2 * dominosa.c: Domino jigsaw puzzle. Aim to place one of every
3 * possible domino within a rectangle in such a way that the number
4 * on each square matches the provided clue.
10 * - improve solver so as to use more interesting forms of
13 * * rule out a domino placement if it would divide an unfilled
14 * region such that at least one resulting region had an odd
16 * + use b.f.s. to determine the area of an unfilled region
17 * + a square is unfilled iff it has at least two possible
18 * placements, and two adjacent unfilled squares are part
19 * of the same region iff the domino placement joining
22 * * perhaps set analysis
23 * + look at all unclaimed squares containing a given number
24 * + for each one, find the set of possible numbers that it
25 * can connect to (i.e. each neighbouring tile such that
26 * the placement between it and that neighbour has not yet
28 * + now proceed similarly to Solo set analysis: try to find
29 * a subset of the squares such that the union of their
30 * possible numbers is the same size as the subset. If so,
31 * rule out those possible numbers for all other squares.
32 * * important wrinkle: the double dominoes complicate
33 * matters. Connecting a number to itself uses up _two_
34 * of the unclaimed squares containing a number. Thus,
35 * when finding the initial subset we must never
36 * include two adjacent squares; and also, when ruling
37 * things out after finding the subset, we must be
38 * careful that we don't rule out precisely the domino
39 * placement that was _included_ in our set!
51 /* nth triangular number */
52 #define TRI(n) ( (n) * ((n) + 1) / 2 )
53 /* number of dominoes for value n */
54 #define DCOUNT(n) TRI((n)+1)
55 /* map a pair of numbers to a unique domino index from 0 upwards. */
56 #define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) )
58 #define FLASH_TIME 0.13F
77 int *numbers
; /* h x w */
88 struct game_numbers
*numbers
;
90 unsigned short *edges
; /* h x w */
91 int completed
, cheated
;
94 static game_params
*default_params(void)
96 game_params
*ret
= snew(game_params
);
104 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
111 case 0: n
= 3; break;
112 case 1: n
= 4; break;
113 case 2: n
= 5; break;
114 case 3: n
= 6; break;
115 case 4: n
= 7; break;
116 case 5: n
= 8; break;
117 case 6: n
= 9; break;
118 default: return FALSE
;
121 sprintf(buf
, "Up to double-%d", n
);
124 *params
= ret
= snew(game_params
);
131 static void free_params(game_params
*params
)
136 static game_params
*dup_params(game_params
*params
)
138 game_params
*ret
= snew(game_params
);
139 *ret
= *params
; /* structure copy */
143 static void decode_params(game_params
*params
, char const *string
)
145 params
->n
= atoi(string
);
146 while (*string
&& isdigit((unsigned char)*string
)) string
++;
148 params
->unique
= FALSE
;
151 static char *encode_params(game_params
*params
, int full
)
154 sprintf(buf
, "%d", params
->n
);
155 if (full
&& !params
->unique
)
160 static config_item
*game_configure(game_params
*params
)
165 ret
= snewn(3, config_item
);
167 ret
[0].name
= "Maximum number on dominoes";
168 ret
[0].type
= C_STRING
;
169 sprintf(buf
, "%d", params
->n
);
170 ret
[0].sval
= dupstr(buf
);
173 ret
[1].name
= "Ensure unique solution";
174 ret
[1].type
= C_BOOLEAN
;
176 ret
[1].ival
= params
->unique
;
186 static game_params
*custom_params(config_item
*cfg
)
188 game_params
*ret
= snew(game_params
);
190 ret
->n
= atoi(cfg
[0].sval
);
191 ret
->unique
= cfg
[1].ival
;
196 static char *validate_params(game_params
*params
, int full
)
199 return "Maximum face number must be at least one";
203 /* ----------------------------------------------------------------------
207 static int find_overlaps(int w
, int h
, int placement
, int *set
)
211 n
= 0; /* number of returned placements */
219 * Horizontal domino, indexed by its left end.
222 set
[n
++] = placement
-2; /* horizontal domino to the left */
224 set
[n
++] = placement
-2*w
-1;/* vertical domino above left side */
226 set
[n
++] = placement
-1; /* vertical domino below left side */
228 set
[n
++] = placement
+2; /* horizontal domino to the right */
230 set
[n
++] = placement
-2*w
+2-1;/* vertical domino above right side */
232 set
[n
++] = placement
+2-1; /* vertical domino below right side */
235 * Vertical domino, indexed by its top end.
238 set
[n
++] = placement
-2*w
; /* vertical domino above */
240 set
[n
++] = placement
-2+1; /* horizontal domino left of top */
242 set
[n
++] = placement
+1; /* horizontal domino right of top */
244 set
[n
++] = placement
+2*w
; /* vertical domino below */
246 set
[n
++] = placement
-2+2*w
+1;/* horizontal domino left of bottom */
248 set
[n
++] = placement
+2*w
+1;/* horizontal domino right of bottom */
255 * Returns 0, 1 or 2 for number of solutions. 2 means `any number
256 * more than one', or more accurately `we were unable to prove
257 * there was only one'.
259 * Outputs in a `placements' array, indexed the same way as the one
260 * within this function (see below); entries in there are <0 for a
261 * placement ruled out, 0 for an uncertain placement, and 1 for a
264 static int solver(int w
, int h
, int n
, int *grid
, int *output
)
266 int wh
= w
*h
, dc
= DCOUNT(n
);
267 int *placements
, *heads
;
271 * This array has one entry for every possible domino
272 * placement. Vertical placements are indexed by their top
273 * half, at (y*w+x)*2; horizontal placements are indexed by
274 * their left half at (y*w+x)*2+1.
