remove the build INITRAMFS
[qi-kernel.git] / kernel / fork.c
blob8e7baf9ea676b524624e8329790008337a6972da
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
75 #include <trace/events/sched.h>
78 * Protected counters by write_lock_irq(&tasklist_lock)
80 unsigned long total_forks; /* Handle normal Linux uptimes. */
81 int nr_threads; /* The idle threads do not count.. */
83 int max_threads; /* tunable limit on nr_threads */
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89 int nr_processes(void)
91 int cpu;
92 int total = 0;
94 for_each_possible_cpu(cpu)
95 total += per_cpu(process_counts, cpu);
97 return total;
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 gfp_t mask = GFP_KERNEL;
113 #endif
114 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 static inline void free_thread_info(struct thread_info *ti)
119 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
121 #endif
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
141 static void account_kernel_stack(struct thread_info *ti, int account)
143 struct zone *zone = page_zone(virt_to_page(ti));
145 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
148 void free_task(struct task_struct *tsk)
150 prop_local_destroy_single(&tsk->dirties);
151 account_kernel_stack(tsk->stack, -1);
152 free_thread_info(tsk->stack);
153 rt_mutex_debug_task_free(tsk);
154 ftrace_graph_exit_task(tsk);
155 free_task_struct(tsk);
157 EXPORT_SYMBOL(free_task);
159 void __put_task_struct(struct task_struct *tsk)
161 WARN_ON(!tsk->exit_state);
162 WARN_ON(atomic_read(&tsk->usage));
163 WARN_ON(tsk == current);
165 exit_creds(tsk);
166 delayacct_tsk_free(tsk);
168 if (!profile_handoff_task(tsk))
169 free_task(tsk);
171 EXPORT_SYMBOL_GPL(__put_task_struct);
174 * macro override instead of weak attribute alias, to workaround
175 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
177 #ifndef arch_task_cache_init
178 #define arch_task_cache_init()
179 #endif
181 void __init fork_init(unsigned long mempages)
183 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
184 #ifndef ARCH_MIN_TASKALIGN
185 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
186 #endif
187 /* create a slab on which task_structs can be allocated */
188 task_struct_cachep =
189 kmem_cache_create("task_struct", sizeof(struct task_struct),
190 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
191 #endif
193 /* do the arch specific task caches init */
194 arch_task_cache_init();
197 * The default maximum number of threads is set to a safe
198 * value: the thread structures can take up at most half
199 * of memory.
201 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
204 * we need to allow at least 20 threads to boot a system
206 if(max_threads < 20)
207 max_threads = 20;
209 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
210 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
211 init_task.signal->rlim[RLIMIT_SIGPENDING] =
212 init_task.signal->rlim[RLIMIT_NPROC];
215 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
216 struct task_struct *src)
218 *dst = *src;
219 return 0;
222 static struct task_struct *dup_task_struct(struct task_struct *orig)
224 struct task_struct *tsk;
225 struct thread_info *ti;
226 unsigned long *stackend;
228 int err;
230 prepare_to_copy(orig);
232 tsk = alloc_task_struct();
233 if (!tsk)
234 return NULL;
236 ti = alloc_thread_info(tsk);
237 if (!ti) {
238 free_task_struct(tsk);
239 return NULL;
242 err = arch_dup_task_struct(tsk, orig);
243 if (err)
244 goto out;
246 tsk->stack = ti;
248 err = prop_local_init_single(&tsk->dirties);
249 if (err)
250 goto out;
252 setup_thread_stack(tsk, orig);
253 stackend = end_of_stack(tsk);
254 *stackend = STACK_END_MAGIC; /* for overflow detection */
256 #ifdef CONFIG_CC_STACKPROTECTOR
257 tsk->stack_canary = get_random_int();
258 #endif
260 /* One for us, one for whoever does the "release_task()" (usually parent) */
261 atomic_set(&tsk->usage,2);
262 atomic_set(&tsk->fs_excl, 0);
263 #ifdef CONFIG_BLK_DEV_IO_TRACE
264 tsk->btrace_seq = 0;
265 #endif
266 tsk->splice_pipe = NULL;
268 account_kernel_stack(ti, 1);
270 return tsk;
272 out:
273 free_thread_info(ti);
274 free_task_struct(tsk);
275 return NULL;
278 #ifdef CONFIG_MMU
279 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
281 struct vm_area_struct *mpnt, *tmp, **pprev;
282 struct rb_node **rb_link, *rb_parent;
283 int retval;
284 unsigned long charge;
285 struct mempolicy *pol;
287 down_write(&oldmm->mmap_sem);
288 flush_cache_dup_mm(oldmm);
290 * Not linked in yet - no deadlock potential:
292 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
294 mm->locked_vm = 0;
295 mm->mmap = NULL;
296 mm->mmap_cache = NULL;
297 mm->free_area_cache = oldmm->mmap_base;
298 mm->cached_hole_size = ~0UL;
299 mm->map_count = 0;
300 cpumask_clear(mm_cpumask(mm));
301 mm->mm_rb = RB_ROOT;
302 rb_link = &mm->mm_rb.rb_node;
303 rb_parent = NULL;
304 pprev = &mm->mmap;
305 retval = ksm_fork(mm, oldmm);
306 if (retval)
307 goto out;
309 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
310 struct file *file;
312 if (mpnt->vm_flags & VM_DONTCOPY) {
313 long pages = vma_pages(mpnt);
314 mm->total_vm -= pages;
315 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
316 -pages);
317 continue;
319 charge = 0;
320 if (mpnt->vm_flags & VM_ACCOUNT) {
321 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
322 if (security_vm_enough_memory(len))
323 goto fail_nomem;
324 charge = len;
326 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
327 if (!tmp)
328 goto fail_nomem;
329 *tmp = *mpnt;
330 pol = mpol_dup(vma_policy(mpnt));
331 retval = PTR_ERR(pol);
332 if (IS_ERR(pol))
333 goto fail_nomem_policy;
334 vma_set_policy(tmp, pol);
335 tmp->vm_flags &= ~VM_LOCKED;
336 tmp->vm_mm = mm;
337 tmp->vm_next = NULL;
338 anon_vma_link(tmp);
339 file = tmp->vm_file;
340 if (file) {
341 struct inode *inode = file->f_path.dentry->d_inode;
342 struct address_space *mapping = file->f_mapping;
344 get_file(file);
345 if (tmp->vm_flags & VM_DENYWRITE)
346 atomic_dec(&inode->i_writecount);
347 spin_lock(&mapping->i_mmap_lock);
348 if (tmp->vm_flags & VM_SHARED)
349 mapping->i_mmap_writable++;
350 tmp->vm_truncate_count = mpnt->vm_truncate_count;
351 flush_dcache_mmap_lock(mapping);
352 /* insert tmp into the share list, just after mpnt */
353 vma_prio_tree_add(tmp, mpnt);
354 flush_dcache_mmap_unlock(mapping);
355 spin_unlock(&mapping->i_mmap_lock);
359 * Clear hugetlb-related page reserves for children. This only
360 * affects MAP_PRIVATE mappings. Faults generated by the child
361 * are not guaranteed to succeed, even if read-only
363 if (is_vm_hugetlb_page(tmp))
364 reset_vma_resv_huge_pages(tmp);
367 * Link in the new vma and copy the page table entries.
