Keyboard control patch for Twiddle, from James H.
[sgt-puzzles/ydirson.git] / flip.c
blobd7fbd8e241ef73a69ca0d89e8fcbe142f910cfef
1 /*
2 * flip.c: Puzzle involving lighting up all the squares on a grid,
3 * where each click toggles an overlapping set of lights.
4 */
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
13 #include "puzzles.h"
14 #include "tree234.h"
16 enum {
17 COL_BACKGROUND,
18 COL_WRONG,
19 COL_RIGHT,
20 COL_GRID,
21 COL_DIAG,
22 COL_HINT,
23 COL_CURSOR,
24 NCOLOURS
27 #define PREFERRED_TILE_SIZE 48
28 #define TILE_SIZE (ds->tilesize)
29 #define BORDER (TILE_SIZE / 2)
30 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
31 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
33 #define ANIM_TIME 0.25F
34 #define FLASH_FRAME 0.07F
37 * Possible ways to decide which lights are toggled by each click.
38 * Essentially, each of these describes a means of inventing a
39 * matrix over GF(2).
41 enum {
42 CROSSES, RANDOM
45 struct game_params {
46 int w, h;
47 int matrix_type;
51 * This structure is shared between all the game_states describing
52 * a particular game, so it's reference-counted.
54 struct matrix {
55 int refcount;
56 unsigned char *matrix; /* array of (w*h) by (w*h) */
59 struct game_state {
60 int w, h;
61 int moves, completed, cheated, hints_active;
62 unsigned char *grid; /* array of w*h */
63 struct matrix *matrix;
66 static game_params *default_params(void)
68 game_params *ret = snew(game_params);
70 ret->w = ret->h = 5;
71 ret->matrix_type = CROSSES;
73 return ret;
76 static const struct game_params flip_presets[] = {
77 {3, 3, CROSSES},
78 {4, 4, CROSSES},
79 {5, 5, CROSSES},
80 {3, 3, RANDOM},
81 {4, 4, RANDOM},
82 {5, 5, RANDOM},
85 static int game_fetch_preset(int i, char **name, game_params **params)
87 game_params *ret;
88 char str[80];
90 if (i < 0 || i >= lenof(flip_presets))
91 return FALSE;
93 ret = snew(game_params);
94 *ret = flip_presets[i];
96 sprintf(str, "%dx%d %s", ret->w, ret->h,
97 ret->matrix_type == CROSSES ? "Crosses" : "Random");
99 *name = dupstr(str);
100 *params = ret;
101 return TRUE;
104 static void free_params(game_params *params)
106 sfree(params);
109 static game_params *dup_params(game_params *params)
111 game_params *ret = snew(game_params);
112 *ret = *params; /* structure copy */
113 return ret;
116 static void decode_params(game_params *ret, char const *string)
118 ret->w = ret->h = atoi(string);
119 while (*string && isdigit((unsigned char)*string)) string++;
120 if (*string == 'x') {
121 string++;
122 ret->h = atoi(string);
123 while (*string && isdigit((unsigned char)*string)) string++;
125 if (*string == 'r') {
126 string++;
127 ret->matrix_type = RANDOM;
128 } else if (*string == 'c') {
129 string++;
130 ret->matrix_type = CROSSES;
134 static char *encode_params(game_params *params, int full)
136 char data[256];
138 sprintf(data, "%dx%d%s", params->w, params->h,
139 !full ? "" : params->matrix_type == CROSSES ? "c" : "r");
141 return dupstr(data);
144 static config_item *game_configure(game_params *params)
146 config_item *ret = snewn(4, config_item);
147 char buf[80];
149 ret[0].name = "Width";
150 ret[0].type = C_STRING;
151 sprintf(buf, "%d", params->w);
152 ret[0].sval = dupstr(buf);
153 ret[0].ival = 0;
155 ret[1].name = "Height";
156 ret[1].type = C_STRING;
157 sprintf(buf, "%d", params->h);
158 ret[1].sval = dupstr(buf);
159 ret[1].ival = 0;
161 ret[2].name = "Shape type";
162 ret[2].type = C_CHOICES;
163 ret[2].sval = ":Crosses:Random";
164 ret[2].ival = params->matrix_type;
166 ret[3].name = NULL;
167 ret[3].type = C_END;
168 ret[3].sval = NULL;
169 ret[3].ival = 0;
171 return ret;
174 static game_params *custom_params(config_item *cfg)
176 game_params *ret = snew(game_params);
178 ret->w = atoi(cfg[0].sval);
179 ret->h = atoi(cfg[1].sval);
180 ret->matrix_type = cfg[2].ival;
182 return ret;
185 static char *validate_params(game_params *params, int full)
187 if (params->w <= 0 || params->h <= 0)
188 return "Width and height must both be greater than zero";
189 return NULL;
192 static char *encode_bitmap(unsigned char *bmp, int len)
194 int slen = (len + 3) / 4;
195 char *ret;
196 int i;
198 ret = snewn(slen + 1, char);
199 for (i = 0; i < slen; i++) {
200 int j, v;
201 v = 0;
202 for (j = 0; j < 4; j++)
203 if (i*4+j < len && bmp[i*4+j])
204 v |= 8 >> j;
205 ret[i] = "0123456789abcdef"[v];
207 ret[slen] = '\0';
208 return ret;
211 static void decode_bitmap(unsigned char *bmp, int len, char *hex)
213 int slen = (len + 3) / 4;
214 int i;
216 for (i = 0; i < slen; i++) {
217 int j, v, c = hex[i];
218 if (c >= '0' && c <= '9')
219 v = c - '0';
220 else if (c >= 'A' && c <= 'F')
221 v = c - 'A' + 10;
222 else if (c >= 'a' && c <= 'f')
223 v = c - 'a' + 10;
224 else
225 v = 0; /* shouldn't happen */
226 for (j = 0; j < 4; j++) {
227 if (i*4+j < len) {
228 if (v & (8 >> j))
229 bmp[i*4+j] = 1;
230 else
231 bmp[i*4+j] = 0;
238 * Structure used during random matrix generation, and a compare
239 * function to permit storage in a tree234.
