move hmac setting to flags on cipher context
[sqlcipher.git] / src / sqliteInt.h
blob953850eee4572b38304fff85a1dd983679d0a3ae
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
19 ** These #defines should enable >2GB file support on POSIX if the
20 ** underlying operating system supports it. If the OS lacks
21 ** large file support, or if the OS is windows, these should be no-ops.
23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
24 ** system #includes. Hence, this block of code must be the very first
25 ** code in all source files.
27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
28 ** on the compiler command line. This is necessary if you are compiling
29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
31 ** without this option, LFS is enable. But LFS does not exist in the kernel
32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
33 ** portability you should omit LFS.
35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
37 #ifndef SQLITE_DISABLE_LFS
38 # define _LARGE_FILE 1
39 # ifndef _FILE_OFFSET_BITS
40 # define _FILE_OFFSET_BITS 64
41 # endif
42 # define _LARGEFILE_SOURCE 1
43 #endif
46 ** Include the configuration header output by 'configure' if we're using the
47 ** autoconf-based build
49 #ifdef _HAVE_SQLITE_CONFIG_H
50 #include "config.h"
51 #endif
53 #include "sqliteLimit.h"
55 /* Disable nuisance warnings on Borland compilers */
56 #if defined(__BORLANDC__)
57 #pragma warn -rch /* unreachable code */
58 #pragma warn -ccc /* Condition is always true or false */
59 #pragma warn -aus /* Assigned value is never used */
60 #pragma warn -csu /* Comparing signed and unsigned */
61 #pragma warn -spa /* Suspicious pointer arithmetic */
62 #endif
64 /* Needed for various definitions... */
65 #ifndef _GNU_SOURCE
66 # define _GNU_SOURCE
67 #endif
70 ** Include standard header files as necessary
72 #ifdef HAVE_STDINT_H
73 #include <stdint.h>
74 #endif
75 #ifdef HAVE_INTTYPES_H
76 #include <inttypes.h>
77 #endif
80 ** The following macros are used to cast pointers to integers and
81 ** integers to pointers. The way you do this varies from one compiler
82 ** to the next, so we have developed the following set of #if statements
83 ** to generate appropriate macros for a wide range of compilers.
85 ** The correct "ANSI" way to do this is to use the intptr_t type.
86 ** Unfortunately, that typedef is not available on all compilers, or
87 ** if it is available, it requires an #include of specific headers
88 ** that vary from one machine to the next.
90 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
91 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
92 ** So we have to define the macros in different ways depending on the
93 ** compiler.
95 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */
96 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X))
97 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X))
98 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */
99 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
100 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
101 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */
102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
104 #else /* Generates a warning - but it always works */
105 # define SQLITE_INT_TO_PTR(X) ((void*)(X))
106 # define SQLITE_PTR_TO_INT(X) ((int)(X))
107 #endif
110 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
111 ** 0 means mutexes are permanently disable and the library is never
112 ** threadsafe. 1 means the library is serialized which is the highest
113 ** level of threadsafety. 2 means the libary is multithreaded - multiple
114 ** threads can use SQLite as long as no two threads try to use the same
115 ** database connection at the same time.
117 ** Older versions of SQLite used an optional THREADSAFE macro.
118 ** We support that for legacy.
120 #if !defined(SQLITE_THREADSAFE)
121 #if defined(THREADSAFE)
122 # define SQLITE_THREADSAFE THREADSAFE
123 #else
124 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
125 #endif
126 #endif
129 ** Powersafe overwrite is on by default. But can be turned off using
130 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
132 #ifndef SQLITE_POWERSAFE_OVERWRITE
133 # define SQLITE_POWERSAFE_OVERWRITE 1
134 #endif
137 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
138 ** It determines whether or not the features related to
139 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
140 ** be overridden at runtime using the sqlite3_config() API.
142 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
143 # define SQLITE_DEFAULT_MEMSTATUS 1
144 #endif
147 ** Exactly one of the following macros must be defined in order to
148 ** specify which memory allocation subsystem to use.
150 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
151 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API
152 ** SQLITE_MEMDEBUG // Debugging version of system malloc()
154 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
155 ** assert() macro is enabled, each call into the Win32 native heap subsystem
156 ** will cause HeapValidate to be called. If heap validation should fail, an
157 ** assertion will be triggered.
159 ** (Historical note: There used to be several other options, but we've
160 ** pared it down to just these three.)
162 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
163 ** the default.
165 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)>1
166 # error "At most one of the following compile-time configuration options\
167 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG"
168 #endif
169 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)==0
170 # define SQLITE_SYSTEM_MALLOC 1
171 #endif
174 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
175 ** sizes of memory allocations below this value where possible.
177 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
178 # define SQLITE_MALLOC_SOFT_LIMIT 1024
179 #endif
182 ** We need to define _XOPEN_SOURCE as follows in order to enable
183 ** recursive mutexes on most Unix systems. But Mac OS X is different.
184 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
185 ** so it is omitted there. See ticket #2673.
187 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
188 ** implemented on some systems. So we avoid defining it at all
189 ** if it is already defined or if it is unneeded because we are
190 ** not doing a threadsafe build. Ticket #2681.
192 ** See also ticket #2741.
194 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
195 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
196 #endif
199 ** The TCL headers are only needed when compiling the TCL bindings.
201 #if defined(SQLITE_TCL) || defined(TCLSH)
202 # include <tcl.h>
203 #endif
206 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
207 ** Setting NDEBUG makes the code smaller and run faster. So the following
208 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
209 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
210 ** feature.
212 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
213 # define NDEBUG 1
214 #endif
217 ** The testcase() macro is used to aid in coverage testing. When
218 ** doing coverage testing, the condition inside the argument to
219 ** testcase() must be evaluated both true and false in order to
220 ** get full branch coverage. The testcase() macro is inserted
221 ** to help ensure adequate test coverage in places where simple
222 ** condition/decision coverage is inadequate. For example, testcase()
223 ** can be used to make sure boundary values are tested. For
224 ** bitmask tests, testcase() can be used to make sure each bit
225 ** is significant and used at least once. On switch statements
226 ** where multiple cases go to the same block of code, testcase()
227 ** can insure that all cases are evaluated.
230 #ifdef SQLITE_COVERAGE_TEST
231 void sqlite3Coverage(int);
232 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
233 #else
234 # define testcase(X)
235 #endif
238 ** The TESTONLY macro is used to enclose variable declarations or
239 ** other bits of code that are needed to support the arguments
240 ** within testcase() and assert() macros.
242 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
243 # define TESTONLY(X) X
244 #else
245 # define TESTONLY(X)
246 #endif
249 ** Sometimes we need a small amount of code such as a variable initialization
250 ** to setup for a later assert() statement. We do not want this code to
251 ** appear when assert() is disabled. The following macro is therefore
252 ** used to contain that setup code. The "VVA" acronym stands for
253 ** "Verification, Validation, and Accreditation". In other words, the
254 ** code within VVA_ONLY() will only run during verification processes.
256 #ifndef NDEBUG
257 # define VVA_ONLY(X) X
258 #else
259 # define VVA_ONLY(X)
260 #endif
263 ** The ALWAYS and NEVER macros surround boolean expressions which
264 ** are intended to always be true or false, respectively. Such
265 ** expressions could be omitted from the code completely. But they
266 ** are included in a few cases in order to enhance the resilience
267 ** of SQLite to unexpected behavior - to make the code "self-healing"
268 ** or "ductile" rather than being "brittle" and crashing at the first
269 ** hint of unplanned behavior.
271 ** In other words, ALWAYS and NEVER are added for defensive code.
273 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
274 ** be true and false so that the unreachable code then specify will
275 ** not be counted as untested code.
277 #if defined(SQLITE_COVERAGE_TEST)
278 # define ALWAYS(X) (1)
279 # define NEVER(X) (0)
280 #elif !defined(NDEBUG)
281 # define ALWAYS(X) ((X)?1:(assert(0),0))
282 # define NEVER(X) ((X)?(assert(0),1):0)
283 #else
284 # define ALWAYS(X) (X)
285 # define NEVER(X) (X)
286 #endif
289 ** Return true (non-zero) if the input is a integer that is too large
290 ** to fit in 32-bits. This macro is used inside of various testcase()
291 ** macros to verify that we have tested SQLite for large-file support.
293 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0)
296 ** The macro unlikely() is a hint that surrounds a boolean
297 ** expression that is usually false. Macro likely() surrounds
298 ** a boolean expression that is usually true. GCC is able to
299 ** use these hints to generate better code, sometimes.
301 #if defined(__GNUC__) && 0
302 # define likely(X) __builtin_expect((X),1)
303 # define unlikely(X) __builtin_expect((X),0)
304 #else
305 # define likely(X) !!(X)
306 # define unlikely(X) !!(X)
307 #endif
309 #include "sqlite3.h"
310 #include "hash.h"
311 #include "parse.h"
312 #include <stdio.h>
313 #include <stdlib.h>
314 #include <string.h>
315 #include <assert.h>
316 #include <stddef.h>
319 ** If compiling for a processor that lacks floating point support,
320 ** substitute integer for floating-point
322 #ifdef SQLITE_OMIT_FLOATING_POINT
323 # define double sqlite_int64
324 # define float sqlite_int64
325 # define LONGDOUBLE_TYPE sqlite_int64
326 # ifndef SQLITE_BIG_DBL
327 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
328 # endif
329 # define SQLITE_OMIT_DATETIME_FUNCS 1
330 # define SQLITE_OMIT_TRACE 1
331 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
332 # undef SQLITE_HAVE_ISNAN
333 #endif
334 #ifndef SQLITE_BIG_DBL
335 # define SQLITE_BIG_DBL (1e99)
336 #endif
339 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
340 ** afterward. Having this macro allows us to cause the C compiler
341 ** to omit code used by TEMP tables without messy #ifndef statements.
343 #ifdef SQLITE_OMIT_TEMPDB
344 #define OMIT_TEMPDB 1
345 #else
346 #define OMIT_TEMPDB 0
347 #endif
350 ** The "file format" number is an integer that is incremented whenever
351 ** the VDBE-level file format changes. The following macros define the
352 ** the default file format for new databases and the maximum file format
353 ** that the library can read.
355 #define SQLITE_MAX_FILE_FORMAT 4
356 #ifndef SQLITE_DEFAULT_FILE_FORMAT
357 # define SQLITE_DEFAULT_FILE_FORMAT 4
358 #endif
361 ** Determine whether triggers are recursive by default. This can be
362 ** changed at run-time using a pragma.
364 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
365 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
366 #endif
369 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
370 ** on the command-line
372 #ifndef SQLITE_TEMP_STORE
373 # define SQLITE_TEMP_STORE 1
374 #endif
377 ** GCC does not define the offsetof() macro so we'll have to do it
378 ** ourselves.
380 #ifndef offsetof
381 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
382 #endif
385 ** Check to see if this machine uses EBCDIC. (Yes, believe it or
386 ** not, there are still machines out there that use EBCDIC.)
388 #if 'A' == '\301'
389 # define SQLITE_EBCDIC 1
390 #else
391 # define SQLITE_ASCII 1
392 #endif
395 ** Integers of known sizes. These typedefs might change for architectures
396 ** where the sizes very. Preprocessor macros are available so that the
397 ** types can be conveniently redefined at compile-type. Like this:
399 ** cc '-DUINTPTR_TYPE=long long int' ...
401 #ifndef UINT32_TYPE
402 # ifdef HAVE_UINT32_T
403 # define UINT32_TYPE uint32_t
404 # else
405 # define UINT32_TYPE unsigned int
406 # endif
407 #endif
408 #ifndef UINT16_TYPE
409 # ifdef HAVE_UINT16_T
410 # define UINT16_TYPE uint16_t
411 # else
412 # define UINT16_TYPE unsigned short int
413 # endif
414 #endif
415 #ifndef INT16_TYPE
416 # ifdef HAVE_INT16_T
417 # define INT16_TYPE int16_t
418 # else
419 # define INT16_TYPE short int
420 # endif
421 #endif
422 #ifndef UINT8_TYPE
423 # ifdef HAVE_UINT8_T
424 # define UINT8_TYPE uint8_t
425 # else
426 # define UINT8_TYPE unsigned char
427 # endif
428 #endif
429 #ifndef INT8_TYPE
430 # ifdef HAVE_INT8_T
431 # define INT8_TYPE int8_t
432 # else
433 # define INT8_TYPE signed char
434 # endif
435 #endif
436 #ifndef LONGDOUBLE_TYPE
437 # define LONGDOUBLE_TYPE long double
438 #endif
439 typedef sqlite_int64 i64; /* 8-byte signed integer */
440 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
441 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
442 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
443 typedef INT16_TYPE i16; /* 2-byte signed integer */
444 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
445 typedef INT8_TYPE i8; /* 1-byte signed integer */
448 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
449 ** that can be stored in a u32 without loss of data. The value
450 ** is 0x00000000ffffffff. But because of quirks of some compilers, we
451 ** have to specify the value in the less intuitive manner shown:
453 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
456 ** The datatype used to store estimates of the number of rows in a
457 ** table or index. This is an unsigned integer type. For 99.9% of
458 ** the world, a 32-bit integer is sufficient. But a 64-bit integer
459 ** can be used at compile-time if desired.
