
1

HTun: Providing IP Service Over an HTTP Proxy
Moshe Jacobson, Ola Nordström, Russell J. Clark

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280
moshe@runslinux.net, ola@triblock.com, rjc@cc.gatech.edu

Abstract— In many cases, application service is replacing
IP service as the de facto form of network connectivity. One
example of this is the popular use of an HTTP proxy ser-
vice as a substitute for IP Internet connectivity. This work
presents and analyzes HTun, a system for encapsulating IP
traffic into HTTP requests. This allows users to create a
tunneled IP-layer link between two hosts connected through
nothing more than a web proxy. This paper will describe
the design, implementation and performance analysis of the
protocol.

Keywords— HTun, IP over HTTP, VPN, HTTP, tunnel,
tunneling, proxy, IP, protocol, Linux

I. Introduction

For many users, the Internet service is largely web-centric
with little focus on other applications. This has led to the
deployment of network environments that limit network
access to HTTP via proxy servers. In such environments,
new and emerging applications cannot be readily adopted
by users. With HTun, we propose and demonstrate an
IP over HTTP tunneling protocol that provides a full IP
infrastructure in a strict HTTP environment.

There is some previous work in providing general tunnel-
ing services over the Internet. The VTUN [?] application
supports tunneling virtual networks over TCP connections.
The HTTP Tunnel [?] and Desproxy [?] projects provide
specific TCP port tunneling over HTTP. However, there is
no known general solution for supporting virtual IP con-
nectivity through application proxies such as HTTP. An
IP tunneling capability of this nature will allow users to
create a full, IP-layer VPN between two hosts, complete
with a virtual IP network interface on either side.

The goal of the current work is to design and implement
a mechanism for providing full IP connectivity through a
restrictive HTTP proxy service. The protocol, which we
call HTun, addresses two main design challenges: (1) inef-
ficiencies due to the large overhead associated with HTTP
requests and (2) the limitation that inbound connections
cannot be established through an HTTP proxy. While this
work has focused on the issues of providing IP service over
HTTP, the results are more generally applicable to the pro-
vision of a wide range of networking services over restric-
tive transport services such as the Small Message Service
(SMS).

This paper is organized as follows. The next section
presents an overview of the HTun solution. Section ?? de-
scribes the initial Half-Duplex design for HTun, followed in
Section ?? by the implementation results of this approach.
Section ?? describes the modified Full-Duplex design for
HTun which overcomes several issues with the prior de-
sign. Section ?? describes the details of the HTun imple-

mentation project. Current open issues and future work
are discussed in Section ??.

II. Design Overview

The architecture for the HTun service is depicted in Fig-
ure ??. The HTun user is on a client system in a re-
stricted network, likely behind a firewall. This network
is not routable to the Internet and likely uses a private
address space. The client’s only access to the Internet is
through the HTTP proxy.

HTun Server

Point−to−Point VPN

LAN

HTun Client

Restricted Network Access

Firewall

INTERNET

Proxy

Network Connection

NAT’ed Traffic

HTTP Traffic���
���
���
���

Fig. 1. HTun operating in a network

In order to provide IP level service, HTun utilizes a
support server outside of the firewall. This HTun Server
responds to standard HTTP requests, as any other web
server, but it also performs the reverse encapsulation of the
IP packets it receives from the HTun client. Routing and
address translation are then performed by the operating
system on which the HTun server is running. Effectively,
all HTun clients will appear as though they are attached
to the Internet through this HTun server.

A. HTTP Compliance

Of primary concern in the HTun design is the ability
to provide the IP service through standard, unmodified
HTTP proxies. The HTun protocol therefore uses standard
HTTP requests to maximize the chances that an arbitrary
proxy server will forward them properly.

The HTTP POST method allows for the inclusion of ar-
bitrary amounts of data in both the request and response
message bodies. This makes it the natural choice for pro-
viding the core transport method of the HTun protocol.
This has the added advantage that proxy servers will not

2

interfere with the intended IP packet flow by caching the re-
sponses [?]. The POST method also eliminates some over-
head by sending and receiving data in the same request.

The basic idea is that a send queue of IP packets is main-
tained by both the HTun client (the restricted host behind
the firewall and/or proxy) and the server (the open host on
the Internet). When the client’s send queue is nonempty,
it makes a POST request to the server, transmitting its
entire send queue in one POST request body. The POST
request body may contain an arbitrary number of packets,
whose aggregate length is specified in the Content-Length
header of the request. The server then responds with any
packets in its send queue by placing the raw packets into
its response body, setting the Content-Length header in
the same manner as with the request.

B. Polling

One obvious problem is that the server is unable to send
its queued packets to the client without the client initiating
a POST request. This is inherent in the client/server model
of HTTP. The HTun design solves this problem by having
the client periodically poll the server to check for pending
data.