241 struct sq {
242 int cx, cy; /* coords of click square */
243 int x, y; /* coords of output square */
245 * Number of click squares which currently affect this output
246 * square.
248 int coverage;
250 * Number of output squares currently affected by this click
251 * square.
253 int ominosize;
255 #define SORT(field) do { \
256 if (a->field < b->field) \
257 return -1; \
258 else if (a->field > b->field) \
259 return +1; \
260 } while (0)
262 * Compare function for choosing the next square to add. We must
263 * sort by coverage, then by omino size, then everything else.
265 static int sqcmp_pick(void *av, void *bv)
267 struct sq *a = (struct sq *)av;
268 struct sq *b = (struct sq *)bv;
269 SORT(coverage);
270 SORT(ominosize);
271 SORT(cy);
272 SORT(cx);
273 SORT(y);
274 SORT(x);
275 return 0;
278 * Compare function for adjusting the coverage figures after a
279 * change. We sort first by coverage and output square, then by
280 * everything else.
282 static int sqcmp_cov(void *av, void *bv)
284 struct sq *a = (struct sq *)av;
285 struct sq *b = (struct sq *)bv;
286 SORT(coverage);
287 SORT(y);
288 SORT(x);
289 SORT(ominosize);
290 SORT(cy);
291 SORT(cx);
292 return 0;
295 * Compare function for adjusting the omino sizes after a change.
296 * We sort first by omino size and input square, then by everything
297 * else.
299 static int sqcmp_osize(void *av, void *bv)
301 struct sq *a = (struct sq *)av;
302 struct sq *b = (struct sq *)bv;
303 SORT(ominosize);
304 SORT(cy);
305 SORT(cx);
306 SORT(coverage);
307 SORT(y);
308 SORT(x);
309 return 0;
311 static void addsq(tree234 *t, int w, int h, int cx, int cy,
312 int x, int y, unsigned char *matrix)
314 int wh = w * h;
315 struct sq *sq;
316 int i;
318 if (x < 0 || x >= w || y < 0 || y >= h)
319 return;
320 if (abs(x-cx) > 1 || abs(y-cy) > 1)
321 return;
322 if (matrix[(cy*w+cx) * wh + y*w+x])
323 return;
325 sq = snew(struct sq);
326 sq->cx = cx;
327 sq->cy = cy;
328 sq->x = x;
329 sq->y = y;
330 sq->coverage = sq->ominosize = 0;
331 for (i = 0; i < wh; i++) {
332 if (matrix[i * wh + y*w+x])
333 sq->coverage++;
334 if (matrix[(cy*w+cx) * wh + i])
335 sq->ominosize++;
338 if (add234(t, sq) != sq)
339 sfree(sq); /* already there */
341 static void addneighbours(tree234 *t, int w, int h, int cx, int cy,
342 int x, int y, unsigned char *matrix)
344 addsq(t, w, h, cx, cy, x-1, y, matrix);
345 addsq(t, w, h, cx, cy, x+1, y, matrix);
346 addsq(t, w, h, cx, cy, x, y-1, matrix);
347 addsq(t, w, h, cx, cy, x, y+1, matrix);
350 static char *new_game_desc(game_params *params, random_state *rs,
351 char **aux, int interactive)
353 int w = params->w, h = params->h, wh = w * h;
354 int i, j;
355 unsigned char *matrix, *grid;
356 char *mbmp, *gbmp, *ret;
358 matrix = snewn(wh * wh, unsigned char);
359 grid = snewn(wh, unsigned char);
362 * First set up the matrix.