461 #ifdef SQLITE_64BIT_STATS
462 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */
463 #else
464 typedef u32 tRowcnt; /* 32-bit is the default */
465 #endif
468 ** Macros to determine whether the machine is big or little endian,
469 ** evaluated at runtime.
471 #ifdef SQLITE_AMALGAMATION
472 const int sqlite3one = 1;
473 #else
474 extern const int sqlite3one;
475 #endif
476 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\
477 || defined(__x86_64) || defined(__x86_64__)
478 # define SQLITE_BIGENDIAN 0
479 # define SQLITE_LITTLEENDIAN 1
480 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE
481 #else
482 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
483 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
484 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
485 #endif
488 ** Constants for the largest and smallest possible 64-bit signed integers.
489 ** These macros are designed to work correctly on both 32-bit and 64-bit
490 ** compilers.
492 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
493 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
496 ** Round up a number to the next larger multiple of 8. This is used
497 ** to force 8-byte alignment on 64-bit architectures.
499 #define ROUND8(x) (((x)+7)&~7)
502 ** Round down to the nearest multiple of 8
504 #define ROUNDDOWN8(x) ((x)&~7)
507 ** Assert that the pointer X is aligned to an 8-byte boundary. This
508 ** macro is used only within assert() to verify that the code gets
509 ** all alignment restrictions correct.
511 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
512 ** underlying malloc() implemention might return us 4-byte aligned
513 ** pointers. In that case, only verify 4-byte alignment.
515 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
516 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0)
517 #else
518 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
519 #endif
523 ** An instance of the following structure is used to store the busy-handler
524 ** callback for a given sqlite handle.
526 ** The sqlite.busyHandler member of the sqlite struct contains the busy
527 ** callback for the database handle. Each pager opened via the sqlite
528 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
529 ** callback is currently invoked only from within pager.c.
531 typedef struct BusyHandler BusyHandler;
532 struct BusyHandler {
533 int (*xFunc)(void *,int); /* The busy callback */
534 void *pArg; /* First arg to busy callback */
535 int nBusy; /* Incremented with each busy call */
539 ** Name of the master database table. The master database table
540 ** is a special table that holds the names and attributes of all
541 ** user tables and indices.
543 #define MASTER_NAME "sqlite_master"
544 #define TEMP_MASTER_NAME "sqlite_temp_master"
547 ** The root-page of the master database table.
549 #define MASTER_ROOT 1
552 ** The name of the schema table.
554 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
557 ** A convenience macro that returns the number of elements in
558 ** an array.
560 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
563 ** The following value as a destructor means to use sqlite3DbFree().
564 ** The sqlite3DbFree() routine requires two parameters instead of the
565 ** one parameter that destructors normally want. So we have to introduce
566 ** this magic value that the code knows to handle differently. Any
567 ** pointer will work here as long as it is distinct from SQLITE_STATIC
568 ** and SQLITE_TRANSIENT.
570 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize)
573 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
574 ** not support Writable Static Data (WSD) such as global and static variables.
575 ** All variables must either be on the stack or dynamically allocated from
576 ** the heap. When WSD is unsupported, the variable declarations scattered
577 ** throughout the SQLite code must become constants instead. The SQLITE_WSD
578 ** macro is used for this purpose. And instead of referencing the variable
579 ** directly, we use its constant as a key to lookup the run-time allocated
580 ** buffer that holds real variable. The constant is also the initializer
581 ** for the run-time allocated buffer.
583 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
584 ** macros become no-ops and have zero performance impact.
586 #ifdef SQLITE_OMIT_WSD
587 #define SQLITE_WSD const
588 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
589 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
590 int sqlite3_wsd_init(int N, int J);
591 void *sqlite3_wsd_find(void *K, int L);
592 #else
593 #define SQLITE_WSD
594 #define GLOBAL(t,v) v
595 #define sqlite3GlobalConfig sqlite3Config
596 #endif
599 ** The following macros are used to suppress compiler warnings and to
600 ** make it clear to human readers when a function parameter is deliberately
601 ** left unused within the body of a function. This usually happens when
602 ** a function is called via a function pointer. For example the
603 ** implementation of an SQL aggregate step callback may not use the
604 ** parameter indicating the number of arguments passed to the aggregate,
605 ** if it knows that this is enforced elsewhere.
607 ** When a function parameter is not used at all within the body of a function,
608 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
609 ** However, these macros may also be used to suppress warnings related to
610 ** parameters that may or may not be used depending on compilation options.
611 ** For example those parameters only used in assert() statements. In these
612 ** cases the parameters are named as per the usual conventions.
614 #define UNUSED_PARAMETER(x) (void)(x)
615 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
618 ** Forward references to structures
620 typedef struct AggInfo AggInfo;
621 typedef struct AuthContext AuthContext;
622 typedef struct AutoincInfo AutoincInfo;
623 typedef struct Bitvec Bitvec;
624 typedef struct CollSeq CollSeq;
625 typedef struct Column Column;
626 typedef struct Db Db;
627 typedef struct Schema Schema;
628 typedef struct Expr Expr;
629 typedef struct ExprList ExprList;
630 typedef struct ExprSpan ExprSpan;
631 typedef struct FKey FKey;
632 typedef struct FuncDestructor FuncDestructor;
633 typedef struct FuncDef FuncDef;
634 typedef struct FuncDefHash FuncDefHash;
635 typedef struct IdList IdList;
636 typedef struct Index Index;
637 typedef struct IndexSample IndexSample;
638 typedef struct KeyClass KeyClass;
639 typedef struct KeyInfo KeyInfo;
640 typedef struct Lookaside Lookaside;
641 typedef struct LookasideSlot LookasideSlot;
642 typedef struct Module Module;
643 typedef struct NameContext NameContext;
644 typedef struct Parse Parse;
645 typedef struct RowSet RowSet;
646 typedef struct Savepoint Savepoint;
647 typedef struct Select Select;
648 typedef struct SrcList SrcList;
649 typedef struct StrAccum StrAccum;
650 typedef struct Table Table;
651 typedef struct TableLock TableLock;
652 typedef struct Token Token;
653 typedef struct Trigger Trigger;
654 typedef struct TriggerPrg TriggerPrg;
655 typedef struct TriggerStep TriggerStep;
656 typedef struct UnpackedRecord UnpackedRecord;
657 typedef struct VTable VTable;
658 typedef struct VtabCtx VtabCtx;
659 typedef struct Walker Walker;
660 typedef struct WherePlan WherePlan;
661 typedef struct WhereInfo WhereInfo;
662 typedef struct WhereLevel WhereLevel;
665 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
666 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
667 ** pointer types (i.e. FuncDef) defined above.
669 #include "btree.h"
670 #include "vdbe.h"
671 #include "pager.h"
672 #include "pcache.h"
674 #include "os.h"
675 #include "mutex.h"
679 ** Each database file to be accessed by the system is an instance
680 ** of the following structure. There are normally two of these structures
681 ** in the sqlite.aDb[] array. aDb[0] is the main database file and
682 ** aDb[1] is the database file used to hold temporary tables. Additional
683 ** databases may be attached.
685 struct Db {
686 char *zName; /* Name of this database */
687 Btree *pBt; /* The B*Tree structure for this database file */
688 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
689 u8 safety_level; /* How aggressive at syncing data to disk */
690 Schema *pSchema; /* Pointer to database schema (possibly shared) */
694 ** An instance of the following structure stores a database schema.
696 ** Most Schema objects are associated with a Btree. The exception is
697 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
698 ** In shared cache mode, a single Schema object can be shared by multiple
699 ** Btrees that refer to the same underlying BtShared object.
701 ** Schema objects are automatically deallocated when the last Btree that
702 ** references them is destroyed. The TEMP Schema is manually freed by
703 ** sqlite3_close().
705 ** A thread must be holding a mutex on the corresponding Btree in order
706 ** to access Schema content. This implies that the thread must also be
707 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
708 ** For a TEMP Schema, only the connection mutex is required.
710 struct Schema {
711 int schema_cookie; /* Database schema version number for this file */
712 int iGeneration; /* Generation counter. Incremented with each change */
713 Hash tblHash; /* All tables indexed by name */
714 Hash idxHash; /* All (named) indices indexed by name */
715 Hash trigHash; /* All triggers indexed by name */
716 Hash fkeyHash; /* All foreign keys by referenced table name */
717 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
718 u8 file_format; /* Schema format version for this file */
719 u8 enc; /* Text encoding used by this database */
720 u16 flags; /* Flags associated with this schema */
721 int cache_size; /* Number of pages to use in the cache */
725 ** These macros can be used to test, set, or clear bits in the
726 ** Db.pSchema->flags field.
728 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
729 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
730 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
731 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
734 ** Allowed values for the DB.pSchema->flags field.
736 ** The DB_SchemaLoaded flag is set after the database schema has been
737 ** read into internal hash tables.
739 ** DB_UnresetViews means that one or more views have column names that
740 ** have been filled out. If the schema changes, these column names might
741 ** changes and so the view will need to be reset.
743 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
744 #define DB_UnresetViews 0x0002 /* Some views have defined column names */
745 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
748 ** The number of different kinds of things that can be limited
749 ** using the sqlite3_limit() interface.
751 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
754 ** Lookaside malloc is a set of fixed-size buffers that can be used
755 ** to satisfy small transient memory allocation requests for objects
756 ** associated with a particular database connection. The use of
757 ** lookaside malloc provides a significant performance enhancement
758 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
759 ** SQL statements.
761 ** The Lookaside structure holds configuration information about the
762 ** lookaside malloc subsystem. Each available memory allocation in
763 ** the lookaside subsystem is stored on a linked list of LookasideSlot
764 ** objects.
766 ** Lookaside allocations are only allowed for objects that are associated
767 ** with a particular database connection. Hence, schema information cannot
768 ** be stored in lookaside because in shared cache mode the schema information
769 ** is shared by multiple database connections. Therefore, while parsing
770 ** schema information, the Lookaside.bEnabled flag is cleared so that
771 ** lookaside allocations are not used to construct the schema objects.
773 struct Lookaside {
774 u16 sz; /* Size of each buffer in bytes */
775 u8 bEnabled; /* False to disable new lookaside allocations */
776 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
777 int nOut; /* Number of buffers currently checked out */
778 int mxOut; /* Highwater mark for nOut */
779 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */
780 LookasideSlot *pFree; /* List of available buffers */
781 void *pStart; /* First byte of available memory space */
782 void *pEnd; /* First byte past end of available space */
784 struct LookasideSlot {
785 LookasideSlot *pNext; /* Next buffer in the list of free buffers */
789 ** A hash table for function definitions.
791 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
792 ** Collisions are on the FuncDef.pHash chain.
794 struct FuncDefHash {
795 FuncDef *a[23]; /* Hash table for functions */
799 ** Each database connection is an instance of the following structure.
801 struct sqlite3 {
802 sqlite3_vfs *pVfs; /* OS Interface */
803 struct Vdbe *pVdbe; /* List of active virtual machines */
804 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
805 sqlite3_mutex *mutex; /* Connection mutex */
806 Db *aDb; /* All backends */
807 int nDb; /* Number of backends currently in use */
808 int flags; /* Miscellaneous flags. See below */
809 i64 lastRowid; /* ROWID of most recent insert (see above) */
810 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
811 int errCode; /* Most recent error code (SQLITE_*) */
812 int errMask; /* & result codes with this before returning */
813 u8 autoCommit; /* The auto-commit flag. */
814 u8 temp_store; /* 1: file 2: memory 0: default */
815 u8 mallocFailed; /* True if we have seen a malloc failure */
816 u8 dfltLockMode; /* Default locking-mode for attached dbs */
817 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
818 u8 suppressErr; /* Do not issue error messages if true */
819 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */
820 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
821 int nextPagesize; /* Pagesize after VACUUM if >0 */
822 u32 magic; /* Magic number for detect library misuse */
823 int nChange; /* Value returned by sqlite3_changes() */
824 int nTotalChange; /* Value returned by sqlite3_total_changes() */
825 int aLimit[SQLITE_N_LIMIT]; /* Limits */
826 struct sqlite3InitInfo { /* Information used during initialization */
827 int newTnum; /* Rootpage of table being initialized */
828 u8 iDb; /* Which db file is being initialized */
829 u8 busy; /* TRUE if currently initializing */
830 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */
831 } init;
832 int activeVdbeCnt; /* Number of VDBEs currently executing */
833 int writeVdbeCnt; /* Number of active VDBEs that are writing */
834 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */
835 int nExtension; /* Number of loaded extensions */
836 void **aExtension; /* Array of shared library handles */
837 void (*xTrace)(void*,const char*); /* Trace function */
838 void *pTraceArg; /* Argument to the trace function */
839 void (*xProfile)(void*,const char*,u64); /* Profiling function */
840 void *pProfileArg; /* Argument to profile function */
841 void *pCommitArg; /* Argument to xCommitCallback() */
842 int (*xCommitCallback)(void*); /* Invoked at every commit. */
843 void *pRollbackArg; /* Argument to xRollbackCallback() */
844 void (*xRollbackCallback)(void*); /* Invoked at every commit. */
845 void *pUpdateArg;
846 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
847 #ifndef SQLITE_OMIT_WAL
848 int (*xWalCallback)(void *, sqlite3 *, const char *, int);
849 void *pWalArg;
850 #endif
851 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
852 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
853 void *pCollNeededArg;
854 sqlite3_value *pErr; /* Most recent error message */
855 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
856 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
857 union {
858 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
859 double notUsed1; /* Spacer */
860 } u1;
861 Lookaside lookaside; /* Lookaside malloc configuration */
862 #ifndef SQLITE_OMIT_AUTHORIZATION
863 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
864 /* Access authorization function */
865 void *pAuthArg; /* 1st argument to the access auth function */
866 #endif
867 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
868 int (*xProgress)(void *); /* The progress callback */
869 void *pProgressArg; /* Argument to the progress callback */
870 int nProgressOps; /* Number of opcodes for progress callback */
871 #endif
872 #ifndef SQLITE_OMIT_VIRTUALTABLE
873 int nVTrans; /* Allocated size of aVTrans */
874 Hash aModule; /* populated by sqlite3_create_module() */
875 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */
876 VTable **aVTrans; /* Virtual tables with open transactions */
877 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
878 #endif
879 FuncDefHash aFunc; /* Hash table of connection functions */
880 Hash aCollSeq; /* All collating sequences */
881 BusyHandler busyHandler; /* Busy callback */
882 Db aDbStatic[2]; /* Static space for the 2 default backends */
883 Savepoint *pSavepoint; /* List of active savepoints */
884 int busyTimeout; /* Busy handler timeout, in msec */
885 int nSavepoint; /* Number of non-transaction savepoints */
886 int nStatement; /* Number of nested statement-transactions */
887 i64 nDeferredCons; /* Net deferred constraints this transaction. */
888 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */
890 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
891 /* The following variables are all protected by the STATIC_MASTER
892 ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
894 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
895 ** unlock so that it can proceed.