It is far more likely for the server to have queued response
data immediately after data has been transferred (traffic is
highly correlated) in either direction. To optimize overhead
in light of this observation, the client is designed to poll
more frequently at first and then reduce the polling rate
as the idle time (time since the last data is transferred)
increases. Any time a poll request returns data or the
client has data to send, the poll rate is reset to its original
high frequency.

C. Persistent Connections

It is desirable to avoid the overhead of requiring a sep-
arate HTTP request and TCP connection for each tun-
neled IP packet. HTun is therefore designed to take ad-
vantage of persistent connections with HTTP. HTTP/1.1
includes persistent connections as part of its base specifica-
tion. HTTP/1.0 also supports persistent connections, but
as an extension to the specification. Because of the obvi-
ous and immediate performance gains involved, however,
it appears that almost all implementations of HTTP/1.0
include support for persistent connections.

D. Dynamic IP Configuration

The server should support multiple clients simultane-
ously. This means that it must bring up a separate virtual
network interface for each one, as it must communicate
with each client over its own VPN. Typically, one would
simply use DHCP for dynamically assigning IP addresses
to the clients. However, virtual interfaces such as those
used with an HTun VPN are point-to-point interfaces; that
is, they provide access to one and only one other host.
They are also virtual private interfaces, meaning that there
should be no way for outside hosts to route to them. There-
fore, the assigned IP addresses are typically nonroutable
private addresses, e.g. the 10.*.*.* or 192.168.*.* ranges.

Because the IP addresses are nonroutable, DHCP cannot
be used, as a client may be multi-homed, and have inter-
faces on different private IP networks. If a DHCP server
were to provide some nonroutable IP for the client to use,
and it already had a route to a host by the same non-
routable IP, a conflict would arise, and the client would no
longer be able to address the host on its own network by
the same IP address.

Because of this problem, the HTun protocol must sup-
port some method of allowing the client and server to nego-
tiate the set of IP addresses that are acceptable for use by
both of them. The client tells the server what ranges of IP
addresses are free for its own use, and the server compares
this list to its own. The server would then assign a pair of
IP addresses to be used with this interface, and inform the
client of this decision so the client can bring up an interface
with those IP addresses as well.

Once the client and server have both brought up the vir-
tual interfaces with acceptable nonroutable IP addresses,
they will be able to pass IP packets between each other
successfully.

III. HTun Protocol 1 - (Half Duplex)

This section presents a detailed description of the HTun
protocol as originally designed. This is referred to as the
Half-Duplex version of the protocol. Several issues arose
during performance testing, which led to the development
of HTun’s second (Full Duplex) protocol, described in Sec-
tion ??.

Since HTun requests and responses are transmitted as
valid HTTP requests, we describe the HTun protocols
in terms of HTTP. The following description assumes
the terms Request, Method, Request-URI, HTTP-Version,
Headers, Header Field, and Message Body as defined in
RFC 2616 [?].

A. General message format

All HTun messages follow a similar format. The com-
mon elements are presented here to give the general flavor
of the messages. These protocol grammars are not entirely
formal, but are rather an approximation of the HTTP def-
initions given in RFC 2616.

A.1 Request message format

The general request message format looks like this:
request := request-line[CRLF]

Content-Length: [msg-body-len][CRLF]
Proxy-Connection: [keep-alive][CRLF]
[CRLF]
[msg-body]

request-line := POST [server-addr]/[action] HTTP/1.0
server-addr := http://[proxy-ip]:[proxy-port]
keep-alive := Keep-Alive | Close

server-addr specifies to the proxy server on which host
and port it can find the HTun server. This is the standard
HTTP absolute URI format defined in RFC 2616, without
a trailing pathname, and is specified in all client requests.

Specifically, the proxy-ip is the IP address of the
HTun server specified in dotted decimal format. The

3

server-port is a TCP port on which the HTun server
is listening for connections. If a proxy server is not be-
ing used, this address:port specification is ignored by the
server.

The msg-body is used for a different purpose in each
message, but the Content-Length: header always has a
value of msg-body-len, a decimal integer corresponding
to the length, in octets, of this message body.
CRLF is used to indicate a carriage return (ASCII 015),

followed by a linefeed (ASCII 012). This sequence should
be present at the end of every line of headers, including the
request-line.

A.2 Response message format

The general response message format looks like this:
response := status-line[CRLF]

Content-Length: [msg-body-len][CRLF]
Proxy-Connection: [keep-alive][CRLF]
[CRLF]
[msg-body]

status-line := HTTP/1.0 [status] [status-reason][CRLF]

msg-body-len is the message body length as specified
above.

The status and status-reason are the HTTP status
and short textual description of the status, as outlined in
RFC 2616.