369 *pprev = tmp;
370 pprev = &tmp->vm_next;
372 __vma_link_rb(mm, tmp, rb_link, rb_parent);
373 rb_link = &tmp->vm_rb.rb_right;
374 rb_parent = &tmp->vm_rb;
376 mm->map_count++;
377 retval = copy_page_range(mm, oldmm, mpnt);
379 if (tmp->vm_ops && tmp->vm_ops->open)
380 tmp->vm_ops->open(tmp);
382 if (retval)
383 goto out;
385 /* a new mm has just been created */
386 arch_dup_mmap(oldmm, mm);
387 retval = 0;
388 out:
389 up_write(&mm->mmap_sem);
390 flush_tlb_mm(oldmm);
391 up_write(&oldmm->mmap_sem);
392 return retval;
393 fail_nomem_policy:
394 kmem_cache_free(vm_area_cachep, tmp);
395 fail_nomem:
396 retval = -ENOMEM;
397 vm_unacct_memory(charge);
398 goto out;
401 static inline int mm_alloc_pgd(struct mm_struct * mm)
403 mm->pgd = pgd_alloc(mm);
404 if (unlikely(!mm->pgd))
405 return -ENOMEM;
406 return 0;
409 static inline void mm_free_pgd(struct mm_struct * mm)
411 pgd_free(mm, mm->pgd);
413 #else
414 #define dup_mmap(mm, oldmm) (0)
415 #define mm_alloc_pgd(mm) (0)
416 #define mm_free_pgd(mm)
417 #endif /* CONFIG_MMU */
419 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
421 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
422 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
424 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
426 static int __init coredump_filter_setup(char *s)
428 default_dump_filter =
429 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
430 MMF_DUMP_FILTER_MASK;
431 return 1;
434 __setup("coredump_filter=", coredump_filter_setup);
436 #include <linux/init_task.h>
438 static void mm_init_aio(struct mm_struct *mm)
440 #ifdef CONFIG_AIO
441 spin_lock_init(&mm->ioctx_lock);
442 INIT_HLIST_HEAD(&mm->ioctx_list);
443 #endif
446 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
448 atomic_set(&mm->mm_users, 1);
449 atomic_set(&mm->mm_count, 1);
450 init_rwsem(&mm->mmap_sem);
451 INIT_LIST_HEAD(&mm->mmlist);
452 mm->flags = (current->mm) ?
453 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
454 mm->core_state = NULL;
455 mm->nr_ptes = 0;
456 set_mm_counter(mm, file_rss, 0);
457 set_mm_counter(mm, anon_rss, 0);
458 spin_lock_init(&mm->page_table_lock);
459 mm->free_area_cache = TASK_UNMAPPED_BASE;
460 mm->cached_hole_size = ~0UL;
461 mm_init_aio(mm);
462 mm_init_owner(mm, p);
464 if (likely(!mm_alloc_pgd(mm))) {
465 mm->def_flags = 0;
466 mmu_notifier_mm_init(mm);
467 return mm;
470 free_mm(mm);
471 return NULL;
475 * Allocate and initialize an mm_struct.
477 struct mm_struct * mm_alloc(void)
479 struct mm_struct * mm;
481 mm = allocate_mm();
482 if (mm) {
483 memset(mm, 0, sizeof(*mm));
484 mm = mm_init(mm, current);
486 return mm;
490 * Called when the last reference to the mm
491 * is dropped: either by a lazy thread or by
492 * mmput. Free the page directory and the mm.
494 void __mmdrop(struct mm_struct *mm)
496 BUG_ON(mm == &init_mm);
497 mm_free_pgd(mm);
498 destroy_context(mm);
499 mmu_notifier_mm_destroy(mm);
500 free_mm(mm);
502 EXPORT_SYMBOL_GPL(__mmdrop);
505 * Decrement the use count and release all resources for an mm.
507 void mmput(struct mm_struct *mm)
509 might_sleep();
511 if (atomic_dec_and_test(&mm->mm_users)) {
512 exit_aio(mm);
513 ksm_exit(mm);
514 exit_mmap(mm);
515 set_mm_exe_file(mm, NULL);
516 if (!list_empty(&mm->mmlist)) {
517 spin_lock(&mmlist_lock);
518 list_del(&mm->mmlist);
519 spin_unlock(&mmlist_lock);
521 put_swap_token(mm);
522 if (mm->binfmt)
523 module_put(mm->binfmt->module);
524 mmdrop(mm);
527 EXPORT_SYMBOL_GPL(mmput);
530 * get_task_mm - acquire a reference to the task's mm
532 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
533 * this kernel workthread has transiently adopted a user mm with use_mm,
534 * to do its AIO) is not set and if so returns a reference to it, after
535 * bumping up the use count. User must release the mm via mmput()
536 * after use. Typically used by /proc and ptrace.
