sh4/r2d: update pci, usb and kernel management
[qemu/sh4.git] / target-mips / op_helper.c
blob27f58c2be12b56ab06e9d4f96b3b84b8f738d8ce
1 /*
2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <stdlib.h>
21 #include "exec.h"
23 #include "host-utils.h"
25 #include "helper.h"
26 /*****************************************************************************/
27 /* Exceptions processing helpers */
29 void do_raise_exception_err (uint32_t exception, int error_code)
31 #if 1
32 if (logfile && exception < 0x100)
33 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
34 #endif
35 env->exception_index = exception;
36 env->error_code = error_code;
37 cpu_loop_exit();
40 void do_raise_exception (uint32_t exception)
42 do_raise_exception_err(exception, 0);
45 void do_interrupt_restart (void)
47 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
48 !(env->CP0_Status & (1 << CP0St_ERL)) &&
49 !(env->hflags & MIPS_HFLAG_DM) &&
50 (env->CP0_Status & (1 << CP0St_IE)) &&
51 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
52 env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
53 do_raise_exception(EXCP_EXT_INTERRUPT);
57 void do_restore_state (void *pc_ptr)
59 TranslationBlock *tb;
60 unsigned long pc = (unsigned long) pc_ptr;
62 tb = tb_find_pc (pc);
63 if (tb) {
64 cpu_restore_state (tb, env, pc, NULL);
68 target_ulong do_clo (target_ulong t0)
70 return clo32(t0);
73 target_ulong do_clz (target_ulong t0)
75 return clz32(t0);
78 #if defined(TARGET_MIPS64)
79 target_ulong do_dclo (target_ulong t0)
81 return clo64(t0);
84 target_ulong do_dclz (target_ulong t0)
86 return clz64(t0);
88 #endif /* TARGET_MIPS64 */
90 /* 64 bits arithmetic for 32 bits hosts */
91 static inline uint64_t get_HILO (void)
93 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
96 static inline void set_HILO (uint64_t HILO)
98 env->active_tc.LO[0] = (int32_t)HILO;
99 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
102 static inline void set_HIT0_LO (target_ulong t0, uint64_t HILO)
104 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
105 t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
108 static inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO)
110 t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
111 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
114 #if TARGET_LONG_BITS > HOST_LONG_BITS
115 void do_madd (target_ulong t0, target_ulong t1)
117 int64_t tmp;
119 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
120 set_HILO((int64_t)get_HILO() + tmp);
123 void do_maddu (target_ulong t0, target_ulong t1)
125 uint64_t tmp;
127 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
128 set_HILO(get_HILO() + tmp);
131 void do_msub (target_ulong t0, target_ulong t1)
133 int64_t tmp;
135 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
136 set_HILO((int64_t)get_HILO() - tmp);
139 void do_msubu (target_ulong t0, target_ulong t1)
141 uint64_t tmp;
143 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
144 set_HILO(get_HILO() - tmp);
146 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
148 /* Multiplication variants of the vr54xx. */
149 target_ulong do_muls (target_ulong t0, target_ulong t1)
151 set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
153 return t0;
156 target_ulong do_mulsu (target_ulong t0, target_ulong t1)
158 set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
160 return t0;
163 target_ulong do_macc (target_ulong t0, target_ulong t1)
165 set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
167 return t0;
170 target_ulong do_macchi (target_ulong t0, target_ulong t1)
172 set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
174 return t0;
177 target_ulong do_maccu (target_ulong t0, target_ulong t1)
179 set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
181 return t0;
184 target_ulong do_macchiu (target_ulong t0, target_ulong t1)
186 set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
188 return t0;
191 target_ulong do_msac (target_ulong t0, target_ulong t1)
193 set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
195 return t0;
198 target_ulong do_msachi (target_ulong t0, target_ulong t1)
200 set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
202 return t0;
205 target_ulong do_msacu (target_ulong t0, target_ulong t1)
207 set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
209 return t0;
212 target_ulong do_msachiu (target_ulong t0, target_ulong t1)
214 set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
216 return t0;
219 target_ulong do_mulhi (target_ulong t0, target_ulong t1)
221 set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
223 return t0;
226 target_ulong do_mulhiu (target_ulong t0, target_ulong t1)
228 set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
230 return t0;
233 target_ulong do_mulshi (target_ulong t0, target_ulong t1)
235 set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
237 return t0;
240 target_ulong do_mulshiu (target_ulong t0, target_ulong t1)
242 set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
244 return t0;
247 #ifdef TARGET_MIPS64
248 void do_dmult (target_ulong t0, target_ulong t1)
250 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
253 void do_dmultu (target_ulong t0, target_ulong t1)
255 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
257 #endif
259 #ifdef TARGET_WORDS_BIGENDIAN
260 #define GET_LMASK(v) ((v) & 3)
261 #define GET_OFFSET(addr, offset) (addr + (offset))
262 #else
263 #define GET_LMASK(v) (((v) & 3) ^ 3)
264 #define GET_OFFSET(addr, offset) (addr - (offset))
265 #endif
267 target_ulong do_lwl(target_ulong t0, target_ulong t1, int mem_idx)
269 target_ulong tmp;
271 #ifdef CONFIG_USER_ONLY
272 #define ldfun ldub_raw
273 #else
274 int (*ldfun)(target_ulong);
276 switch (mem_idx)
278 case 0: ldfun = ldub_kernel; break;
279 case 1: ldfun = ldub_super; break;
280 default:
281 case 2: ldfun = ldub_user; break;
283 #endif
284 tmp = ldfun(t0);
285 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
287 if (GET_LMASK(t0) <= 2) {
288 tmp = ldfun(GET_OFFSET(t0, 1));
289 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
292 if (GET_LMASK(t0) <= 1) {
293 tmp = ldfun(GET_OFFSET(t0, 2));
294 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
297 if (GET_LMASK(t0) == 0) {
298 tmp = ldfun(GET_OFFSET(t0, 3));
299 t1 = (t1 & 0xFFFFFF00) | tmp;
301 return (int32_t)t1;
304 target_ulong do_lwr(target_ulong t0, target_ulong t1, int mem_idx)
306 target_ulong tmp;
308 #ifdef CONFIG_USER_ONLY
309 #define ldfun ldub_raw
310 #else
311 int (*ldfun)(target_ulong);
313 switch (mem_idx)
315 case 0: ldfun = ldub_kernel; break;
316 case 1: ldfun = ldub_super; break;
317 default:
318 case 2: ldfun = ldub_user; break;
320 #endif
321 tmp = ldfun(t0);
322 t1 = (t1 & 0xFFFFFF00) | tmp;
324 if (GET_LMASK(t0) >= 1) {
325 tmp = ldfun(GET_OFFSET(t0, -1));
326 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
329 if (GET_LMASK(t0) >= 2) {
330 tmp = ldfun(GET_OFFSET(t0, -2));
331 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
334 if (GET_LMASK(t0) == 3) {
335 tmp = ldfun(GET_OFFSET(t0, -3));
336 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
338 return (int32_t)t1;
341 void do_swl(target_ulong t0, target_ulong t1, int mem_idx)
343 #ifdef CONFIG_USER_ONLY
344 #define stfun stb_raw
345 #else
346 void (*stfun)(target_ulong, int);
348 switch (mem_idx)
350 case 0: stfun = stb_kernel; break;
351 case 1: stfun = stb_super; break;
352 default:
353 case 2: stfun = stb_user; break;
355 #endif
356 stfun(t0, (uint8_t)(t1 >> 24));
358 if (GET_LMASK(t0) <= 2)
359 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16));
361 if (GET_LMASK(t0) <= 1)
362 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8));
364 if (GET_LMASK(t0) == 0)
365 stfun(GET_OFFSET(t0, 3), (uint8_t)t1);
368 void do_swr(target_ulong t0, target_ulong t1, int mem_idx)
370 #ifdef CONFIG_USER_ONLY
371 #define stfun stb_raw
372 #else
373 void (*stfun)(target_ulong, int);
375 switch (mem_idx)
377 case 0: stfun = stb_kernel; break;
378 case 1: stfun = stb_super; break;
379 default:
380 case 2: stfun = stb_user; break;
382 #endif
383 stfun(t0, (uint8_t)t1);
385 if (GET_LMASK(t0) >= 1)
386 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
388 if (GET_LMASK(t0) >= 2)
389 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
391 if (GET_LMASK(t0) == 3)
392 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
395 #if defined(TARGET_MIPS64)
396 /* "half" load and stores. We must do the memory access inline,
397 or fault handling won't work. */
399 #ifdef TARGET_WORDS_BIGENDIAN
400 #define GET_LMASK64(v) ((v) & 7)
401 #else
402 #define GET_LMASK64(v) (((v) & 7) ^ 7)
403 #endif
405 target_ulong do_ldl(target_ulong t0, target_ulong t1, int mem_idx)
407 uint64_t tmp;
409 #ifdef CONFIG_USER_ONLY
410 #define ldfun ldub_raw
411 #else
412 int (*ldfun)(target_ulong);
414 switch (mem_idx)
416 case 0: ldfun = ldub_kernel; break;
417 case 1: ldfun = ldub_super; break;
418 default:
419 case 2: ldfun = ldub_user; break;
421 #endif
422 tmp = ldfun(t0);
423 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
425 if (GET_LMASK64(t0) <= 6) {
426 tmp = ldfun(GET_OFFSET(t0, 1));
427 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
430 if (GET_LMASK64(t0) <= 5) {
431 tmp = ldfun(GET_OFFSET(t0, 2));
432 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
435 if (GET_LMASK64(t0) <= 4) {
436 tmp = ldfun(GET_OFFSET(t0, 3));
437 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