897 ** When X.pBlockingConnection==Y, that means that something that X tried
898 ** tried to do recently failed with an SQLITE_LOCKED error due to locks
899 ** held by Y.
901 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
902 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
903 void *pUnlockArg; /* Argument to xUnlockNotify */
904 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
905 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
906 #endif
910 ** A macro to discover the encoding of a database.
912 #define ENC(db) ((db)->aDb[0].pSchema->enc)
915 ** Possible values for the sqlite3.flags.
917 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */
918 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */
919 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */
920 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */
921 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */
922 /* DELETE, or UPDATE and return */
923 /* the count using a callback. */
924 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */
925 /* result set is empty */
926 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */
927 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */
928 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */
929 /* 0x00020000 Unused */
930 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */
931 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */
932 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */
933 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */
934 #define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */
935 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */
936 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */
937 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */
938 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */
939 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */
940 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */
941 #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */
942 #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */
945 ** Bits of the sqlite3.flags field that are used by the
946 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
947 ** These must be the low-order bits of the flags field.
949 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */
950 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */
951 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */
952 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */
953 #define SQLITE_IndexCover 0x10 /* Disable index covering table */
954 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */
955 #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */
956 #define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */
957 #define SQLITE_DistinctOpt 0x80 /* DISTINCT using indexes */
958 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */
961 ** Possible values for the sqlite.magic field.
962 ** The numbers are obtained at random and have no special meaning, other
963 ** than being distinct from one another.
965 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
966 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
967 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
968 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
969 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
972 ** Each SQL function is defined by an instance of the following
973 ** structure. A pointer to this structure is stored in the sqlite.aFunc
974 ** hash table. When multiple functions have the same name, the hash table
975 ** points to a linked list of these structures.
977 struct FuncDef {
978 i16 nArg; /* Number of arguments. -1 means unlimited */
979 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
980 u8 flags; /* Some combination of SQLITE_FUNC_* */
981 void *pUserData; /* User data parameter */
982 FuncDef *pNext; /* Next function with same name */
983 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
984 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
985 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */
986 char *zName; /* SQL name of the function. */
987 FuncDef *pHash; /* Next with a different name but the same hash */
988 FuncDestructor *pDestructor; /* Reference counted destructor function */
992 ** This structure encapsulates a user-function destructor callback (as
993 ** configured using create_function_v2()) and a reference counter. When
994 ** create_function_v2() is called to create a function with a destructor,
995 ** a single object of this type is allocated. FuncDestructor.nRef is set to
996 ** the number of FuncDef objects created (either 1 or 3, depending on whether
997 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
998 ** member of each of the new FuncDef objects is set to point to the allocated
999 ** FuncDestructor.
1001 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1002 ** count on this object is decremented. When it reaches 0, the destructor
1003 ** is invoked and the FuncDestructor structure freed.
1005 struct FuncDestructor {
1006 int nRef;
1007 void (*xDestroy)(void *);
1008 void *pUserData;
1012 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF
1013 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There
1014 ** are assert() statements in the code to verify this.
1016 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
1017 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
1018 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */
1019 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
1020 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */
1021 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */
1022 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */
1023 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */
1026 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1027 ** used to create the initializers for the FuncDef structures.
1029 ** FUNCTION(zName, nArg, iArg, bNC, xFunc)
1030 ** Used to create a scalar function definition of a function zName
1031 ** implemented by C function xFunc that accepts nArg arguments. The
1032 ** value passed as iArg is cast to a (void*) and made available
1033 ** as the user-data (sqlite3_user_data()) for the function. If
1034 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1036 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1037 ** Used to create an aggregate function definition implemented by
1038 ** the C functions xStep and xFinal. The first four parameters
1039 ** are interpreted in the same way as the first 4 parameters to
1040 ** FUNCTION().
1042 ** LIKEFUNC(zName, nArg, pArg, flags)
1043 ** Used to create a scalar function definition of a function zName
1044 ** that accepts nArg arguments and is implemented by a call to C
1045 ** function likeFunc. Argument pArg is cast to a (void *) and made
1046 ** available as the function user-data (sqlite3_user_data()). The
1047 ** FuncDef.flags variable is set to the value passed as the flags
1048 ** parameter.
1050 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1051 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \
1052 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1053 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1054 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1055 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1056 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1057 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
1058 pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1059 #define LIKEFUNC(zName, nArg, arg, flags) \
1060 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1061 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1062 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
1063 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1066 ** All current savepoints are stored in a linked list starting at
1067 ** sqlite3.pSavepoint. The first element in the list is the most recently
1068 ** opened savepoint. Savepoints are added to the list by the vdbe
1069 ** OP_Savepoint instruction.
1071 struct Savepoint {
1072 char *zName; /* Savepoint name (nul-terminated) */
1073 i64 nDeferredCons; /* Number of deferred fk violations */
1074 Savepoint *pNext; /* Parent savepoint (if any) */
1078 ** The following are used as the second parameter to sqlite3Savepoint(),
1079 ** and as the P1 argument to the OP_Savepoint instruction.
1081 #define SAVEPOINT_BEGIN 0
1082 #define SAVEPOINT_RELEASE 1
1083 #define SAVEPOINT_ROLLBACK 2
1087 ** Each SQLite module (virtual table definition) is defined by an
1088 ** instance of the following structure, stored in the sqlite3.aModule
1089 ** hash table.
1091 struct Module {
1092 const sqlite3_module *pModule; /* Callback pointers */
1093 const char *zName; /* Name passed to create_module() */
1094 void *pAux; /* pAux passed to create_module() */
1095 void (*xDestroy)(void *); /* Module destructor function */
1099 ** information about each column of an SQL table is held in an instance
1100 ** of this structure.
1102 struct Column {
1103 char *zName; /* Name of this column */
1104 Expr *pDflt; /* Default value of this column */
1105 char *zDflt; /* Original text of the default value */
1106 char *zType; /* Data type for this column */
1107 char *zColl; /* Collating sequence. If NULL, use the default */
1108 u8 notNull; /* True if there is a NOT NULL constraint */
1109 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
1110 char affinity; /* One of the SQLITE_AFF_... values */
1111 #ifndef SQLITE_OMIT_VIRTUALTABLE
1112 u8 isHidden; /* True if this column is 'hidden' */
1113 #endif
1117 ** A "Collating Sequence" is defined by an instance of the following
1118 ** structure. Conceptually, a collating sequence consists of a name and
1119 ** a comparison routine that defines the order of that sequence.
1121 ** There may two separate implementations of the collation function, one
1122 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
1123 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
1124 ** native byte order. When a collation sequence is invoked, SQLite selects
1125 ** the version that will require the least expensive encoding
1126 ** translations, if any.
1128 ** The CollSeq.pUser member variable is an extra parameter that passed in
1129 ** as the first argument to the UTF-8 comparison function, xCmp.
1130 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
1131 ** xCmp16.
1133 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
1134 ** collating sequence is undefined. Indices built on an undefined
1135 ** collating sequence may not be read or written.
1137 struct CollSeq {
1138 char *zName; /* Name of the collating sequence, UTF-8 encoded */
1139 u8 enc; /* Text encoding handled by xCmp() */
1140 void *pUser; /* First argument to xCmp() */
1141 int (*xCmp)(void*,int, const void*, int, const void*);
1142 void (*xDel)(void*); /* Destructor for pUser */
1146 ** A sort order can be either ASC or DESC.
1148 #define SQLITE_SO_ASC 0 /* Sort in ascending order */
1149 #define SQLITE_SO_DESC 1 /* Sort in ascending order */
1152 ** Column affinity types.
1154 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1155 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
1156 ** the speed a little by numbering the values consecutively.
1158 ** But rather than start with 0 or 1, we begin with 'a'. That way,
1159 ** when multiple affinity types are concatenated into a string and
1160 ** used as the P4 operand, they will be more readable.
1162 ** Note also that the numeric types are grouped together so that testing
1163 ** for a numeric type is a single comparison.
1165 #define SQLITE_AFF_TEXT 'a'
1166 #define SQLITE_AFF_NONE 'b'
1167 #define SQLITE_AFF_NUMERIC 'c'
1168 #define SQLITE_AFF_INTEGER 'd'
1169 #define SQLITE_AFF_REAL 'e'
1171 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
1174 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1175 ** affinity value.
1177 #define SQLITE_AFF_MASK 0x67
1180 ** Additional bit values that can be ORed with an affinity without
1181 ** changing the affinity.
1183 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
1184 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
1185 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */
1188 ** An object of this type is created for each virtual table present in
1189 ** the database schema.
1191 ** If the database schema is shared, then there is one instance of this
1192 ** structure for each database connection (sqlite3*) that uses the shared
1193 ** schema. This is because each database connection requires its own unique
1194 ** instance of the sqlite3_vtab* handle used to access the virtual table
1195 ** implementation. sqlite3_vtab* handles can not be shared between
1196 ** database connections, even when the rest of the in-memory database
1197 ** schema is shared, as the implementation often stores the database
1198 ** connection handle passed to it via the xConnect() or xCreate() method
1199 ** during initialization internally. This database connection handle may
1200 ** then be used by the virtual table implementation to access real tables
1201 ** within the database. So that they appear as part of the callers
1202 ** transaction, these accesses need to be made via the same database
1203 ** connection as that used to execute SQL operations on the virtual table.
1205 ** All VTable objects that correspond to a single table in a shared
1206 ** database schema are initially stored in a linked-list pointed to by
1207 ** the Table.pVTable member variable of the corresponding Table object.
1208 ** When an sqlite3_prepare() operation is required to access the virtual
1209 ** table, it searches the list for the VTable that corresponds to the
1210 ** database connection doing the preparing so as to use the correct
1211 ** sqlite3_vtab* handle in the compiled query.
1213 ** When an in-memory Table object is deleted (for example when the
1214 ** schema is being reloaded for some reason), the VTable objects are not
1215 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1216 ** immediately. Instead, they are moved from the Table.pVTable list to
1217 ** another linked list headed by the sqlite3.pDisconnect member of the
1218 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1219 ** next time a statement is prepared using said sqlite3*. This is done
1220 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1221 ** Refer to comments above function sqlite3VtabUnlockList() for an
1222 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1223 ** list without holding the corresponding sqlite3.mutex mutex.
1225 ** The memory for objects of this type is always allocated by
1226 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1227 ** the first argument.
1229 struct VTable {
1230 sqlite3 *db; /* Database connection associated with this table */
1231 Module *pMod; /* Pointer to module implementation */
1232 sqlite3_vtab *pVtab; /* Pointer to vtab instance */
1233 int nRef; /* Number of pointers to this structure */
1234 u8 bConstraint; /* True if constraints are supported */
1235 int iSavepoint; /* Depth of the SAVEPOINT stack */
1236 VTable *pNext; /* Next in linked list (see above) */
1240 ** Each SQL table is represented in memory by an instance of the
1241 ** following structure.
1243 ** Table.zName is the name of the table. The case of the original
1244 ** CREATE TABLE statement is stored, but case is not significant for
1245 ** comparisons.
1247 ** Table.nCol is the number of columns in this table. Table.aCol is a
1248 ** pointer to an array of Column structures, one for each column.
1250 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1251 ** the column that is that key. Otherwise Table.iPKey is negative. Note
1252 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1253 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
1254 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
1255 ** is generated for each row of the table. TF_HasPrimaryKey is set if
1256 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1258 ** Table.tnum is the page number for the root BTree page of the table in the
1259 ** database file. If Table.iDb is the index of the database table backend
1260 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
1261 ** holds temporary tables and indices. If TF_Ephemeral is set
1262 ** then the table is stored in a file that is automatically deleted
1263 ** when the VDBE cursor to the table is closed. In this case Table.tnum
1264 ** refers VDBE cursor number that holds the table open, not to the root
1265 ** page number. Transient tables are used to hold the results of a
1266 ** sub-query that appears instead of a real table name in the FROM clause
1267 ** of a SELECT statement.