538 struct mm_struct *get_task_mm(struct task_struct *task)
540 struct mm_struct *mm;
542 task_lock(task);
543 mm = task->mm;
544 if (mm) {
545 if (task->flags & PF_KTHREAD)
546 mm = NULL;
547 else
548 atomic_inc(&mm->mm_users);
550 task_unlock(task);
551 return mm;
553 EXPORT_SYMBOL_GPL(get_task_mm);
555 /* Please note the differences between mmput and mm_release.
556 * mmput is called whenever we stop holding onto a mm_struct,
557 * error success whatever.
559 * mm_release is called after a mm_struct has been removed
560 * from the current process.
562 * This difference is important for error handling, when we
563 * only half set up a mm_struct for a new process and need to restore
564 * the old one. Because we mmput the new mm_struct before
565 * restoring the old one. . .
566 * Eric Biederman 10 January 1998
568 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
570 struct completion *vfork_done = tsk->vfork_done;
572 /* Get rid of any futexes when releasing the mm */
573 #ifdef CONFIG_FUTEX
574 if (unlikely(tsk->robust_list)) {
575 exit_robust_list(tsk);
576 tsk->robust_list = NULL;
578 #ifdef CONFIG_COMPAT
579 if (unlikely(tsk->compat_robust_list)) {
580 compat_exit_robust_list(tsk);
581 tsk->compat_robust_list = NULL;
583 #endif
584 if (unlikely(!list_empty(&tsk->pi_state_list)))
585 exit_pi_state_list(tsk);
586 #endif
588 /* Get rid of any cached register state */
589 deactivate_mm(tsk, mm);
591 /* notify parent sleeping on vfork() */
592 if (vfork_done) {
593 tsk->vfork_done = NULL;
594 complete(vfork_done);
598 * If we're exiting normally, clear a user-space tid field if
599 * requested. We leave this alone when dying by signal, to leave
600 * the value intact in a core dump, and to save the unnecessary
601 * trouble otherwise. Userland only wants this done for a sys_exit.
603 if (tsk->clear_child_tid) {
604 if (!(tsk->flags & PF_SIGNALED) &&
605 atomic_read(&mm->mm_users) > 1) {
607 * We don't check the error code - if userspace has
608 * not set up a proper pointer then tough luck.
610 put_user(0, tsk->clear_child_tid);
611 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
612 1, NULL, NULL, 0);
614 tsk->clear_child_tid = NULL;
619 * Allocate a new mm structure and copy contents from the
620 * mm structure of the passed in task structure.
622 struct mm_struct *dup_mm(struct task_struct *tsk)
624 struct mm_struct *mm, *oldmm = current->mm;
625 int err;
627 if (!oldmm)
628 return NULL;
630 mm = allocate_mm();
631 if (!mm)
632 goto fail_nomem;
634 memcpy(mm, oldmm, sizeof(*mm));
636 /* Initializing for Swap token stuff */
637 mm->token_priority = 0;
638 mm->last_interval = 0;
640 if (!mm_init(mm, tsk))
641 goto fail_nomem;
643 if (init_new_context(tsk, mm))
644 goto fail_nocontext;
646 dup_mm_exe_file(oldmm, mm);
648 err = dup_mmap(mm, oldmm);
649 if (err)
650 goto free_pt;
652 mm->hiwater_rss = get_mm_rss(mm);
653 mm->hiwater_vm = mm->total_vm;
655 if (mm->binfmt && !try_module_get(mm->binfmt->module))
656 goto free_pt;
658 return mm;
660 free_pt:
661 /* don't put binfmt in mmput, we haven't got module yet */
662 mm->binfmt = NULL;
663 mmput(mm);
665 fail_nomem:
666 return NULL;
668 fail_nocontext:
670 * If init_new_context() failed, we cannot use mmput() to free the mm
671 * because it calls destroy_context()
673 mm_free_pgd(mm);
674 free_mm(mm);
675 return NULL;
678 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
680 struct mm_struct * mm, *oldmm;
681 int retval;
683 tsk->min_flt = tsk->maj_flt = 0;
684 tsk->nvcsw = tsk->nivcsw = 0;
685 #ifdef CONFIG_DETECT_HUNG_TASK
686 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
687 #endif
689 tsk->mm = NULL;
690 tsk->active_mm = NULL;
693 * Are we cloning a kernel thread?
695 * We need to steal a active VM for that..
697 oldmm = current->mm;
698 if (!oldmm)
699 return 0;
701 if (clone_flags & CLONE_VM) {
702 atomic_inc(&oldmm->mm_users);
703 mm = oldmm;
704 goto good_mm;
707 retval = -ENOMEM;
708 mm = dup_mm(tsk);
709 if (!mm)
710 goto fail_nomem;
712 good_mm:
713 /* Initializing for Swap token stuff */
714 mm->token_priority = 0;
715 mm->last_interval = 0;
717 tsk->mm = mm;
718 tsk->active_mm = mm;
719 return 0;
721 fail_nomem:
722 return retval;
725 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
727 struct fs_struct *fs = current->fs;
728 if (clone_flags & CLONE_FS) {
729 /* tsk->fs is already what we want */
730 write_lock(&fs->lock);
731 if (fs->in_exec) {
732 write_unlock(&fs->lock);
733 return -EAGAIN;
735 fs->users++;
736 write_unlock(&fs->lock);
737 return 0;
739 tsk->fs = copy_fs_struct(fs);
740 if (!tsk->fs)
741 return -ENOMEM;
742 return 0;
745 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
747 struct files_struct *oldf, *newf;
748 int error = 0;
751 * A background process may not have any files ...