440 if (GET_LMASK64(t0) <= 3) {
441 tmp = ldfun(GET_OFFSET(t0, 4));
442 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
445 if (GET_LMASK64(t0) <= 2) {
446 tmp = ldfun(GET_OFFSET(t0, 5));
447 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
450 if (GET_LMASK64(t0) <= 1) {
451 tmp = ldfun(GET_OFFSET(t0, 6));
452 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
455 if (GET_LMASK64(t0) == 0) {
456 tmp = ldfun(GET_OFFSET(t0, 7));
457 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
460 return t1;
463 target_ulong do_ldr(target_ulong t0, target_ulong t1, int mem_idx)
465 uint64_t tmp;
467 #ifdef CONFIG_USER_ONLY
468 #define ldfun ldub_raw
469 #else
470 int (*ldfun)(target_ulong);
472 switch (mem_idx)
474 case 0: ldfun = ldub_kernel; break;
475 case 1: ldfun = ldub_super; break;
476 default:
477 case 2: ldfun = ldub_user; break;
479 #endif
480 tmp = ldfun(t0);
481 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
483 if (GET_LMASK64(t0) >= 1) {
484 tmp = ldfun(GET_OFFSET(t0, -1));
485 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
488 if (GET_LMASK64(t0) >= 2) {
489 tmp = ldfun(GET_OFFSET(t0, -2));
490 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
493 if (GET_LMASK64(t0) >= 3) {
494 tmp = ldfun(GET_OFFSET(t0, -3));
495 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
498 if (GET_LMASK64(t0) >= 4) {
499 tmp = ldfun(GET_OFFSET(t0, -4));
500 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
503 if (GET_LMASK64(t0) >= 5) {
504 tmp = ldfun(GET_OFFSET(t0, -5));
505 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
508 if (GET_LMASK64(t0) >= 6) {
509 tmp = ldfun(GET_OFFSET(t0, -6));
510 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
513 if (GET_LMASK64(t0) == 7) {
514 tmp = ldfun(GET_OFFSET(t0, -7));
515 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
518 return t1;
521 void do_sdl(target_ulong t0, target_ulong t1, int mem_idx)
523 #ifdef CONFIG_USER_ONLY
524 #define stfun stb_raw
525 #else
526 void (*stfun)(target_ulong, int);
528 switch (mem_idx)
530 case 0: stfun = stb_kernel; break;
531 case 1: stfun = stb_super; break;
532 default:
533 case 2: stfun = stb_user; break;
535 #endif
536 stfun(t0, (uint8_t)(t1 >> 56));
538 if (GET_LMASK64(t0) <= 6)
539 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48));
541 if (GET_LMASK64(t0) <= 5)
542 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40));
544 if (GET_LMASK64(t0) <= 4)
545 stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32));
547 if (GET_LMASK64(t0) <= 3)
548 stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24));
550 if (GET_LMASK64(t0) <= 2)
551 stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16));
553 if (GET_LMASK64(t0) <= 1)
554 stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8));
556 if (GET_LMASK64(t0) <= 0)
557 stfun(GET_OFFSET(t0, 7), (uint8_t)t1);
560 void do_sdr(target_ulong t0, target_ulong t1, int mem_idx)
562 #ifdef CONFIG_USER_ONLY
563 #define stfun stb_raw
564 #else
565 void (*stfun)(target_ulong, int);
567 switch (mem_idx)
569 case 0: stfun = stb_kernel; break;
570 case 1: stfun = stb_super; break;
571 default:
572 case 2: stfun = stb_user; break;
574 #endif
575 stfun(t0, (uint8_t)t1);
577 if (GET_LMASK64(t0) >= 1)
578 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
580 if (GET_LMASK64(t0) >= 2)
581 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
583 if (GET_LMASK64(t0) >= 3)
584 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
586 if (GET_LMASK64(t0) >= 4)
587 stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32));
589 if (GET_LMASK64(t0) >= 5)
590 stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40));
592 if (GET_LMASK64(t0) >= 6)
593 stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48));
595 if (GET_LMASK64(t0) == 7)
596 stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56));
598 #endif /* TARGET_MIPS64 */
600 #ifndef CONFIG_USER_ONLY
601 /* CP0 helpers */
602 target_ulong do_mfc0_mvpcontrol (void)
604 return env->mvp->CP0_MVPControl;
607 target_ulong do_mfc0_mvpconf0 (void)
609 return env->mvp->CP0_MVPConf0;
612 target_ulong do_mfc0_mvpconf1 (void)
614 return env->mvp->CP0_MVPConf1;
617 target_ulong do_mfc0_random (void)
619 return (int32_t)cpu_mips_get_random(env);
622 target_ulong do_mfc0_tcstatus (void)
624 return env->active_tc.CP0_TCStatus;
627 target_ulong do_mftc0_tcstatus(void)
629 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
631 if (other_tc == env->current_tc)
632 return env->active_tc.CP0_TCStatus;
633 else
634 return env->tcs[other_tc].CP0_TCStatus;
637 target_ulong do_mfc0_tcbind (void)
639 return env->active_tc.CP0_TCBind;
642 target_ulong do_mftc0_tcbind(void)
644 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
646 if (other_tc == env->current_tc)
647 return env->active_tc.CP0_TCBind;
648 else
649 return env->tcs[other_tc].CP0_TCBind;
652 target_ulong do_mfc0_tcrestart (void)
654 return env->active_tc.PC;
657 target_ulong do_mftc0_tcrestart(void)
659 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
661 if (other_tc == env->current_tc)
662 return env->active_tc.PC;
663 else
664 return env->tcs[other_tc].PC;
667 target_ulong do_mfc0_tchalt (void)
669 return env->active_tc.CP0_TCHalt;
672 target_ulong do_mftc0_tchalt(void)
674 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
676 if (other_tc == env->current_tc)
677 return env->active_tc.CP0_TCHalt;
678 else
679 return env->tcs[other_tc].CP0_TCHalt;
682 target_ulong do_mfc0_tccontext (void)
684 return env->active_tc.CP0_TCContext;
687 target_ulong do_mftc0_tccontext(void)
689 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
691 if (other_tc == env->current_tc)
692 return env->active_tc.CP0_TCContext;
693 else
694 return env->tcs[other_tc].CP0_TCContext;
697 target_ulong do_mfc0_tcschedule (void)
699 return env->active_tc.CP0_TCSchedule;
702 target_ulong do_mftc0_tcschedule(void)
704 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
706 if (other_tc == env->current_tc)
707 return env->active_tc.CP0_TCSchedule;
708 else
709 return env->tcs[other_tc].CP0_TCSchedule;
712 target_ulong do_mfc0_tcschefback (void)
714 return env->active_tc.CP0_TCScheFBack;
717 target_ulong do_mftc0_tcschefback(void)
719 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
721 if (other_tc == env->current_tc)
722 return env->active_tc.CP0_TCScheFBack;
723 else
724 return env->tcs[other_tc].CP0_TCScheFBack;
727 target_ulong do_mfc0_count (void)
729 return (int32_t)cpu_mips_get_count(env);
732 target_ulong do_mftc0_entryhi(void)
734 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
735 int32_t tcstatus;
737 if (other_tc == env->current_tc)
738 tcstatus = env->active_tc.CP0_TCStatus;
739 else
740 tcstatus = env->tcs[other_tc].CP0_TCStatus;
742 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
745 target_ulong do_mftc0_status(void)
747 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
748 target_ulong t0;
749 int32_t tcstatus;
751 if (other_tc == env->current_tc)
752 tcstatus = env->active_tc.CP0_TCStatus;
753 else
754 tcstatus = env->tcs[other_tc].CP0_TCStatus;
756 t0 = env->CP0_Status & ~0xf1000018;
757 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
758 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
759 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
761 return t0;
764 target_ulong do_mfc0_lladdr (void)
766 return (int32_t)env->CP0_LLAddr >> 4;
769 target_ulong do_mfc0_watchlo (uint32_t sel)
771 return (int32_t)env->CP0_WatchLo[sel];
774 target_ulong do_mfc0_watchhi (uint32_t sel)
776 return env->CP0_WatchHi[sel];
779 target_ulong do_mfc0_debug (void)
781 target_ulong t0 = env->CP0_Debug;
782 if (env->hflags & MIPS_HFLAG_DM)
783 t0 |= 1 << CP0DB_DM;
785 return t0;
788 target_ulong do_mftc0_debug(void)
790 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
791 int32_t tcstatus;
793 if (other_tc == env->current_tc)
794 tcstatus = env->active_tc.CP0_Debug_tcstatus;
795 else
796 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
798 /* XXX: Might be wrong, check with EJTAG spec. */
799 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
800 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
803 #if defined(TARGET_MIPS64)
804 target_ulong do_dmfc0_tcrestart (void)
806 return env->active_tc.PC;
809 target_ulong do_dmfc0_tchalt (void)
811 return env->active_tc.CP0_TCHalt;
814 target_ulong do_dmfc0_tccontext (void)
816 return env->active_tc.CP0_TCContext;
819 target_ulong do_dmfc0_tcschedule (void)
821 return env->active_tc.CP0_TCSchedule;
824 target_ulong do_dmfc0_tcschefback (void)
826 return env->active_tc.CP0_TCScheFBack;
829 target_ulong do_dmfc0_lladdr (void)
831 return env->CP0_LLAddr >> 4;
834 target_ulong do_dmfc0_watchlo (uint32_t sel)
836 return env->CP0_WatchLo[sel];
838 #endif /* TARGET_MIPS64 */
840 void do_mtc0_index (target_ulong t0)
842 int num = 1;
843 unsigned int tmp = env->tlb->nb_tlb;
845 do {
846 tmp >>= 1;
847 num <<= 1;
848 } while (tmp);
849 env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1));
852 void do_mtc0_mvpcontrol (target_ulong t0)
854 uint32_t mask = 0;
855 uint32_t newval;
857 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
858 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
859 (1 << CP0MVPCo_EVP);
860 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
861 mask |= (1 << CP0MVPCo_STLB);
862 newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask);
864 // TODO: Enable/disable shared TLB, enable/disable VPEs.