1269 struct Table {
1270 char *zName; /* Name of the table or view */
1271 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */
1272 int nCol; /* Number of columns in this table */
1273 Column *aCol; /* Information about each column */
1274 Index *pIndex; /* List of SQL indexes on this table. */
1275 int tnum; /* Root BTree node for this table (see note above) */
1276 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */
1277 Select *pSelect; /* NULL for tables. Points to definition if a view. */
1278 u16 nRef; /* Number of pointers to this Table */
1279 u8 tabFlags; /* Mask of TF_* values */
1280 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
1281 FKey *pFKey; /* Linked list of all foreign keys in this table */
1282 char *zColAff; /* String defining the affinity of each column */
1283 #ifndef SQLITE_OMIT_CHECK
1284 ExprList *pCheck; /* All CHECK constraints */
1285 #endif
1286 #ifndef SQLITE_OMIT_ALTERTABLE
1287 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
1288 #endif
1289 #ifndef SQLITE_OMIT_VIRTUALTABLE
1290 VTable *pVTable; /* List of VTable objects. */
1291 int nModuleArg; /* Number of arguments to the module */
1292 char **azModuleArg; /* Text of all module args. [0] is module name */
1293 #endif
1294 Trigger *pTrigger; /* List of triggers stored in pSchema */
1295 Schema *pSchema; /* Schema that contains this table */
1296 Table *pNextZombie; /* Next on the Parse.pZombieTab list */
1300 ** Allowed values for Tabe.tabFlags.
1302 #define TF_Readonly 0x01 /* Read-only system table */
1303 #define TF_Ephemeral 0x02 /* An ephemeral table */
1304 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */
1305 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */
1306 #define TF_Virtual 0x10 /* Is a virtual table */
1310 ** Test to see whether or not a table is a virtual table. This is
1311 ** done as a macro so that it will be optimized out when virtual
1312 ** table support is omitted from the build.
1314 #ifndef SQLITE_OMIT_VIRTUALTABLE
1315 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0)
1316 # define IsHiddenColumn(X) ((X)->isHidden)
1317 #else
1318 # define IsVirtual(X) 0
1319 # define IsHiddenColumn(X) 0
1320 #endif
1323 ** Each foreign key constraint is an instance of the following structure.
1325 ** A foreign key is associated with two tables. The "from" table is
1326 ** the table that contains the REFERENCES clause that creates the foreign
1327 ** key. The "to" table is the table that is named in the REFERENCES clause.
1328 ** Consider this example:
1330 ** CREATE TABLE ex1(
1331 ** a INTEGER PRIMARY KEY,
1332 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1333 ** );
1335 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1337 ** Each REFERENCES clause generates an instance of the following structure
1338 ** which is attached to the from-table. The to-table need not exist when
1339 ** the from-table is created. The existence of the to-table is not checked.
1341 struct FKey {
1342 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */
1343 FKey *pNextFrom; /* Next foreign key in pFrom */
1344 char *zTo; /* Name of table that the key points to (aka: Parent) */
1345 FKey *pNextTo; /* Next foreign key on table named zTo */
1346 FKey *pPrevTo; /* Previous foreign key on table named zTo */
1347 int nCol; /* Number of columns in this key */
1348 /* EV: R-30323-21917 */
1349 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
1350 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */
1351 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */
1352 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
1353 int iFrom; /* Index of column in pFrom */
1354 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
1355 } aCol[1]; /* One entry for each of nCol column s */
1359 ** SQLite supports many different ways to resolve a constraint
1360 ** error. ROLLBACK processing means that a constraint violation
1361 ** causes the operation in process to fail and for the current transaction
1362 ** to be rolled back. ABORT processing means the operation in process
1363 ** fails and any prior changes from that one operation are backed out,
1364 ** but the transaction is not rolled back. FAIL processing means that
1365 ** the operation in progress stops and returns an error code. But prior
1366 ** changes due to the same operation are not backed out and no rollback
1367 ** occurs. IGNORE means that the particular row that caused the constraint
1368 ** error is not inserted or updated. Processing continues and no error
1369 ** is returned. REPLACE means that preexisting database rows that caused
1370 ** a UNIQUE constraint violation are removed so that the new insert or
1371 ** update can proceed. Processing continues and no error is reported.
1373 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1374 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1375 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
1376 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
1377 ** referenced table row is propagated into the row that holds the
1378 ** foreign key.
1380 ** The following symbolic values are used to record which type
1381 ** of action to take.
1383 #define OE_None 0 /* There is no constraint to check */
1384 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */
1385 #define OE_Abort 2 /* Back out changes but do no rollback transaction */
1386 #define OE_Fail 3 /* Stop the operation but leave all prior changes */
1387 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
1388 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
1390 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1391 #define OE_SetNull 7 /* Set the foreign key value to NULL */
1392 #define OE_SetDflt 8 /* Set the foreign key value to its default */
1393 #define OE_Cascade 9 /* Cascade the changes */
1395 #define OE_Default 99 /* Do whatever the default action is */
1399 ** An instance of the following structure is passed as the first
1400 ** argument to sqlite3VdbeKeyCompare and is used to control the
1401 ** comparison of the two index keys.
1403 struct KeyInfo {
1404 sqlite3 *db; /* The database connection */
1405 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */
1406 u16 nField; /* Number of entries in aColl[] */
1407 u8 *aSortOrder; /* Sort order for each column. May be NULL */
1408 CollSeq *aColl[1]; /* Collating sequence for each term of the key */
1412 ** An instance of the following structure holds information about a
1413 ** single index record that has already been parsed out into individual
1414 ** values.
1416 ** A record is an object that contains one or more fields of data.
1417 ** Records are used to store the content of a table row and to store
1418 ** the key of an index. A blob encoding of a record is created by
1419 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1420 ** OP_Column opcode.
1422 ** This structure holds a record that has already been disassembled
1423 ** into its constituent fields.
1425 struct UnpackedRecord {
1426 KeyInfo *pKeyInfo; /* Collation and sort-order information */
1427 u16 nField; /* Number of entries in apMem[] */
1428 u8 flags; /* Boolean settings. UNPACKED_... below */
1429 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */
1430 Mem *aMem; /* Values */
1434 ** Allowed values of UnpackedRecord.flags
1436 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */
1437 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */
1438 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */
1441 ** Each SQL index is represented in memory by an
1442 ** instance of the following structure.
1444 ** The columns of the table that are to be indexed are described
1445 ** by the aiColumn[] field of this structure. For example, suppose
1446 ** we have the following table and index:
1448 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1449 ** CREATE INDEX Ex2 ON Ex1(c3,c1);
1451 ** In the Table structure describing Ex1, nCol==3 because there are
1452 ** three columns in the table. In the Index structure describing
1453 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1454 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
1455 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1456 ** The second column to be indexed (c1) has an index of 0 in
1457 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1459 ** The Index.onError field determines whether or not the indexed columns
1460 ** must be unique and what to do if they are not. When Index.onError=OE_None,
1461 ** it means this is not a unique index. Otherwise it is a unique index
1462 ** and the value of Index.onError indicate the which conflict resolution
1463 ** algorithm to employ whenever an attempt is made to insert a non-unique
1464 ** element.
1466 struct Index {
1467 char *zName; /* Name of this index */
1468 int *aiColumn; /* Which columns are used by this index. 1st is 0 */
1469 tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1470 Table *pTable; /* The SQL table being indexed */
1471 char *zColAff; /* String defining the affinity of each column */
1472 Index *pNext; /* The next index associated with the same table */
1473 Schema *pSchema; /* Schema containing this index */
1474 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
1475 char **azColl; /* Array of collation sequence names for index */
1476 int nColumn; /* Number of columns in the table used by this index */
1477 int tnum; /* Page containing root of this index in database file */
1478 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1479 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
1480 u8 bUnordered; /* Use this index for == or IN queries only */
1481 #ifdef SQLITE_ENABLE_STAT3
1482 int nSample; /* Number of elements in aSample[] */
1483 tRowcnt avgEq; /* Average nEq value for key values not in aSample */
1484 IndexSample *aSample; /* Samples of the left-most key */
1485 #endif
1489 ** Each sample stored in the sqlite_stat3 table is represented in memory
1490 ** using a structure of this type. See documentation at the top of the
1491 ** analyze.c source file for additional information.
1493 struct IndexSample {
1494 union {
1495 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
1496 double r; /* Value if eType is SQLITE_FLOAT */
1497 i64 i; /* Value if eType is SQLITE_INTEGER */
1498 } u;
1499 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
1500 int nByte; /* Size in byte of text or blob. */
1501 tRowcnt nEq; /* Est. number of rows where the key equals this sample */
1502 tRowcnt nLt; /* Est. number of rows where key is less than this sample */
1503 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */
1507 ** Each token coming out of the lexer is an instance of
1508 ** this structure. Tokens are also used as part of an expression.
1510 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1511 ** may contain random values. Do not make any assumptions about Token.dyn
1512 ** and Token.n when Token.z==0.
1514 struct Token {
1515 const char *z; /* Text of the token. Not NULL-terminated! */
1516 unsigned int n; /* Number of characters in this token */
1520 ** An instance of this structure contains information needed to generate
1521 ** code for a SELECT that contains aggregate functions.
1523 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1524 ** pointer to this structure. The Expr.iColumn field is the index in
1525 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1526 ** code for that node.
1528 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1529 ** original Select structure that describes the SELECT statement. These
1530 ** fields do not need to be freed when deallocating the AggInfo structure.
1532 struct AggInfo {
1533 u8 directMode; /* Direct rendering mode means take data directly
1534 ** from source tables rather than from accumulators */
1535 u8 useSortingIdx; /* In direct mode, reference the sorting index rather
1536 ** than the source table */
1537 int sortingIdx; /* Cursor number of the sorting index */
1538 int sortingIdxPTab; /* Cursor number of pseudo-table */
1539 int nSortingColumn; /* Number of columns in the sorting index */
1540 ExprList *pGroupBy; /* The group by clause */
1541 struct AggInfo_col { /* For each column used in source tables */
1542 Table *pTab; /* Source table */
1543 int iTable; /* Cursor number of the source table */
1544 int iColumn; /* Column number within the source table */
1545 int iSorterColumn; /* Column number in the sorting index */
1546 int iMem; /* Memory location that acts as accumulator */
1547 Expr *pExpr; /* The original expression */
1548 } *aCol;
1549 int nColumn; /* Number of used entries in aCol[] */
1550 int nAccumulator; /* Number of columns that show through to the output.
1551 ** Additional columns are used only as parameters to
1552 ** aggregate functions */
1553 struct AggInfo_func { /* For each aggregate function */
1554 Expr *pExpr; /* Expression encoding the function */
1555 FuncDef *pFunc; /* The aggregate function implementation */
1556 int iMem; /* Memory location that acts as accumulator */
1557 int iDistinct; /* Ephemeral table used to enforce DISTINCT */
1558 } *aFunc;
1559 int nFunc; /* Number of entries in aFunc[] */
1563 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1564 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater
1565 ** than 32767 we have to make it 32-bit. 16-bit is preferred because
1566 ** it uses less memory in the Expr object, which is a big memory user
1567 ** in systems with lots of prepared statements. And few applications
1568 ** need more than about 10 or 20 variables. But some extreme users want
1569 ** to have prepared statements with over 32767 variables, and for them
1570 ** the option is available (at compile-time).
1572 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1573 typedef i16 ynVar;
1574 #else
1575 typedef int ynVar;
1576 #endif
1579 ** Each node of an expression in the parse tree is an instance
1580 ** of this structure.
1582 ** Expr.op is the opcode. The integer parser token codes are reused
1583 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1584 ** code representing the ">=" operator. This same integer code is reused
1585 ** to represent the greater-than-or-equal-to operator in the expression
1586 ** tree.
1588 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1589 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1590 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1591 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1592 ** then Expr.token contains the name of the function.
1594 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1595 ** binary operator. Either or both may be NULL.
1597 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1598 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1599 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1600 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1601 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1602 ** valid.
1604 ** An expression of the form ID or ID.ID refers to a column in a table.
1605 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1606 ** the integer cursor number of a VDBE cursor pointing to that table and
1607 ** Expr.iColumn is the column number for the specific column. If the
1608 ** expression is used as a result in an aggregate SELECT, then the
1609 ** value is also stored in the Expr.iAgg column in the aggregate so that
1610 ** it can be accessed after all aggregates are computed.
1612 ** If the expression is an unbound variable marker (a question mark
1613 ** character '?' in the original SQL) then the Expr.iTable holds the index
1614 ** number for that variable.
1616 ** If the expression is a subquery then Expr.iColumn holds an integer
1617 ** register number containing the result of the subquery. If the
1618 ** subquery gives a constant result, then iTable is -1. If the subquery
1619 ** gives a different answer at different times during statement processing
1620 ** then iTable is the address of a subroutine that computes the subquery.
1622 ** If the Expr is of type OP_Column, and the table it is selecting from
1623 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1624 ** corresponding table definition.