276 * This array is used to link domino placements together into
277 * linked lists, so that we can track all the possible
278 * placements of each different domino. It's also used as a
279 * quick means of looking up an individual placement to see
280 * whether we still think it's possible. Actual values stored
281 * in this array are -2 (placement not possible at all), -1
282 * (end of list), or the array index of the next item.
284 * Oh, and -3 for `not even valid', used for array indices
285 * which don't even represent a plausible placement.
287 placements
= snewn(2*wh
, int);
288 for (i
= 0; i
< 2*wh
; i
++)
289 placements
[i
] = -3; /* not even valid */
292 * This array has one entry for every domino, and it is an
293 * index into `placements' denoting the head of the placement
294 * list for that domino.
296 heads
= snewn(dc
, int);
297 for (i
= 0; i
< dc
; i
++)
301 * Set up the initial possibility lists by scanning the grid.
303 for (y
= 0; y
< h
-1; y
++)
304 for (x
= 0; x
< w
; x
++) {
305 int di
= DINDEX(grid
[y
*w
+x
], grid
[(y
+1)*w
+x
]);
306 placements
[(y
*w
+x
)*2] = heads
[di
];
307 heads
[di
] = (y
*w
+x
)*2;
309 for (y
= 0; y
< h
; y
++)
310 for (x
= 0; x
< w
-1; x
++) {
311 int di
= DINDEX(grid
[y
*w
+x
], grid
[y
*w
+(x
+1)]);
312 placements
[(y
*w
+x
)*2+1] = heads
[di
];
313 heads
[di
] = (y
*w
+x
)*2+1;
316 #ifdef SOLVER_DIAGNOSTICS
317 printf("before solver:\n");
318 for (i
= 0; i
<= n
; i
++)
319 for (j
= 0; j
<= i
; j
++) {
322 printf("%2d [%d %d]:", DINDEX(i
, j
), i
, j
);
323 for (k
= heads
[DINDEX(i
,j
)]; k
>= 0; k
= placements
[k
])
324 printf(" %3d [%d,%d,%c]", k
, k
/2%w
, k
/2/w
, k
%2?'h':'v');
330 int done_something
= FALSE
;
333 * For each domino, look at its possible placements, and
334 * for each placement consider the placements (of any
335 * domino) it overlaps. Any placement overlapped by all
336 * placements of this domino can be ruled out.
338 * Each domino placement overlaps only six others, so we
339 * need not do serious set theory to work this out.
341 for (i
= 0; i
< dc
; i
++) {
342 int permset
[6], permlen
= 0, p
;
345 if (heads
[i
] == -1) { /* no placement for this domino */
346 ret
= 0; /* therefore puzzle is impossible */
349 for (j
= heads
[i
]; j
>= 0; j
= placements
[j
]) {
350 assert(placements
[j
] != -2);
353 permlen
= find_overlaps(w
, h
, j
, permset
);
355 int tempset
[6], templen
, m
, n
, k
;
357 templen
= find_overlaps(w
, h
, j
, tempset
);
360 * Pathetically primitive set intersection
361 * algorithm, which I'm only getting away with
362 * because I know my sets are bounded by a very
365 for (m
= n
= 0; m
< permlen
; m
++) {
366 for (k
= 0; k
< templen
; k
++)
367 if (tempset
[k
] == permset
[m
])
370 permset
[n
++] = permset
[m
];
375 for (p
= 0; p
< permlen
; p
++) {
377 if (placements
[j
] != -2) {
380 done_something
= TRUE
;
383 * Rule out this placement. First find what
387 p2
= (j
& 1) ? p1
+ 1 : p1
+ w
;
388 di
= DINDEX(grid
[p1
], grid
[p2
]);
389 #ifdef SOLVER_DIAGNOSTICS
390 printf("considering domino %d: ruling out placement %d"
391 " for %d\n", i
, j
, di
);
395 * ... then walk that domino's placement list,
396 * removing this placement when we find it.
399 heads
[di
] = placements
[j
];
402 while (placements
[k
] != -1 && placements
[k
] != j
)
404 assert(placements
[k
] == j
);
405 placements
[k
] = placements
[j
];
413 * For each square, look at the available placements
414 * involving that square. If all of them are for the same
415 * domino, then rule out any placements for that domino
416 * _not_ involving this square.
418 for (i
= 0; i
< wh
; i
++) {
419 int list
[4], k
, n
, adi
;
426 list
[j
++] = 2*(i
-1)+1;
434 for (n
= k
= 0; k
< j
; k
++)
435 if (placements
[list
[k
]] >= -1)
440 for (j
= 0; j
< n
; j
++) {
445 p2
= (k
& 1) ? p1
+ 1 : p1
+ w
;
446 di
= DINDEX(grid
[p1
], grid
[p2
]);
459 * We've found something. All viable placements
460 * involving this square are for domino `adi'. If
461 * the current placement list for that domino is
462 * longer than n, reduce it to precisely this
463 * placement list and we've done something.
466 for (k
= heads
[adi
]; k
>= 0; k
= placements
[k
])
469 done_something
= TRUE
;
470 #ifdef SOLVER_DIAGNOSTICS
471 printf("considering square %d,%d: reducing placements "
472 "of domino %d\n", x
, y
, adi
);
475 * Set all other placements on the list to
480 int tmp
= placements
[k
];
485 * Set up the new list.