866 env->mvp->CP0_MVPControl = newval;
869 void do_mtc0_vpecontrol (target_ulong t0)
871 uint32_t mask;
872 uint32_t newval;
874 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
875 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
876 newval = (env->CP0_VPEControl & ~mask) | (t0 & mask);
878 /* Yield scheduler intercept not implemented. */
879 /* Gating storage scheduler intercept not implemented. */
881 // TODO: Enable/disable TCs.
883 env->CP0_VPEControl = newval;
886 void do_mtc0_vpeconf0 (target_ulong t0)
888 uint32_t mask = 0;
889 uint32_t newval;
891 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
892 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
893 mask |= (0xff << CP0VPEC0_XTC);
894 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
896 newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask);
898 // TODO: TC exclusive handling due to ERL/EXL.
900 env->CP0_VPEConf0 = newval;
903 void do_mtc0_vpeconf1 (target_ulong t0)
905 uint32_t mask = 0;
906 uint32_t newval;
908 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
909 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
910 (0xff << CP0VPEC1_NCP1);
911 newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask);
913 /* UDI not implemented. */
914 /* CP2 not implemented. */
916 // TODO: Handle FPU (CP1) binding.
918 env->CP0_VPEConf1 = newval;
921 void do_mtc0_yqmask (target_ulong t0)
923 /* Yield qualifier inputs not implemented. */
924 env->CP0_YQMask = 0x00000000;
927 void do_mtc0_vpeopt (target_ulong t0)
929 env->CP0_VPEOpt = t0 & 0x0000ffff;
932 void do_mtc0_entrylo0 (target_ulong t0)
934 /* Large physaddr (PABITS) not implemented */
935 /* 1k pages not implemented */
936 env->CP0_EntryLo0 = t0 & 0x3FFFFFFF;
939 void do_mtc0_tcstatus (target_ulong t0)
941 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
942 uint32_t newval;
944 newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask);
946 // TODO: Sync with CP0_Status.
948 env->active_tc.CP0_TCStatus = newval;
951 void do_mttc0_tcstatus (target_ulong t0)
953 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
955 // TODO: Sync with CP0_Status.
957 if (other_tc == env->current_tc)
958 env->active_tc.CP0_TCStatus = t0;
959 else
960 env->tcs[other_tc].CP0_TCStatus = t0;
963 void do_mtc0_tcbind (target_ulong t0)
965 uint32_t mask = (1 << CP0TCBd_TBE);
966 uint32_t newval;
968 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
969 mask |= (1 << CP0TCBd_CurVPE);
970 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
971 env->active_tc.CP0_TCBind = newval;
974 void do_mttc0_tcbind (target_ulong t0)
976 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
977 uint32_t mask = (1 << CP0TCBd_TBE);
978 uint32_t newval;
980 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
981 mask |= (1 << CP0TCBd_CurVPE);
982 if (other_tc == env->current_tc) {
983 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
984 env->active_tc.CP0_TCBind = newval;
985 } else {
986 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask);
987 env->tcs[other_tc].CP0_TCBind = newval;
991 void do_mtc0_tcrestart (target_ulong t0)
993 env->active_tc.PC = t0;
994 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
995 env->CP0_LLAddr = 0ULL;
996 /* MIPS16 not implemented. */
999 void do_mttc0_tcrestart (target_ulong t0)
1001 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1003 if (other_tc == env->current_tc) {
1004 env->active_tc.PC = t0;
1005 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1006 env->CP0_LLAddr = 0ULL;
1007 /* MIPS16 not implemented. */
1008 } else {
1009 env->tcs[other_tc].PC = t0;
1010 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1011 env->CP0_LLAddr = 0ULL;
1012 /* MIPS16 not implemented. */
1016 void do_mtc0_tchalt (target_ulong t0)
1018 env->active_tc.CP0_TCHalt = t0 & 0x1;
1020 // TODO: Halt TC / Restart (if allocated+active) TC.
1023 void do_mttc0_tchalt (target_ulong t0)
1025 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1027 // TODO: Halt TC / Restart (if allocated+active) TC.