The msg-body is used for different things depending on
the type of message being sent back by the server. If the
status is an error value (in the 400s or 500s), the msg-body
is a textual description of why the error response is being
sent. If the status is 200, the msg-body is binary data
representing raw IP packets. If the status is 204, the
msg-body is empty (0 bytes long), and the Content-Length
header is set to reflect this.

B. Establishing the communication channel

For the client to send data to the server, it must first es-
tablish the channel of communication. It sends a configura-
tion request message to the server, which includes a unique
client identification key, as well a range of IP addresses suit-
able for use by the client. When the server responds to this
message, it lists the IP addresses the client should assign
to its point-to-point interface. The client must then bring
up the interface as specified.

B.1 Channel configuration request

The client initiates the channel with a config-request as
follows:
config-request := POST [server-addr]/CP1 HTTP/1.0[CRLF]

Proxy-Connection: Keep-Alive[CRLF]
Content-Length: [config-req-body-len][CRLF]
[CRLF]
[client-key][CRLF]
[ip-range]
[ip-range]*

ip-range := [ip-range-base]/[ip-range-maskbits][CRLF]

The Proxy-Connection: Keep-Alive causes the TCP
connection to the server to be kept open. This is essential

for the server to maintain a state with the client, as the
client’s subsequent requests will not contain any unique
information about the client. The only way for the server
to determine which client the request is coming from is by
the socket on which it communicates.

The client-key is a identification string of 12 hexadec-
imal digits unique to this client. As there is no way for
multiple clients to determine whether their key is unique
among all clients, a useful value to use in this field is the
Ethernet MAC address of one of the physical network inter-
faces in the machine on which the client daemon is running.

The ip-range is used to indicate to the server what IP
addresses the server may consider when determining what
IP address to dynamically assign to the client. The client
should present to the server a set of addresses that will
not collide with the local addresses already known or used
by the client. Each ip-range specifies an ip-range-base, a
contiguous block of IP addresses given by a base IP address,
and an ip-range-maskbits, the number of ’1’ bits in the
netmask.

For example, an ip-range of 10.0.0.0/8 is analogous to the
more commonly-used notation 10.0.0.0/255.0.0.0, which in-
dicates that all 10.*.*.* IP addresses are acceptable.

Multiple ip-range specifications may be sent to the
server. The server should compare the entire list with its
entire list to determine an acceptable address pair.

B.2 Successful configuration response message

When the server has successfully agreed on a pair of IP
addresses, and allocated all necessary server resources, it
must respond to the client with a message containing the IP
addresses that the client should use. The config-response
message is sent as follows:

config-response := HTTP/1.0 200 OK[CRLF]
Connection: Keep-Alive[CRLF]
Content-Length: [config-resp-body-len][CRLF]
[CRLF]
[ip-addr][CRLF]
[ip-addr][CRLF]

The first ip-addr is the IP address that the server has
assigned the client, in dotted decimal format, and the sec-
ond ip-addr is the IP address that the server has assigned
itself, also in dotted decimal format.

C. Error response: Server Error or Busy

If an internal error occurs on the server, or the client limit
has been reached while trying to process the client’s con-
figuration request message, the server must respond with a
500 error message as follows:

config-500-response := HTTP/1.0 500 [500-reason][CRLF]
Connection: Close[CRLF]
Content-Length: [500-desc-len][CRLF]
Content-Type: text/plain[CRLF]
[CRLF]
[500-desc]

500-reason := Internal Server Error | Busy

The 500-reason can specify that the server was too busy
(i.e., there were already too many clients connected), or
that there was some other sort of internal error that was

4

not the client’s fault. Regardless, a 500 response, as spec-
ified by the HTTP RFCs, is likely a transient error, and
the client should try the operation again later. The HTun
server may also send a 503 Access Denied or 400 Bad
Request error response, as necessary, following the format
given for config-500-response, above.

D. Sending and Receiving Data

This section describes the Protocol 1 Send Data request.
This request actually involves sending and receiving data.
The client sends a POST request, with a body containing
an arbitrary number of raw IP packets, and the server re-
sponds with a message-body containing the raw IP packets
it has queued to return to the client.

D.1 Client request

Once the client has established and configured an open
channel with the server, and it has data to send, it can
send the data to the server using a send request as follows:
send-request := POST [server-addr]/S HTTP/1.0[CRLF]

Proxy-Connection: Keep-Alive[CRLF]
Content-Length: [send-data-len][CRLF]
[CRLF]
[send-data]

The client places one or more raw IP packets into the
body of the POST request, indicated in the above grammar
by the send-data field. The server will read packets from
the client stream until it has reached send-data-len bytes
of raw IP data.