487 heads
[adi
] = list
[0];
488 for (k
= 0; k
< n
; k
++)
489 placements
[list
[k
]] = (k
+1 == n
? -1 : list
[k
+1]);
498 #ifdef SOLVER_DIAGNOSTICS
499 printf("after solver:\n");
500 for (i
= 0; i
<= n
; i
++)
501 for (j
= 0; j
<= i
; j
++) {
504 printf("%2d [%d %d]:", DINDEX(i
, j
), i
, j
);
505 for (k
= heads
[DINDEX(i
,j
)]; k
>= 0; k
= placements
[k
])
506 printf(" %3d [%d,%d,%c]", k
, k
/2%w
, k
/2/w
, k
%2?'h':'v');
512 for (i
= 0; i
< wh
*2; i
++) {
513 if (placements
[i
] == -2) {
515 output
[i
] = -1; /* ruled out */
516 } else if (placements
[i
] != -3) {
520 p2
= (i
& 1) ? p1
+ 1 : p1
+ w
;
521 di
= DINDEX(grid
[p1
], grid
[p2
]);
523 if (i
== heads
[di
] && placements
[i
] == -1) {
525 output
[i
] = 1; /* certain */
528 output
[i
] = 0; /* uncertain */
544 /* ----------------------------------------------------------------------
545 * End of solver code.
548 static char *new_game_desc(game_params
*params
, random_state
*rs
,
549 char **aux
, int interactive
)
551 int n
= params
->n
, w
= n
+2, h
= n
+1, wh
= w
*h
;
552 int *grid
, *grid2
, *list
;
557 * Allocate space in which to lay the grid out.
559 grid
= snewn(wh
, int);
560 grid2
= snewn(wh
, int);
561 list
= snewn(2*wh
, int);
564 * I haven't been able to think of any particularly clever
565 * techniques for generating instances of Dominosa with a
566 * unique solution. Many of the deductions used in this puzzle
567 * are based on information involving half the grid at a time
568 * (`of all the 6s, exactly one is next to a 3'), so a strategy
569 * of partially solving the grid and then perturbing the place
570 * where the solver got stuck seems particularly likely to
571 * accidentally destroy the information which the solver had
572 * used in getting that far. (Contrast with, say, Mines, in
573 * which most deductions are local so this is an excellent
576 * Therefore I resort to the basest of brute force methods:
577 * generate a random grid, see if it's solvable, throw it away
578 * and try again if not. My only concession to sophistication
579 * and cleverness is to at least _try_ not to generate obvious
580 * 2x2 ambiguous sections (see comment below in the domino-
583 * During tests performed on 2005-07-15, I found that the brute
584 * force approach without that tweak had to throw away about 87
585 * grids on average (at the default n=6) before finding a
586 * unique one, or a staggering 379 at n=9; good job the
587 * generator and solver are fast! When I added the
588 * ambiguous-section avoidance, those numbers came down to 19
589 * and 26 respectively, which is a lot more sensible.
593 domino_layout_prealloc(w
, h
, rs
, grid
, grid2
, list
);
596 * Now we have a complete layout covering the whole
597 * rectangle with dominoes. So shuffle the actual domino
598 * values and fill the rectangle with numbers.
601 for (i
= 0; i
<= params
->n
; i
++)
602 for (j
= 0; j
<= i
; j
++) {
606 shuffle(list
, k
/2, 2*sizeof(*list
), rs
);
608 for (i
= 0; i
< wh
; i
++)
610 /* Optionally flip the domino round. */
613 if (params
->unique
) {
616 * If we're after a unique solution, we can do
617 * something here to improve the chances. If
618 * we're placing a domino so that it forms a
619 * 2x2 rectangle with one we've already placed,
620 * and if that domino and this one share a
621 * number, we can try not to put them so that
622 * the identical numbers are diagonally
623 * separated, because that automatically causes
634 if (t2
== t1
+ w
) { /* this domino is vertical */
635 if (t1
% w
> 0 &&/* and not on the left hand edge */
636 grid
[t1
-1] == t2
-1 &&/* alongside one to left */
637 (grid2
[t1
-1] == list
[j
] || /* and has a number */
638 grid2
[t1
-1] == list
[j
+1] || /* in common */
639 grid2
[t2
-1] == list
[j
] ||
640 grid2
[t2
-1] == list
[j
+1])) {
641 if (grid2
[t1
-1] == list
[j
] ||
642 grid2
[t2
-1] == list
[j
+1])
647 } else { /* this domino is horizontal */
648 if (t1
/ w
> 0 &&/* and not on the top edge */
649 grid
[t1
-w
] == t2
-w
&&/* alongside one above */
650 (grid2
[t1
-w
] == list
[j
] || /* and has a number */
651 grid2
[t1
-w
] == list
[j
+1] || /* in common */
652 grid2
[t2
-w
] == list
[j
] ||
653 grid2
[t2
-w
] == list
[j
+1])) {
654 if (grid2
[t1
-w
] == list
[j
] ||
655 grid2
[t2
-w
] == list
[j
+1])
664 flip
= random_upto(rs
, 2);
666 grid2
[i
] = list
[j
+ flip
];
667 grid2
[grid
[i
]] = list
[j
+ 1 - flip
];
671 } while (params
->unique
&& solver(w
, h
, n
, grid2
, NULL
) > 1);
673 #ifdef GENERATION_DIAGNOSTICS
674 for (j
= 0; j
< h
; j
++) {
675 for (i
= 0; i
< w
; i
++) {
676 putchar('0' + grid2
[j
*w
+i
]);
684 * Encode the resulting game state.
686 * Our encoding is a string of digits. Any number greater than
687 * 9 is represented by a decimal integer within square
688 * brackets. We know there are n+2 of every number (it's paired
689 * with each number from 0 to n inclusive, and one of those is
690 * itself so that adds another occurrence), so we can work out
691 * the string length in advance.
695 * To work out the total length of the decimal encodings of all
696 * the numbers from 0 to n inclusive:
697 * - every number has a units digit; total is n+1.