1029 if (other_tc == env->current_tc)
1030 env->active_tc.CP0_TCHalt = t0;
1031 else
1032 env->tcs[other_tc].CP0_TCHalt = t0;
1035 void do_mtc0_tccontext (target_ulong t0)
1037 env->active_tc.CP0_TCContext = t0;
1040 void do_mttc0_tccontext (target_ulong t0)
1042 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1044 if (other_tc == env->current_tc)
1045 env->active_tc.CP0_TCContext = t0;
1046 else
1047 env->tcs[other_tc].CP0_TCContext = t0;
1050 void do_mtc0_tcschedule (target_ulong t0)
1052 env->active_tc.CP0_TCSchedule = t0;
1055 void do_mttc0_tcschedule (target_ulong t0)
1057 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1059 if (other_tc == env->current_tc)
1060 env->active_tc.CP0_TCSchedule = t0;
1061 else
1062 env->tcs[other_tc].CP0_TCSchedule = t0;
1065 void do_mtc0_tcschefback (target_ulong t0)
1067 env->active_tc.CP0_TCScheFBack = t0;
1070 void do_mttc0_tcschefback (target_ulong t0)
1072 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1074 if (other_tc == env->current_tc)
1075 env->active_tc.CP0_TCScheFBack = t0;
1076 else
1077 env->tcs[other_tc].CP0_TCScheFBack = t0;
1080 void do_mtc0_entrylo1 (target_ulong t0)
1082 /* Large physaddr (PABITS) not implemented */
1083 /* 1k pages not implemented */
1084 env->CP0_EntryLo1 = t0 & 0x3FFFFFFF;
1087 void do_mtc0_context (target_ulong t0)
1089 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF);
1092 void do_mtc0_pagemask (target_ulong t0)
1094 /* 1k pages not implemented */
1095 env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1098 void do_mtc0_pagegrain (target_ulong t0)
1100 /* SmartMIPS not implemented */
1101 /* Large physaddr (PABITS) not implemented */
1102 /* 1k pages not implemented */
1103 env->CP0_PageGrain = 0;
1106 void do_mtc0_wired (target_ulong t0)
1108 env->CP0_Wired = t0 % env->tlb->nb_tlb;
1111 void do_mtc0_srsconf0 (target_ulong t0)
1113 env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask;
1116 void do_mtc0_srsconf1 (target_ulong t0)
1118 env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask;
1121 void do_mtc0_srsconf2 (target_ulong t0)
1123 env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask;
1126 void do_mtc0_srsconf3 (target_ulong t0)
1128 env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask;
1131 void do_mtc0_srsconf4 (target_ulong t0)
1133 env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask;
1136 void do_mtc0_hwrena (target_ulong t0)
1138 env->CP0_HWREna = t0 & 0x0000000F;
1141 void do_mtc0_count (target_ulong t0)
1143 cpu_mips_store_count(env, t0);
1146 void do_mtc0_entryhi (target_ulong t0)
1148 target_ulong old, val;
1150 /* 1k pages not implemented */
1151 val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1152 #if defined(TARGET_MIPS64)
1153 val &= env->SEGMask;
1154 #endif
1155 old = env->CP0_EntryHi;
1156 env->CP0_EntryHi = val;
1157 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1158 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1159 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1161 /* If the ASID changes, flush qemu's TLB. */
1162 if ((old & 0xFF) != (val & 0xFF))
1163 cpu_mips_tlb_flush(env, 1);
1166 void do_mttc0_entryhi(target_ulong t0)
1168 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1169 int32_t tcstatus;
1171 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff);
1172 if (other_tc == env->current_tc) {
1173 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff);
1174 env->active_tc.CP0_TCStatus = tcstatus;
1175 } else {
1176 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff);
1177 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1181 void do_mtc0_compare (target_ulong t0)
1183 cpu_mips_store_compare(env, t0);
1186 void do_mtc0_status (target_ulong t0)
1188 uint32_t val, old;
1189 uint32_t mask = env->CP0_Status_rw_bitmask;
1191 val = t0 & mask;
1192 old = env->CP0_Status;
1193 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1194 compute_hflags(env);
1195 if (loglevel & CPU_LOG_EXEC)
1196 do_mtc0_status_debug(old, val);
1197 cpu_mips_update_irq(env);
1200 void do_mttc0_status(target_ulong t0)
1202 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1203 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1205 env->CP0_Status = t0 & ~0xf1000018;
1206 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0));
1207 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1208 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1209 if (other_tc == env->current_tc)
1210 env->active_tc.CP0_TCStatus = tcstatus;
1211 else
1212 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1215 void do_mtc0_intctl (target_ulong t0)
1217 /* vectored interrupts not implemented, no performance counters. */
1218 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0);
1221 void do_mtc0_srsctl (target_ulong t0)
1223 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1224 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask);
1227 void do_mtc0_cause (target_ulong t0)
1229 uint32_t mask = 0x00C00300;
1230 uint32_t old = env->CP0_Cause;
1232 if (env->insn_flags & ISA_MIPS32R2)
1233 mask |= 1 << CP0Ca_DC;
1235 env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask);
1237 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1238 if (env->CP0_Cause & (1 << CP0Ca_DC))
1239 cpu_mips_stop_count(env);
1240 else
1241 cpu_mips_start_count(env);
1244 /* Handle the software interrupt as an hardware one, as they
1245 are very similar */
1246 if (t0 & CP0Ca_IP_mask) {
1247 cpu_mips_update_irq(env);
1251 void do_mtc0_ebase (target_ulong t0)
1253 /* vectored interrupts not implemented */
1254 /* Multi-CPU not implemented */
1255 env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000);
1258 void do_mtc0_config0 (target_ulong t0)
1260 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007);
1263 void do_mtc0_config2 (target_ulong t0)
1265 /* tertiary/secondary caches not implemented */
1266 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1269 void do_mtc0_watchlo (target_ulong t0, uint32_t sel)
1271 /* Watch exceptions for instructions, data loads, data stores
1272 not implemented. */
1273 env->CP0_WatchLo[sel] = (t0 & ~0x7);
1276 void do_mtc0_watchhi (target_ulong t0, uint32_t sel)
1278 env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8);
1279 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7);
1282 void do_mtc0_xcontext (target_ulong t0)
1284 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1285 env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask);
1288 void do_mtc0_framemask (target_ulong t0)
1290 env->CP0_Framemask = t0; /* XXX */
1293 void do_mtc0_debug (target_ulong t0)
1295 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120);
1296 if (t0 & (1 << CP0DB_DM))
1297 env->hflags |= MIPS_HFLAG_DM;
1298 else
1299 env->hflags &= ~MIPS_HFLAG_DM;
1302 void do_mttc0_debug(target_ulong t0)
1304 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1305 uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1307 /* XXX: Might be wrong, check with EJTAG spec. */
1308 if (other_tc == env->current_tc)
1309 env->active_tc.CP0_Debug_tcstatus = val;
1310 else
1311 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1312 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1313 (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1316 void do_mtc0_performance0 (target_ulong t0)
1318 env->CP0_Performance0 = t0 & 0x000007ff;
1321 void do_mtc0_taglo (target_ulong t0)
1323 env->CP0_TagLo = t0 & 0xFFFFFCF6;
1326 void do_mtc0_datalo (target_ulong t0)
1328 env->CP0_DataLo = t0; /* XXX */
1331 void do_mtc0_taghi (target_ulong t0)
1333 env->CP0_TagHi = t0; /* XXX */
1336 void do_mtc0_datahi (target_ulong t0)
1338 env->CP0_DataHi = t0; /* XXX */
1341 void do_mtc0_status_debug(uint32_t old, uint32_t val)
1343 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
1344 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1345 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1346 env->CP0_Cause);
1347 switch (env->hflags & MIPS_HFLAG_KSU) {
1348 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1349 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1350 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1351 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1355 void do_mtc0_status_irqraise_debug(void)
1357 fprintf(logfile, "Raise pending IRQs\n");
1359 #endif /* !CONFIG_USER_ONLY */
1361 /* MIPS MT functions */
1362 target_ulong do_mftgpr(uint32_t sel)
1364 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1366 if (other_tc == env->current_tc)
1367 return env->active_tc.gpr[sel];
1368 else
1369 return env->tcs[other_tc].gpr[sel];
1372 target_ulong do_mftlo(uint32_t sel)
1374 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1376 if (other_tc == env->current_tc)
1377 return env->active_tc.LO[sel];
1378 else
1379 return env->tcs[other_tc].LO[sel];
1382 target_ulong do_mfthi(uint32_t sel)
1384 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1386 if (other_tc == env->current_tc)
1387 return env->active_tc.HI[sel];
1388 else
1389 return env->tcs[other_tc].HI[sel];
1392 target_ulong do_mftacx(uint32_t sel)
1394 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1396 if (other_tc == env->current_tc)
1397 return env->active_tc.ACX[sel];
1398 else
1399 return env->tcs[other_tc].ACX[sel];
1402 target_ulong do_mftdsp(void)
1404 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1406 if (other_tc == env->current_tc)
1407 return env->active_tc.DSPControl;
1408 else
1409 return env->tcs[other_tc].DSPControl;
1412 void do_mttgpr(target_ulong t0, uint32_t sel)
1414 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1416 if (other_tc == env->current_tc)
1417 env->active_tc.gpr[sel] = t0;
1418 else
1419 env->tcs[other_tc].gpr[sel] = t0;
1422 void do_mttlo(target_ulong t0, uint32_t sel)
1424 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1426 if (other_tc == env->current_tc)
1427 env->active_tc.LO[sel] = t0;
1428 else
1429 env->tcs[other_tc].LO[sel] = t0;
1432 void do_mtthi(target_ulong t0, uint32_t sel)
1434 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1436 if (other_tc == env->current_tc)
1437 env->active_tc.HI[sel] = t0;
1438 else
1439 env->tcs[other_tc].HI[sel] = t0;
1442 void do_mttacx(target_ulong t0, uint32_t sel)
1444 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1446 if (other_tc == env->current_tc)
1447 env->active_tc.ACX[sel] = t0;