753 oldf = current->files;
754 if (!oldf)
755 goto out;
757 if (clone_flags & CLONE_FILES) {
758 atomic_inc(&oldf->count);
759 goto out;
762 newf = dup_fd(oldf, &error);
763 if (!newf)
764 goto out;
766 tsk->files = newf;
767 error = 0;
768 out:
769 return error;
772 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
774 #ifdef CONFIG_BLOCK
775 struct io_context *ioc = current->io_context;
777 if (!ioc)
778 return 0;
780 * Share io context with parent, if CLONE_IO is set
782 if (clone_flags & CLONE_IO) {
783 tsk->io_context = ioc_task_link(ioc);
784 if (unlikely(!tsk->io_context))
785 return -ENOMEM;
786 } else if (ioprio_valid(ioc->ioprio)) {
787 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
788 if (unlikely(!tsk->io_context))
789 return -ENOMEM;
791 tsk->io_context->ioprio = ioc->ioprio;
793 #endif
794 return 0;
797 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
799 struct sighand_struct *sig;
801 if (clone_flags & CLONE_SIGHAND) {
802 atomic_inc(&current->sighand->count);
803 return 0;
805 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
806 rcu_assign_pointer(tsk->sighand, sig);
807 if (!sig)
808 return -ENOMEM;
809 atomic_set(&sig->count, 1);
810 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
811 return 0;
814 void __cleanup_sighand(struct sighand_struct *sighand)
816 if (atomic_dec_and_test(&sighand->count))
817 kmem_cache_free(sighand_cachep, sighand);
822 * Initialize POSIX timer handling for a thread group.
824 static void posix_cpu_timers_init_group(struct signal_struct *sig)
826 /* Thread group counters. */
827 thread_group_cputime_init(sig);
829 /* Expiration times and increments. */
830 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
831 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
832 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
833 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
835 /* Cached expiration times. */
836 sig->cputime_expires.prof_exp = cputime_zero;
837 sig->cputime_expires.virt_exp = cputime_zero;
838 sig->cputime_expires.sched_exp = 0;
840 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
841 sig->cputime_expires.prof_exp =
842 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
843 sig->cputimer.running = 1;
846 /* The timer lists. */
847 INIT_LIST_HEAD(&sig->cpu_timers[0]);
848 INIT_LIST_HEAD(&sig->cpu_timers[1]);
849 INIT_LIST_HEAD(&sig->cpu_timers[2]);
852 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
854 struct signal_struct *sig;
856 if (clone_flags & CLONE_THREAD)
857 return 0;
859 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
860 tsk->signal = sig;
861 if (!sig)
862 return -ENOMEM;
864 atomic_set(&sig->count, 1);
865 atomic_set(&sig->live, 1);
866 init_waitqueue_head(&sig->wait_chldexit);
867 sig->flags = 0;
868 if (clone_flags & CLONE_NEWPID)
869 sig->flags |= SIGNAL_UNKILLABLE;
870 sig->group_exit_code = 0;
871 sig->group_exit_task = NULL;
872 sig->group_stop_count = 0;
873 sig->curr_target = tsk;
874 init_sigpending(&sig->shared_pending);
875 INIT_LIST_HEAD(&sig->posix_timers);
877 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
878 sig->it_real_incr.tv64 = 0;
879 sig->real_timer.function = it_real_fn;
881 sig->leader = 0; /* session leadership doesn't inherit */
882 sig->tty_old_pgrp = NULL;
883 sig->tty = NULL;
885 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
886 sig->gtime = cputime_zero;
887 sig->cgtime = cputime_zero;
888 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
889 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
890 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
891 sig->maxrss = sig->cmaxrss = 0;
892 task_io_accounting_init(&sig->ioac);
893 sig->sum_sched_runtime = 0;
894 taskstats_tgid_init(sig);
896 task_lock(current->group_leader);
897 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
898 task_unlock(current->group_leader);
900 posix_cpu_timers_init_group(sig);
902 acct_init_pacct(&sig->pacct);
904 tty_audit_fork(sig);
906 sig->oom_adj = current->signal->oom_adj;
908 return 0;
911 void __cleanup_signal(struct signal_struct *sig)
913 thread_group_cputime_free(sig);
914 tty_kref_put(sig->tty);
915 kmem_cache_free(signal_cachep, sig);
918 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
920 unsigned long new_flags = p->flags;
922 new_flags &= ~PF_SUPERPRIV;
923 new_flags |= PF_FORKNOEXEC;
924 new_flags |= PF_STARTING;
925 p->flags = new_flags;
926 clear_freeze_flag(p);
929 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
931 current->clear_child_tid = tidptr;
933 return task_pid_vnr(current);
936 static void rt_mutex_init_task(struct task_struct *p)
938 spin_lock_init(&p->pi_lock);
939 #ifdef CONFIG_RT_MUTEXES
940 plist_head_init(&p->pi_waiters, &p->pi_lock);
941 p->pi_blocked_on = NULL;
942 #endif
945 #ifdef CONFIG_MM_OWNER
946 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
948 mm->owner = p;
950 #endif /* CONFIG_MM_OWNER */
953 * Initialize POSIX timer handling for a single task.
955 static void posix_cpu_timers_init(struct task_struct *tsk)
957 tsk->cputime_expires.prof_exp = cputime_zero;
958 tsk->cputime_expires.virt_exp = cputime_zero;
959 tsk->cputime_expires.sched_exp = 0;
960 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
961 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
962 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
966 * This creates a new process as a copy of the old one,
967 * but does not actually start it yet.
969 * It copies the registers, and all the appropriate
970 * parts of the process environment (as per the clone
971 * flags). The actual kick-off is left to the caller.
973 static struct task_struct *copy_process(unsigned long clone_flags,
974 unsigned long stack_start,
975 struct pt_regs *regs,
976 unsigned long stack_size,
977 int __user *child_tidptr,
978 struct pid *pid,
979 int trace)
981 int retval;
982 struct task_struct *p;
983 int cgroup_callbacks_done = 0;
985 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
986 return ERR_PTR(-EINVAL);
989 * Thread groups must share signals as well, and detached threads
990 * can only be started up within the thread group.