364 switch (params->matrix_type) {
365 case CROSSES:
366 for (i = 0; i < wh; i++) {
367 int ix = i % w, iy = i / w;
368 for (j = 0; j < wh; j++) {
369 int jx = j % w, jy = j / w;
370 if (abs(jx - ix) + abs(jy - iy) <= 1)
371 matrix[i*wh+j] = 1;
372 else
373 matrix[i*wh+j] = 0;
376 break;
377 case RANDOM:
378 while (1) {
379 tree234 *pick, *cov, *osize;
380 int limit;
382 pick = newtree234(sqcmp_pick);
383 cov = newtree234(sqcmp_cov);
384 osize = newtree234(sqcmp_osize);
386 memset(matrix, 0, wh * wh);
387 for (i = 0; i < wh; i++) {
388 matrix[i*wh+i] = 1;
391 for (i = 0; i < wh; i++) {
392 int ix = i % w, iy = i / w;
393 addneighbours(pick, w, h, ix, iy, ix, iy, matrix);
394 addneighbours(cov, w, h, ix, iy, ix, iy, matrix);
395 addneighbours(osize, w, h, ix, iy, ix, iy, matrix);
399 * Repeatedly choose a square to add to the matrix,
400 * until we have enough. I'll arbitrarily choose our
401 * limit to be the same as the total number of set bits
402 * in the crosses matrix.
404 limit = 4*wh - 2*(w+h); /* centre squares already present */
406 while (limit-- > 0) {
407 struct sq *sq, *sq2, sqlocal;
408 int k;
411 * Find the lowest element in the pick tree.
413 sq = index234(pick, 0);
416 * Find the highest element with the same coverage
417 * and omino size, by setting all other elements to
418 * lots.
420 sqlocal = *sq;
421 sqlocal.cx = sqlocal.cy = sqlocal.x = sqlocal.y = wh;
422 sq = findrelpos234(pick, &sqlocal, NULL, REL234_LT, &k);
423 assert(sq != 0);
426 * Pick at random from all elements up to k of the
427 * pick tree.
429 k = random_upto(rs, k+1);
430 sq = delpos234(pick, k);
431 del234(cov, sq);
432 del234(osize, sq);
435 * Add this square to the matrix.
437 matrix[(sq->cy * w + sq->cx) * wh + (sq->y * w + sq->x)] = 1;
440 * Correct the matrix coverage field of any sq
441 * which points at this output square.
443 sqlocal = *sq;
444 sqlocal.cx = sqlocal.cy = sqlocal.ominosize = -1;
445 while ((sq2 = findrel234(cov, &sqlocal, NULL,
446 REL234_GT)) != NULL &&
447 sq2->coverage == sq->coverage &&
448 sq2->x == sq->x && sq2->y == sq->y) {
449 del234(pick, sq2);
450 del234(cov, sq2);
451 del234(osize, sq2);
452 sq2->coverage++;
453 add234(pick, sq2);
454 add234(cov, sq2);
455 add234(osize, sq2);
459 * Correct the omino size field of any sq which
460 * points at this input square.
462 sqlocal = *sq;
463 sqlocal.x = sqlocal.y = sqlocal.coverage = -1;
464 while ((sq2 = findrel234(osize, &sqlocal, NULL,
465 REL234_GT)) != NULL &&
466 sq2->ominosize == sq->ominosize &&
467 sq2->cx == sq->cx && sq2->cy == sq->cy) {
468 del234(pick, sq2);
469 del234(cov, sq2);
470 del234(osize, sq2);
471 sq2->ominosize++;
472 add234(pick, sq2);
473 add234(cov, sq2);
474 add234(osize, sq2);
478 * The sq we actually picked out of the tree is
479 * finished with; but its neighbours now need to
480 * appear.
482 addneighbours(pick, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
483 addneighbours(cov, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
484 addneighbours(osize, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
485 sfree(sq);
489 * Free all remaining sq structures.
492 struct sq *sq;
493 while ((sq = delpos234(pick, 0)) != NULL)
494 sfree(sq);
496 freetree234(pick);
497 freetree234(cov);
498 freetree234(osize);
501 * Finally, check to see if any two matrix rows are
502 * exactly identical. If so, this is not an acceptable
503 * matrix, and we give up and go round again.
505 * I haven't been immediately able to think of a
506 * plausible means of algorithmically avoiding this
507 * situation (by, say, making a small perturbation to
508 * an offending matrix), so for the moment I'm just
509 * going to deal with it by throwing the whole thing
510 * away. I suspect this will lead to scalability
511 * problems (since most of the things happening in
512 * these matrices are local, the chance of _some_
513 * neighbourhood having two identical regions will
514 * increase with the grid area), but so far this puzzle
515 * seems to be really hard at large sizes so I'm not
516 * massively worried yet. Anyone needs this done
517 * better, they're welcome to submit a patch.