1448 else
1449 env->tcs[other_tc].ACX[sel] = t0;
1452 void do_mttdsp(target_ulong t0)
1454 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1456 if (other_tc == env->current_tc)
1457 env->active_tc.DSPControl = t0;
1458 else
1459 env->tcs[other_tc].DSPControl = t0;
1462 /* MIPS MT functions */
1463 target_ulong do_dmt(target_ulong t0)
1465 // TODO
1466 t0 = 0;
1467 // rt = t0
1469 return t0;
1472 target_ulong do_emt(target_ulong t0)
1474 // TODO
1475 t0 = 0;
1476 // rt = t0
1478 return t0;
1481 target_ulong do_dvpe(target_ulong t0)
1483 // TODO
1484 t0 = 0;
1485 // rt = t0
1487 return t0;
1490 target_ulong do_evpe(target_ulong t0)
1492 // TODO
1493 t0 = 0;
1494 // rt = t0
1496 return t0;
1499 void do_fork(target_ulong t0, target_ulong t1)
1501 // t0 = rt, t1 = rs
1502 t0 = 0;
1503 // TODO: store to TC register
1506 target_ulong do_yield(target_ulong t0)
1508 if (t0 < 0) {
1509 /* No scheduling policy implemented. */
1510 if (t0 != -2) {
1511 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1512 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1513 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1514 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1515 do_raise_exception(EXCP_THREAD);
1518 } else if (t0 == 0) {
1519 if (0 /* TODO: TC underflow */) {
1520 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1521 do_raise_exception(EXCP_THREAD);
1522 } else {
1523 // TODO: Deallocate TC
1525 } else if (t0 > 0) {
1526 /* Yield qualifier inputs not implemented. */
1527 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1528 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1529 do_raise_exception(EXCP_THREAD);
1531 return env->CP0_YQMask;
1534 #ifndef CONFIG_USER_ONLY
1535 /* TLB management */
1536 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1538 /* Flush qemu's TLB and discard all shadowed entries. */
1539 tlb_flush (env, flush_global);
1540 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1543 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1545 /* Discard entries from env->tlb[first] onwards. */
1546 while (env->tlb->tlb_in_use > first) {
1547 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1551 static void r4k_fill_tlb (int idx)
1553 r4k_tlb_t *tlb;
1555 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1556 tlb = &env->tlb->mmu.r4k.tlb[idx];
1557 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1558 #if defined(TARGET_MIPS64)
1559 tlb->VPN &= env->SEGMask;
1560 #endif
1561 tlb->ASID = env->CP0_EntryHi & 0xFF;
1562 tlb->PageMask = env->CP0_PageMask;
1563 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1564 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1565 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1566 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1567 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1568 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1569 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1570 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1571 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1574 void r4k_do_tlbwi (void)
1576 int idx;
1578 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1580 /* Discard cached TLB entries. We could avoid doing this if the
1581 tlbwi is just upgrading access permissions on the current entry;
1582 that might be a further win. */
1583 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1585 r4k_invalidate_tlb(env, idx, 0);
1586 r4k_fill_tlb(idx);
1589 void r4k_do_tlbwr (void)
1591 int r = cpu_mips_get_random(env);
1593 r4k_invalidate_tlb(env, r, 1);
1594 r4k_fill_tlb(r);
1597 void r4k_do_tlbp (void)
1599 r4k_tlb_t *tlb;
1600 target_ulong mask;
1601 target_ulong tag;
1602 target_ulong VPN;
1603 uint8_t ASID;
1604 int i;
1606 ASID = env->CP0_EntryHi & 0xFF;
1607 for (i = 0; i < env->tlb->nb_tlb; i++) {
1608 tlb = &env->tlb->mmu.r4k.tlb[i];
1609 /* 1k pages are not supported. */
1610 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1611 tag = env->CP0_EntryHi & ~mask;
1612 VPN = tlb->VPN & ~mask;
1613 /* Check ASID, virtual page number & size */
1614 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1615 /* TLB match */
1616 env->CP0_Index = i;
1617 break;
1620 if (i == env->tlb->nb_tlb) {
1621 /* No match. Discard any shadow entries, if any of them match. */
1622 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1623 tlb = &env->tlb->mmu.r4k.tlb[i];
1624 /* 1k pages are not supported. */
1625 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1626 tag = env->CP0_EntryHi & ~mask;
1627 VPN = tlb->VPN & ~mask;
1628 /* Check ASID, virtual page number & size */
1629 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1630 r4k_mips_tlb_flush_extra (env, i);
1631 break;
1635 env->CP0_Index |= 0x80000000;
1639 void r4k_do_tlbr (void)
1641 r4k_tlb_t *tlb;
1642 uint8_t ASID;
1643 int idx;
1645 ASID = env->CP0_EntryHi & 0xFF;
1646 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1647 tlb = &env->tlb->mmu.r4k.tlb[idx];
1649 /* If this will change the current ASID, flush qemu's TLB. */
1650 if (ASID != tlb->ASID)
1651 cpu_mips_tlb_flush (env, 1);
1653 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1655 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1656 env->CP0_PageMask = tlb->PageMask;
1657 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1658 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1659 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1660 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1663 void do_tlbwi(void)
1665 env->tlb->do_tlbwi();
1668 void do_tlbwr(void)
1670 env->tlb->do_tlbwr();
1673 void do_tlbp(void)
1675 env->tlb->do_tlbp();
1678 void do_tlbr(void)
1680 env->tlb->do_tlbr();
1683 /* Specials */
1684 target_ulong do_di (void)
1686 target_ulong t0 = env->CP0_Status;
1688 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1689 cpu_mips_update_irq(env);
1691 return t0;
1694 target_ulong do_ei (void)
1696 target_ulong t0 = env->CP0_Status;
1698 env->CP0_Status = t0 | (1 << CP0St_IE);
1699 cpu_mips_update_irq(env);
1701 return t0;
1704 static void debug_pre_eret (void)
1706 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1707 env->active_tc.PC, env->CP0_EPC);
1708 if (env->CP0_Status & (1 << CP0St_ERL))
1709 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1710 if (env->hflags & MIPS_HFLAG_DM)
1711 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1712 fputs("\n", logfile);
1715 static void debug_post_eret (void)
1717 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1718 env->active_tc.PC, env->CP0_EPC);
1719 if (env->CP0_Status & (1 << CP0St_ERL))
1720 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1721 if (env->hflags & MIPS_HFLAG_DM)
1722 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1723 switch (env->hflags & MIPS_HFLAG_KSU) {
1724 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1725 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1726 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1727 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1731 void do_eret (void)
1733 if (loglevel & CPU_LOG_EXEC)
1734 debug_pre_eret();
1735 if (env->CP0_Status & (1 << CP0St_ERL)) {
1736 env->active_tc.PC = env->CP0_ErrorEPC;
1737 env->CP0_Status &= ~(1 << CP0St_ERL);
1738 } else {
1739 env->active_tc.PC = env->CP0_EPC;
1740 env->CP0_Status &= ~(1 << CP0St_EXL);
1742 compute_hflags(env);
1743 if (loglevel & CPU_LOG_EXEC)
1744 debug_post_eret();
1745 env->CP0_LLAddr = 1;
1748 void do_deret (void)
1750 if (loglevel & CPU_LOG_EXEC)
1751 debug_pre_eret();
1752 env->active_tc.PC = env->CP0_DEPC;
1753 env->hflags &= MIPS_HFLAG_DM;
1754 compute_hflags(env);
1755 if (loglevel & CPU_LOG_EXEC)
1756 debug_post_eret();
1757 env->CP0_LLAddr = 1;
1759 #endif /* !CONFIG_USER_ONLY */
1761 target_ulong do_rdhwr_cpunum(void)
1763 if ((env->hflags & MIPS_HFLAG_CP0) ||
1764 (env->CP0_HWREna & (1 << 0)))
1765 return env->CP0_EBase & 0x3ff;
1766 else
1767 do_raise_exception(EXCP_RI);
1769 return 0;
1772 target_ulong do_rdhwr_synci_step(void)
1774 if ((env->hflags & MIPS_HFLAG_CP0) ||
1775 (env->CP0_HWREna & (1 << 1)))
1776 return env->SYNCI_Step;
1777 else
1778 do_raise_exception(EXCP_RI);
1780 return 0;
1783 target_ulong do_rdhwr_cc(void)
1785 if ((env->hflags & MIPS_HFLAG_CP0) ||
1786 (env->CP0_HWREna & (1 << 2)))
1787 return env->CP0_Count;
1788 else
1789 do_raise_exception(EXCP_RI);
1791 return 0;
1794 target_ulong do_rdhwr_ccres(void)
1796 if ((env->hflags & MIPS_HFLAG_CP0) ||
1797 (env->CP0_HWREna & (1 << 3)))
1798 return env->CCRes;
1799 else
1800 do_raise_exception(EXCP_RI);
1802 return 0;
1805 void do_pmon (int function)
1807 function /= 2;
1808 switch (function) {
1809 case 2: /* TODO: char inbyte(int waitflag); */
1810 if (env->active_tc.gpr[4] == 0)
1811 env->active_tc.gpr[2] = -1;
1812 /* Fall through */
1813 case 11: /* TODO: char inbyte (void); */
1814 env->active_tc.gpr[2] = -1;
1815 break;
1816 case 3:
1817 case 12:
1818 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1819 break;
1820 case 17:
1821 break;
1822 case 158:
1824 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1825 printf("%s", fmt);
1827 break;
1831 void do_wait (void)
1833 env->halted = 1;
1834 do_raise_exception(EXCP_HLT);
1837 #if !defined(CONFIG_USER_ONLY)
1839 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1841 #define MMUSUFFIX _mmu
1842 #define ALIGNED_ONLY
1844 #define SHIFT 0
1845 #include "softmmu_template.h"
1847 #define SHIFT 1
1848 #include "softmmu_template.h"
1850 #define SHIFT 2
1851 #include "softmmu_template.h"
1853 #define SHIFT 3
1854 #include "softmmu_template.h"
1856 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1858 env->CP0_BadVAddr = addr;
1859 do_restore_state (retaddr);
1860 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1863 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1865 TranslationBlock *tb;
1866 CPUState *saved_env;
1867 unsigned long pc;
1868 int ret;
1870 /* XXX: hack to restore env in all cases, even if not called from
1871 generated code */
1872 saved_env = env;
1873 env = cpu_single_env;
1874 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1875 if (ret) {
1876 if (retaddr) {
1877 /* now we have a real cpu fault */
1878 pc = (unsigned long)retaddr;
1879 tb = tb_find_pc(pc);
1880 if (tb) {
1881 /* the PC is inside the translated code. It means that we have
1882 a virtual CPU fault */