992 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
993 return ERR_PTR(-EINVAL);
996 * Shared signal handlers imply shared VM. By way of the above,
997 * thread groups also imply shared VM. Blocking this case allows
998 * for various simplifications in other code.
1000 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1001 return ERR_PTR(-EINVAL);
1004 * Siblings of global init remain as zombies on exit since they are
1005 * not reaped by their parent (swapper). To solve this and to avoid
1006 * multi-rooted process trees, prevent global and container-inits
1007 * from creating siblings.
1009 if ((clone_flags & CLONE_PARENT) &&
1010 current->signal->flags & SIGNAL_UNKILLABLE)
1011 return ERR_PTR(-EINVAL);
1013 retval = security_task_create(clone_flags);
1014 if (retval)
1015 goto fork_out;
1017 retval = -ENOMEM;
1018 p = dup_task_struct(current);
1019 if (!p)
1020 goto fork_out;
1022 ftrace_graph_init_task(p);
1024 rt_mutex_init_task(p);
1026 #ifdef CONFIG_PROVE_LOCKING
1027 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1028 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1029 #endif
1030 retval = -EAGAIN;
1031 if (atomic_read(&p->real_cred->user->processes) >=
1032 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1033 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1034 p->real_cred->user != INIT_USER)
1035 goto bad_fork_free;
1038 retval = copy_creds(p, clone_flags);
1039 if (retval < 0)
1040 goto bad_fork_free;
1043 * If multiple threads are within copy_process(), then this check
1044 * triggers too late. This doesn't hurt, the check is only there
1045 * to stop root fork bombs.
1047 retval = -EAGAIN;
1048 if (nr_threads >= max_threads)
1049 goto bad_fork_cleanup_count;
1051 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1052 goto bad_fork_cleanup_count;
1054 p->did_exec = 0;
1055 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1056 copy_flags(clone_flags, p);
1057 INIT_LIST_HEAD(&p->children);
1058 INIT_LIST_HEAD(&p->sibling);
1059 rcu_copy_process(p);
1060 p->vfork_done = NULL;
1061 spin_lock_init(&p->alloc_lock);
1063 init_sigpending(&p->pending);
1065 p->utime = cputime_zero;
1066 p->stime = cputime_zero;
1067 p->gtime = cputime_zero;
1068 p->utimescaled = cputime_zero;
1069 p->stimescaled = cputime_zero;
1070 p->prev_utime = cputime_zero;
1071 p->prev_stime = cputime_zero;
1073 p->default_timer_slack_ns = current->timer_slack_ns;
1075 task_io_accounting_init(&p->ioac);
1076 acct_clear_integrals(p);
1078 posix_cpu_timers_init(p);
1080 p->lock_depth = -1; /* -1 = no lock */
1081 do_posix_clock_monotonic_gettime(&p->start_time);
1082 p->real_start_time = p->start_time;
1083 monotonic_to_bootbased(&p->real_start_time);
1084 p->io_context = NULL;
1085 p->audit_context = NULL;
1086 cgroup_fork(p);
1087 #ifdef CONFIG_NUMA
1088 p->mempolicy = mpol_dup(p->mempolicy);
1089 if (IS_ERR(p->mempolicy)) {
1090 retval = PTR_ERR(p->mempolicy);
1091 p->mempolicy = NULL;
1092 goto bad_fork_cleanup_cgroup;
1094 mpol_fix_fork_child_flag(p);
1095 #endif
1096 #ifdef CONFIG_TRACE_IRQFLAGS
1097 p->irq_events = 0;
1098 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1099 p->hardirqs_enabled = 1;
1100 #else
1101 p->hardirqs_enabled = 0;
1102 #endif
1103 p->hardirq_enable_ip = 0;
1104 p->hardirq_enable_event = 0;
1105 p->hardirq_disable_ip = _THIS_IP_;
1106 p->hardirq_disable_event = 0;
1107 p->softirqs_enabled = 1;
1108 p->softirq_enable_ip = _THIS_IP_;
1109 p->softirq_enable_event = 0;
1110 p->softirq_disable_ip = 0;
1111 p->softirq_disable_event = 0;
1112 p->hardirq_context = 0;
1113 p->softirq_context = 0;
1114 #endif
1115 #ifdef CONFIG_LOCKDEP
1116 p->lockdep_depth = 0; /* no locks held yet */
1117 p->curr_chain_key = 0;
1118 p->lockdep_recursion = 0;
1119 #endif
1121 #ifdef CONFIG_DEBUG_MUTEXES
1122 p->blocked_on = NULL; /* not blocked yet */
1123 #endif
1125 p->bts = NULL;
1127 p->stack_start = stack_start;
1129 /* Perform scheduler related setup. Assign this task to a CPU. */
1130 sched_fork(p, clone_flags);
1132 retval = perf_event_init_task(p);
1133 if (retval)
1134 goto bad_fork_cleanup_policy;
1136 if ((retval = audit_alloc(p)))
1137 goto bad_fork_cleanup_policy;
1138 /* copy all the process information */
1139 if ((retval = copy_semundo(clone_flags, p)))
1140 goto bad_fork_cleanup_audit;
1141 if ((retval = copy_files(clone_flags, p)))
1142 goto bad_fork_cleanup_semundo;
1143 if ((retval = copy_fs(clone_flags, p)))
1144 goto bad_fork_cleanup_files;
1145 if ((retval = copy_sighand(clone_flags, p)))
1146 goto bad_fork_cleanup_fs;
1147 if ((retval = copy_signal(clone_flags, p)))
1148 goto bad_fork_cleanup_sighand;
1149 if ((retval = copy_mm(clone_flags, p)))
1150 goto bad_fork_cleanup_signal;
1151 if ((retval = copy_namespaces(clone_flags, p)))
1152 goto bad_fork_cleanup_mm;
1153 if ((retval = copy_io(clone_flags, p)))
1154 goto bad_fork_cleanup_namespaces;
1155 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1156 if (retval)
1157 goto bad_fork_cleanup_io;
1159 if (pid != &init_struct_pid) {
1160 retval = -ENOMEM;
1161 pid = alloc_pid(p->nsproxy->pid_ns);
1162 if (!pid)
1163 goto bad_fork_cleanup_io;
1165 if (clone_flags & CLONE_NEWPID) {
1166 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1167 if (retval < 0)
1168 goto bad_fork_free_pid;
1172 p->pid = pid_nr(pid);
1173 p->tgid = p->pid;
1174 if (clone_flags & CLONE_THREAD)
1175 p->tgid = current->tgid;
1177 if (current->nsproxy != p->nsproxy) {
1178 retval = ns_cgroup_clone(p, pid);
1179 if (retval)
1180 goto bad_fork_free_pid;
1183 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1185 * Clear TID on mm_release()?