519 for (i = 0; i < wh; i++) {
520 for (j = 0; j < wh; j++)
521 if (i != j &&
522 !memcmp(matrix + i * wh, matrix + j * wh, wh))
523 break;
524 if (j < wh)
525 break;
527 if (i == wh)
528 break; /* no matches found */
530 break;
534 * Now invent a random initial set of lights.
536 * At first glance it looks as if it might be quite difficult
537 * to choose equiprobably from all soluble light sets. After
538 * all, soluble light sets are those in the image space of the
539 * transformation matrix; so first we'd have to identify that
540 * space and its dimension, then pick a random coordinate for
541 * each basis vector and recombine. Lot of fiddly matrix
542 * algebra there.
544 * However, vector spaces are nicely orthogonal and relieve us
545 * of all that difficulty. For every point in the image space,
546 * there are precisely as many points in the input space that
547 * map to it as there are elements in the kernel of the
548 * transformation matrix (because adding any kernel element to
549 * the input does not change the output, and because any two
550 * inputs mapping to the same output must differ by an element
551 * of the kernel because that's what the kernel _is_); and
552 * these cosets are all disjoint (obviously, since no input
553 * point can map to more than one output point) and cover the
554 * whole space (equally obviously, because no input point can
555 * map to fewer than one output point!).
557 * So the input space contains the same number of points for
558 * each point in the output space; thus, we can simply choose
559 * equiprobably from elements of the _input_ space, and filter
560 * the result through the transformation matrix in the obvious
561 * way, and we thereby guarantee to choose equiprobably from
562 * all the output points. Phew!
564 while (1) {
565 memset(grid, 0, wh);
566 for (i = 0; i < wh; i++) {
567 int v = random_upto(rs, 2);
568 if (v) {
569 for (j = 0; j < wh; j++)
570 grid[j] ^= matrix[i*wh+j];
574 * Ensure we don't have the starting state already!
576 for (i = 0; i < wh; i++)
577 if (grid[i])
578 break;
579 if (i < wh)
580 break;
584 * Now encode the matrix and the starting grid as a game
585 * description. We'll do this by concatenating two great big
586 * hex bitmaps.
588 mbmp = encode_bitmap(matrix, wh*wh);
589 gbmp = encode_bitmap(grid, wh);
590 ret = snewn(strlen(mbmp) + strlen(gbmp) + 2, char);
591 sprintf(ret, "%s,%s", mbmp, gbmp);
592 sfree(mbmp);
593 sfree(gbmp);
594 sfree(matrix);
595 sfree(grid);
596 return ret;
599 static char *validate_desc(game_params *params, char *desc)
601 int w = params->w, h = params->h, wh = w * h;
602 int mlen = (wh*wh+3)/4, glen = (wh+3)/4;
604 if (strspn(desc, "0123456789abcdefABCDEF") != mlen)
605 return "Matrix description is wrong length";
606 if (desc[mlen] != ',')
607 return "Expected comma after matrix description";
608 if (strspn(desc+mlen+1, "0123456789abcdefABCDEF") != glen)
609 return "Grid description is wrong length";
610 if (desc[mlen+1+glen])
611 return "Unexpected data after grid description";
613 return NULL;
616 static game_state *new_game(midend *me, game_params *params, char *desc)
618 int w = params->w, h = params->h, wh = w * h;
619 int mlen = (wh*wh+3)/4;
621 game_state *state = snew(game_state);
623 state->w = w;
624 state->h = h;
625 state->completed = FALSE;
626 state->cheated = FALSE;
627 state->hints_active = FALSE;
628 state->moves = 0;
629 state->matrix = snew(struct matrix);
630 state->matrix->refcount = 1;
631 state->matrix->matrix = snewn(wh*wh, unsigned char);
632 decode_bitmap(state->matrix->matrix, wh*wh, desc);
633 state->grid = snewn(wh, unsigned char);
634 decode_bitmap(state->grid, wh, desc + mlen + 1);
636 return state;
639 static game_state *dup_game(game_state *state)
641 game_state *ret = snew(game_state);
643 ret->w = state->w;
644 ret->h = state->h;
645 ret->completed = state->completed;
646 ret->cheated = state->cheated;
647 ret->hints_active = state->hints_active;
648 ret->moves = state->moves;
649 ret->matrix = state->matrix;
650 state->matrix->refcount++;
651 ret->grid = snewn(ret->w * ret->h, unsigned char);
652 memcpy(ret->grid, state->grid, ret->w * ret->h);
654 return ret;
657 static void free_game(game_state *state)
659 sfree(state->grid);
660 if (--state->matrix->refcount <= 0) {
661 sfree(state->matrix->matrix);
662 sfree(state->matrix);
664 sfree(state);
667 static void rowxor(unsigned char *row1, unsigned char *row2, int len)
669 int i;
670 for (i = 0; i < len; i++)
671 row1[i] ^= row2[i];
674 static char *solve_game(game_state *state, game_state *currstate,
675 char *aux, char **error)
677 int w = state->w, h = state->h, wh = w * h;
678 unsigned char *equations, *solution, *shortest;
679 int *und, nund;
680 int rowsdone, colsdone;
681 int i, j, k, len, bestlen;
682 char *ret;
685 * Set up a list of simultaneous equations. Each one is of
686 * length (wh+1) and has wh coefficients followed by a value.
