1 ((k^6*(-7 + Sqrt[1 + k^2/(c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(k^7*Sqrt[1 + k^2/(c - I*k0)^2]) - (7*(k^6*(-7 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (21*(k^6*(-7 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (35*(k^6*(-7 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (35*(k^6*(-7 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(5*c - I*k0)^2]) - (21*(k^6*(-7 + Sqrt[1 + k^2/(6*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(6*c - I*k0)^2]) + (7*(k^6*(-7 + Sqrt[1 + k^2/(7*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(7*c - I*k0)^2]) - (k^6*(-7 + Sqrt[1 + k^2/(8*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^6)/(k^7*Sqrt[1 + k^2/(8*c - I*k0)^2]))/k0
2 SeriesData[k, Infinity, {(135135*c^7)/(k*k0), 0, (-675675*(125*c^9 - (54*I)*c^8*k0 - 6*c^7*k0^2))/(4*k*k0)}, 7, 11, 1]