698 * - all numbers above 9 have a tens digit; total is max(n+1-10,0).
699 * - all numbers above 99 have a hundreds digit; total is max(n+1-100,0).
703 for (i
= 10; i
<= n
; i
*= 10)
704 len
+= max(n
+ 1 - i
, 0);
705 /* Now add two square brackets for each number above 9. */
706 len
+= 2 * max(n
+ 1 - 10, 0);
707 /* And multiply by n+2 for the repeated occurrences of each number. */
711 * Now actually encode the string.
713 ret
= snewn(len
+1, char);
715 for (i
= 0; i
< wh
; i
++) {
720 j
+= sprintf(ret
+j
, "[%d]", k
);
727 * Encode the solved state as an aux_info.
730 char *auxinfo
= snewn(wh
+1, char);
732 for (i
= 0; i
< wh
; i
++) {
734 auxinfo
[i
] = (v
== i
+1 ? 'L' : v
== i
-1 ? 'R' :
735 v
== i
+w
? 'T' : v
== i
-w
? 'B' : '.');
749 static char *validate_desc(game_params
*params
, char *desc
)
751 int n
= params
->n
, w
= n
+2, h
= n
+1, wh
= w
*h
;
757 occurrences
= snewn(n
+1, int);
758 for (i
= 0; i
<= n
; i
++)
761 for (i
= 0; i
< wh
; i
++) {
763 ret
= ret
? ret
: "Game description is too short";
765 if (*desc
>= '0' && *desc
<= '9')
767 else if (*desc
== '[') {
770 while (*desc
&& isdigit((unsigned char)*desc
)) desc
++;
772 ret
= ret
? ret
: "Missing ']' in game description";
777 ret
= ret
? ret
: "Invalid syntax in game description";
780 ret
= ret
? ret
: "Number out of range in game description";
787 ret
= ret
? ret
: "Game description is too long";
790 for (i
= 0; i
<= n
; i
++)
791 if (occurrences
[i
] != n
+2)
792 ret
= "Incorrect number balance in game description";
800 static game_state
*new_game(midend
*me
, game_params
*params
, char *desc
)
802 int n
= params
->n
, w
= n
+2, h
= n
+1, wh
= w
*h
;
803 game_state
*state
= snew(game_state
);
806 state
->params
= *params
;
810 state
->grid
= snewn(wh
, int);
811 for (i
= 0; i
< wh
; i
++)
814 state
->edges
= snewn(wh
, unsigned short);
815 for (i
= 0; i
< wh
; i
++)
818 state
->numbers
= snew(struct game_numbers
);
819 state
->numbers
->refcount
= 1;
820 state
->numbers
->numbers
= snewn(wh
, int);
822 for (i
= 0; i
< wh
; i
++) {
824 if (*desc
>= '0' && *desc
<= '9')
827 assert(*desc
== '[');
830 while (*desc
&& isdigit((unsigned char)*desc
)) desc
++;
831 assert(*desc
== ']');
834 assert(j
>= 0 && j
<= n
);
835 state
->numbers
->numbers
[i
] = j
;
838 state
->completed
= state
->cheated
= FALSE
;
843 static game_state
*dup_game(game_state
*state
)
845 int n
= state
->params
.n
, w
= n
+2, h
= n
+1, wh
= w
*h
;
846 game_state
*ret
= snew(game_state
);
848 ret
->params
= state
->params
;
851 ret
->grid
= snewn(wh
, int);
852 memcpy(ret
->grid
, state
->grid
, wh
* sizeof(int));
853 ret
->edges
= snewn(wh
, unsigned short);
854 memcpy(ret
->edges
, state
->edges
, wh
* sizeof(unsigned short));
855 ret
->numbers
= state
->numbers
;
856 ret
->numbers
->refcount
++;
857 ret
->completed
= state
->completed
;
858 ret
->cheated
= state
->cheated
;
863 static void free_game(game_state
*state
)
867 if (--state
->numbers
->refcount
<= 0) {
868 sfree(state
->numbers
->numbers
);
869 sfree(state
->numbers
);
874 static char *solve_game(game_state
*state
, game_state
*currstate
,
875 char *aux
, char **error
)
877 int n
= state
->params
.n
, w
= n
+2, h
= n
+1, wh
= w
*h
;
887 ret
= snewn(retsize
, char);
888 retlen
= sprintf(ret
, "S");
890 for (i
= 0; i
< wh
; i
++) {
892 extra
= sprintf(buf
, ";D%d,%d", i
, i
+1);
893 else if (aux
[i
] == 'T')
894 extra
= sprintf(buf
, ";D%d,%d", i
, i
+w
);
898 if (retlen
+ extra
+ 1 >= retsize
) {
899 retsize
= retlen
+ extra
+ 256;
900 ret
= sresize(ret
, retsize
, char);
902 strcpy(ret
+ retlen
, buf
);
908 placements
= snewn(wh
*2, int);
909 for (i
= 0; i
< wh
*2; i
++)
911 solver(w
, h
, n
, state
->numbers
->numbers
, placements
);
914 * First make a pass putting in edges for -1, then make a pass
915 * putting in dominoes for +1.