688 equations = snewn((wh + 1) * wh, unsigned char);
689 for (i = 0; i < wh; i++) {
690 for (j = 0; j < wh; j++)
691 equations[i * (wh+1) + j] = currstate->matrix->matrix[j*wh+i];
692 equations[i * (wh+1) + wh] = currstate->grid[i] & 1;
696 * Perform Gaussian elimination over GF(2).
698 rowsdone = colsdone = 0;
699 nund = 0;
700 und = snewn(wh, int);
701 do {
703 * Find the leftmost column which has a 1 in it somewhere
704 * outside the first `rowsdone' rows.
706 j = -1;
707 for (i = colsdone; i < wh; i++) {
708 for (j = rowsdone; j < wh; j++)
709 if (equations[j * (wh+1) + i])
710 break;
711 if (j < wh)
712 break; /* found one */
714 * This is a column which will not have an equation
715 * controlling it. Mark it as undetermined.
717 und[nund++] = i;
721 * If there wasn't one, then we've finished: all remaining
722 * equations are of the form 0 = constant. Check to see if
723 * any of them wants 0 to be equal to 1; this is the
724 * condition which indicates an insoluble problem
725 * (therefore _hopefully_ one typed in by a user!).
727 if (i == wh) {
728 for (j = rowsdone; j < wh; j++)
729 if (equations[j * (wh+1) + wh]) {
730 *error = "No solution exists for this position";
731 sfree(equations);
732 sfree(und);
733 return NULL;
735 break;
739 * We've found a 1. It's in column i, and the topmost 1 in
740 * that column is in row j. Do a row-XOR to move it up to
741 * the topmost row if it isn't already there.
743 assert(j != -1);
744 if (j > rowsdone)
745 rowxor(equations + rowsdone*(wh+1), equations + j*(wh+1), wh+1);
748 * Do row-XORs to eliminate that 1 from all rows below the
749 * topmost row.
751 for (j = rowsdone + 1; j < wh; j++)
752 if (equations[j*(wh+1) + i])
753 rowxor(equations + j*(wh+1),
754 equations + rowsdone*(wh+1), wh+1);
757 * Mark this row and column as done.
759 rowsdone++;
760 colsdone = i+1;
763 * If we've done all the rows, terminate.
765 } while (rowsdone < wh);
768 * If we reach here, we have the ability to produce a solution.
769 * So we go through _all_ possible solutions (each
770 * corresponding to a set of arbitrary choices of those
771 * components not directly determined by an equation), and pick
772 * one requiring the smallest number of flips.
774 solution = snewn(wh, unsigned char);
775 shortest = snewn(wh, unsigned char);
776 memset(solution, 0, wh);
777 bestlen = wh + 1;
778 while (1) {
780 * Find a solution based on the current values of the
781 * undetermined variables.
783 for (j = rowsdone; j-- ;) {
784 int v;
787 * Find the leftmost set bit in this equation.
789 for (i = 0; i < wh; i++)
790 if (equations[j * (wh+1) + i])
791 break;
792 assert(i < wh); /* there must have been one! */
795 * Compute this variable using the rest.
797 v = equations[j * (wh+1) + wh];
798 for (k = i+1; k < wh; k++)
799 if (equations[j * (wh+1) + k])
800 v ^= solution[k];
802 solution[i] = v;
806 * Compare this solution to the current best one, and
807 * replace the best one if this one is shorter.
809 len = 0;
810 for (i = 0; i < wh; i++)
811 if (solution[i])
812 len++;
813 if (len < bestlen) {
814 bestlen = len;
815 memcpy(shortest, solution, wh);
819 * Now increment the binary number given by the
820 * undetermined variables: turn all 1s into 0s until we see
821 * a 0, at which point we turn it into a 1.
823 for (i = 0; i < nund; i++) {
824 solution[und[i]] = !solution[und[i]];
825 if (solution[und[i]])
826 break;
830 * If we didn't find a 0 at any point, we have wrapped
831 * round and are back at the start, i.e. we have enumerated
832 * all solutions.
834 if (i == nund)
835 break;
839 * We have a solution. Produce a move string encoding the
840 * solution.
