4 * Derived from SoftFloat.
7 /*============================================================================
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
36 =============================================================================*/
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
48 /*----------------------------------------------------------------------------
49 | Each of the following `typedef's defines the most convenient type that holds
50 | integers of at least as many bits as specified. For example, `uint8' should
51 | be the most convenient type that can hold unsigned integers of as many as
52 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54 | to the same as `int'.
55 *----------------------------------------------------------------------------*/
57 typedef uint8_t uint8
;
63 typedef unsigned int uint32
;
64 typedef signed int int32
;
65 typedef uint64_t uint64
;
66 typedef int64_t int64
;
68 #define LIT64( a ) a##LL
69 #define INLINE static inline
71 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
72 #define SNAN_BIT_IS_ONE 1
74 #define SNAN_BIT_IS_ONE 0
77 #define STATUS_PARAM , float_status *status
78 #define STATUS(field) status->field
79 #define STATUS_VAR , status
81 /*----------------------------------------------------------------------------
82 | Software IEC/IEEE floating-point ordering relations
83 *----------------------------------------------------------------------------*/
85 float_relation_less
= -1,
86 float_relation_equal
= 0,
87 float_relation_greater
= 1,
88 float_relation_unordered
= 2
91 /*----------------------------------------------------------------------------
92 | Software IEC/IEEE floating-point types.
93 *----------------------------------------------------------------------------*/
94 /* Use structures for soft-float types. This prevents accidentally mixing
95 them with native int/float types. A sufficiently clever compiler and
96 sane ABI should be able to see though these structs. However
97 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
98 //#define USE_SOFTFLOAT_STRUCT_TYPES
99 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
103 #define float16_val(x) (((float16)(x)).v)
104 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
105 #define const_float16(x) { x }
109 /* The cast ensures an error if the wrong type is passed. */
110 #define float32_val(x) (((float32)(x)).v)
111 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
112 #define const_float32(x) { x }
116 #define float64_val(x) (((float64)(x)).v)
117 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
118 #define const_float64(x) { x }
120 typedef uint16_t float16
;
121 typedef uint32_t float32
;
122 typedef uint64_t float64
;
123 #define float16_val(x) (x)
124 #define float32_val(x) (x)
125 #define float64_val(x) (x)
126 #define make_float16(x) (x)
127 #define make_float32(x) (x)
128 #define make_float64(x) (x)
129 #define const_float16(x) (x)
130 #define const_float32(x) (x)
131 #define const_float64(x) (x)
137 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
139 #ifdef HOST_WORDS_BIGENDIAN
146 /*----------------------------------------------------------------------------
147 | Software IEC/IEEE floating-point underflow tininess-detection mode.
148 *----------------------------------------------------------------------------*/
150 float_tininess_after_rounding
= 0,
151 float_tininess_before_rounding
= 1
154 /*----------------------------------------------------------------------------
155 | Software IEC/IEEE floating-point rounding mode.
156 *----------------------------------------------------------------------------*/
158 float_round_nearest_even
= 0,
159 float_round_down
= 1,
161 float_round_to_zero
= 3
164 /*----------------------------------------------------------------------------
165 | Software IEC/IEEE floating-point exception flags.