1626 ** ALLOCATION NOTES:
1628 ** Expr objects can use a lot of memory space in database schema. To
1629 ** help reduce memory requirements, sometimes an Expr object will be
1630 ** truncated. And to reduce the number of memory allocations, sometimes
1631 ** two or more Expr objects will be stored in a single memory allocation,
1632 ** together with Expr.zToken strings.
1634 ** If the EP_Reduced and EP_TokenOnly flags are set when
1635 ** an Expr object is truncated. When EP_Reduced is set, then all
1636 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1637 ** are contained within the same memory allocation. Note, however, that
1638 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1639 ** allocated, regardless of whether or not EP_Reduced is set.
1641 struct Expr {
1642 u8 op; /* Operation performed by this node */
1643 char affinity; /* The affinity of the column or 0 if not a column */
1644 u16 flags; /* Various flags. EP_* See below */
1645 union {
1646 char *zToken; /* Token value. Zero terminated and dequoted */
1647 int iValue; /* Non-negative integer value if EP_IntValue */
1648 } u;
1650 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1651 ** space is allocated for the fields below this point. An attempt to
1652 ** access them will result in a segfault or malfunction.
1653 *********************************************************************/
1655 Expr *pLeft; /* Left subnode */
1656 Expr *pRight; /* Right subnode */
1657 union {
1658 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */
1659 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */
1660 } x;
1661 CollSeq *pColl; /* The collation type of the column or 0 */
1663 /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1664 ** space is allocated for the fields below this point. An attempt to
1665 ** access them will result in a segfault or malfunction.
1666 *********************************************************************/
1668 int iTable; /* TK_COLUMN: cursor number of table holding column
1669 ** TK_REGISTER: register number
1670 ** TK_TRIGGER: 1 -> new, 0 -> old */
1671 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid.
1672 ** TK_VARIABLE: variable number (always >= 1). */
1673 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1674 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */
1675 u8 flags2; /* Second set of flags. EP2_... */
1676 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */
1677 /* If TK_COLUMN, the value of p5 for OP_Column */
1678 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1679 Table *pTab; /* Table for TK_COLUMN expressions. */
1680 #if SQLITE_MAX_EXPR_DEPTH>0
1681 int nHeight; /* Height of the tree headed by this node */
1682 #endif
1686 ** The following are the meanings of bits in the Expr.flags field.
1688 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
1689 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */
1690 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
1691 #define EP_Error 0x0008 /* Expression contains one or more errors */
1692 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
1693 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
1694 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */
1695 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
1696 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
1697 #define EP_FixedDest 0x0200 /* Result needed in a specific register */
1698 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */
1699 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */
1700 #define EP_Hint 0x1000 /* Not used */
1701 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */
1702 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
1703 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */
1706 ** The following are the meanings of bits in the Expr.flags2 field.
1708 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */
1709 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */
1712 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
1713 ** flag on an expression structure. This flag is used for VV&A only. The
1714 ** routine is implemented as a macro that only works when in debugging mode,
1715 ** so as not to burden production code.
1717 #ifdef SQLITE_DEBUG
1718 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible
1719 #else
1720 # define ExprSetIrreducible(X)
1721 #endif
1724 ** These macros can be used to test, set, or clear bits in the
1725 ** Expr.flags field.
1727 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
1728 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
1729 #define ExprSetProperty(E,P) (E)->flags|=(P)
1730 #define ExprClearProperty(E,P) (E)->flags&=~(P)
1733 ** Macros to determine the number of bytes required by a normal Expr
1734 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
1735 ** and an Expr struct with the EP_TokenOnly flag set.
1737 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */
1738 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
1739 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
1742 ** Flags passed to the sqlite3ExprDup() function. See the header comment
1743 ** above sqlite3ExprDup() for details.
1745 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
1748 ** A list of expressions. Each expression may optionally have a
1749 ** name. An expr/name combination can be used in several ways, such
1750 ** as the list of "expr AS ID" fields following a "SELECT" or in the
1751 ** list of "ID = expr" items in an UPDATE. A list of expressions can
1752 ** also be used as the argument to a function, in which case the a.zName
1753 ** field is not used.
1755 struct ExprList {
1756 int nExpr; /* Number of expressions on the list */
1757 int iECursor; /* VDBE Cursor associated with this ExprList */
1758 struct ExprList_item { /* For each expression in the list */
1759 Expr *pExpr; /* The list of expressions */
1760 char *zName; /* Token associated with this expression */
1761 char *zSpan; /* Original text of the expression */
1762 u8 sortOrder; /* 1 for DESC or 0 for ASC */
1763 u8 done; /* A flag to indicate when processing is finished */
1764 u16 iOrderByCol; /* For ORDER BY, column number in result set */
1765 u16 iAlias; /* Index into Parse.aAlias[] for zName */
1766 } *a; /* Alloc a power of two greater or equal to nExpr */
1770 ** An instance of this structure is used by the parser to record both
1771 ** the parse tree for an expression and the span of input text for an
1772 ** expression.
1774 struct ExprSpan {
1775 Expr *pExpr; /* The expression parse tree */
1776 const char *zStart; /* First character of input text */
1777 const char *zEnd; /* One character past the end of input text */
1781 ** An instance of this structure can hold a simple list of identifiers,
1782 ** such as the list "a,b,c" in the following statements:
1784 ** INSERT INTO t(a,b,c) VALUES ...;
1785 ** CREATE INDEX idx ON t(a,b,c);
1786 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1788 ** The IdList.a.idx field is used when the IdList represents the list of
1789 ** column names after a table name in an INSERT statement. In the statement
1791 ** INSERT INTO t(a,b,c) ...
1793 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1795 struct IdList {
1796 struct IdList_item {
1797 char *zName; /* Name of the identifier */
1798 int idx; /* Index in some Table.aCol[] of a column named zName */
1799 } *a;
1800 int nId; /* Number of identifiers on the list */
1804 ** The bitmask datatype defined below is used for various optimizations.
1806 ** Changing this from a 64-bit to a 32-bit type limits the number of
1807 ** tables in a join to 32 instead of 64. But it also reduces the size
1808 ** of the library by 738 bytes on ix86.
1810 typedef u64 Bitmask;
1813 ** The number of bits in a Bitmask. "BMS" means "BitMask Size".
1815 #define BMS ((int)(sizeof(Bitmask)*8))
1818 ** The following structure describes the FROM clause of a SELECT statement.
1819 ** Each table or subquery in the FROM clause is a separate element of
1820 ** the SrcList.a[] array.
1822 ** With the addition of multiple database support, the following structure
1823 ** can also be used to describe a particular table such as the table that
1824 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
1825 ** such a table must be a simple name: ID. But in SQLite, the table can
1826 ** now be identified by a database name, a dot, then the table name: ID.ID.
1828 ** The jointype starts out showing the join type between the current table
1829 ** and the next table on the list. The parser builds the list this way.
1830 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1831 ** jointype expresses the join between the table and the previous table.
1833 ** In the colUsed field, the high-order bit (bit 63) is set if the table
1834 ** contains more than 63 columns and the 64-th or later column is used.
1836 struct SrcList {
1837 i16 nSrc; /* Number of tables or subqueries in the FROM clause */
1838 i16 nAlloc; /* Number of entries allocated in a[] below */
1839 struct SrcList_item {
1840 char *zDatabase; /* Name of database holding this table */
1841 char *zName; /* Name of the table */
1842 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
1843 Table *pTab; /* An SQL table corresponding to zName */
1844 Select *pSelect; /* A SELECT statement used in place of a table name */
1845 int addrFillSub; /* Address of subroutine to manifest a subquery */
1846 int regReturn; /* Register holding return address of addrFillSub */
1847 u8 jointype; /* Type of join between this able and the previous */
1848 u8 notIndexed; /* True if there is a NOT INDEXED clause */
1849 u8 isCorrelated; /* True if sub-query is correlated */
1850 #ifndef SQLITE_OMIT_EXPLAIN
1851 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */
1852 #endif
1853 int iCursor; /* The VDBE cursor number used to access this table */
1854 Expr *pOn; /* The ON clause of a join */
1855 IdList *pUsing; /* The USING clause of a join */
1856 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */
1857 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */
1858 Index *pIndex; /* Index structure corresponding to zIndex, if any */
1859 } a[1]; /* One entry for each identifier on the list */
1863 ** Permitted values of the SrcList.a.jointype field
1865 #define JT_INNER 0x0001 /* Any kind of inner or cross join */
1866 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
1867 #define JT_NATURAL 0x0004 /* True for a "natural" join */
1868 #define JT_LEFT 0x0008 /* Left outer join */
1869 #define JT_RIGHT 0x0010 /* Right outer join */
1870 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
1871 #define JT_ERROR 0x0040 /* unknown or unsupported join type */
1875 ** A WherePlan object holds information that describes a lookup
1876 ** strategy.
1878 ** This object is intended to be opaque outside of the where.c module.
1879 ** It is included here only so that that compiler will know how big it
1880 ** is. None of the fields in this object should be used outside of
1881 ** the where.c module.
1883 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
1884 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx
1885 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the
1886 ** case that more than one of these conditions is true.
1888 struct WherePlan {
1889 u32 wsFlags; /* WHERE_* flags that describe the strategy */
1890 u32 nEq; /* Number of == constraints */
1891 double nRow; /* Estimated number of rows (for EQP) */
1892 union {
1893 Index *pIdx; /* Index when WHERE_INDEXED is true */
1894 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */
1895 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */
1896 } u;
1900 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1901 ** structure contains a single instance of this structure. This structure
1902 ** is intended to be private the the where.c module and should not be
1903 ** access or modified by other modules.
1905 ** The pIdxInfo field is used to help pick the best index on a
1906 ** virtual table. The pIdxInfo pointer contains indexing
1907 ** information for the i-th table in the FROM clause before reordering.
1908 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1909 ** All other information in the i-th WhereLevel object for the i-th table
1910 ** after FROM clause ordering.
1912 struct WhereLevel {
1913 WherePlan plan; /* query plan for this element of the FROM clause */
1914 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
1915 int iTabCur; /* The VDBE cursor used to access the table */
1916 int iIdxCur; /* The VDBE cursor used to access pIdx */
1917 int addrBrk; /* Jump here to break out of the loop */
1918 int addrNxt; /* Jump here to start the next IN combination */
1919 int addrCont; /* Jump here to continue with the next loop cycle */
1920 int addrFirst; /* First instruction of interior of the loop */
1921 u8 iFrom; /* Which entry in the FROM clause */
1922 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */
1923 int p1, p2; /* Operands of the opcode used to ends the loop */
1924 union { /* Information that depends on plan.wsFlags */
1925 struct {
1926 int nIn; /* Number of entries in aInLoop[] */
1927 struct InLoop {
1928 int iCur; /* The VDBE cursor used by this IN operator */
1929 int addrInTop; /* Top of the IN loop */
1930 } *aInLoop; /* Information about each nested IN operator */
1931 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */
1932 } u;
1934 /* The following field is really not part of the current level. But
1935 ** we need a place to cache virtual table index information for each
1936 ** virtual table in the FROM clause and the WhereLevel structure is
1937 ** a convenient place since there is one WhereLevel for each FROM clause
1938 ** element.
1940 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
1944 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
1945 ** and the WhereInfo.wctrlFlags member.
1947 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
1948 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
1949 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
1950 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
1951 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */
1952 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */
1953 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */
1954 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */
1955 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */
1958 ** The WHERE clause processing routine has two halves. The
1959 ** first part does the start of the WHERE loop and the second
1960 ** half does the tail of the WHERE loop. An instance of
1961 ** this structure is returned by the first half and passed
1962 ** into the second half to give some continuity.
1964 struct WhereInfo {
1965 Parse *pParse; /* Parsing and code generating context */
1966 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */
1967 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
1968 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */
1969 u8 eDistinct;
1970 SrcList *pTabList; /* List of tables in the join */
1971 int iTop; /* The very beginning of the WHERE loop */
1972 int iContinue; /* Jump here to continue with next record */
1973 int iBreak; /* Jump here to break out of the loop */
1974 int nLevel; /* Number of nested loop */
1975 struct WhereClause *pWC; /* Decomposition of the WHERE clause */
1976 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */
1977 double nRowOut; /* Estimated number of output rows */
1978 WhereLevel a[1]; /* Information about each nest loop in WHERE */
1981 #define WHERE_DISTINCT_UNIQUE 1
1982 #define WHERE_DISTINCT_ORDERED 2
1985 ** A NameContext defines a context in which to resolve table and column
1986 ** names. The context consists of a list of tables (the pSrcList) field and
1987 ** a list of named expression (pEList). The named expression list may
1988 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
1989 ** to the table being operated on by INSERT, UPDATE, or DELETE. The
1990 ** pEList corresponds to the result set of a SELECT and is NULL for
1991 ** other statements.
1993 ** NameContexts can be nested. When resolving names, the inner-most
1994 ** context is searched first. If no match is found, the next outer
1995 ** context is checked. If there is still no match, the next context
1996 ** is checked. This process continues until either a match is found
1997 ** or all contexts are check. When a match is found, the nRef member of
1998 ** the context containing the match is incremented.
2000 ** Each subquery gets a new NameContext. The pNext field points to the
2001 ** NameContext in the parent query. Thus the process of scanning the
2002 ** NameContext list corresponds to searching through successively outer
2003 ** subqueries looking for a match.