842 ret = snewn(wh + 2, char);
843 ret[0] = 'S';
844 for (i = 0; i < wh; i++)
845 ret[i+1] = shortest[i] ? '1' : '0';
846 ret[wh+1] = '\0';
848 sfree(shortest);
849 sfree(solution);
850 sfree(equations);
851 sfree(und);
853 return ret;
856 static int game_can_format_as_text_now(game_params *params)
858 return TRUE;
861 static char *game_text_format(game_state *state)
863 return NULL;
866 struct game_ui {
867 int cx, cy, cdraw;
870 static game_ui *new_ui(game_state *state)
872 game_ui *ui = snew(game_ui);
873 ui->cx = ui->cy = ui->cdraw = 0;
874 return ui;
877 static void free_ui(game_ui *ui)
879 sfree(ui);
882 static char *encode_ui(game_ui *ui)
884 return NULL;
887 static void decode_ui(game_ui *ui, char *encoding)
891 static void game_changed_state(game_ui *ui, game_state *oldstate,
892 game_state *newstate)
896 struct game_drawstate {
897 int w, h, started;
898 unsigned char *tiles;
899 int tilesize;
902 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
903 int x, int y, int button)
905 int w = state->w, h = state->h, wh = w * h;
906 char buf[80], *nullret = NULL;
908 if (button == LEFT_BUTTON || IS_CURSOR_SELECT(button)) {
909 int tx, ty;
910 if (button == LEFT_BUTTON) {
911 tx = FROMCOORD(x), ty = FROMCOORD(y);
912 ui->cdraw = 0;
913 } else {
914 tx = ui->cx; ty = ui->cy;
915 ui->cdraw = 1;
917 nullret = "";
919 if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
921 * It's just possible that a manually entered game ID
922 * will have at least one square do nothing whatsoever.
923 * If so, we avoid encoding a move at all.
925 int i = ty*w+tx, j, makemove = FALSE;
926 for (j = 0; j < wh; j++) {
927 if (state->matrix->matrix[i*wh+j])
928 makemove = TRUE;
930 if (makemove) {
931 sprintf(buf, "M%d,%d", tx, ty);
932 return dupstr(buf);
933 } else {
934 return NULL;
938 else if (IS_CURSOR_MOVE(button)) {
939 int dx = 0, dy = 0;
940 switch (button) {
941 case CURSOR_UP: dy = -1; break;
942 case CURSOR_DOWN: dy = 1; break;
943 case CURSOR_RIGHT: dx = 1; break;
944 case CURSOR_LEFT: dx = -1; break;
945 default: assert(!"shouldn't get here");
947 ui->cx += dx; ui->cy += dy;
948 ui->cx = min(max(ui->cx, 0), state->w - 1);
949 ui->cy = min(max(ui->cy, 0), state->h - 1);
950 ui->cdraw = 1;
951 nullret = "";
954 return nullret;
957 static game_state *execute_move(game_state *from, char *move)
959 int w = from->w, h = from->h, wh = w * h;
960 game_state *ret;
961 int x, y;
963 if (move[0] == 'S' && strlen(move) == wh+1) {
964 int i;
966 ret = dup_game(from);
967 ret->hints_active = TRUE;
968 ret->cheated = TRUE;
969 for (i = 0; i < wh; i++) {
970 ret->grid[i] &= ~2;
971 if (move[i+1] != '0')
972 ret->grid[i] |= 2;
974 return ret;
975 } else if (move[0] == 'M' &&
976 sscanf(move+1, "%d,%d", &x, &y) == 2 &&
977 x >= 0 && x < w && y >= 0 && y < h) {
978 int i, j, done;
980 ret = dup_game(from);
982 if (!ret->completed)
983 ret->moves++;
985 i = y * w + x;
987 done = TRUE;
988 for (j = 0; j < wh; j++) {
989 ret->grid[j] ^= ret->matrix->matrix[i*wh+j];
990 if (ret->grid[j] & 1)
991 done = FALSE;
993 ret->grid[i] ^= 2; /* toggle hint */
994 if (done) {
995 ret->completed = TRUE;
996 ret->hints_active = FALSE;
999 return ret;
1000 } else
1001 return NULL; /* can't parse move string */
1004 /* ----------------------------------------------------------------------
1005 * Drawing routines.