166 *----------------------------------------------------------------------------*/
168 float_flag_invalid
= 1,
169 float_flag_divbyzero
= 4,
170 float_flag_overflow
= 8,
171 float_flag_underflow
= 16,
172 float_flag_inexact
= 32,
173 float_flag_input_denormal
= 64,
174 float_flag_output_denormal
= 128
177 typedef struct float_status
{
178 signed char float_detect_tininess
;
179 signed char float_rounding_mode
;
180 signed char float_exception_flags
;
181 signed char floatx80_rounding_precision
;
182 /* should denormalised results go to zero and set the inexact flag? */
184 /* should denormalised inputs go to zero and set the input_denormal flag? */
185 flag flush_inputs_to_zero
;
186 flag default_nan_mode
;
189 void set_float_rounding_mode(int val STATUS_PARAM
);
190 void set_float_exception_flags(int val STATUS_PARAM
);
191 INLINE
void set_float_detect_tininess(int val STATUS_PARAM
)
193 STATUS(float_detect_tininess
) = val
;
195 INLINE
void set_flush_to_zero(flag val STATUS_PARAM
)
197 STATUS(flush_to_zero
) = val
;
199 INLINE
void set_flush_inputs_to_zero(flag val STATUS_PARAM
)
201 STATUS(flush_inputs_to_zero
) = val
;
203 INLINE
void set_default_nan_mode(flag val STATUS_PARAM
)
205 STATUS(default_nan_mode
) = val
;
207 INLINE
int get_float_exception_flags(float_status
*status
)
209 return STATUS(float_exception_flags
);
211 void set_floatx80_rounding_precision(int val STATUS_PARAM
);
213 /*----------------------------------------------------------------------------
214 | Routine to raise any or all of the software IEC/IEEE floating-point
216 *----------------------------------------------------------------------------*/
217 void float_raise( int8 flags STATUS_PARAM
);
219 /*----------------------------------------------------------------------------
220 | Software IEC/IEEE integer-to-floating-point conversion routines.
221 *----------------------------------------------------------------------------*/
222 float32
int32_to_float32( int32 STATUS_PARAM
);
223 float64
int32_to_float64( int32 STATUS_PARAM
);
224 float32
uint32_to_float32( unsigned int STATUS_PARAM
);
225 float64
uint32_to_float64( unsigned int STATUS_PARAM
);
226 floatx80
int32_to_floatx80( int32 STATUS_PARAM
);
227 float128
int32_to_float128( int32 STATUS_PARAM
);
228 float32
int64_to_float32( int64 STATUS_PARAM
);
229 float32
uint64_to_float32( uint64 STATUS_PARAM
);
230 float64
int64_to_float64( int64 STATUS_PARAM
);
231 float64
uint64_to_float64( uint64 STATUS_PARAM
);
232 floatx80
int64_to_floatx80( int64 STATUS_PARAM
);
233 float128
int64_to_float128( int64 STATUS_PARAM
);
235 /*----------------------------------------------------------------------------
236 | Software half-precision conversion routines.
237 *----------------------------------------------------------------------------*/
238 float16
float32_to_float16( float32
, flag STATUS_PARAM
);
239 float32
float16_to_float32( float16
, flag STATUS_PARAM
);
241 /*----------------------------------------------------------------------------
242 | Software half-precision operations.
243 *----------------------------------------------------------------------------*/
244 int float16_is_quiet_nan( float16
);
245 int float16_is_signaling_nan( float16
);
246 float16
float16_maybe_silence_nan( float16
);
248 /*----------------------------------------------------------------------------
249 | The pattern for a default generated half-precision NaN.
250 *----------------------------------------------------------------------------*/
251 #if defined(TARGET_ARM)
252 #define float16_default_nan make_float16(0x7E00)
253 #elif SNAN_BIT_IS_ONE
254 #define float16_default_nan make_float16(0x7DFF)
256 #define float16_default_nan make_float16(0xFE00)
259 /*----------------------------------------------------------------------------
260 | Software IEC/IEEE single-precision conversion routines.
261 *----------------------------------------------------------------------------*/
262 int16
float32_to_int16_round_to_zero( float32 STATUS_PARAM
);
263 unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM
);
264 int32
float32_to_int32( float32 STATUS_PARAM
);
265 int32
float32_to_int32_round_to_zero( float32 STATUS_PARAM
);
266 uint32
float32_to_uint32( float32 STATUS_PARAM
);
267 uint32
float32_to_uint32_round_to_zero( float32 STATUS_PARAM
);
268 int64
float32_to_int64( float32 STATUS_PARAM
);
269 int64
float32_to_int64_round_to_zero( float32 STATUS_PARAM
);
270 float64
float32_to_float64( float32 STATUS_PARAM
);
271 floatx80
float32_to_floatx80( float32 STATUS_PARAM
);
272 float128
float32_to_float128( float32 STATUS_PARAM
);
274 /*----------------------------------------------------------------------------
275 | Software IEC/IEEE single-precision operations.