1187 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1188 #ifdef CONFIG_FUTEX
1189 p->robust_list = NULL;
1190 #ifdef CONFIG_COMPAT
1191 p->compat_robust_list = NULL;
1192 #endif
1193 INIT_LIST_HEAD(&p->pi_state_list);
1194 p->pi_state_cache = NULL;
1195 #endif
1197 * sigaltstack should be cleared when sharing the same VM
1199 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1200 p->sas_ss_sp = p->sas_ss_size = 0;
1203 * Syscall tracing should be turned off in the child regardless
1204 * of CLONE_PTRACE.
1206 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1207 #ifdef TIF_SYSCALL_EMU
1208 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1209 #endif
1210 clear_all_latency_tracing(p);
1212 /* ok, now we should be set up.. */
1213 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1214 p->pdeath_signal = 0;
1215 p->exit_state = 0;
1218 * Ok, make it visible to the rest of the system.
1219 * We dont wake it up yet.
1221 p->group_leader = p;
1222 INIT_LIST_HEAD(&p->thread_group);
1224 /* Now that the task is set up, run cgroup callbacks if
1225 * necessary. We need to run them before the task is visible
1226 * on the tasklist. */
1227 cgroup_fork_callbacks(p);
1228 cgroup_callbacks_done = 1;
1230 /* Need tasklist lock for parent etc handling! */
1231 write_lock_irq(&tasklist_lock);
1234 * The task hasn't been attached yet, so its cpus_allowed mask will
1235 * not be changed, nor will its assigned CPU.
1237 * The cpus_allowed mask of the parent may have changed after it was
1238 * copied first time - so re-copy it here, then check the child's CPU
1239 * to ensure it is on a valid CPU (and if not, just force it back to
1240 * parent's CPU). This avoids alot of nasty races.
1242 p->cpus_allowed = current->cpus_allowed;
1243 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1244 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1245 !cpu_online(task_cpu(p))))
1246 set_task_cpu(p, smp_processor_id());
1248 /* CLONE_PARENT re-uses the old parent */
1249 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1250 p->real_parent = current->real_parent;
1251 p->parent_exec_id = current->parent_exec_id;
1252 } else {
1253 p->real_parent = current;
1254 p->parent_exec_id = current->self_exec_id;
1257 spin_lock(&current->sighand->siglock);
1260 * Process group and session signals need to be delivered to just the
1261 * parent before the fork or both the parent and the child after the
1262 * fork. Restart if a signal comes in before we add the new process to
1263 * it's process group.
1264 * A fatal signal pending means that current will exit, so the new
1265 * thread can't slip out of an OOM kill (or normal SIGKILL).
1267 recalc_sigpending();
1268 if (signal_pending(current)) {
1269 spin_unlock(&current->sighand->siglock);
1270 write_unlock_irq(&tasklist_lock);
1271 retval = -ERESTARTNOINTR;
1272 goto bad_fork_free_pid;
1275 if (clone_flags & CLONE_THREAD) {
1276 atomic_inc(&current->signal->count);
1277 atomic_inc(&current->signal->live);
1278 p->group_leader = current->group_leader;
1279 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1282 if (likely(p->pid)) {
1283 list_add_tail(&p->sibling, &p->real_parent->children);
1284 tracehook_finish_clone(p, clone_flags, trace);
1286 if (thread_group_leader(p)) {
1287 if (clone_flags & CLONE_NEWPID)
1288 p->nsproxy->pid_ns->child_reaper = p;
1290 p->signal->leader_pid = pid;
1291 tty_kref_put(p->signal->tty);
1292 p->signal->tty = tty_kref_get(current->signal->tty);
1293 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1294 attach_pid(p, PIDTYPE_SID, task_session(current));
1295 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1296 __get_cpu_var(process_counts)++;
1298 attach_pid(p, PIDTYPE_PID, pid);
1299 nr_threads++;
1302 total_forks++;
1303 spin_unlock(&current->sighand->siglock);
1304 write_unlock_irq(&tasklist_lock);
1305 proc_fork_connector(p);
1306 cgroup_post_fork(p);
1307 perf_event_fork(p);
1308 return p;
1310 bad_fork_free_pid:
1311 if (pid != &init_struct_pid)
1312 free_pid(pid);
1313 bad_fork_cleanup_io:
1314 put_io_context(p->io_context);
1315 bad_fork_cleanup_namespaces:
1316 exit_task_namespaces(p);
1317 bad_fork_cleanup_mm:
1318 if (p->mm)
1319 mmput(p->mm);
1320 bad_fork_cleanup_signal:
1321 if (!(clone_flags & CLONE_THREAD))
1322 __cleanup_signal(p->signal);
1323 bad_fork_cleanup_sighand:
1324 __cleanup_sighand(p->sighand);
1325 bad_fork_cleanup_fs:
1326 exit_fs(p); /* blocking */
1327 bad_fork_cleanup_files:
1328 exit_files(p); /* blocking */
1329 bad_fork_cleanup_semundo:
1330 exit_sem(p);
1331 bad_fork_cleanup_audit:
1332 audit_free(p);
1333 bad_fork_cleanup_policy:
1334 perf_event_free_task(p);
1335 #ifdef CONFIG_NUMA
1336 mpol_put(p->mempolicy);
1337 bad_fork_cleanup_cgroup:
1338 #endif
1339 cgroup_exit(p, cgroup_callbacks_done);
1340 delayacct_tsk_free(p);
1341 module_put(task_thread_info(p)->exec_domain->module);
1342 bad_fork_cleanup_count:
1343 atomic_dec(&p->cred->user->processes);
1344 exit_creds(p);
1345 bad_fork_free:
1346 free_task(p);
1347 fork_out:
1348 return ERR_PTR(retval);
1351 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1353 memset(regs, 0, sizeof(struct pt_regs));
1354 return regs;
1357 struct task_struct * __cpuinit fork_idle(int cpu)
1359 struct task_struct *task;
1360 struct pt_regs regs;
1362 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1363 &init_struct_pid, 0);
1364 if (!IS_ERR(task))
1365 init_idle(task, cpu);
1367 return task;
1371 * Ok, this is the main fork-routine.