2005 struct NameContext {
2006 Parse *pParse; /* The parser */
2007 SrcList *pSrcList; /* One or more tables used to resolve names */
2008 ExprList *pEList; /* Optional list of named expressions */
2009 AggInfo *pAggInfo; /* Information about aggregates at this level */
2010 NameContext *pNext; /* Next outer name context. NULL for outermost */
2011 int nRef; /* Number of names resolved by this context */
2012 int nErr; /* Number of errors encountered while resolving names */
2013 u8 ncFlags; /* Zero or more NC_* flags defined below */
2017 ** Allowed values for the NameContext, ncFlags field.
2019 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */
2020 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */
2021 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */
2022 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */
2025 ** An instance of the following structure contains all information
2026 ** needed to generate code for a single SELECT statement.
2028 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
2029 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2030 ** limit and nOffset to the value of the offset (or 0 if there is not
2031 ** offset). But later on, nLimit and nOffset become the memory locations
2032 ** in the VDBE that record the limit and offset counters.
2034 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2035 ** These addresses must be stored so that we can go back and fill in
2036 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
2037 ** the number of columns in P2 can be computed at the same time
2038 ** as the OP_OpenEphm instruction is coded because not
2039 ** enough information about the compound query is known at that point.
2040 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2041 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating
2042 ** sequences for the ORDER BY clause.
2044 struct Select {
2045 ExprList *pEList; /* The fields of the result */
2046 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2047 char affinity; /* MakeRecord with this affinity for SRT_Set */
2048 u16 selFlags; /* Various SF_* values */
2049 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
2050 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
2051 double nSelectRow; /* Estimated number of result rows */
2052 SrcList *pSrc; /* The FROM clause */
2053 Expr *pWhere; /* The WHERE clause */
2054 ExprList *pGroupBy; /* The GROUP BY clause */
2055 Expr *pHaving; /* The HAVING clause */
2056 ExprList *pOrderBy; /* The ORDER BY clause */
2057 Select *pPrior; /* Prior select in a compound select statement */
2058 Select *pNext; /* Next select to the left in a compound */
2059 Select *pRightmost; /* Right-most select in a compound select statement */
2060 Expr *pLimit; /* LIMIT expression. NULL means not used. */
2061 Expr *pOffset; /* OFFSET expression. NULL means not used. */
2065 ** Allowed values for Select.selFlags. The "SF" prefix stands for
2066 ** "Select Flag".
2068 #define SF_Distinct 0x01 /* Output should be DISTINCT */
2069 #define SF_Resolved 0x02 /* Identifiers have been resolved */
2070 #define SF_Aggregate 0x04 /* Contains aggregate functions */
2071 #define SF_UsesEphemeral 0x08 /* Uses the OpenEphemeral opcode */
2072 #define SF_Expanded 0x10 /* sqlite3SelectExpand() called on this */
2073 #define SF_HasTypeInfo 0x20 /* FROM subqueries have Table metadata */
2074 #define SF_UseSorter 0x40 /* Sort using a sorter */
2075 #define SF_Values 0x80 /* Synthesized from VALUES clause */
2079 ** The results of a select can be distributed in several ways. The
2080 ** "SRT" prefix means "SELECT Result Type".
2082 #define SRT_Union 1 /* Store result as keys in an index */
2083 #define SRT_Except 2 /* Remove result from a UNION index */
2084 #define SRT_Exists 3 /* Store 1 if the result is not empty */
2085 #define SRT_Discard 4 /* Do not save the results anywhere */
2087 /* The ORDER BY clause is ignored for all of the above */
2088 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
2090 #define SRT_Output 5 /* Output each row of result */
2091 #define SRT_Mem 6 /* Store result in a memory cell */
2092 #define SRT_Set 7 /* Store results as keys in an index */
2093 #define SRT_Table 8 /* Store result as data with an automatic rowid */
2094 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
2095 #define SRT_Coroutine 10 /* Generate a single row of result */
2098 ** A structure used to customize the behavior of sqlite3Select(). See
2099 ** comments above sqlite3Select() for details.
2101 typedef struct SelectDest SelectDest;
2102 struct SelectDest {
2103 u8 eDest; /* How to dispose of the results */
2104 u8 affinity; /* Affinity used when eDest==SRT_Set */
2105 int iParm; /* A parameter used by the eDest disposal method */
2106 int iMem; /* Base register where results are written */
2107 int nMem; /* Number of registers allocated */
2111 ** During code generation of statements that do inserts into AUTOINCREMENT
2112 ** tables, the following information is attached to the Table.u.autoInc.p
2113 ** pointer of each autoincrement table to record some side information that
2114 ** the code generator needs. We have to keep per-table autoincrement
2115 ** information in case inserts are down within triggers. Triggers do not
2116 ** normally coordinate their activities, but we do need to coordinate the
2117 ** loading and saving of autoincrement information.
2119 struct AutoincInfo {
2120 AutoincInfo *pNext; /* Next info block in a list of them all */
2121 Table *pTab; /* Table this info block refers to */
2122 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
2123 int regCtr; /* Memory register holding the rowid counter */
2127 ** Size of the column cache
2129 #ifndef SQLITE_N_COLCACHE
2130 # define SQLITE_N_COLCACHE 10
2131 #endif
2134 ** At least one instance of the following structure is created for each
2135 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2136 ** statement. All such objects are stored in the linked list headed at
2137 ** Parse.pTriggerPrg and deleted once statement compilation has been
2138 ** completed.
2140 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2141 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2142 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2143 ** The Parse.pTriggerPrg list never contains two entries with the same
2144 ** values for both pTrigger and orconf.
2146 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2147 ** accessed (or set to 0 for triggers fired as a result of INSERT
2148 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2149 ** a mask of new.* columns used by the program.
2151 struct TriggerPrg {
2152 Trigger *pTrigger; /* Trigger this program was coded from */
2153 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
2154 SubProgram *pProgram; /* Program implementing pTrigger/orconf */
2155 int orconf; /* Default ON CONFLICT policy */
2156 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */
2160 ** The yDbMask datatype for the bitmask of all attached databases.
2162 #if SQLITE_MAX_ATTACHED>30
2163 typedef sqlite3_uint64 yDbMask;
2164 #else
2165 typedef unsigned int yDbMask;
2166 #endif
2169 ** An SQL parser context. A copy of this structure is passed through
2170 ** the parser and down into all the parser action routine in order to
2171 ** carry around information that is global to the entire parse.
2173 ** The structure is divided into two parts. When the parser and code
2174 ** generate call themselves recursively, the first part of the structure
2175 ** is constant but the second part is reset at the beginning and end of
2176 ** each recursion.
2178 ** The nTableLock and aTableLock variables are only used if the shared-cache
2179 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2180 ** used to store the set of table-locks required by the statement being
2181 ** compiled. Function sqlite3TableLock() is used to add entries to the
2182 ** list.
2184 struct Parse {
2185 sqlite3 *db; /* The main database structure */
2186 char *zErrMsg; /* An error message */
2187 Vdbe *pVdbe; /* An engine for executing database bytecode */
2188 int rc; /* Return code from execution */
2189 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
2190 u8 checkSchema; /* Causes schema cookie check after an error */
2191 u8 nested; /* Number of nested calls to the parser/code generator */
2192 u8 nTempReg; /* Number of temporary registers in aTempReg[] */
2193 u8 nTempInUse; /* Number of aTempReg[] currently checked out */
2194 u8 nColCache; /* Number of entries in aColCache[] */
2195 u8 iColCache; /* Next entry in aColCache[] to replace */
2196 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */
2197 u8 mayAbort; /* True if statement may throw an ABORT exception */
2198 int aTempReg[8]; /* Holding area for temporary registers */
2199 int nRangeReg; /* Size of the temporary register block */
2200 int iRangeReg; /* First register in temporary register block */
2201 int nErr; /* Number of errors seen */
2202 int nTab; /* Number of previously allocated VDBE cursors */
2203 int nMem; /* Number of memory cells used so far */
2204 int nSet; /* Number of sets used so far */
2205 int nOnce; /* Number of OP_Once instructions so far */
2206 int ckBase; /* Base register of data during check constraints */
2207 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2208 int iCacheCnt; /* Counter used to generate aColCache[].lru values */
2209 struct yColCache {
2210 int iTable; /* Table cursor number */
2211 int iColumn; /* Table column number */
2212 u8 tempReg; /* iReg is a temp register that needs to be freed */
2213 int iLevel; /* Nesting level */
2214 int iReg; /* Reg with value of this column. 0 means none. */
2215 int lru; /* Least recently used entry has the smallest value */
2216 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */
2217 yDbMask writeMask; /* Start a write transaction on these databases */
2218 yDbMask cookieMask; /* Bitmask of schema verified databases */
2219 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
2220 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
2221 int regRowid; /* Register holding rowid of CREATE TABLE entry */
2222 int regRoot; /* Register holding root page number for new objects */
2223 int nMaxArg; /* Max args passed to user function by sub-program */
2224 Token constraintName;/* Name of the constraint currently being parsed */
2225 #ifndef SQLITE_OMIT_SHARED_CACHE
2226 int nTableLock; /* Number of locks in aTableLock */
2227 TableLock *aTableLock; /* Required table locks for shared-cache mode */
2228 #endif
2229 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
2231 /* Information used while coding trigger programs. */
2232 Parse *pToplevel; /* Parse structure for main program (or NULL) */
2233 Table *pTriggerTab; /* Table triggers are being coded for */
2234 double nQueryLoop; /* Estimated number of iterations of a query */
2235 u32 oldmask; /* Mask of old.* columns referenced */
2236 u32 newmask; /* Mask of new.* columns referenced */
2237 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
2238 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
2239 u8 disableTriggers; /* True to disable triggers */
2241 /* Above is constant between recursions. Below is reset before and after
2242 ** each recursion */
2244 int nVar; /* Number of '?' variables seen in the SQL so far */
2245 int nzVar; /* Number of available slots in azVar[] */
2246 u8 explain; /* True if the EXPLAIN flag is found on the query */
2247 #ifndef SQLITE_OMIT_VIRTUALTABLE
2248 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
2249 int nVtabLock; /* Number of virtual tables to lock */
2250 #endif
2251 int nAlias; /* Number of aliased result set columns */
2252 int nHeight; /* Expression tree height of current sub-select */
2253 #ifndef SQLITE_OMIT_EXPLAIN
2254 int iSelectId; /* ID of current select for EXPLAIN output */
2255 int iNextSelectId; /* Next available select ID for EXPLAIN output */
2256 #endif
2257 char **azVar; /* Pointers to names of parameters */
2258 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */
2259 int *aAlias; /* Register used to hold aliased result */
2260 const char *zTail; /* All SQL text past the last semicolon parsed */
2261 Table *pNewTable; /* A table being constructed by CREATE TABLE */
2262 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
2263 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2264 Token sNameToken; /* Token with unqualified schema object name */
2265 Token sLastToken; /* The last token parsed */
2266 #ifndef SQLITE_OMIT_VIRTUALTABLE
2267 Token sArg; /* Complete text of a module argument */
2268 Table **apVtabLock; /* Pointer to virtual tables needing locking */
2269 #endif
2270 Table *pZombieTab; /* List of Table objects to delete after code gen */
2271 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
2275 ** Return true if currently inside an sqlite3_declare_vtab() call.
2277 #ifdef SQLITE_OMIT_VIRTUALTABLE
2278 #define IN_DECLARE_VTAB 0
2279 #else
2280 #define IN_DECLARE_VTAB (pParse->declareVtab)
2281 #endif
2284 ** An instance of the following structure can be declared on a stack and used
2285 ** to save the Parse.zAuthContext value so that it can be restored later.
2287 struct AuthContext {
2288 const char *zAuthContext; /* Put saved Parse.zAuthContext here */
2289 Parse *pParse; /* The Parse structure */
2293 ** Bitfield flags for P5 value in various opcodes.
2295 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */
2296 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */
2297 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
2298 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */
2299 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
2300 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */
2301 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */
2302 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */
2305 * Each trigger present in the database schema is stored as an instance of
2306 * struct Trigger.
2308 * Pointers to instances of struct Trigger are stored in two ways.
2309 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2310 * database). This allows Trigger structures to be retrieved by name.
2311 * 2. All triggers associated with a single table form a linked list, using the
2312 * pNext member of struct Trigger. A pointer to the first element of the
2313 * linked list is stored as the "pTrigger" member of the associated
2314 * struct Table.
2316 * The "step_list" member points to the first element of a linked list
2317 * containing the SQL statements specified as the trigger program.
2319 struct Trigger {
2320 char *zName; /* The name of the trigger */
2321 char *table; /* The table or view to which the trigger applies */
2322 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
2323 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2324 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
2325 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
2326 the <column-list> is stored here */
2327 Schema *pSchema; /* Schema containing the trigger */
2328 Schema *pTabSchema; /* Schema containing the table */
2329 TriggerStep *step_list; /* Link list of trigger program steps */
2330 Trigger *pNext; /* Next trigger associated with the table */
2334 ** A trigger is either a BEFORE or an AFTER trigger. The following constants
2335 ** determine which.
2337 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2338 ** In that cases, the constants below can be ORed together.
2340 #define TRIGGER_BEFORE 1
2341 #define TRIGGER_AFTER 2
2344 * An instance of struct TriggerStep is used to store a single SQL statement
2345 * that is a part of a trigger-program.