D.2 Server success response with data

If the server successfully processed the client request, and
it has data to return to the client, its response is as follows:
resp-data := HTTP/1.0 200 OK[CRLF]

Connection: Keep-Alive[CRLF]
Content-Length: [resp-data-len][CRLF]
[CRLF]
[resp-data]

The message-body, shown here as resp-data, contains
one or more raw IP packets to be sent to the client. The
client reads packets until resp-data-len bytes of raw IP
data has been read.

D.3 Server success response with no data

If the server successfully processed the client request,
and it has no data to return to the client, its response is as
follows:
resp-nodata := HTTP/1.0 204 No Data[CRLF]

Connection: Keep-Alive[CRLF]
[CRLF]

E. Polling for data

When the client has no data to send, but wishes to check
if the server has data to send it, it sends the server a
poll-request.
poll-request := POST [server-addr]/P HTTP/1.0[CRLF]

Proxy-Connection: Keep-Alive[CRLF]
Content-Length: 2[CRLF]
[CRLF]
:)

The server response message formats are the same as the
valid responses for a Send request.

F. Closing the connection

When the client exits or is killed, it should send the
server a finish-request, indicating to the server that it
will not be making any more requests, and that the server
can de-allocate any resources used to support that client.
finish-request := POST [server-addr]/F HTTP/1.0[CRLF]

Proxy-Connection: Keep-Alive[CRLF]
Content-Length: 2[CRLF]
[CRLF]
:(

The server should send a 204 response similar to
the resp-nodata response defined above, but with a
Connection: header of Close, so that the proxy server
can close the connection:
resp-nodata := HTTP/1.0 204 No Data[CRLF]

Connection: Close[CRLF]
[CRLF]

IV. Protocol 1 Performance Analysis

In order to evaluate the HTun protocol we developed a
prototype implementation for Linux 2.4.7. The details of
the implementation are described in Section ??. In this
section we discuss the results of the half-duplex protocol
and motivate the subsequent discussion.

We evaluated our initial protocol design in terms of la-
tency and throughput. The network setup was similar to
that shown in figure ??. The HTun client was connected to
a Proxy server via a 100Mbit/sec switched network. The
Proxy, also running Linux, had a second interface which
was connected to the Internet via a routable address in the
Georgia Tech College of Computing.

We chose the widely available Squid Proxy Server [?]
(version 2.4). The HTun server was 4 router hops away
from the Proxy with an average ping response time of less
than 10 milliseconds.

A. Throughput

Throughput was tested by transferring large (3-4MB)
uncompressable files between the HTun client and a host
on the IP network. The average data throughput observed
using HTun in our test environment was 540 KBytes/sec.
This test was performed using the wget application across
HTun and a Squid proxy. Using the same system and
network configuration but directly routed without the
HTun and proxy interface, an average throughput of 860
KBytes/sec was achieved. Thus the overhead associated
with HTun reduces throughput in our test environment by
roughly 37%.

B. Latency

Latency was tested using a series of ping response times.
Tests were performed both in isolation (no other traffic over
the HTun VPN) and with a background file transfer. This
background traffic offers additional load on the HTun chan-
nel but also serves to keep the data pipeline open across the
proxy server. Latency was also tested empirically by ob-
serving the usability of a remote login terminal (via SSH)
over the HTun VPN. Our experience is that the remote
terminal session is quite usable as long as the variance of

5

the response times is not too high – that is, the delay is
predictably long for every packet sent.

0

100

200

300

400

500

600

0 20 40 60 80 100
Ping Number

No Network Usage
High Network Usage

Fig. 2. Protocol 1 Outbound Ping times (msec)

The ping tests were performed in both directions across
the HTun VPN. Figure ?? shows a comparison of the out-
bound client pings (from HTun client to Internet host)
without background traffic and while transferring a file
from the server to the client. The baseline ping round trip
time increases and remains somewhat erratic during the
file transfer (high network usage). The spikes during both
tests represent ping response misses. In these cases, the
ping response has not returned to the HTun server before
the server responds to the current HTTP request. Thus
the ping response is queued at the server until the next
HTTP request (data or poll) arrives from the HTun client.

0

100

200

300

400

500

600

0 20 40 60 80 100
Ping Number

No Network Usage
High Network Usage

Fig. 3. Protocol 1 Inbound Ping times (msec)

Figure ?? shows a plot of Inbound (Internet host to
HTun client) ping response times. Overall, the round trip
time is higher and much more erratic than the outbound
case. This is especially true for the tests with no back-
ground traffic. This behavior is attributed to the fact that
the client drives the communication, polling the server for
data and initiating server to client data transfers.

C. Theoretical Problems

While we were satisfied that HTun worked, there ap-
peared to be several areas for improvement. In this sec-
tion, we discuss the issues identified and their impact on
performance.