918 ret
= snewn(retsize
, char);
919 retlen
= sprintf(ret
, "S");
921 for (v
= -1; v
<= +1; v
+= 2)
922 for (i
= 0; i
< wh
*2; i
++)
923 if (placements
[i
] == v
) {
925 int p2
= (i
& 1) ? p1
+1 : p1
+w
;
927 extra
= sprintf(buf
, ";%c%d,%d",
928 (int)(v
==-1 ? 'E' : 'D'), p1
, p2
);
930 if (retlen
+ extra
+ 1 >= retsize
) {
931 retsize
= retlen
+ extra
+ 256;
932 ret
= sresize(ret
, retsize
, char);
934 strcpy(ret
+ retlen
, buf
);
944 static int game_can_format_as_text_now(game_params
*params
)
949 static char *game_text_format(game_state
*state
)
955 int cur_x
, cur_y
, cur_visible
;
958 static game_ui
*new_ui(game_state
*state
)
960 game_ui
*ui
= snew(game_ui
);
961 ui
->cur_x
= ui
->cur_y
= 0;
966 static void free_ui(game_ui
*ui
)
971 static char *encode_ui(game_ui
*ui
)
976 static void decode_ui(game_ui
*ui
, char *encoding
)
980 static void game_changed_state(game_ui
*ui
, game_state
*oldstate
,
981 game_state
*newstate
)
983 if (!oldstate
->completed
&& newstate
->completed
)
987 #define PREFERRED_TILESIZE 32
988 #define TILESIZE (ds->tilesize)
989 #define BORDER (TILESIZE * 3 / 4)
990 #define DOMINO_GUTTER (TILESIZE / 16)
991 #define DOMINO_RADIUS (TILESIZE / 8)
992 #define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS)
993 #define CURSOR_RADIUS (TILESIZE / 4)
995 #define COORD(x) ( (x) * TILESIZE + BORDER )
996 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
998 struct game_drawstate
{
1001 unsigned long *visible
;
1004 static char *interpret_move(game_state
*state
, game_ui
*ui
, game_drawstate
*ds
,
1005 int x
, int y
, int button
)
1007 int w
= state
->w
, h
= state
->h
;
1011 * A left-click between two numbers toggles a domino covering
1012 * them. A right-click toggles an edge.
1014 if (button
== LEFT_BUTTON
|| button
== RIGHT_BUTTON
) {
1015 int tx
= FROMCOORD(x
), ty
= FROMCOORD(y
), t
= ty
*w
+tx
;
1019 if (tx
< 0 || tx
>= w
|| ty
< 0 || ty
>= h
)
1023 * Now we know which square the click was in, decide which
1024 * edge of the square it was closest to.
1026 dx
= 2 * (x
- COORD(tx
)) - TILESIZE
;
1027 dy
= 2 * (y
- COORD(ty
)) - TILESIZE
;
1029 if (abs(dx
) > abs(dy
) && dx
< 0 && tx
> 0)
1030 d1
= t
- 1, d2
= t
; /* clicked in right side of domino */
1031 else if (abs(dx
) > abs(dy
) && dx
> 0 && tx
+1 < w
)
1032 d1
= t
, d2
= t
+ 1; /* clicked in left side of domino */
1033 else if (abs(dy
) > abs(dx
) && dy
< 0 && ty
> 0)
1034 d1
= t
- w
, d2
= t
; /* clicked in bottom half of domino */
1035 else if (abs(dy
) > abs(dx
) && dy
> 0 && ty
+1 < h
)
1036 d1
= t
, d2
= t
+ w
; /* clicked in top half of domino */
1041 * We can't mark an edge next to any domino.
1043 if (button
== RIGHT_BUTTON
&&
1044 (state
->grid
[d1
] != d1
|| state
->grid
[d2
] != d2
))
1047 ui
->cur_visible
= 0;
1048 sprintf(buf
, "%c%d,%d", (int)(button
== RIGHT_BUTTON
? 'E' : 'D'), d1
, d2
);
1050 } else if (IS_CURSOR_MOVE(button
)) {
1051 ui
->cur_visible
= 1;
1053 move_cursor(button
, &ui
->cur_x
, &ui
->cur_y
, 2*w
-1, 2*h
-1, 0);
1056 } else if (IS_CURSOR_SELECT(button
)) {
1059 if (!((ui
->cur_x
^ ui
->cur_y
) & 1))
1060 return NULL
; /* must have exactly one dimension odd */
1061 d1
= (ui
->cur_y
/ 2) * w
+ (ui
->cur_x
/ 2);
1062 d2
= ((ui
->cur_y
+1) / 2) * w
+ ((ui
->cur_x
+1) / 2);
1065 * We can't mark an edge next to any domino.
1067 if (button
== CURSOR_SELECT2
&&
1068 (state
->grid
[d1
] != d1
|| state
->grid
[d2
] != d2
))
1071 sprintf(buf
, "%c%d,%d", (int)(button
== CURSOR_SELECT2
? 'E' : 'D'), d1
, d2
);
1078 static game_state
*execute_move(game_state
*state
, char *move
)
1080 int n
= state
->params
.n
, w
= n
+2, h
= n
+1, wh
= w
*h
;
1082 game_state
*ret
= dup_game(state
);
1085 if (move
[0] == 'S') {
1088 ret
->cheated
= TRUE
;
1091 * Clear the existing edges and domino placements. We
1092 * expect the S to be followed by other commands.
1094 for (i
= 0; i
< wh
; i
++) {
1099 } else if (move
[0] == 'D' &&
1100 sscanf(move
+1, "%d,%d%n", &d1
, &d2
, &p
) == 2 &&
1101 d1
>= 0 && d1
< wh
&& d2
>= 0 && d2
< wh
&& d1
< d2
) {
1104 * Toggle domino presence between d1 and d2.
1106 if (ret
->grid
[d1
] == d2
) {
1107 assert(ret
->grid
[d2
] == d1
);
1112 * Erase any dominoes that might overlap the new one.
1121 * Place the new one.
1127 * Destroy any edges lurking around it.