1373 * It copies the process, and if successful kick-starts
1374 * it and waits for it to finish using the VM if required.
1376 long do_fork(unsigned long clone_flags,
1377 unsigned long stack_start,
1378 struct pt_regs *regs,
1379 unsigned long stack_size,
1380 int __user *parent_tidptr,
1381 int __user *child_tidptr)
1383 struct task_struct *p;
1384 int trace = 0;
1385 long nr;
1388 * Do some preliminary argument and permissions checking before we
1389 * actually start allocating stuff
1391 if (clone_flags & CLONE_NEWUSER) {
1392 if (clone_flags & CLONE_THREAD)
1393 return -EINVAL;
1394 /* hopefully this check will go away when userns support is
1395 * complete
1397 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1398 !capable(CAP_SETGID))
1399 return -EPERM;
1403 * We hope to recycle these flags after 2.6.26
1405 if (unlikely(clone_flags & CLONE_STOPPED)) {
1406 static int __read_mostly count = 100;
1408 if (count > 0 && printk_ratelimit()) {
1409 char comm[TASK_COMM_LEN];
1411 count--;
1412 printk(KERN_INFO "fork(): process `%s' used deprecated "
1413 "clone flags 0x%lx\n",
1414 get_task_comm(comm, current),
1415 clone_flags & CLONE_STOPPED);
1420 * When called from kernel_thread, don't do user tracing stuff.
1422 if (likely(user_mode(regs)))
1423 trace = tracehook_prepare_clone(clone_flags);
1425 p = copy_process(clone_flags, stack_start, regs, stack_size,
1426 child_tidptr, NULL, trace);
1428 * Do this prior waking up the new thread - the thread pointer
1429 * might get invalid after that point, if the thread exits quickly.
1431 if (!IS_ERR(p)) {
1432 struct completion vfork;
1434 trace_sched_process_fork(current, p);
1436 nr = task_pid_vnr(p);
1438 if (clone_flags & CLONE_PARENT_SETTID)
1439 put_user(nr, parent_tidptr);
1441 if (clone_flags & CLONE_VFORK) {
1442 p->vfork_done = &vfork;
1443 init_completion(&vfork);
1446 audit_finish_fork(p);
1447 tracehook_report_clone(regs, clone_flags, nr, p);
1450 * We set PF_STARTING at creation in case tracing wants to
1451 * use this to distinguish a fully live task from one that
1452 * hasn't gotten to tracehook_report_clone() yet. Now we
1453 * clear it and set the child going.
1455 p->flags &= ~PF_STARTING;
1457 if (unlikely(clone_flags & CLONE_STOPPED)) {
1459 * We'll start up with an immediate SIGSTOP.
1461 sigaddset(&p->pending.signal, SIGSTOP);
1462 set_tsk_thread_flag(p, TIF_SIGPENDING);
1463 __set_task_state(p, TASK_STOPPED);
1464 } else {
1465 wake_up_new_task(p, clone_flags);
1468 tracehook_report_clone_complete(trace, regs,
1469 clone_flags, nr, p);
1471 if (clone_flags & CLONE_VFORK) {
1472 freezer_do_not_count();
1473 wait_for_completion(&vfork);
1474 freezer_count();
1475 tracehook_report_vfork_done(p, nr);
1477 } else {
1478 nr = PTR_ERR(p);
1480 return nr;
1483 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1484 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1485 #endif
1487 static void sighand_ctor(void *data)
1489 struct sighand_struct *sighand = data;
1491 spin_lock_init(&sighand->siglock);
1492 init_waitqueue_head(&sighand->signalfd_wqh);
1495 void __init proc_caches_init(void)
1497 sighand_cachep = kmem_cache_create("sighand_cache",
1498 sizeof(struct sighand_struct), 0,
1499 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1500 SLAB_NOTRACK, sighand_ctor);
1501 signal_cachep = kmem_cache_create("signal_cache",
1502 sizeof(struct signal_struct), 0,
1503 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1504 files_cachep = kmem_cache_create("files_cache",
1505 sizeof(struct files_struct), 0,
1506 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1507 fs_cachep = kmem_cache_create("fs_cache",
1508 sizeof(struct fs_struct), 0,
1509 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1510 mm_cachep = kmem_cache_create("mm_struct",
1511 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1512 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1513 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1514 mmap_init();
1518 * Check constraints on flags passed to the unshare system call and
1519 * force unsharing of additional process context as appropriate.
1521 static void check_unshare_flags(unsigned long *flags_ptr)
1524 * If unsharing a thread from a thread group, must also
1525 * unshare vm.
1527 if (*flags_ptr & CLONE_THREAD)
1528 *flags_ptr |= CLONE_VM;
1531 * If unsharing vm, must also unshare signal handlers.