C.1 Half Duplex Communication

Most common network applications utilize a two-way ex-
change of packets either explicitly in a command response
protocol or implicitly through the use of TCP with its
DATA/ACK exchange. The problem for HTun is that
when data is sent from a client in the body of a POST re-
quest, the application-level reply is not immediately avail-
able. If the HTun server replies with only the currently
queued data, the application response will likely not yet be
available, and will therefore be delayed at the HTun server
until the next POST request arrives from the client.

One solution we explored was to introduce a delay at
the server before the POST response is sent. The hope
is that during this interval, the packets containing the ap-
plication response will arrive at the HTun server, making
them available to the immediate POST response. We im-
plemented this technique in the Protocol 1 version using a
set of tunable parameters in the server’s configuration.

C.2 HTTP Overhead and Fixed Sizes

The protocol overhead of the HTTP headers is fairly
high and creates another hindrance to HTun performance.
Each packet of data to and from the HTun client carries
the additional overhead of three extra layers. First, there
is the overhead of the lower layer TCP/IP, which adds ap-
proximately 40 bytes per packet of HTTP traffic. The
HTTP traffic with HTun’s minimal HTTP headers then
adds approximately 100 bytes per POST request. However,
most proxy servers add additional headers when making
the proxied request. The final header size turns out to be
around 200 bytes depending on the proxy server. In our
testing with HTun we observed that most POST requests
carry between 1 and 17 tunneled IP packets, with the large
majority carrying between 1 and 3 packets.

Assuming an MTU of 1500 bytes, if the POST request
carries 3 full packets, it is converted to 4 packets in the
HTTP request, the 4500 bytes becomes (4500 + 4 × 40 +
200) = 4860 bytes. If the tunneled packets are smaller or
there are fewer of them available for a post request the
effect of the HTTP protocol overhead becomes more pro-
nounced.

While a certain amount of overhead is inevitable with
any tunneling scheme, the problem is made worse by the

6

fact that a new POST request and response must be initi-
ated for every collection of packets that must be sent. This
creates extra overhead both in terms of the time to make
the request as well as the additional traffic from HTTP
headers.

C.3 TCP Flow Window Limitations

Tunneled applications desiring high bandwidth experi-
ence another performance bottleneck due to the TCP flow
control algorithms. Some applications, such as streaming
video, are developed using datagram services which allow
them to continuously send packets. One might imagine
that HTun would queue up these packets and deliver a large
number of them in a single POST request, thereby decreas-
ing per-packet overhead. In reality, however, the TCP flow
control mechanism causes the TCP stream to stop queue-
ing unacknowledged packets after a certain point.

In our tests, we observed that the default Linux TCP
implementation allows no more than 11 unacknowledged
packets to be sent. After sending 11 data packets, TCP re-
turns 6 ACK packets using piggybacked acknowledgments.

V. HTun Protocol 2 - (Full Duplex)

It was decided that two changes to the HTun protocol
would eliminate many of the performance issues discovered
in the original design. First, the protocol should be full
duplex with two open channels to the server. Second, HTun
should take advantage of the HTTP/1.1 feature of Chunked
Transfer-Encoding.

A. Two Channels

If the HTun client maintains two open channels to the
server, one is used for sending data, while the other is used
for receiving data. This eliminates the half duplex com-
munication problems and removes the need for the delayed
response algorithms in the server.

The revised protocol allows for a client to negotiate a
send and a receive channel with the server. By separating
the two and enabling full duplex communication, we hoped
to increase the throughput and minimize the erratic latency
present in the half-duplex protocol.

In our design, the first channel continues to work over
TCP port 80, the second will typically run over port 8080,
since we discovered that the Squid default configuration of
allowed ports includes 8080 as well. Multiple ports were
used because we found that proxy servers generally did not
allow two separate data streams to be opened between the
client and one port on the server.

B. Chunked Transfer-Encoding

HTTP/1.1 allows for Chunked Transfer-Encoding which
is useful when a sender does not know the size of
the data it will transfer. The sender can specify the
Transfer-Encoding as Chunked. This allows for an ar-
bitrary amount of data to be sent in one chunk. The HTun
client could then send data continuously in chunks over its
send channel to the server. This would eliminate the need
for HTTP headers at every transfer and would also do away

with the need to wait for the other side to reply with a 200
OK after each transfer. This would streamline the HTun
protocol and reduce HTTP overhead.

Unfortunately, Chunked Transfer-Encoding is not sup-
ported by the current version of the Squid Web Proxy. The
only Proxy we identified that currently supports Chunking
is Jigsaw [?], a reference implementation HTTP/1.1 Proxy
written by the W3C in Java. When testing the usability
of Chunked Transfers we discovered that indeed they were
supported in Jigsaw but Jigsaw does not forward a client’s
chunked data stream until it receives the entire stream.
Jigsaw appears to assemble the data and transfer it in one
contiguous HTTP request to the receiving HTTP server,
rendering the feature useless to us. As a result, we had to
continue the use of POST requests and not rely on Chunked
Transfers for HTun.