1129 if (ret
->edges
[d1
] & EDGE_L
) {
1130 assert(d1
- 1 >= 0);
1131 ret
->edges
[d1
- 1] &= ~EDGE_R
;
1133 if (ret
->edges
[d1
] & EDGE_R
) {
1134 assert(d1
+ 1 < wh
);
1135 ret
->edges
[d1
+ 1] &= ~EDGE_L
;
1137 if (ret
->edges
[d1
] & EDGE_T
) {
1138 assert(d1
- w
>= 0);
1139 ret
->edges
[d1
- w
] &= ~EDGE_B
;
1141 if (ret
->edges
[d1
] & EDGE_B
) {
1142 assert(d1
+ 1 < wh
);
1143 ret
->edges
[d1
+ w
] &= ~EDGE_T
;
1146 if (ret
->edges
[d2
] & EDGE_L
) {
1147 assert(d2
- 1 >= 0);
1148 ret
->edges
[d2
- 1] &= ~EDGE_R
;
1150 if (ret
->edges
[d2
] & EDGE_R
) {
1151 assert(d2
+ 1 < wh
);
1152 ret
->edges
[d2
+ 1] &= ~EDGE_L
;
1154 if (ret
->edges
[d2
] & EDGE_T
) {
1155 assert(d2
- w
>= 0);
1156 ret
->edges
[d2
- w
] &= ~EDGE_B
;
1158 if (ret
->edges
[d2
] & EDGE_B
) {
1159 assert(d2
+ 1 < wh
);
1160 ret
->edges
[d2
+ w
] &= ~EDGE_T
;
1166 } else if (move
[0] == 'E' &&
1167 sscanf(move
+1, "%d,%d%n", &d1
, &d2
, &p
) == 2 &&
1168 d1
>= 0 && d1
< wh
&& d2
>= 0 && d2
< wh
&& d1
< d2
&&
1169 ret
->grid
[d1
] == d1
&& ret
->grid
[d2
] == d2
) {
1172 * Toggle edge presence between d1 and d2.
1175 ret
->edges
[d1
] ^= EDGE_R
;
1176 ret
->edges
[d2
] ^= EDGE_L
;
1178 ret
->edges
[d1
] ^= EDGE_B
;
1179 ret
->edges
[d2
] ^= EDGE_T
;
1198 * After modifying the grid, check completion.
1200 if (!ret
->completed
) {
1202 unsigned char *used
= snewn(TRI(n
+1), unsigned char);
1204 memset(used
, 0, TRI(n
+1));
1205 for (i
= 0; i
< wh
; i
++)
1206 if (ret
->grid
[i
] > i
) {
1209 n1
= ret
->numbers
->numbers
[i
];
1210 n2
= ret
->numbers
->numbers
[ret
->grid
[i
]];
1212 di
= DINDEX(n1
, n2
);
1213 assert(di
>= 0 && di
< TRI(n
+1));
1222 if (ok
== DCOUNT(n
))
1223 ret
->completed
= TRUE
;
1229 /* ----------------------------------------------------------------------
1233 static void game_compute_size(game_params
*params
, int tilesize
,
1236 int n
= params
->n
, w
= n
+2, h
= n
+1;
1238 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1239 struct { int tilesize
; } ads
, *ds
= &ads
;
1240 ads
.tilesize
= tilesize
;
1242 *x
= w
* TILESIZE
+ 2*BORDER
;
1243 *y
= h
* TILESIZE
+ 2*BORDER
;
1246 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
1247 game_params
*params
, int tilesize
)
1249 ds
->tilesize
= tilesize
;
1252 static float *game_colours(frontend
*fe
, int *ncolours
)
1254 float *ret
= snewn(3 * NCOLOURS
, float);
1256 frontend_default_colour(fe
, &ret
[COL_BACKGROUND
* 3]);
1258 ret
[COL_TEXT
* 3 + 0] = 0.0F
;
1259 ret
[COL_TEXT
* 3 + 1] = 0.0F
;
1260 ret
[COL_TEXT
* 3 + 2] = 0.0F
;
1262 ret
[COL_DOMINO
* 3 + 0] = 0.0F
;
1263 ret
[COL_DOMINO
* 3 + 1] = 0.0F
;
1264 ret
[COL_DOMINO
* 3 + 2] = 0.0F
;
1266 ret
[COL_DOMINOCLASH
* 3 + 0] = 0.5F
;
1267 ret
[COL_DOMINOCLASH
* 3 + 1] = 0.0F
;
1268 ret
[COL_DOMINOCLASH
* 3 + 2] = 0.0F
;
1270 ret
[COL_DOMINOTEXT
* 3 + 0] = 1.0F
;
1271 ret
[COL_DOMINOTEXT
* 3 + 1] = 1.0F
;
1272 ret
[COL_DOMINOTEXT
* 3 + 2] = 1.0F
;
1274 ret
[COL_EDGE
* 3 + 0] = ret
[COL_BACKGROUND
* 3 + 0] * 2 / 3;
1275 ret
[COL_EDGE
* 3 + 1] = ret
[COL_BACKGROUND
* 3 + 1] * 2 / 3;
1276 ret
[COL_EDGE
* 3 + 2] = ret
[COL_BACKGROUND
* 3 + 2] * 2 / 3;
1278 *ncolours
= NCOLOURS
;
1282 static game_drawstate
*game_new_drawstate(drawing
*dr
, game_state
*state
)
1284 struct game_drawstate
*ds
= snew(struct game_drawstate
);
1287 ds
->started
= FALSE
;
1290 ds
->visible
= snewn(ds
->w
* ds
->h
, unsigned long);
1291 ds
->tilesize
= 0; /* not decided yet */
1292 for (i
= 0; i
< ds
->w
* ds
->h
; i
++)
1293 ds
->visible
[i
] = 0xFFFF;
1298 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
1313 /* These flags must be disjoint with:
1314 * the above enum (TYPE_*) [0x000 -- 0x00F]
1315 * EDGE_* [0x100 -- 0xF00]
1316 * and must fit into an unsigned long (32 bits).