2347 * Instances of struct TriggerStep are stored in a singly linked list (linked
2348 * using the "pNext" member) referenced by the "step_list" member of the
2349 * associated struct Trigger instance. The first element of the linked list is
2350 * the first step of the trigger-program.
2352 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2353 * "SELECT" statement. The meanings of the other members is determined by the
2354 * value of "op" as follows:
2356 * (op == TK_INSERT)
2357 * orconf -> stores the ON CONFLICT algorithm
2358 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
2359 * this stores a pointer to the SELECT statement. Otherwise NULL.
2360 * target -> A token holding the quoted name of the table to insert into.
2361 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2362 * this stores values to be inserted. Otherwise NULL.
2363 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2364 * statement, then this stores the column-names to be
2365 * inserted into.
2367 * (op == TK_DELETE)
2368 * target -> A token holding the quoted name of the table to delete from.
2369 * pWhere -> The WHERE clause of the DELETE statement if one is specified.
2370 * Otherwise NULL.
2372 * (op == TK_UPDATE)
2373 * target -> A token holding the quoted name of the table to update rows of.
2374 * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
2375 * Otherwise NULL.
2376 * pExprList -> A list of the columns to update and the expressions to update
2377 * them to. See sqlite3Update() documentation of "pChanges"
2378 * argument.
2381 struct TriggerStep {
2382 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2383 u8 orconf; /* OE_Rollback etc. */
2384 Trigger *pTrig; /* The trigger that this step is a part of */
2385 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2386 Token target; /* Target table for DELETE, UPDATE, INSERT */
2387 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
2388 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */
2389 IdList *pIdList; /* Column names for INSERT */
2390 TriggerStep *pNext; /* Next in the link-list */
2391 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
2395 ** The following structure contains information used by the sqliteFix...
2396 ** routines as they walk the parse tree to make database references
2397 ** explicit.
2399 typedef struct DbFixer DbFixer;
2400 struct DbFixer {
2401 Parse *pParse; /* The parsing context. Error messages written here */
2402 const char *zDb; /* Make sure all objects are contained in this database */
2403 const char *zType; /* Type of the container - used for error messages */
2404 const Token *pName; /* Name of the container - used for error messages */
2408 ** An objected used to accumulate the text of a string where we
2409 ** do not necessarily know how big the string will be in the end.
2411 struct StrAccum {
2412 sqlite3 *db; /* Optional database for lookaside. Can be NULL */
2413 char *zBase; /* A base allocation. Not from malloc. */
2414 char *zText; /* The string collected so far */
2415 int nChar; /* Length of the string so far */
2416 int nAlloc; /* Amount of space allocated in zText */
2417 int mxAlloc; /* Maximum allowed string length */
2418 u8 mallocFailed; /* Becomes true if any memory allocation fails */
2419 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */
2420 u8 tooBig; /* Becomes true if string size exceeds limits */
2424 ** A pointer to this structure is used to communicate information
2425 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2427 typedef struct {
2428 sqlite3 *db; /* The database being initialized */
2429 char **pzErrMsg; /* Error message stored here */
2430 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
2431 int rc; /* Result code stored here */
2432 } InitData;
2435 ** Structure containing global configuration data for the SQLite library.
2437 ** This structure also contains some state information.
2439 struct Sqlite3Config {
2440 int bMemstat; /* True to enable memory status */
2441 int bCoreMutex; /* True to enable core mutexing */
2442 int bFullMutex; /* True to enable full mutexing */
2443 int bOpenUri; /* True to interpret filenames as URIs */
2444 int mxStrlen; /* Maximum string length */
2445 int szLookaside; /* Default lookaside buffer size */
2446 int nLookaside; /* Default lookaside buffer count */
2447 sqlite3_mem_methods m; /* Low-level memory allocation interface */
2448 sqlite3_mutex_methods mutex; /* Low-level mutex interface */
2449 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */
2450 void *pHeap; /* Heap storage space */
2451 int nHeap; /* Size of pHeap[] */
2452 int mnReq, mxReq; /* Min and max heap requests sizes */
2453 void *pScratch; /* Scratch memory */
2454 int szScratch; /* Size of each scratch buffer */
2455 int nScratch; /* Number of scratch buffers */
2456 void *pPage; /* Page cache memory */
2457 int szPage; /* Size of each page in pPage[] */
2458 int nPage; /* Number of pages in pPage[] */
2459 int mxParserStack; /* maximum depth of the parser stack */
2460 int sharedCacheEnabled; /* true if shared-cache mode enabled */
2461 /* The above might be initialized to non-zero. The following need to always
2462 ** initially be zero, however. */
2463 int isInit; /* True after initialization has finished */
2464 int inProgress; /* True while initialization in progress */
2465 int isMutexInit; /* True after mutexes are initialized */
2466 int isMallocInit; /* True after malloc is initialized */
2467 int isPCacheInit; /* True after malloc is initialized */
2468 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
2469 int nRefInitMutex; /* Number of users of pInitMutex */
2470 void (*xLog)(void*,int,const char*); /* Function for logging */
2471 void *pLogArg; /* First argument to xLog() */
2472 int bLocaltimeFault; /* True to fail localtime() calls */
2476 ** Context pointer passed down through the tree-walk.
2478 struct Walker {
2479 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
2480 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
2481 Parse *pParse; /* Parser context. */
2482 union { /* Extra data for callback */
2483 NameContext *pNC; /* Naming context */
2484 int i; /* Integer value */
2485 SrcList *pSrcList; /* FROM clause */
2486 } u;
2489 /* Forward declarations */
2490 int sqlite3WalkExpr(Walker*, Expr*);
2491 int sqlite3WalkExprList(Walker*, ExprList*);
2492 int sqlite3WalkSelect(Walker*, Select*);
2493 int sqlite3WalkSelectExpr(Walker*, Select*);
2494 int sqlite3WalkSelectFrom(Walker*, Select*);
2497 ** Return code from the parse-tree walking primitives and their
2498 ** callbacks.
2500 #define WRC_Continue 0 /* Continue down into children */
2501 #define WRC_Prune 1 /* Omit children but continue walking siblings */
2502 #define WRC_Abort 2 /* Abandon the tree walk */
2505 ** Assuming zIn points to the first byte of a UTF-8 character,
2506 ** advance zIn to point to the first byte of the next UTF-8 character.
2508 #define SQLITE_SKIP_UTF8(zIn) { \
2509 if( (*(zIn++))>=0xc0 ){ \
2510 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
2515 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
2516 ** the same name but without the _BKPT suffix. These macros invoke
2517 ** routines that report the line-number on which the error originated
2518 ** using sqlite3_log(). The routines also provide a convenient place
2519 ** to set a debugger breakpoint.
2521 int sqlite3CorruptError(int);
2522 int sqlite3MisuseError(int);
2523 int sqlite3CantopenError(int);
2524 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
2525 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
2526 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
2530 ** FTS4 is really an extension for FTS3. It is enabled using the
2531 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all
2532 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
2534 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
2535 # define SQLITE_ENABLE_FTS3
2536 #endif
2539 ** The ctype.h header is needed for non-ASCII systems. It is also
2540 ** needed by FTS3 when FTS3 is included in the amalgamation.
2542 #if !defined(SQLITE_ASCII) || \
2543 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2544 # include <ctype.h>
2545 #endif
2548 ** The following macros mimic the standard library functions toupper(),
2549 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2550 ** sqlite versions only work for ASCII characters, regardless of locale.
2552 #ifdef SQLITE_ASCII
2553 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2554 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2555 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2556 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2557 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2558 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2559 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
2560 #else
2561 # define sqlite3Toupper(x) toupper((unsigned char)(x))
2562 # define sqlite3Isspace(x) isspace((unsigned char)(x))
2563 # define sqlite3Isalnum(x) isalnum((unsigned char)(x))
2564 # define sqlite3Isalpha(x) isalpha((unsigned char)(x))
2565 # define sqlite3Isdigit(x) isdigit((unsigned char)(x))
2566 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
2567 # define sqlite3Tolower(x) tolower((unsigned char)(x))
2568 #endif
2571 ** Internal function prototypes
2573 #define sqlite3StrICmp sqlite3_stricmp
2574 int sqlite3Strlen30(const char*);
2575 #define sqlite3StrNICmp sqlite3_strnicmp
2577 int sqlite3MallocInit(void);
2578 void sqlite3MallocEnd(void);
2579 void *sqlite3Malloc(int);
2580 void *sqlite3MallocZero(int);
2581 void *sqlite3DbMallocZero(sqlite3*, int);
2582 void *sqlite3DbMallocRaw(sqlite3*, int);
2583 char *sqlite3DbStrDup(sqlite3*,const char*);
2584 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2585 void *sqlite3Realloc(void*, int);
2586 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2587 void *sqlite3DbRealloc(sqlite3 *, void *, int);
2588 void sqlite3DbFree(sqlite3*, void*);
2589 int sqlite3MallocSize(void*);
2590 int sqlite3DbMallocSize(sqlite3*, void*);
2591 void *sqlite3ScratchMalloc(int);
2592 void sqlite3ScratchFree(void*);
2593 void *sqlite3PageMalloc(int);
2594 void sqlite3PageFree(void*);
2595 void sqlite3MemSetDefault(void);
2596 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2597 int sqlite3HeapNearlyFull(void);
2600 ** On systems with ample stack space and that support alloca(), make
2601 ** use of alloca() to obtain space for large automatic objects. By default,
2602 ** obtain space from malloc().
2604 ** The alloca() routine never returns NULL. This will cause code paths
2605 ** that deal with sqlite3StackAlloc() failures to be unreachable.