C. Efficiency and Other Concerns

Protocol 2 contains roughly the same amount of HTTP
overhead as protocol 1 since the same session semantics are
used. However the required server wait which we designed
into our implementation of Protocol 1 is not required since
each channel operates independently of the other.

C.1 Behavior in Unexpected Situations

We decided that it would be desirable for the client to
automatically reconnect should one of its data channels
sporadically disconnect. Due to the nature of our channel
negotiation process, a disconnected receive channel would
simply mean a reconnect of that channel to restore the
tunnel.

In the case that the client’s send channel is disconnected,
the problem is more serious, because the send channel is
the primary channel for negotiation of the tunnel. In this
case, the client must shut down all connections to the server
and renegotiate from scratch.

Our server implementation allows the client to be discon-
nected for a tunable amount of time before its configuration
data (such as its IP address and any pending packets) is re-
moved. Therefore, if the client reconnects quickly, it should
be able to resume its broken session seamlessly.

C.2 Client Crash

If the client crashes, the server should keep up its end of
the VPN and wait for a config request matching the clients
unique identifier. As mentioned above, the server shuts
down VPNs after they have been inactive for an amount of
time specified in the configuration.

C.3 Proxy Disconnect

If the proxy disconnects either channel, the client will
simply reopen its send channel and re-negotiate the VPN
IP addresses with the server before continuing.

C.4 Server Crash

If the server crashes, the proxy may disconnect the client
as well. In this case, the client will also renegotiate. In
the event that the proxy keeps its connection with the

7

client and reopens its connection to the restarted server,
the server will not know about the current connection it
has with the client. It will respond with an error, forcing
the client to reconnect.

VI. HTun Protocol 2 Specification - (Full
Duplex)

The specifications for the second protocol use all the
same semantics as the first. The send channel is used as
the control channel to initially obtain the server-specified
VPN IP addresses.

A. Send Channel Negotiation

The send channel configuration request is as follows:
config-request := POST [server-addr]/CP2 HTTP/1.0[CRLF]

Proxy-Connection: Keep-Alive[CRLF]
Content-Length: [config-req-body-len][CRLF]
[CRLF]
[client-key][CRLF]
[ip-range]
[ip-range]*

ip-range := [ip-range-base]/[ip-range-maskbits][CRLF]

Note that the Configure Protocol indicator changed from
CP1 to CP2 to reflect the change from Protocol 1 to Pro-
tocol 2. The server will respond with a config-response
identical to that used in protocol 1.

B. Receive Channel Negotiation

Once the client’s send channel has obtained a pair of IP
addresses, the second (receive) channel is opened to the
server with a config-request as follows:
config-request := POST [server-addr]/CR HTTP/1.0[CRLF]

Proxy-Connection: Keep-Alive[CRLF]
Content-Length: [config-req-body-len][CRLF]
[CRLF]
[client-key][CRLF]

ip-range := [ip-range-base]/[ip-range-maskbits][CRLF]

The server uses the client-key to locate the requested
VPN and then ties that socket to its receive channel.

C. Sending Data

The client sends data via the send channel, using the
same send-request as with Protocol 1. Since HTTP is a
request-oriented protocol, the server will send a respond-
nodata back after each transfer.

D. Receiving Data

The client receive request is slightly different in Protocol
2. Because the client could potentially be waiting for data
for a very long time, we need to ensure that there be an
upper limit on the amount of time the server takes to re-
spond to a receive request. Otherwise, the proxy may time
out and close the connection due to inactivity.

With this protocol, the upper limit is specified by the
client in the body of the request, as follows:
recv-request := POST [server-addr]/R HTTP/1.0[CRLF]

Proxy-Connection: Keep-Alive[CRLF]
Content-Length: [config-req-body-len][CRLF]
[CRLF]
[time][CRLF]

time is simply a positive integer representing the max-
imum response wait time in seconds. The server should
respond a second or two before the timeout, and the client
should optimally wait a second or two longer than it actu-
ally specified. This ensures that network lag does not fool
the client into thinking that the server is unresponsive.

E. Closing the Connection

To close the connection, the client sends the
finish-request as described in section ??.

VII. Protocol 2 Performance

0

100

200

300

400

500

600

0 20 40 60 80 100
Ping Number

No Network Usage
High Network Usage

Fig. 4. Protocol 2 Outbound Ping Times (msec)

0

100

200

300

400

500

600

0 20 40 60 80 100
Ping Number

Protocol 1
Protocol 2

Fig. 5. Protocol 1 vs 2 Outbound Ping Times (msec)

Figure ?? shows the Outbound ping times for Protocol
2, contrasting the conditions under high and low network

8

utilization. Figure ?? contrasts Outbound ping times be-
tween Protocols 1 and 2. It is clear that the latency with
Protocol 2 is much more consistent with a lower variance
than Protocol 1. This is especially true for the case where
there is no background traffic over the HTun VPN. Our em-
pirical ssh login test also confirmed this; the terminal was
much more responsive and latency was more consistent.