1318 #define DF_FLASH 0x40
1319 #define DF_CLASH 0x80
1321 #define DF_CURSOR 0x01000
1322 #define DF_CURSOR_USEFUL 0x02000
1323 #define DF_CURSOR_XBASE 0x10000
1324 #define DF_CURSOR_XMASK 0x30000
1325 #define DF_CURSOR_YBASE 0x40000
1326 #define DF_CURSOR_YMASK 0xC0000
1328 #define CEDGE_OFF (TILESIZE / 8)
1329 #define IS_EMPTY(s,x,y) ((s)->grid[(y)*(s)->w+(x)] == ((y)*(s)->w+(x)))
1331 static void draw_tile(drawing
*dr
, game_drawstate
*ds
, game_state
*state
,
1332 int x
, int y
, int type
)
1334 int w
= state
->w
/*, h = state->h */;
1335 int cx
= COORD(x
), cy
= COORD(y
);
1340 clip(dr
, cx
, cy
, TILESIZE
, TILESIZE
);
1341 draw_rect(dr
, cx
, cy
, TILESIZE
, TILESIZE
, COL_BACKGROUND
);
1343 flags
= type
&~ TYPE_MASK
;
1346 if (type
!= TYPE_BLANK
) {
1350 * Draw one end of a domino. This is composed of:
1352 * - two filled circles (rounded corners)
1354 * - a slight shift in the number
1357 if (flags
& DF_CLASH
)
1358 bg
= COL_DOMINOCLASH
;
1361 nc
= COL_DOMINOTEXT
;
1363 if (flags
& DF_FLASH
) {
1369 if (type
== TYPE_L
|| type
== TYPE_T
)
1370 draw_circle(dr
, cx
+DOMINO_COFFSET
, cy
+DOMINO_COFFSET
,
1371 DOMINO_RADIUS
, bg
, bg
);
1372 if (type
== TYPE_R
|| type
== TYPE_T
)
1373 draw_circle(dr
, cx
+TILESIZE
-1-DOMINO_COFFSET
, cy
+DOMINO_COFFSET
,
1374 DOMINO_RADIUS
, bg
, bg
);
1375 if (type
== TYPE_L
|| type
== TYPE_B
)
1376 draw_circle(dr
, cx
+DOMINO_COFFSET
, cy
+TILESIZE
-1-DOMINO_COFFSET
,
1377 DOMINO_RADIUS
, bg
, bg
);
1378 if (type
== TYPE_R
|| type
== TYPE_B
)
1379 draw_circle(dr
, cx
+TILESIZE
-1-DOMINO_COFFSET
,
1380 cy
+TILESIZE
-1-DOMINO_COFFSET
,
1381 DOMINO_RADIUS
, bg
, bg
);
1383 for (i
= 0; i
< 2; i
++) {
1386 x1
= cx
+ (i
? DOMINO_GUTTER
: DOMINO_COFFSET
);
1387 y1
= cy
+ (i
? DOMINO_COFFSET
: DOMINO_GUTTER
);
1388 x2
= cx
+ TILESIZE
-1 - (i
? DOMINO_GUTTER
: DOMINO_COFFSET
);
1389 y2
= cy
+ TILESIZE
-1 - (i
? DOMINO_COFFSET
: DOMINO_GUTTER
);
1391 x2
= cx
+ TILESIZE
+ TILESIZE
/16;
1392 else if (type
== TYPE_R
)
1393 x1
= cx
- TILESIZE
/16;
1394 else if (type
== TYPE_T
)
1395 y2
= cy
+ TILESIZE
+ TILESIZE
/16;
1396 else if (type
== TYPE_B
)
1397 y1
= cy
- TILESIZE
/16;
1399 draw_rect(dr
, x1
, y1
, x2
-x1
+1, y2
-y1
+1, bg
);
1403 draw_rect(dr
, cx
+DOMINO_GUTTER
, cy
,
1404 TILESIZE
-2*DOMINO_GUTTER
, 1, COL_EDGE
);
1406 draw_rect(dr
, cx
+DOMINO_GUTTER
, cy
+TILESIZE
-1,
1407 TILESIZE
-2*DOMINO_GUTTER
, 1, COL_EDGE
);
1409 draw_rect(dr
, cx
, cy
+DOMINO_GUTTER
,
1410 1, TILESIZE
-2*DOMINO_GUTTER
, COL_EDGE
);
1412 draw_rect(dr
, cx
+TILESIZE
-1, cy
+DOMINO_GUTTER
,
1413 1, TILESIZE
-2*DOMINO_GUTTER
, COL_EDGE
);
1417 if (flags
& DF_CURSOR
) {
1418 int curx
= ((flags
& DF_CURSOR_XMASK
) / DF_CURSOR_XBASE
) & 3;
1419 int cury
= ((flags
& DF_CURSOR_YMASK
) / DF_CURSOR_YBASE
) & 3;
1420 int ox
= cx
+ curx
*TILESIZE
/2;
1421 int oy
= cy
+ cury
*TILESIZE
/2;
1423 draw_rect_corners(dr
, ox
, oy
, CURSOR_RADIUS
, nc
);
1424 if (flags
& DF_CURSOR_USEFUL
)
1425 draw_rect_corners(dr
, ox
, oy
, CURSOR_RADIUS
+1, nc
);
1428 sprintf(str
, "%d", state
->numbers
->numbers
[y
*w
+x
]);
1429 draw_text(dr
, cx
+TILESIZE
/2, cy
+TILESIZE
/2, FONT_VARIABLE
, TILESIZE
/2,
1430 ALIGN_HCENTRE
| ALIGN_VCENTRE
, nc
, str
);
1432 draw_update(dr
, cx
, cy
, TILESIZE
, TILESIZE
);
1436 static void game_redraw(drawing
*dr
, game_drawstate
*ds
, game_state
*oldstate
,
1437 game_state
*state
, int dir
, game_ui
*ui
,
1438 float animtime
, float flashtime
)
1440 int n
= state
->params
.n
, w
= state
->w
, h
= state
->h
, wh
= w
*h
;
1442 unsigned char *used
;
1446 game_compute_size(&state
->params
, TILESIZE
, &pw
, &ph
);
1447 draw_rect(dr
, 0, 0, pw
, ph
, COL_BACKGROUND
);
1448 draw_update(dr
, 0, 0, pw
, ph
);
1453 * See how many dominoes of each type there are, so we can
1454 * highlight clashes in red.