276 *----------------------------------------------------------------------------*/
277 float32
float32_round_to_int( float32 STATUS_PARAM
);
278 float32
float32_add( float32
, float32 STATUS_PARAM
);
279 float32
float32_sub( float32
, float32 STATUS_PARAM
);
280 float32
float32_mul( float32
, float32 STATUS_PARAM
);
281 float32
float32_div( float32
, float32 STATUS_PARAM
);
282 float32
float32_rem( float32
, float32 STATUS_PARAM
);
283 float32
float32_sqrt( float32 STATUS_PARAM
);
284 float32
float32_exp2( float32 STATUS_PARAM
);
285 float32
float32_log2( float32 STATUS_PARAM
);
286 int float32_eq( float32
, float32 STATUS_PARAM
);
287 int float32_le( float32
, float32 STATUS_PARAM
);
288 int float32_lt( float32
, float32 STATUS_PARAM
);
289 int float32_unordered( float32
, float32 STATUS_PARAM
);
290 int float32_eq_quiet( float32
, float32 STATUS_PARAM
);
291 int float32_le_quiet( float32
, float32 STATUS_PARAM
);
292 int float32_lt_quiet( float32
, float32 STATUS_PARAM
);
293 int float32_unordered_quiet( float32
, float32 STATUS_PARAM
);
294 int float32_compare( float32
, float32 STATUS_PARAM
);
295 int float32_compare_quiet( float32
, float32 STATUS_PARAM
);
296 float32
float32_min(float32
, float32 STATUS_PARAM
);
297 float32
float32_max(float32
, float32 STATUS_PARAM
);
298 int float32_is_quiet_nan( float32
);
299 int float32_is_signaling_nan( float32
);
300 float32
float32_maybe_silence_nan( float32
);
301 float32
float32_scalbn( float32
, int STATUS_PARAM
);
303 INLINE float32
float32_abs(float32 a
)
305 /* Note that abs does *not* handle NaN specially, nor does
306 * it flush denormal inputs to zero.
308 return make_float32(float32_val(a
) & 0x7fffffff);
311 INLINE float32
float32_chs(float32 a
)
313 /* Note that chs does *not* handle NaN specially, nor does
314 * it flush denormal inputs to zero.
316 return make_float32(float32_val(a
) ^ 0x80000000);
319 INLINE
int float32_is_infinity(float32 a
)
321 return (float32_val(a
) & 0x7fffffff) == 0x7f800000;
324 INLINE
int float32_is_neg(float32 a
)
326 return float32_val(a
) >> 31;
329 INLINE
int float32_is_zero(float32 a
)
331 return (float32_val(a
) & 0x7fffffff) == 0;
334 INLINE
int float32_is_any_nan(float32 a
)
336 return ((float32_val(a
) & ~(1 << 31)) > 0x7f800000UL
);
339 INLINE
int float32_is_zero_or_denormal(float32 a
)
341 return (float32_val(a
) & 0x7f800000) == 0;
344 INLINE float32
float32_set_sign(float32 a
, int sign
)
346 return make_float32((float32_val(a
) & 0x7fffffff) | (sign
<< 31));
349 #define float32_zero make_float32(0)
350 #define float32_one make_float32(0x3f800000)
351 #define float32_ln2 make_float32(0x3f317218)
352 #define float32_pi make_float32(0x40490fdb)
353 #define float32_half make_float32(0x3f000000)
354 #define float32_infinity make_float32(0x7f800000)
357 /*----------------------------------------------------------------------------
358 | The pattern for a default generated single-precision NaN.
359 *----------------------------------------------------------------------------*/
360 #if defined(TARGET_SPARC)
361 #define float32_default_nan make_float32(0x7FFFFFFF)
362 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
363 #define float32_default_nan make_float32(0x7FC00000)
364 #elif SNAN_BIT_IS_ONE
365 #define float32_default_nan make_float32(0x7FBFFFFF)
367 #define float32_default_nan make_float32(0xFFC00000)
370 /*----------------------------------------------------------------------------
371 | Software IEC/IEEE double-precision conversion routines.