The surprising result is that the average latency is higher
under Protocol 2 (by up 15 ms) than under Protocol 1.
This appears to be related to the overhead in maintaining
two queues, though we are not completely satisfied with
that explanation. One theory was that it was a load bal-
ancing problem in the Squid proxy, but our benchmarking
without a proxy indicates that the anomaly is somewhere
in the HTun implementation itself.

0

100

200

300

400

500

600

0 20 40 60 80 100
Ping Number

No Network Usage
High Network Usage

Fig. 6. Protocol 2 Inbound Ping Times (msec)

Figure ?? shows the Inbound ping times under high ver-
sus no network utilization. The average inbound and out-
bound ping times for Protocol 2 under no network load
were 78 and 84 milliseconds, respectively. The average In-
bound and outbound ping times during high network load
were the same at 131 ms, but the variance for inbound ping
times was slightly higher.

Figure ?? shows the dramatic improvement in inbound
ping latencies for Protocol 2 in comparison to Protocol 1.
Both figure ?? and figure ?? show the lack of ping response
misses (latency spikes) in Protocol 2. This was one of the
primary design goals for the full duplex approach, and it
was succesfully achieved.

VIII. Implementation Details

This section describes some of the details of our imple-
mentation experience with HTun. The primary develop-
ment platform was Linux 2.4.7. The final implementation
of HTun (server and client) was written in C using POSIX
threads. It was developed for Linux, though it should work

0

100

200

300

400

500

600

0 20 40 60 80 100
Ping Number

Protocol 1
Protocol 2

Fig. 7. Protocol 1 vs 2 Inbound Ping Times (msec)

on FreeBSD and Solaris with minor changes to the code
that manipulates the tun interfaces and the route tables.

A. The Universal TUN/TAP Driver

The HTun implementation utilizes the Universal
TUN/TAP device driver [?]. The TUN/TAP driver pro-
vides a simple virtual network interface for use with HTun.
It manages a logical device file (in Linux /dev/net/tun),
and automatically brings up a new virtual network inter-
face each time a program makes an open() system call on
the file.

Each tun virtual interface is connected to the file descrip-
tor obtained from the open() call that created the interface.
When the kernel writes packets to the tun interface (for
instance, when a program requests that data be sent), the
program can use the read() system call to read the raw
packet data from the associated file descriptor.

Conversely, when the program writes raw packets to the
file descriptor using write(), the packets appear on the in-
terface, as if they had just arrived on the interface.

The TUN/TAP driver provided the functionality neces-
sary to create the virtual interface, allowing for an easy way
to process packets written to and read from the virtual in-
terface in user-space. Although we have chosen to use the
TUN/TAP driver as our virtual network interface, this in-
terface is available only for the platforms mentioned above,
so implementors may choose to provide this functionality
in some other way when writing client or server software
for other platforms. The TUN/TAP driver allowed us to
set up a point to point VPN without writing any kernel
code.

B. Multiple client support

The HTun protocol was designed to allow multiple clients
to be simultaneously connected to a given HTun server.
This means that every data transfer request received by the

9

server must be associated with a particular known client
before the data is read, because the data must be written
to the proper file descriptor in order to be delivered to the
proper interface.

The way the protocol was initially designed, every POST
request sent by a client contained its VPN IP address in
the request-line. This design turned out to scale poorly
when we decided that client should be able to connect to
the server dynamically, so that the server need not know
about the client in advance.

There were two possible solutions considered. Both in-
volved identifying the client by a unique identifier, the
hardware Ethernet address of a physical Ethernet adapter
in the client machine.

The first possible solution was to change the format of
the POST request so that the unique client key is given in
every POST request. This way, the server would not need
to maintain any connection state, and could just process
each request separately.

However, we decided that the implementation of this pro-
tocol would be difficult, and the overhead involved in re-
trieving the client information for each and every request
would be quite high, and would worsen the efficiency of the
implementation. Implementing this efficiently is possible,
however, and it is our goal to design the next version of the
HTun protocol this way.

The second possible solution was to have the client sup-
ply its unique key to the server only upon connecting. The
server would then associate the particular connected socket
with the client connected to it. Because the HTun proto-
col uses HTTP persistent connections, this solution means
that the client data will only have to be retrieved once per
connection.