1456 used
= snewn(TRI(n
+1), unsigned char);
1457 memset(used
, 0, TRI(n
+1));
1458 for (i
= 0; i
< wh
; i
++)
1459 if (state
->grid
[i
] > i
) {
1462 n1
= state
->numbers
->numbers
[i
];
1463 n2
= state
->numbers
->numbers
[state
->grid
[i
]];
1465 di
= DINDEX(n1
, n2
);
1466 assert(di
>= 0 && di
< TRI(n
+1));
1472 for (y
= 0; y
< h
; y
++)
1473 for (x
= 0; x
< w
; x
++) {
1478 if (state
->grid
[n
] == n
-1)
1480 else if (state
->grid
[n
] == n
+1)
1482 else if (state
->grid
[n
] == n
-w
)
1484 else if (state
->grid
[n
] == n
+w
)
1489 if (c
!= TYPE_BLANK
) {
1490 n1
= state
->numbers
->numbers
[n
];
1491 n2
= state
->numbers
->numbers
[state
->grid
[n
]];
1492 di
= DINDEX(n1
, n2
);
1494 c
|= DF_CLASH
; /* highlight a clash */
1496 c
|= state
->edges
[n
];
1500 c
|= DF_FLASH
; /* we're flashing */
1502 if (ui
->cur_visible
) {
1503 unsigned curx
= (unsigned)(ui
->cur_x
- (2*x
-1));
1504 unsigned cury
= (unsigned)(ui
->cur_y
- (2*y
-1));
1505 if (curx
< 3 && cury
< 3) {
1507 (curx
* DF_CURSOR_XBASE
) |
1508 (cury
* DF_CURSOR_YBASE
));
1509 if ((ui
->cur_x
^ ui
->cur_y
) & 1)
1510 c
|= DF_CURSOR_USEFUL
;
1514 if (ds
->visible
[n
] != c
) {
1515 draw_tile(dr
, ds
, state
, x
, y
, c
);
1523 static float game_anim_length(game_state
*oldstate
, game_state
*newstate
,
1524 int dir
, game_ui
*ui
)
1529 static float game_flash_length(game_state
*oldstate
, game_state
*newstate
,
1530 int dir
, game_ui
*ui
)
1532 if (!oldstate
->completed
&& newstate
->completed
&&
1533 !oldstate
->cheated
&& !newstate
->cheated
)
1538 static int game_status(game_state
*state
)
1540 return state
->completed
? +1 : 0;
1543 static int game_timing_state(game_state
*state
, game_ui
*ui
)
1548 static void game_print_size(game_params
*params
, float *x
, float *y
)
1553 * I'll use 6mm squares by default.
1555 game_compute_size(params
, 600, &pw
, &ph
);
1560 static void game_print(drawing
*dr
, game_state
*state
, int tilesize
)
1562 int w
= state
->w
, h
= state
->h
;
1565 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1566 game_drawstate ads
, *ds
= &ads
;
1567 game_set_size(dr
, ds
, NULL
, tilesize
);
1569 c
= print_mono_colour(dr
, 1); assert(c
== COL_BACKGROUND
);
1570 c
= print_mono_colour(dr
, 0); assert(c
== COL_TEXT
);
1571 c
= print_mono_colour(dr
, 0); assert(c
== COL_DOMINO
);
1572 c
= print_mono_colour(dr
, 0); assert(c
== COL_DOMINOCLASH
);
1573 c
= print_mono_colour(dr
, 1); assert(c
== COL_DOMINOTEXT
);
1574 c
= print_mono_colour(dr
, 0); assert(c
== COL_EDGE
);
1576 for (y
= 0; y
< h
; y
++)
1577 for (x
= 0; x
< w
; x
++) {
1581 if (state
->grid
[n
] == n
-1)
1583 else if (state
->grid
[n
] == n
+1)
1585 else if (state
->grid
[n
] == n
-w
)
1587 else if (state
->grid
[n
] == n
+w
)
1592 draw_tile(dr
, ds
, state
, x
, y
, c
);
1597 #define thegame dominosa
1600 const struct game thegame
= {
1601 "Dominosa", "games.dominosa", "dominosa",
1608 TRUE
, game_configure
, custom_params
,
1616 FALSE
, game_can_format_as_text_now
, game_text_format
,
1624 PREFERRED_TILESIZE
, game_compute_size
, game_set_size
,
1627 game_free_drawstate
,
1632 TRUE
, FALSE
, game_print_size
, game_print
,
1633 FALSE
, /* wants_statusbar */
1634 FALSE
, game_timing_state
,
1638 /* vim: set shiftwidth=4 :set textwidth=80: */