1533 if (*flags_ptr & CLONE_VM)
1534 *flags_ptr |= CLONE_SIGHAND;
1537 * If unsharing signal handlers and the task was created
1538 * using CLONE_THREAD, then must unshare the thread
1540 if ((*flags_ptr & CLONE_SIGHAND) &&
1541 (atomic_read(&current->signal->count) > 1))
1542 *flags_ptr |= CLONE_THREAD;
1545 * If unsharing namespace, must also unshare filesystem information.
1547 if (*flags_ptr & CLONE_NEWNS)
1548 *flags_ptr |= CLONE_FS;
1552 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1554 static int unshare_thread(unsigned long unshare_flags)
1556 if (unshare_flags & CLONE_THREAD)
1557 return -EINVAL;
1559 return 0;
1563 * Unshare the filesystem structure if it is being shared
1565 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1567 struct fs_struct *fs = current->fs;
1569 if (!(unshare_flags & CLONE_FS) || !fs)
1570 return 0;
1572 /* don't need lock here; in the worst case we'll do useless copy */
1573 if (fs->users == 1)
1574 return 0;
1576 *new_fsp = copy_fs_struct(fs);
1577 if (!*new_fsp)
1578 return -ENOMEM;
1580 return 0;
1584 * Unsharing of sighand is not supported yet
1586 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1588 struct sighand_struct *sigh = current->sighand;
1590 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1591 return -EINVAL;
1592 else
1593 return 0;
1597 * Unshare vm if it is being shared
1599 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1601 struct mm_struct *mm = current->mm;
1603 if ((unshare_flags & CLONE_VM) &&
1604 (mm && atomic_read(&mm->mm_users) > 1)) {
1605 return -EINVAL;
1608 return 0;
1612 * Unshare file descriptor table if it is being shared
1614 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1616 struct files_struct *fd = current->files;
1617 int error = 0;
1619 if ((unshare_flags & CLONE_FILES) &&
1620 (fd && atomic_read(&fd->count) > 1)) {
1621 *new_fdp = dup_fd(fd, &error);
1622 if (!*new_fdp)
1623 return error;
1626 return 0;
1630 * unshare allows a process to 'unshare' part of the process
1631 * context which was originally shared using clone. copy_*
1632 * functions used by do_fork() cannot be used here directly
1633 * because they modify an inactive task_struct that is being
1634 * constructed. Here we are modifying the current, active,
1635 * task_struct.
1637 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1639 int err = 0;
1640 struct fs_struct *fs, *new_fs = NULL;
1641 struct sighand_struct *new_sigh = NULL;
1642 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1643 struct files_struct *fd, *new_fd = NULL;
1644 struct nsproxy *new_nsproxy = NULL;
1645 int do_sysvsem = 0;
1647 check_unshare_flags(&unshare_flags);
1649 /* Return -EINVAL for all unsupported flags */
1650 err = -EINVAL;
1651 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1652 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1653 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1654 goto bad_unshare_out;
1657 * CLONE_NEWIPC must also detach from the undolist: after switching
1658 * to a new ipc namespace, the semaphore arrays from the old
1659 * namespace are unreachable.
1661 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1662 do_sysvsem = 1;
1663 if ((err = unshare_thread(unshare_flags)))
1664 goto bad_unshare_out;
1665 if ((err = unshare_fs(unshare_flags, &new_fs)))
1666 goto bad_unshare_cleanup_thread;
1667 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1668 goto bad_unshare_cleanup_fs;
1669 if ((err = unshare_vm(unshare_flags, &new_mm)))
1670 goto bad_unshare_cleanup_sigh;
1671 if ((err = unshare_fd(unshare_flags, &new_fd)))
1672 goto bad_unshare_cleanup_vm;
1673 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1674 new_fs)))
1675 goto bad_unshare_cleanup_fd;
1677 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1678 if (do_sysvsem) {
1680 * CLONE_SYSVSEM is equivalent to sys_exit().
1682 exit_sem(current);
1685 if (new_nsproxy) {
1686 switch_task_namespaces(current, new_nsproxy);
1687 new_nsproxy = NULL;
1690 task_lock(current);
1692 if (new_fs) {
1693 fs = current->fs;
1694 write_lock(&fs->lock);
1695 current->fs = new_fs;
1696 if (--fs->users)
1697 new_fs = NULL;
1698 else
1699 new_fs = fs;
1700 write_unlock(&fs->lock);
1703 if (new_mm) {
1704 mm = current->mm;
1705 active_mm = current->active_mm;
1706 current->mm = new_mm;
1707 current->active_mm = new_mm;
1708 activate_mm(active_mm, new_mm);
1709 new_mm = mm;
1712 if (new_fd) {
1713 fd = current->files;
1714 current->files = new_fd;
1715 new_fd = fd;
1718 task_unlock(current);
1721 if (new_nsproxy)
1722 put_nsproxy(new_nsproxy);
1724 bad_unshare_cleanup_fd:
1725 if (new_fd)
1726 put_files_struct(new_fd);
1728 bad_unshare_cleanup_vm:
1729 if (new_mm)
1730 mmput(new_mm);
1732 bad_unshare_cleanup_sigh:
1733 if (new_sigh)
1734 if (atomic_dec_and_test(&new_sigh->count))
1735 kmem_cache_free(sighand_cachep, new_sigh);
1737 bad_unshare_cleanup_fs:
1738 if (new_fs)
1739 free_fs_struct(new_fs);
1741 bad_unshare_cleanup_thread:
1742 bad_unshare_out:
1743 return err;
1747 * Helper to unshare the files of the current task.
1748 * We don't want to expose copy_files internals to
1749 * the exec layer of the kernel.
1752 int unshare_files(struct files_struct **displaced)
1754 struct task_struct *task = current;
1755 struct files_struct *copy = NULL;
1756 int error;
1758 error = unshare_fd(CLONE_FILES, &copy);
1759 if (error || !copy) {
1760 *displaced = NULL;
1761 return error;
1763 *displaced = task->files;
1764 task_lock(task);
1765 task->files = copy;
1766 task_unlock(task);
1767 return 0;