The only problem with this solution arises from the fact
that when multiple clients connect to a proxy server and
generate requests to the same server, most proxy servers
interleave the two clients’ requests into one server connec-
tion, thereby rendering the connection unusable by either
client, or possibly allowing a malicious user with access to
the same proxy as another user to hijack the other user’s
connection. However, most proxy servers allow access to
only the local network, on which users should trust each
other not to hijack each other’s connections. Future ver-
sions of the protocol will fix this problem, though, as it is
clearly a serious one.

C. Dynamic Client Support

The dynamic client support was an important feature of
the server. The server reads its list of valid ipranges from
a config file, and compares the list to the one sent by the
client. The server simply manipulates the addresses and
netmasks to quickly determine what addresses both sides
have in common, and assigns the first ones that it has not
already assigned.

D. Statefulness vs. Statelessness

A stateless protocol would theoretically be optimal, as
it would allow many clients to connect to the same HTun

server using the same proxy server. This would require the
client to send its unique ID with each request, though, and
would therefore require significant processing overhead for
the server to match each incoming request with the appro-
priate data queues. This would also defeat the purpose of
opening two channels with Protocol 2, because the proxy
would interleave both channels into one open socket to the
HTun server, thereby effectively turning it back into it a
half duplex channel.

E. Support for Both Protocols

Since protocols 1 and 2 were were very similar, the HTun
server and client support them both. The protocol the
client will use is set in its configuration file. The client
can also switch between protocol 1 and 2 while the VPN is
up. This is possible due to the fact that the server main-
tains the crucial client data across disconnects; therefore,
a client could simply disconnect and reconnect using a dif-
ferent protocol.

F. Coexisting With a Web Server

If the administrator of the HTun server machine wishes
to run a webserver on port 80 as well, it is completely
possible with HTun. Any requests it does not understand
as HTun client requests are redirected to the webserver
and port of choice (set in the configuration file), thereby
allowing HTun to coexist with a real webserver.

G. Other Implementation Details Concerns

The HTun client can be configured to rewrite the sys-
tem’s routing table so that all non-local traffic will be
routed through the tun device, so that the HTun server
may receive the packets and possibly perform IP mas-
querading on it1. This enables the client to continue to
talk to the other hosts on its local LAN using local routes,
while all the external traffic is masqueraded.

A routing problem comes up, however, when the proxy
server is not on the client’s own subnet – that is, the client
must use a router to get to the proxy server. In this case,
the client user must set up a host route for the proxy
server specifically. This will allow the client to commu-
nicate through the real gateway when attempting to talk
to the proxy server, but through HTun when attempting
to communicate elsewhere.

Currently the HTun client daemon can be configured to
rewrite (and restore) the default route, whereas the config-
uration of a static route to the proxy server is left as the
user’s responsibility.

IX. Open Issues

.1 TCP-over-TCP Issues

Because HTun tunnels IP over HTTP, and HTTP is a
TCP-based protocol, HTun effectively causes TCP to be
tunneled over TCP whenever the user uses a TCP-based
protocol over HTun.

1IP masquerading of routed data is not the job of HTun, but is easily
accomplished using regular iptables masquerading rules in Linux

10

The TCP over TCP problem manifests itself when the
lower IP layer experiences packet loss or delay. The lower
TCP layer increases its retransmit timers, leaving the up-
per layer to retransmit faster than the lower layer is trans-
mitting data. This upper layer retransmission is done de-
spite the fact that TCP is operating over a reliable lower
layer connection. This is known as the meltdown effect,
and is described more fully by Olaf Titz [?].

There is no apparent solution to this problem other
than changing the TCP timers for the upper layer with-
out changing them for the lower layer, which is not pos-
sible due to the fact that both layers use the same TCP
implementation.

A. Future design considerations

Recent research has identified a possible performance en-
hancement to the HTun protocol. Most proxy servers now
support the CONNECT mechanism as a method to al-
low SSL communication between the client and the server.
Simply put, the CONNECT method opens a fully bidirec-
tional TCP channel between the client and the server, and
allows arbitrary data to be sent back and forth.

For networks where the CONNECT method is sup-
ported, HTun could elect to use this channel with poten-
tially significant improved performance, as well as data en-
cryption features. On the contrary, when the CONNECT
method is not supported by a proxy, HTun provides a
mechanism for allowing network hosts to use SSL based
applications in the Internet.

X. Conclusions

The ability to achieve complete IP connectivity in an
efficient manner is critical to the success of many emerg-
ing network applications. This work presents a means to
achieving this level of connectivity even when the available
service is more restrictive. The HTun protocol successfully
demonstrates the feasibility of this approach using HTTP
proxies. The protocol and implementation provide a rea-
sonably efficient and practical solution that works within
the limitations of current protocols and proxy servers. In
the future, these techniques could be used to design general
network layer services over similar request-oriented appli-
cations.