1008 static void game_compute_size(game_params *params, int tilesize,
1009 int *x, int *y)
1011 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1012 struct { int tilesize; } ads, *ds = &ads;
1013 ads.tilesize = tilesize;
1015 *x = TILE_SIZE * params->w + 2 * BORDER;
1016 *y = TILE_SIZE * params->h + 2 * BORDER;
1019 static void game_set_size(drawing *dr, game_drawstate *ds,
1020 game_params *params, int tilesize)
1022 ds->tilesize = tilesize;
1025 static float *game_colours(frontend *fe, int *ncolours)
1027 float *ret = snewn(3 * NCOLOURS, float);
1029 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1031 ret[COL_WRONG * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 3;
1032 ret[COL_WRONG * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 3;
1033 ret[COL_WRONG * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 3;
1035 ret[COL_RIGHT * 3 + 0] = 1.0F;
1036 ret[COL_RIGHT * 3 + 1] = 1.0F;
1037 ret[COL_RIGHT * 3 + 2] = 1.0F;
1039 ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 1.5F;
1040 ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 1.5F;
1041 ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 1.5F;
1043 ret[COL_DIAG * 3 + 0] = ret[COL_GRID * 3 + 0];
1044 ret[COL_DIAG * 3 + 1] = ret[COL_GRID * 3 + 1];
1045 ret[COL_DIAG * 3 + 2] = ret[COL_GRID * 3 + 2];
1047 ret[COL_HINT * 3 + 0] = 1.0F;
1048 ret[COL_HINT * 3 + 1] = 0.0F;
1049 ret[COL_HINT * 3 + 2] = 0.0F;
1051 ret[COL_CURSOR * 3 + 0] = 0.8F;
1052 ret[COL_CURSOR * 3 + 1] = 0.0F;
1053 ret[COL_CURSOR * 3 + 2] = 0.0F;
1055 *ncolours = NCOLOURS;
1056 return ret;
1059 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1061 struct game_drawstate *ds = snew(struct game_drawstate);
1062 int i;
1064 ds->started = FALSE;
1065 ds->w = state->w;
1066 ds->h = state->h;
1067 ds->tiles = snewn(ds->w*ds->h, unsigned char);
1068 ds->tilesize = 0; /* haven't decided yet */
1069 for (i = 0; i < ds->w*ds->h; i++)
1070 ds->tiles[i] = -1;
1072 return ds;
1075 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1077 sfree(ds->tiles);
1078 sfree(ds);
1081 static void draw_tile(drawing *dr, game_drawstate *ds,
1082 game_state *state, int x, int y, int tile, int anim,
1083 float animtime)
1085 int w = ds->w, h = ds->h, wh = w * h;
1086 int bx = x * TILE_SIZE + BORDER, by = y * TILE_SIZE + BORDER;
1087 int i, j, dcol = (tile & 4) ? COL_CURSOR : COL_DIAG;
1089 clip(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
1091 draw_rect(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1,
1092 anim ? COL_BACKGROUND : tile & 1 ? COL_WRONG : COL_RIGHT);
1093 if (anim) {
1095 * Draw a polygon indicating that the square is diagonally
1096 * flipping over.
1098 int coords[8], colour;
1100 coords[0] = bx + TILE_SIZE;
1101 coords[1] = by;
1102 coords[2] = bx + (int)((float)TILE_SIZE * animtime);
1103 coords[3] = by + (int)((float)TILE_SIZE * animtime);
1104 coords[4] = bx;
1105 coords[5] = by + TILE_SIZE;
1106 coords[6] = bx + TILE_SIZE - (int)((float)TILE_SIZE * animtime);
1107 coords[7] = by + TILE_SIZE - (int)((float)TILE_SIZE * animtime);
1109 colour = (tile & 1 ? COL_WRONG : COL_RIGHT);
1110 if (animtime < 0.5)
1111 colour = COL_WRONG + COL_RIGHT - colour;
1113 draw_polygon(dr, coords, 4, colour, COL_GRID);
1117 * Draw a little diagram in the tile which indicates which
1118 * surrounding tiles flip when this one is clicked.
1120 for (i = 0; i < h; i++)
1121 for (j = 0; j < w; j++)
1122 if (state->matrix->matrix[(y*w+x)*wh + i*w+j]) {
1123 int ox = j - x, oy = i - y;
1124 int td = TILE_SIZE / 16;
1125 int cx = (bx + TILE_SIZE/2) + (2 * ox - 1) * td;
1126 int cy = (by + TILE_SIZE/2) + (2 * oy - 1) * td;
1127 if (ox == 0 && oy == 0)
1128 draw_rect(dr, cx, cy, 2*td+1, 2*td+1, dcol);
1129 else {
1130 draw_line(dr, cx, cy, cx+2*td, cy, dcol);
1131 draw_line(dr, cx, cy+2*td, cx+2*td, cy+2*td, dcol);
1132 draw_line(dr, cx, cy, cx, cy+2*td, dcol);
1133 draw_line(dr, cx+2*td, cy, cx+2*td, cy+2*td, dcol);
1138 * Draw a hint rectangle if required.
