESS);
2413 } else {
2414 helper_raise_exception(env, TT_DATA_ACCESS);
2417 #endif
2418 #endif
2420 #if !defined(CONFIG_USER_ONLY)
2421 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs,
2422 vaddr addr, int is_write,
2423 int is_user, uintptr_t retaddr)
2425 SPARCCPU *cpu = SPARC_CPU(cs);
2426 CPUSPARCState *env = &cpu->env;
2428 #ifdef DEBUG_UNALIGNED
2429 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2430 "\n", addr, env->pc);
2431 #endif
2432 if (retaddr) {
2433 cpu_restore_state(CPU(cpu), retaddr);
2435 helper_raise_exception(env, TT_UNALIGNED);
2438 /* try to fill the TLB and return an exception if error. If retaddr is
2439 NULL, it means that the function was called in C code (i.e. not
2440 from generated code or from helper.c) */
2441 /* XXX: fix it to restore all registers */
2442 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
2443 uintptr_t retaddr)
2445 int ret;
2447 ret = sparc_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
2448 if (ret) {
2449 if (retaddr) {
2450 cpu_restore_state(cs, retaddr);
2452 cpu_loop_exit(cs);
2455 #endif