372 *----------------------------------------------------------------------------*/
373 int16
float64_to_int16_round_to_zero( float64 STATUS_PARAM
);
374 unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM
);
375 int32
float64_to_int32( float64 STATUS_PARAM
);
376 int32
float64_to_int32_round_to_zero( float64 STATUS_PARAM
);
377 uint32
float64_to_uint32( float64 STATUS_PARAM
);
378 uint32
float64_to_uint32_round_to_zero( float64 STATUS_PARAM
);
379 int64
float64_to_int64( float64 STATUS_PARAM
);
380 int64
float64_to_int64_round_to_zero( float64 STATUS_PARAM
);
381 uint64
float64_to_uint64 (float64 a STATUS_PARAM
);
382 uint64
float64_to_uint64_round_to_zero (float64 a STATUS_PARAM
);
383 float32
float64_to_float32( float64 STATUS_PARAM
);
384 floatx80
float64_to_floatx80( float64 STATUS_PARAM
);
385 float128
float64_to_float128( float64 STATUS_PARAM
);
387 /*----------------------------------------------------------------------------
388 | Software IEC/IEEE double-precision operations.
389 *----------------------------------------------------------------------------*/
390 float64
float64_round_to_int( float64 STATUS_PARAM
);
391 float64
float64_trunc_to_int( float64 STATUS_PARAM
);
392 float64
float64_add( float64
, float64 STATUS_PARAM
);
393 float64
float64_sub( float64
, float64 STATUS_PARAM
);
394 float64
float64_mul( float64
, float64 STATUS_PARAM
);
395 float64
float64_div( float64
, float64 STATUS_PARAM
);
396 float64
float64_rem( float64
, float64 STATUS_PARAM
);
397 float64
float64_sqrt( float64 STATUS_PARAM
);
398 float64
float64_log2( float64 STATUS_PARAM
);
399 int float64_eq( float64
, float64 STATUS_PARAM
);
400 int float64_le( float64
, float64 STATUS_PARAM
);
401 int float64_lt( float64
, float64 STATUS_PARAM
);
402 int float64_unordered( float64
, float64 STATUS_PARAM
);
403 int float64_eq_quiet( float64
, float64 STATUS_PARAM
);
404 int float64_le_quiet( float64
, float64 STATUS_PARAM
);
405 int float64_lt_quiet( float64
, float64 STATUS_PARAM
);
406 int float64_unordered_quiet( float64
, float64 STATUS_PARAM
);
407 int float64_compare( float64
, float64 STATUS_PARAM
);
408 int float64_compare_quiet( float64
, float64 STATUS_PARAM
);
409 float64
float64_min(float64
, float64 STATUS_PARAM
);
410 float64
float64_max(float64
, float64 STATUS_PARAM
);
411 int float64_is_quiet_nan( float64 a
);
412 int float64_is_signaling_nan( float64
);
413 float64
float64_maybe_silence_nan( float64
);
414 float64
float64_scalbn( float64
, int STATUS_PARAM
);
416 INLINE float64
float64_abs(float64 a
)
418 /* Note that abs does *not* handle NaN specially, nor does
419 * it flush denormal inputs to zero.
421 return make_float64(float64_val(a
) & 0x7fffffffffffffffLL
);
424 INLINE float64
float64_chs(float64 a
)
426 /* Note that chs does *not* handle NaN specially, nor does
427 * it flush denormal inputs to zero.
429 return make_float64(float64_val(a
) ^ 0x8000000000000000LL
);
432 INLINE
int float64_is_infinity(float64 a
)
434 return (float64_val(a
) & 0x7fffffffffffffffLL
) == 0x7ff0000000000000LL
;
437 INLINE
int float64_is_neg(float64 a
)
439 return float64_val(a
) >> 63;
442 INLINE
int float64_is_zero(float64 a
)
444 return (float64_val(a
) & 0x7fffffffffffffffLL
) == 0;
447 INLINE
int float64_is_any_nan(float64 a
)
449 return ((float64_val(a
) & ~(1ULL << 63)) > 0x7ff0000000000000ULL
);
452 INLINE
int float64_is_zero_or_denormal(float64 a
)
454 return (float64_val(a
) & 0x7ff0000000000000LL
) == 0;
457 INLINE float64
float64_set_sign(float64 a
, int sign
)
459 return make_float64((float64_val(a
) & 0x7fffffffffffffffULL
)
460 | ((int64_t)sign
<< 63));
463 #define float64_zero make_float64(0)
464 #define float64_one make_float64(0x3ff0000000000000LL)
465 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
466 #define float64_pi make_float64(0x400921fb54442d18LL)
467 #define float64_half make_float64(0x3fe0000000000000LL)
468 #define float64_infinity make_float64(0x7ff0000000000000LL)
470 /*----------------------------------------------------------------------------
471 | The pattern for a default generated double-precision NaN.