1140 if (tile & 2) {
1141 int x1 = bx + TILE_SIZE / 20, x2 = bx + TILE_SIZE - TILE_SIZE / 20;
1142 int y1 = by + TILE_SIZE / 20, y2 = by + TILE_SIZE - TILE_SIZE / 20;
1143 int i = 3;
1144 while (i--) {
1145 draw_line(dr, x1, y1, x2, y1, COL_HINT);
1146 draw_line(dr, x1, y2, x2, y2, COL_HINT);
1147 draw_line(dr, x1, y1, x1, y2, COL_HINT);
1148 draw_line(dr, x2, y1, x2, y2, COL_HINT);
1149 x1++, y1++, x2--, y2--;
1153 unclip(dr);
1155 draw_update(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
1158 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1159 game_state *state, int dir, game_ui *ui,
1160 float animtime, float flashtime)
1162 int w = ds->w, h = ds->h, wh = w * h;
1163 int i, flashframe;
1165 if (!ds->started) {
1166 draw_rect(dr, 0, 0, TILE_SIZE * w + 2 * BORDER,
1167 TILE_SIZE * h + 2 * BORDER, COL_BACKGROUND);
1170 * Draw the grid lines.
1172 for (i = 0; i <= w; i++)
1173 draw_line(dr, i * TILE_SIZE + BORDER, BORDER,
1174 i * TILE_SIZE + BORDER, h * TILE_SIZE + BORDER,
1175 COL_GRID);
1176 for (i = 0; i <= h; i++)
1177 draw_line(dr, BORDER, i * TILE_SIZE + BORDER,
1178 w * TILE_SIZE + BORDER, i * TILE_SIZE + BORDER,
1179 COL_GRID);
1181 draw_update(dr, 0, 0, TILE_SIZE * w + 2 * BORDER,
1182 TILE_SIZE * h + 2 * BORDER);
1184 ds->started = TRUE;
1187 if (flashtime)
1188 flashframe = (int)(flashtime / FLASH_FRAME);
1189 else
1190 flashframe = -1;
1192 animtime /= ANIM_TIME; /* scale it so it goes from 0 to 1 */
1194 for (i = 0; i < wh; i++) {
1195 int x = i % w, y = i / w;
1196 int fx, fy, fd;
1197 int v = state->grid[i];
1198 int vv;
1200 if (flashframe >= 0) {
1201 fx = (w+1)/2 - min(x+1, w-x);
1202 fy = (h+1)/2 - min(y+1, h-y);
1203 fd = max(fx, fy);
1204 if (fd == flashframe)
1205 v |= 1;
1206 else if (fd == flashframe - 1)
1207 v &= ~1;
1210 if (!state->hints_active)
1211 v &= ~2;
1212 if (ui->cdraw && ui->cx == x && ui->cy == y)
1213 v |= 4;
1215 if (oldstate && ((state->grid[i] ^ oldstate->grid[i]) &~ 2))
1216 vv = 255; /* means `animated' */
1217 else
1218 vv = v;
1220 if (ds->tiles[i] == 255 || vv == 255 || ds->tiles[i] != vv) {
1221 draw_tile(dr, ds, state, x, y, v, vv == 255, animtime);
1222 ds->tiles[i] = vv;
1227 char buf[256];
1229 sprintf(buf, "%sMoves: %d",
1230 (state->completed ?
1231 (state->cheated ? "Auto-solved. " : "COMPLETED! ") :
1232 (state->cheated ? "Auto-solver used. " : "")),
1233 state->moves);
1235 status_bar(dr, buf);
1239 static float game_anim_length(game_state *oldstate, game_state *newstate,
1240 int dir, game_ui *ui)
1242 return ANIM_TIME;
1245 static float game_flash_length(game_state *oldstate, game_state *newstate,
1246 int dir, game_ui *ui)
1248 if (!oldstate->completed && newstate->completed)
1249 return FLASH_FRAME * (max((newstate->w+1)/2, (newstate->h+1)/2)+1);
1251 return 0.0F;
1254 static int game_timing_state(game_state *state, game_ui *ui)
1256 return TRUE;
1259 static void game_print_size(game_params *params, float *x, float *y)
1263 static void game_print(drawing *dr, game_state *state, int tilesize)
1267 #ifdef COMBINED
1268 #define thegame flip
1269 #endif
1271 const struct game thegame = {
1272 "Flip", "games.flip", "flip",
1273 default_params,
1274 game_fetch_preset,
1275 decode_params,
1276 encode_params,
1277 free_params,
1278 dup_params,
1279 TRUE, game_configure, custom_params,
1280 validate_params,
1281 new_game_desc,
1282 validate_desc,
1283 new_game,
1284 dup_game,
1285 free_game,
1286 TRUE, solve_game,
1287 FALSE, game_can_format_as_text_now, game_text_format,
1288 new_ui,
1289 free_ui,
1290 encode_ui,
1291 decode_ui,
1292 game_changed_state,
1293 interpret_move,
1294 execute_move,
1295 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1296 game_colours,
1297 game_new_drawstate,
1298 game_free_drawstate,
1299 game_redraw,
1300 game_anim_length,
1301 game_flash_length,
1302 FALSE, FALSE, game_print_size, game_print,
1303 TRUE, /* wants_statusbar */
1304 FALSE, game_timing_state,
1305 0, /* flags */