1883 cpu_restore_state(tb, env, pc, NULL);
1886 do_raise_exception_err(env->exception_index, env->error_code);
1888 env = saved_env;
1891 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1892 int unused, int size)
1894 if (is_exec)
1895 do_raise_exception(EXCP_IBE);
1896 else
1897 do_raise_exception(EXCP_DBE);
1899 #endif /* !CONFIG_USER_ONLY */
1901 /* Complex FPU operations which may need stack space. */
1903 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1904 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1905 #define FLOAT_TWO32 make_float32(1 << 30)
1906 #define FLOAT_TWO64 make_float64(1ULL << 62)
1907 #define FLOAT_QNAN32 0x7fbfffff
1908 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1909 #define FLOAT_SNAN32 0x7fffffff
1910 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1912 /* convert MIPS rounding mode in FCR31 to IEEE library */
1913 unsigned int ieee_rm[] = {
1914 float_round_nearest_even,
1915 float_round_to_zero,
1916 float_round_up,
1917 float_round_down
1920 #define RESTORE_ROUNDING_MODE \
1921 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1923 target_ulong do_cfc1 (uint32_t reg)
1925 target_ulong t0;
1927 switch (reg) {
1928 case 0:
1929 t0 = (int32_t)env->active_fpu.fcr0;
1930 break;
1931 case 25:
1932 t0 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
1933 break;
1934 case 26:
1935 t0 = env->active_fpu.fcr31 & 0x0003f07c;
1936 break;
1937 case 28:
1938 t0 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
1939 break;
1940 default:
1941 t0 = (int32_t)env->active_fpu.fcr31;
1942 break;
1945 return t0;
1948 void do_ctc1 (target_ulong t0, uint32_t reg)
1950 switch(reg) {
1951 case 25:
1952 if (t0 & 0xffffff00)
1953 return;
1954 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) |
1955 ((t0 & 0x1) << 23);
1956 break;
1957 case 26:
1958 if (t0 & 0x007c0000)
1959 return;
1960 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c);
1961 break;
1962 case 28:
1963 if (t0 & 0x007c0000)
1964 return;
1965 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (t0 & 0x00000f83) |
1966 ((t0 & 0x4) << 22);
1967 break;
1968 case 31:
1969 if (t0 & 0x007c0000)
1970 return;
1971 env->active_fpu.fcr31 = t0;
1972 break;
1973 default:
1974 return;
1976 /* set rounding mode */
1977 RESTORE_ROUNDING_MODE;
1978 set_float_exception_flags(0, &env->active_fpu.fp_status);
1979 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
1980 do_raise_exception(EXCP_FPE);
1983 static inline char ieee_ex_to_mips(char xcpt)
1985 return (xcpt & float_flag_inexact) >> 5 |
1986 (xcpt & float_flag_underflow) >> 3 |
1987 (xcpt & float_flag_overflow) >> 1 |
1988 (xcpt & float_flag_divbyzero) << 1 |
1989 (xcpt & float_flag_invalid) << 4;
1992 static inline char mips_ex_to_ieee(char xcpt)
1994 return (xcpt & FP_INEXACT) << 5 |
1995 (xcpt & FP_UNDERFLOW) << 3 |
1996 (xcpt & FP_OVERFLOW) << 1 |
1997 (xcpt & FP_DIV0) >> 1 |
1998 (xcpt & FP_INVALID) >> 4;
2001 static inline void update_fcr31(void)
2003 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2005 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2006 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2007 do_raise_exception(EXCP_FPE);
2008 else
2009 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2012 /* Float support.
2013 Single precition routines have a "s" suffix, double precision a
2014 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2015 paired single lower "pl", paired single upper "pu". */
2017 /* unary operations, modifying fp status */
2018 uint64_t do_float_sqrt_d(uint64_t fdt0)
2020 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2023 uint32_t do_float_sqrt_s(uint32_t fst0)
2025 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2028 uint64_t do_float_cvtd_s(uint32_t fst0)
2030 uint64_t fdt2;
2032 set_float_exception_flags(0, &env->active_fpu.fp_status);
2033 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2034 update_fcr31();
2035 return fdt2;
2038 uint64_t do_float_cvtd_w(uint32_t wt0)
2040 uint64_t fdt2;
2042 set_float_exception_flags(0, &env->active_fpu.fp_status);
2043 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2044 update_fcr31();
2045 return fdt2;
2048 uint64_t do_float_cvtd_l(uint64_t dt0)
2050 uint64_t fdt2;
2052 set_float_exception_flags(0, &env->active_fpu.fp_status);
2053 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2054 update_fcr31();
2055 return fdt2;
2058 uint64_t do_float_cvtl_d(uint64_t fdt0)
2060 uint64_t dt2;
2062 set_float_exception_flags(0, &env->active_fpu.fp_status);
2063 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2064 update_fcr31();
2065 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2066 dt2 = FLOAT_SNAN64;
2067 return dt2;
2070 uint64_t do_float_cvtl_s(uint32_t fst0)
2072 uint64_t dt2;
2074 set_float_exception_flags(0, &env->active_fpu.fp_status);
2075 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2076 update_fcr31();
2077 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2078 dt2 = FLOAT_SNAN64;
2079 return dt2;
2082 uint64_t do_float_cvtps_pw(uint64_t dt0)
2084 uint32_t fst2;
2085 uint32_t fsth2;
2087 set_float_exception_flags(0, &env->active_fpu.fp_status);
2088 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2089 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2090 update_fcr31();
2091 return ((uint64_t)fsth2 << 32) | fst2;
2094 uint64_t do_float_cvtpw_ps(uint64_t fdt0)
2096 uint32_t wt2;
2097 uint32_t wth2;
2099 set_float_exception_flags(0, &env->active_fpu.fp_status);
2100 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2101 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2102 update_fcr31();
2103 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2104 wt2 = FLOAT_SNAN32;
2105 wth2 = FLOAT_SNAN32;
2107 return ((uint64_t)wth2 << 32) | wt2;
2110 uint32_t do_float_cvts_d(uint64_t fdt0)
2112 uint32_t fst2;
2114 set_float_exception_flags(0, &env->active_fpu.fp_status);
2115 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2116 update_fcr31();
2117 return fst2;
2120 uint32_t do_float_cvts_w(uint32_t wt0)
2122 uint32_t fst2;
2124 set_float_exception_flags(0, &env->active_fpu.fp_status);
2125 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2126 update_fcr31();
2127 return fst2;
2130 uint32_t do_float_cvts_l(uint64_t dt0)
2132 uint32_t fst2;
2134 set_float_exception_flags(0, &env->active_fpu.fp_status);
2135 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2136 update_fcr31();
2137 return fst2;
2140 uint32_t do_float_cvts_pl(uint32_t wt0)
2142 uint32_t wt2;
2144 set_float_exception_flags(0, &env->active_fpu.fp_status);
2145 wt2 = wt0;
2146 update_fcr31();
2147 return wt2;
2150 uint32_t do_float_cvts_pu(uint32_t wth0)
2152 uint32_t wt2;
2154 set_float_exception_flags(0, &env->active_fpu.fp_status);
2155 wt2 = wth0;
2156 update_fcr31();
2157 return wt2;
2160 uint32_t do_float_cvtw_s(uint32_t fst0)
2162 uint32_t wt2;
2164 set_float_exception_flags(0, &env->active_fpu.fp_status);
2165 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2166 update_fcr31();
2167 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2168 wt2 = FLOAT_SNAN32;
2169 return wt2;
2172 uint32_t do_float_cvtw_d(uint64_t fdt0)
2174 uint32_t wt2;
2176 set_float_exception_flags(0, &env->active_fpu.fp_status);
2177 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2178 update_fcr31();
2179 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2180 wt2 = FLOAT_SNAN32;
2181 return wt2;
2184 uint64_t do_float_roundl_d(uint64_t fdt0)
2186 uint64_t dt2;
2188 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2189 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2190 RESTORE_ROUNDING_MODE;
2191 update_fcr31();
2192 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2193 dt2 = FLOAT_SNAN64;
2194 return dt2;
2197 uint64_t do_float_roundl_s(uint32_t fst0)
2199 uint64_t dt2;
2201 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2202 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2203 RESTORE_ROUNDING_MODE;
2204 update_fcr31();
2205 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2206 dt2 = FLOAT_SNAN64;
2207 return dt2;
2210 uint32_t do_float_roundw_d(uint64_t fdt0)
2212 uint32_t wt2;
2214 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2215 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2216 RESTORE_ROUNDING_MODE;
2217 update_fcr31();
2218 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2219 wt2 = FLOAT_SNAN32;
2220 return wt2;
2223 uint32_t do_float_roundw_s(uint32_t fst0)
2225 uint32_t wt2;
2227 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2228 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2229 RESTORE_ROUNDING_MODE;
2230 update_fcr31();
2231 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2232 wt2 = FLOAT_SNAN32;
2233 return wt2;
2236 uint64_t do_float_truncl_d(uint64_t fdt0)
2238 uint64_t dt2;
2240 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2241 update_fcr31();
2242 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2243 dt2 = FLOAT_SNAN64;
2244 return dt2;
2247 uint64_t do_float_truncl_s(uint32_t fst0)
2249 uint64_t dt2;
2251 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2252 update_fcr31();
2253 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2254 dt2 = FLOAT_SNAN64;
2255 return dt2;
2258 uint32_t do_float_truncw_d(uint64_t fdt0)
2260 uint32_t wt2;
2262 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2263 update_fcr31();
2264 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2265 wt2 = FLOAT_SNAN32;
2266 return wt2;
2269 uint32_t do_float_truncw_s(uint32_t fst0)
2271 uint32_t wt2;
2273 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2274 update_fcr31();
2275 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2276 wt2 = FLOAT_SNAN32;
2277 return wt2;
2280 uint64_t do_float_ceill_d(uint64_t fdt0)
2282 uint64_t dt2;
2284 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2285 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2286 RESTORE_ROUNDING_MODE;
2287 update_fcr31();
2288 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2289 dt2 = FLOAT_SNAN64;
2290 return dt2;
2293 uint64_t do_float_ceill_s(uint32_t fst0)
2295 uint64_t dt2;
2297 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2298 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2299 RESTORE_ROUNDING_MODE;
2300 update_fcr31();
2301 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2302 dt2 = FLOAT_SNAN64;
2303 return dt2;