472 *----------------------------------------------------------------------------*/
473 #if defined(TARGET_SPARC)
474 #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
475 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
476 #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
477 #elif SNAN_BIT_IS_ONE
478 #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
480 #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
483 /*----------------------------------------------------------------------------
484 | Software IEC/IEEE extended double-precision conversion routines.
485 *----------------------------------------------------------------------------*/
486 int32
floatx80_to_int32( floatx80 STATUS_PARAM
);
487 int32
floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM
);
488 int64
floatx80_to_int64( floatx80 STATUS_PARAM
);
489 int64
floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM
);
490 float32
floatx80_to_float32( floatx80 STATUS_PARAM
);
491 float64
floatx80_to_float64( floatx80 STATUS_PARAM
);
492 float128
floatx80_to_float128( floatx80 STATUS_PARAM
);
494 /*----------------------------------------------------------------------------
495 | Software IEC/IEEE extended double-precision operations.
496 *----------------------------------------------------------------------------*/
497 floatx80
floatx80_round_to_int( floatx80 STATUS_PARAM
);
498 floatx80
floatx80_add( floatx80
, floatx80 STATUS_PARAM
);
499 floatx80
floatx80_sub( floatx80
, floatx80 STATUS_PARAM
);
500 floatx80
floatx80_mul( floatx80
, floatx80 STATUS_PARAM
);
501 floatx80
floatx80_div( floatx80
, floatx80 STATUS_PARAM
);
502 floatx80
floatx80_rem( floatx80
, floatx80 STATUS_PARAM
);
503 floatx80
floatx80_sqrt( floatx80 STATUS_PARAM
);
504 int floatx80_eq( floatx80
, floatx80 STATUS_PARAM
);
505 int floatx80_le( floatx80
, floatx80 STATUS_PARAM
);
506 int floatx80_lt( floatx80
, floatx80 STATUS_PARAM
);
507 int floatx80_unordered( floatx80
, floatx80 STATUS_PARAM
);
508 int floatx80_eq_quiet( floatx80
, floatx80 STATUS_PARAM
);
509 int floatx80_le_quiet( floatx80
, floatx80 STATUS_PARAM
);
510 int floatx80_lt_quiet( floatx80
, floatx80 STATUS_PARAM
);
511 int floatx80_unordered_quiet( floatx80
, floatx80 STATUS_PARAM
);
512 int floatx80_compare( floatx80
, floatx80 STATUS_PARAM
);
513 int floatx80_compare_quiet( floatx80
, floatx80 STATUS_PARAM
);
514 int floatx80_is_quiet_nan( floatx80
);
515 int floatx80_is_signaling_nan( floatx80
);
516 floatx80
floatx80_maybe_silence_nan( floatx80
);
517 floatx80
floatx80_scalbn( floatx80
, int STATUS_PARAM
);
519 INLINE floatx80
floatx80_abs(floatx80 a
)
525 INLINE floatx80
floatx80_chs(floatx80 a
)
531 INLINE
int floatx80_is_infinity(floatx80 a
)
533 return (a
.high
& 0x7fff) == 0x7fff && a
.low
== 0x8000000000000000LL
;
536 INLINE
int floatx80_is_neg(floatx80 a
)
541 INLINE
int floatx80_is_zero(floatx80 a
)
543 return (a
.high
& 0x7fff) == 0 && a
.low
== 0;
546 INLINE
int floatx80_is_zero_or_denormal(floatx80 a
)
548 return (a
.high
& 0x7fff) == 0;
551 INLINE
int floatx80_is_any_nan(floatx80 a
)
553 return ((a
.high
& 0x7fff) == 0x7fff) && (a
.low
<<1);
556 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
557 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
558 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
559 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
560 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
561 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
563 /*----------------------------------------------------------------------------
564 | The pattern for a default generated extended double-precision NaN. The
565 | `high' and `low' values hold the most- and least-significant bits,
567 *----------------------------------------------------------------------------*/
569 #define floatx80_default_nan_high 0x7FFF
570 #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
572 #define floatx80_default_nan_high 0xFFFF
573 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
576 /*----------------------------------------------------------------------------
577 | Software IEC/IEEE quadruple-precision conversion routines.