2306 uint32_t do_float_ceilw_d(uint64_t fdt0)
2308 uint32_t wt2;
2310 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2311 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2312 RESTORE_ROUNDING_MODE;
2313 update_fcr31();
2314 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2315 wt2 = FLOAT_SNAN32;
2316 return wt2;
2319 uint32_t do_float_ceilw_s(uint32_t fst0)
2321 uint32_t wt2;
2323 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2324 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2325 RESTORE_ROUNDING_MODE;
2326 update_fcr31();
2327 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2328 wt2 = FLOAT_SNAN32;
2329 return wt2;
2332 uint64_t do_float_floorl_d(uint64_t fdt0)
2334 uint64_t dt2;
2336 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2337 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2338 RESTORE_ROUNDING_MODE;
2339 update_fcr31();
2340 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2341 dt2 = FLOAT_SNAN64;
2342 return dt2;
2345 uint64_t do_float_floorl_s(uint32_t fst0)
2347 uint64_t dt2;
2349 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2350 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2351 RESTORE_ROUNDING_MODE;
2352 update_fcr31();
2353 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2354 dt2 = FLOAT_SNAN64;
2355 return dt2;
2358 uint32_t do_float_floorw_d(uint64_t fdt0)
2360 uint32_t wt2;
2362 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2363 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2364 RESTORE_ROUNDING_MODE;
2365 update_fcr31();
2366 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2367 wt2 = FLOAT_SNAN32;
2368 return wt2;
2371 uint32_t do_float_floorw_s(uint32_t fst0)
2373 uint32_t wt2;
2375 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2376 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2377 RESTORE_ROUNDING_MODE;
2378 update_fcr31();
2379 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2380 wt2 = FLOAT_SNAN32;
2381 return wt2;
2384 /* unary operations, not modifying fp status */
2385 #define FLOAT_UNOP(name) \
2386 uint64_t do_float_ ## name ## _d(uint64_t fdt0) \
2388 return float64_ ## name(fdt0); \
2390 uint32_t do_float_ ## name ## _s(uint32_t fst0) \
2392 return float32_ ## name(fst0); \
2394 uint64_t do_float_ ## name ## _ps(uint64_t fdt0) \
2396 uint32_t wt0; \
2397 uint32_t wth0; \
2399 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2400 wth0 = float32_ ## name(fdt0 >> 32); \
2401 return ((uint64_t)wth0 << 32) | wt0; \
2403 FLOAT_UNOP(abs)
2404 FLOAT_UNOP(chs)
2405 #undef FLOAT_UNOP
2407 /* MIPS specific unary operations */
2408 uint64_t do_float_recip_d(uint64_t fdt0)
2410 uint64_t fdt2;
2412 set_float_exception_flags(0, &env->active_fpu.fp_status);
2413 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2414 update_fcr31();
2415 return fdt2;
2418 uint32_t do_float_recip_s(uint32_t fst0)
2420 uint32_t fst2;
2422 set_float_exception_flags(0, &env->active_fpu.fp_status);
2423 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2424 update_fcr31();
2425 return fst2;
2428 uint64_t do_float_rsqrt_d(uint64_t fdt0)
2430 uint64_t fdt2;
2432 set_float_exception_flags(0, &env->active_fpu.fp_status);
2433 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2434 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2435 update_fcr31();
2436 return fdt2;
2439 uint32_t do_float_rsqrt_s(uint32_t fst0)
2441 uint32_t fst2;
2443 set_float_exception_flags(0, &env->active_fpu.fp_status);
2444 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2445 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2446 update_fcr31();
2447 return fst2;
2450 uint64_t do_float_recip1_d(uint64_t fdt0)
2452 uint64_t fdt2;
2454 set_float_exception_flags(0, &env->active_fpu.fp_status);
2455 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2456 update_fcr31();
2457 return fdt2;
2460 uint32_t do_float_recip1_s(uint32_t fst0)
2462 uint32_t fst2;
2464 set_float_exception_flags(0, &env->active_fpu.fp_status);
2465 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2466 update_fcr31();
2467 return fst2;
2470 uint64_t do_float_recip1_ps(uint64_t fdt0)
2472 uint32_t fst2;
2473 uint32_t fsth2;
2475 set_float_exception_flags(0, &env->active_fpu.fp_status);
2476 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2477 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2478 update_fcr31();
2479 return ((uint64_t)fsth2 << 32) | fst2;
2482 uint64_t do_float_rsqrt1_d(uint64_t fdt0)
2484 uint64_t fdt2;
2486 set_float_exception_flags(0, &env->active_fpu.fp_status);
2487 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2488 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2489 update_fcr31();
2490 return fdt2;
2493 uint32_t do_float_rsqrt1_s(uint32_t fst0)
2495 uint32_t fst2;
2497 set_float_exception_flags(0, &env->active_fpu.fp_status);
2498 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2499 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2500 update_fcr31();
2501 return fst2;
2504 uint64_t do_float_rsqrt1_ps(uint64_t fdt0)
2506 uint32_t fst2;
2507 uint32_t fsth2;
2509 set_float_exception_flags(0, &env->active_fpu.fp_status);
2510 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2511 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2512 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2513 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2514 update_fcr31();
2515 return ((uint64_t)fsth2 << 32) | fst2;
2518 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
2520 /* binary operations */
2521 #define FLOAT_BINOP(name) \
2522 uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2524 uint64_t dt2; \
2526 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2527 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2528 update_fcr31(); \
2529 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2530 dt2 = FLOAT_QNAN64; \
2531 return dt2; \
2534 uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2536 uint32_t wt2; \
2538 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2539 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2540 update_fcr31(); \
2541 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2542 wt2 = FLOAT_QNAN32; \
2543 return wt2; \
2546 uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2548 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2549 uint32_t fsth0 = fdt0 >> 32; \
2550 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2551 uint32_t fsth1 = fdt1 >> 32; \
2552 uint32_t wt2; \
2553 uint32_t wth2; \
2555 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2556 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2557 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2558 update_fcr31(); \
2559 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2560 wt2 = FLOAT_QNAN32; \
2561 wth2 = FLOAT_QNAN32; \
2563 return ((uint64_t)wth2 << 32) | wt2; \
2566 FLOAT_BINOP(add)
2567 FLOAT_BINOP(sub)
2568 FLOAT_BINOP(mul)
2569 FLOAT_BINOP(div)
2570 #undef FLOAT_BINOP
2572 /* ternary operations */
2573 #define FLOAT_TERNOP(name1, name2) \
2574 uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2575 uint64_t fdt2) \
2577 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2578 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2581 uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2582 uint32_t fst2) \
2584 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2585 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2588 uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2589 uint64_t fdt2) \
2591 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2592 uint32_t fsth0 = fdt0 >> 32; \
2593 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2594 uint32_t fsth1 = fdt1 >> 32; \
2595 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2596 uint32_t fsth2 = fdt2 >> 32; \
2598 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2599 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2600 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2601 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2602 return ((uint64_t)fsth2 << 32) | fst2; \
2605 FLOAT_TERNOP(mul, add)
2606 FLOAT_TERNOP(mul, sub)
2607 #undef FLOAT_TERNOP
2609 /* negated ternary operations */
2610 #define FLOAT_NTERNOP(name1, name2) \
2611 uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2612 uint64_t fdt2) \
2614 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2615 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2616 return float64_chs(fdt2); \
2619 uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2620 uint32_t fst2) \
2622 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2623 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2624 return float32_chs(fst2); \
2627 uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2628 uint64_t fdt2) \
2630 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2631 uint32_t fsth0 = fdt0 >> 32; \
2632 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2633 uint32_t fsth1 = fdt1 >> 32; \
2634 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2635 uint32_t fsth2 = fdt2 >> 32; \
2637 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2638 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2639 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2640 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2641 fst2 = float32_chs(fst2); \
2642 fsth2 = float32_chs(fsth2); \
2643 return ((uint64_t)fsth2 << 32) | fst2; \
2646 FLOAT_NTERNOP(mul, add)
2647 FLOAT_NTERNOP(mul, sub)
2648 #undef FLOAT_NTERNOP
2650 /* MIPS specific binary operations */
2651 uint64_t do_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2653 set_float_exception_flags(0, &env->active_fpu.fp_status);
2654 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2655 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2656 update_fcr31();
2657 return fdt2;
2660 uint32_t do_float_recip2_s(uint32_t fst0, uint32_t fst2)
2662 set_float_exception_flags(0, &env->active_fpu.fp_status);
2663 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2664 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2665 update_fcr31();
2666 return fst2;
2669 uint64_t do_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2671 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2672 uint32_t fsth0 = fdt0 >> 32;
2673 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2674 uint32_t fsth2 = fdt2 >> 32;
2676 set_float_exception_flags(0, &env->active_fpu.fp_status);
2677 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2678 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2679 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2680 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2681 update_fcr31();
2682 return ((uint64_t)fsth2 << 32) | fst2;
2685 uint64_t do_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2687 set_float_exception_flags(0, &env->active_fpu.fp_status);
2688 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2689 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2690 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2691 update_fcr31();
2692 return fdt2;
2695 uint32_t do_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2697 set_float_exception_flags(0, &env->active_fpu.fp_status);
2698 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2699 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2700 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2701 update_fcr31();
2702 return fst2;
2705 uint64_t do_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2707 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2708 uint32_t fsth0 = fdt0 >> 32;
2709 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2710 uint32_t fsth2 = fdt2 >> 32;
2712 set_float_exception_flags(0, &env->active_fpu.fp_status);
2713 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2714 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2715 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2716 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2717 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2718 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2719 update_fcr31();
2720 return ((uint64_t)fsth2 << 32) | fst2;
2723 uint64_t do_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2725 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2726 uint32_t fsth0 = fdt0 >> 32;
2727 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2728 uint32_t fsth1 = fdt1 >> 32;
2729 uint32_t fst2;
2730 uint32_t fsth2;
2732 set_float_exception_flags(0, &env->active_fpu.fp_status);
2733 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2734 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2735 update_fcr31();
2736 return ((uint64_t)fsth2 << 32) | fst2;
2739 uint64_t do_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2741 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2742 uint32_t fsth0 = fdt0 >> 32;
2743 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2744 uint32_t fsth1 = fdt1 >> 32;
2745 uint32_t fst2;
2746 uint32_t fsth2;
2748 set_float_exception_flags(0, &env->active_fpu.fp_status);
2749 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2750 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2751 update_fcr31();
2752 return ((uint64_t)fsth2 << 32) | fst2;
2755 /* compare operations */
2756 #define FOP_COND_D(op, cond) \
2757 void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2759 int c = cond; \
2760 update_fcr31(); \
2761 if (c) \
2762 SET_FP_COND(cc, env->active_fpu); \
2763 else \
2764 CLEAR_FP_COND(cc, env->active_fpu); \
2766 void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2768 int c; \
2769 fdt0 = float64_abs(fdt0); \
2770 fdt1 = float64_abs(fdt1); \
2771 c = cond; \
2772 update_fcr31(); \
2773 if (c) \
2774 SET_FP_COND(cc, env->active_fpu); \
2775 else \
2776 CLEAR_FP_COND(cc, env->active_fpu); \
2779 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2781 if (float64_is_signaling_nan(a) ||
2782 float64_is_signaling_nan(b) ||
2783 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2784 float_raise(float_flag_invalid, status);
2785 return 1;
2786 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2787 return 1;
2788 } else {
2789 return 0;
2793 /* NOTE: the comma operator will make "cond" to eval to false,
2794 * but float*_is_unordered() is still called. */
2795 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2796 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2797 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2798 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2799 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2800 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2801 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2802 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2803 /* NOTE: the comma operator will make "cond" to eval to false,
2804 * but float*_is_unordered() is still called. */
2805 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2806 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2807 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2808 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2809 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2810 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2811 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2812 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2814 #define FOP_COND_S(op, cond) \
2815 void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2817 int c = cond; \
2818 update_fcr31(); \
2819 if (c) \
2820 SET_FP_COND(cc, env->active_fpu); \
2821 else \
2822 CLEAR_FP_COND(cc, env->active_fpu); \
2824 void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2826 int c; \
2827 fst0 = float32_abs(fst0); \
2828 fst1 = float32_abs(fst1); \
2829 c = cond; \
2830 update_fcr31(); \
2831 if (c) \
2832 SET_FP_COND(cc, env->active_fpu); \
2833 else \
2834 CLEAR_FP_COND(cc, env->active_fpu); \
2837 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2839 if (float32_is_signaling_nan(a) ||
2840 float32_is_signaling_nan(b) ||
2841 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2842 float_raise(float_flag_invalid, status);
2843 return 1;
2844 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2845 return 1;
2846 } else {
2847 return 0;
2851 /* NOTE: the comma operator will make "cond" to eval to false,
2852 * but float*_is_unordered() is still called. */
2853 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2854 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2855 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2856 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2857 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2858 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2859 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2860 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2861 /* NOTE: the comma operator will make "cond" to eval to false,
2862 * but float*_is_unordered() is still called. */
2863 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2864 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2865 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2866 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2867 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2868 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2869 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2870 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2872 #define FOP_COND_PS(op, condl, condh) \
2873 void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2875 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2876 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2877 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2878 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2879 int cl = condl; \
2880 int ch = condh; \
2882 update_fcr31(); \
2883 if (cl) \
2884 SET_FP_COND(cc, env->active_fpu); \
2885 else \
2886 CLEAR_FP_COND(cc, env->active_fpu); \
2887 if (ch) \
2888 SET_FP_COND(cc + 1, env->active_fpu); \
2889 else \
2890 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2892 void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2894 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2895 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2896 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2897 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2898 int cl = condl; \
2899 int ch = condh; \
2901 update_fcr31(); \
2902 if (cl) \
2903 SET_FP_COND(cc, env->active_fpu); \
2904 else \
2905 CLEAR_FP_COND(cc, env->active_fpu); \
2906 if (ch) \
2907 SET_FP_COND(cc + 1, env->active_fpu); \
2908 else \
2909 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2912 /* NOTE: the comma operator will make "cond" to eval to false,
2913 * but float*_is_unordered() is still called. */
2914 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
2915 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2916 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
2917 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
2918 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2919 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2920 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2921 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2922 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2923 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2924 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2925 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2926 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2927 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2928 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2929 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2930 /* NOTE: the comma operator will make "cond" to eval to false,
2931 * but float*_is_unordered() is still called. */
2932 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
2933 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2934 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
2935 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
2936 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2937 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2938 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2939 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2940 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2941 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2942 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2943 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2944 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2945 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2946 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2947 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))