578 *----------------------------------------------------------------------------*/
579 int32
float128_to_int32( float128 STATUS_PARAM
);
580 int32
float128_to_int32_round_to_zero( float128 STATUS_PARAM
);
581 int64
float128_to_int64( float128 STATUS_PARAM
);
582 int64
float128_to_int64_round_to_zero( float128 STATUS_PARAM
);
583 float32
float128_to_float32( float128 STATUS_PARAM
);
584 float64
float128_to_float64( float128 STATUS_PARAM
);
585 floatx80
float128_to_floatx80( float128 STATUS_PARAM
);
587 /*----------------------------------------------------------------------------
588 | Software IEC/IEEE quadruple-precision operations.
589 *----------------------------------------------------------------------------*/
590 float128
float128_round_to_int( float128 STATUS_PARAM
);
591 float128
float128_add( float128
, float128 STATUS_PARAM
);
592 float128
float128_sub( float128
, float128 STATUS_PARAM
);
593 float128
float128_mul( float128
, float128 STATUS_PARAM
);
594 float128
float128_div( float128
, float128 STATUS_PARAM
);
595 float128
float128_rem( float128
, float128 STATUS_PARAM
);
596 float128
float128_sqrt( float128 STATUS_PARAM
);
597 int float128_eq( float128
, float128 STATUS_PARAM
);
598 int float128_le( float128
, float128 STATUS_PARAM
);
599 int float128_lt( float128
, float128 STATUS_PARAM
);
600 int float128_unordered( float128
, float128 STATUS_PARAM
);
601 int float128_eq_quiet( float128
, float128 STATUS_PARAM
);
602 int float128_le_quiet( float128
, float128 STATUS_PARAM
);
603 int float128_lt_quiet( float128
, float128 STATUS_PARAM
);
604 int float128_unordered_quiet( float128
, float128 STATUS_PARAM
);
605 int float128_compare( float128
, float128 STATUS_PARAM
);
606 int float128_compare_quiet( float128
, float128 STATUS_PARAM
);
607 int float128_is_quiet_nan( float128
);
608 int float128_is_signaling_nan( float128
);
609 float128
float128_maybe_silence_nan( float128
);
610 float128
float128_scalbn( float128
, int STATUS_PARAM
);
612 INLINE float128
float128_abs(float128 a
)
614 a
.high
&= 0x7fffffffffffffffLL
;
618 INLINE float128
float128_chs(float128 a
)
620 a
.high
^= 0x8000000000000000LL
;
624 INLINE
int float128_is_infinity(float128 a
)
626 return (a
.high
& 0x7fffffffffffffffLL
) == 0x7fff000000000000LL
&& a
.low
== 0;
629 INLINE
int float128_is_neg(float128 a
)
634 INLINE
int float128_is_zero(float128 a
)
636 return (a
.high
& 0x7fffffffffffffffLL
) == 0 && a
.low
== 0;
639 INLINE
int float128_is_zero_or_denormal(float128 a
)
641 return (a
.high
& 0x7fff000000000000LL
) == 0;
644 INLINE
int float128_is_any_nan(float128 a
)
646 return ((a
.high
>> 48) & 0x7fff) == 0x7fff &&
647 ((a
.low
!= 0) || ((a
.high
& 0xffffffffffffLL
) != 0));
650 /*----------------------------------------------------------------------------
651 | The pattern for a default generated quadruple-precision NaN. The `high' and
652 | `low' values hold the most- and least-significant bits, respectively.
653 *----------------------------------------------------------------------------*/
655 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
656 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
658 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
659 #define float128_default_nan_low LIT64( 0x0000000000000000 )
662 #endif /* !SOFTFLOAT_H */