2607 #ifdef SQLITE_USE_ALLOCA
2608 # define sqlite3StackAllocRaw(D,N) alloca(N)
2609 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
2610 # define sqlite3StackFree(D,P)
2611 #else
2612 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
2613 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N)
2614 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
2615 #endif
2617 #ifdef SQLITE_ENABLE_MEMSYS3
2618 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
2619 #endif
2620 #ifdef SQLITE_ENABLE_MEMSYS5
2621 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
2622 #endif
2625 #ifndef SQLITE_MUTEX_OMIT
2626 sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
2627 sqlite3_mutex_methods const *sqlite3NoopMutex(void);
2628 sqlite3_mutex *sqlite3MutexAlloc(int);
2629 int sqlite3MutexInit(void);
2630 int sqlite3MutexEnd(void);
2631 #endif
2633 int sqlite3StatusValue(int);
2634 void sqlite3StatusAdd(int, int);
2635 void sqlite3StatusSet(int, int);
2637 #ifndef SQLITE_OMIT_FLOATING_POINT
2638 int sqlite3IsNaN(double);
2639 #else
2640 # define sqlite3IsNaN(X) 0
2641 #endif
2643 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
2644 #ifndef SQLITE_OMIT_TRACE
2645 void sqlite3XPrintf(StrAccum*, const char*, ...);
2646 #endif
2647 char *sqlite3MPrintf(sqlite3*,const char*, ...);
2648 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
2649 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
2650 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
2651 void sqlite3DebugPrintf(const char*, ...);
2652 #endif
2653 #if defined(SQLITE_TEST)
2654 void *sqlite3TestTextToPtr(const char*);
2655 #endif
2657 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */
2658 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
2659 void sqlite3ExplainBegin(Vdbe*);
2660 void sqlite3ExplainPrintf(Vdbe*, const char*, ...);
2661 void sqlite3ExplainNL(Vdbe*);
2662 void sqlite3ExplainPush(Vdbe*);
2663 void sqlite3ExplainPop(Vdbe*);
2664 void sqlite3ExplainFinish(Vdbe*);
2665 void sqlite3ExplainSelect(Vdbe*, Select*);
2666 void sqlite3ExplainExpr(Vdbe*, Expr*);
2667 void sqlite3ExplainExprList(Vdbe*, ExprList*);
2668 const char *sqlite3VdbeExplanation(Vdbe*);
2669 #else
2670 # define sqlite3ExplainBegin(X)
2671 # define sqlite3ExplainSelect(A,B)
2672 # define sqlite3ExplainExpr(A,B)
2673 # define sqlite3ExplainExprList(A,B)
2674 # define sqlite3ExplainFinish(X)
2675 # define sqlite3VdbeExplanation(X) 0
2676 #endif
2679 void sqlite3SetString(char **, sqlite3*, const char*, ...);
2680 void sqlite3ErrorMsg(Parse*, const char*, ...);
2681 int sqlite3Dequote(char*);
2682 int sqlite3KeywordCode(const unsigned char*, int);
2683 int sqlite3RunParser(Parse*, const char*, char **);
2684 void sqlite3FinishCoding(Parse*);
2685 int sqlite3GetTempReg(Parse*);
2686 void sqlite3ReleaseTempReg(Parse*,int);
2687 int sqlite3GetTempRange(Parse*,int);
2688 void sqlite3ReleaseTempRange(Parse*,int,int);
2689 void sqlite3ClearTempRegCache(Parse*);
2690 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
2691 Expr *sqlite3Expr(sqlite3*,int,const char*);
2692 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
2693 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
2694 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
2695 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
2696 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
2697 void sqlite3ExprDelete(sqlite3*, Expr*);
2698 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
2699 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
2700 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
2701 void sqlite3ExprListDelete(sqlite3*, ExprList*);
2702 int sqlite3Init(sqlite3*, char**);
2703 int sqlite3InitCallback(void*, int, char**, char**);
2704 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
2705 void sqlite3ResetInternalSchema(sqlite3*, int);
2706 void sqlite3BeginParse(Parse*,int);
2707 void sqlite3CommitInternalChanges(sqlite3*);
2708 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
2709 void sqlite3OpenMasterTable(Parse *, int);
2710 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
2711 void sqlite3AddColumn(Parse*,Token*);
2712 void sqlite3AddNotNull(Parse*, int);
2713 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
2714 void sqlite3AddCheckConstraint(Parse*, Expr*);
2715 void sqlite3AddColumnType(Parse*,Token*);
2716 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
2717 void sqlite3AddCollateType(Parse*, Token*);
2718 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
2719 int sqlite3ParseUri(const char*,const char*,unsigned int*,
2720 sqlite3_vfs**,char**,char **);
2721 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
2722 int sqlite3CodeOnce(Parse *);
2724 Bitvec *sqlite3BitvecCreate(u32);
2725 int sqlite3BitvecTest(Bitvec*, u32);
2726 int sqlite3BitvecSet(Bitvec*, u32);
2727 void sqlite3BitvecClear(Bitvec*, u32, void*);
2728 void sqlite3BitvecDestroy(Bitvec*);
2729 u32 sqlite3BitvecSize(Bitvec*);
2730 int sqlite3BitvecBuiltinTest(int,int*);
2732 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
2733 void sqlite3RowSetClear(RowSet*);
2734 void sqlite3RowSetInsert(RowSet*, i64);
2735 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
2736 int sqlite3RowSetNext(RowSet*, i64*);
2738 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
2740 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2741 int sqlite3ViewGetColumnNames(Parse*,Table*);
2742 #else
2743 # define sqlite3ViewGetColumnNames(A,B) 0
2744 #endif
2746 void sqlite3DropTable(Parse*, SrcList*, int, int);
2747 void sqlite3CodeDropTable(Parse*, Table*, int, int);
2748 void sqlite3DeleteTable(sqlite3*, Table*);
2749 #ifndef SQLITE_OMIT_AUTOINCREMENT
2750 void sqlite3AutoincrementBegin(Parse *pParse);
2751 void sqlite3AutoincrementEnd(Parse *pParse);
2752 #else
2753 # define sqlite3AutoincrementBegin(X)
2754 # define sqlite3AutoincrementEnd(X)
2755 #endif
2756 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
2757 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
2758 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
2759 int sqlite3IdListIndex(IdList*,const char*);
2760 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
2761 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
2762 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
2763 Token*, Select*, Expr*, IdList*);
2764 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
2765 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
2766 void sqlite3SrcListShiftJoinType(SrcList*);
2767 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
2768 void sqlite3IdListDelete(sqlite3*, IdList*);
2769 void sqlite3SrcListDelete(sqlite3*, SrcList*);
2770 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
2771 Token*, int, int);
2772 void sqlite3DropIndex(Parse*, SrcList*, int);
2773 int sqlite3Select(Parse*, Select*, SelectDest*);
2774 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
2775 Expr*,ExprList*,int,Expr*,Expr*);
2776 void sqlite3SelectDelete(sqlite3*, Select*);
2777 Table *sqlite3SrcListLookup(Parse*, SrcList*);
2778 int sqlite3IsReadOnly(Parse*, Table*, int);
2779 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
2780 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
2781 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
2782 #endif
2783 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2784 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
2785 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**,ExprList*,u16);
2786 void sqlite3WhereEnd(WhereInfo*);
2787 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
2788 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
2789 void sqlite3ExprCodeMove(Parse*, int, int, int);
2790 void sqlite3ExprCodeCopy(Parse*, int, int, int);
2791 void sqlite3ExprCacheStore(Parse*, int, int, int);
2792 void sqlite3ExprCachePush(Parse*);
2793 void sqlite3ExprCachePop(Parse*, int);
2794 void sqlite3ExprCacheRemove(Parse*, int, int);
2795 void sqlite3ExprCacheClear(Parse*);
2796 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2797 int sqlite3ExprCode(Parse*, Expr*, int);
2798 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2799 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2800 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2801 void sqlite3ExprCodeConstants(Parse*, Expr*);
2802 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2803 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2804 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2805 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2806 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2807 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2808 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2809 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2810 void sqlite3Vacuum(Parse*);
2811 int sqlite3RunVacuum(char**, sqlite3*);
2812 char *sqlite3NameFromToken(sqlite3*, Token*);
2813 int sqlite3ExprCompare(Expr*, Expr*);
2814 int sqlite3ExprListCompare(ExprList*, ExprList*);
2815 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2816 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2817 Vdbe *sqlite3GetVdbe(Parse*);
2818 void sqlite3PrngSaveState(void);
2819 void sqlite3PrngRestoreState(void);
2820 void sqlite3PrngResetState(void);
2821 void sqlite3RollbackAll(sqlite3*,int);
2822 void sqlite3CodeVerifySchema(Parse*, int);
2823 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
2824 void sqlite3BeginTransaction(Parse*, int);
2825 void sqlite3CommitTransaction(Parse*);
2826 void sqlite3RollbackTransaction(Parse*);
2827 void sqlite3Savepoint(Parse*, int, Token*);
2828 void sqlite3CloseSavepoints(sqlite3 *);
2829 int sqlite3ExprIsConstant(Expr*);
2830 int sqlite3ExprIsConstantNotJoin(Expr*);
2831 int sqlite3ExprIsConstantOrFunction(Expr*);
2832 int sqlite3ExprIsInteger(Expr*, int*);
2833 int sqlite3ExprCanBeNull(const Expr*);
2834 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
2835 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
2836 int sqlite3IsRowid(const char*);
2837 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
2838 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2839 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2840 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2841 int*,int,int,int,int,int*);
2842 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
2843 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2844 void sqlite3BeginWriteOperation(Parse*, int, int);
2845 void sqlite3MultiWrite(Parse*);
2846 void sqlite3MayAbort(Parse*);
2847 void sqlite3HaltConstraint(Parse*, int, char*, int);
2848 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
2849 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
2850 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
2851 IdList *sqlite3IdListDup(sqlite3*,IdList*);
2852 Select *sqlite3SelectDup(sqlite3*,Select*,int);
2853 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
2854 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
2855 void sqlite3RegisterBuiltinFunctions(sqlite3*);
2856 void sqlite3RegisterDateTimeFunctions(void);
2857 void sqlite3RegisterGlobalFunctions(void);
2858 int sqlite3SafetyCheckOk(sqlite3*);
2859 int sqlite3SafetyCheckSickOrOk(sqlite3*);
2860 void sqlite3ChangeCookie(Parse*, int);
2862 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
2863 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
2864 #endif
2866 #ifndef SQLITE_OMIT_TRIGGER
2867 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2868 Expr*,int, int);
2869 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2870 void sqlite3DropTrigger(Parse*, SrcList*, int);
2871 void sqlite3DropTriggerPtr(Parse*, Trigger*);
2872 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
2873 Trigger *sqlite3TriggerList(Parse *, Table *);
2874 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
2875 int, int, int);
2876 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
2877 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2878 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2879 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2880 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2881 ExprList*,Select*,u8);
2882 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
2883 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2884 void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2885 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2886 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
2887 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
2888 #else
2889 # define sqlite3TriggersExist(B,C,D,E,F) 0
2890 # define sqlite3DeleteTrigger(A,B)
2891 # define sqlite3DropTriggerPtr(A,B)
2892 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2893 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
2894 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
2895 # define sqlite3TriggerList(X, Y) 0
2896 # define sqlite3ParseToplevel(p) p
2897 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
2898 #endif
2900 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2901 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2902 void sqlite3DeferForeignKey(Parse*, int);
2903 #ifndef SQLITE_OMIT_AUTHORIZATION
2904 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2905 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2906 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2907 void sqlite3AuthContextPop(AuthContext*);
2908 int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
2909 #else
2910 # define sqlite3AuthRead(a,b,c,d)
2911 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
2912 # define sqlite3AuthContextPush(a,b,c)
2913 # define sqlite3AuthContextPop(a) ((void)(a))
2914 #endif
2915 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2916 void sqlite3Detach(Parse*, Expr*);
2917 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2918 int sqlite3FixSrcList(DbFixer*, SrcList*);
2919 int sqlite3FixSelect(DbFixer*, Select*);
2920 int sqlite3FixExpr(DbFixer*, Expr*);
2921 int sqlite3FixExprList(DbFixer*, ExprList*);
2922 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2923 int sqlite3AtoF(const char *z, double*, int, u8);
2924 int sqlite3GetInt32(const char *, int*);
2925 int sqlite3Atoi(const char*);
2926 int sqlite3Utf16ByteLen(const void *pData, int nChar);
2927 int sqlite3Utf8CharLen(const char *pData, int nByte);
2928 u32 sqlite3Utf8Read(const u8*, const u8**);
2931 ** Routines to read and write variable-length integers. These used to
2932 ** be defined locally, but now we use the varint routines in the util.c
2933 ** file. Code should use the MACRO forms below, as the Varint32 versions
2934 ** are coded to assume the single byte case is already handled (which
2935 ** the MACRO form does).
2937 int sqlite3PutVarint(unsigned char*, u64);
2938 int sqlite3PutVarint32(unsigned char*, u32);
2939 u8 sqlite3GetVarint(const unsigned char *, u64 *);
2940 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
2941 int sqlite3VarintLen(u64 v);
2944 ** The header of a record consists of a sequence variable-length integers.
2945 ** These integers are almost always small and are encoded as a single byte.
2946 ** The following macros take advantage this fact to provide a fast encode
2947 ** and decode of the integers in a record header. It is faster for the common
2948 ** case where the integer is a single byte. It is a little slower when the
2949 ** integer is two or more bytes. But overall it is faster.
2951 ** The following expressions are equivalent:
2953 ** x = sqlite3GetVarint32( A, &B );
2954 ** x = sqlite3PutVarint32( A, B );
2956 ** x = getVarint32( A, B );
2957 ** x = putVarint32( A, B );
2960 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
2961 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
2962 #define getVarint sqlite3GetVarint
2963 #define putVarint sqlite3PutVarint
2966 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
2967 void sqlite3TableAffinityStr(Vdbe *, Table *);
2968 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2969 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2970 char sqlite3ExprAffinity(Expr *pExpr);
2971 int sqlite3Atoi64(const char*, i64*, int, u8);
2972 void sqlite3Error(sqlite3*, int, const char*,...);
2973 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2974 u8 sqlite3HexToInt(int h);
2975 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2976 const char *sqlite3ErrStr(int);
2977 int sqlite3ReadSchema(Parse *pParse);
2978 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
2979 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
2980 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2981 Expr *sqlite3ExprSetColl(Expr*, CollSeq*);
2982 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*);
2983 int sqlite3CheckCollSeq(Parse *, CollSeq *);
2984 int sqlite3CheckObjectName(Parse *, const char *);
2985 void sqlite3VdbeSetChanges(sqlite3 *, int);
2986 int sqlite3AddInt64(i64*,i64);
2987 int sqlite3SubInt64(i64*,i64);
2988 int sqlite3MulInt64(i64*,i64);
2989 int sqlite3AbsInt32(int);
2990 #ifdef SQLITE_ENABLE_8_3_NAMES
2991 void sqlite3FileSuffix3(const char*, char*);
2992 #else
2993 # define sqlite3FileSuffix3(X,Y)
2994 #endif
2995 u8 sqlite3GetBoolean(const char *z,int);
2997 const void *sqlite3ValueText(sqlite3_value*, u8);
2998 int sqlite3ValueBytes(sqlite3_value*, u8);
2999 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3000 void(*)(void*));
3001 void sqlite3ValueFree(sqlite3_value*);
3002 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3003 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3004 #ifdef SQLITE_ENABLE_STAT3
3005 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
3006 #endif
3007 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3008 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3009 #ifndef SQLITE_AMALGAMATION
3010 extern const unsigned char sqlite3OpcodeProperty[];
3011 extern const unsigned char sqlite3UpperToLower[];
3012 extern const unsigned char sqlite3CtypeMap[];
3013 extern const Token sqlite3IntTokens[];
3014 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3015 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
3016 #ifndef SQLITE_OMIT_WSD
3017 extern int sqlite3PendingByte;
3018 #endif
3019 #endif
3020 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3021 void sqlite3Reindex(Parse*, Token*, Token*);
3022 void sqlite3AlterFunctions(void);
3023 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3024 int sqlite3GetToken(const unsigned char *, int *);
3025 void sqlite3NestedParse(Parse*, const char*, ...);
3026 void sqlite3ExpirePreparedStatements(sqlite3*);
3027 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3028 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3029 int sqlite3ResolveExprNames(NameContext*, Expr*);
3030 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3031 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3032 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3033 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3034 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3035 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
3036 char sqlite3AffinityType(const char*);
3037 void sqlite3Analyze(Parse*, Token*, Token*);
3038 int sqlite3InvokeBusyHandler(BusyHandler*);
3039 int sqlite3FindDb(sqlite3*, Token*);
3040 int sqlite3FindDbName(sqlite3 *, const char *);
3041 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3042 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3043 void sqlite3DefaultRowEst(Index*);
3044 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3045 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3046 void sqlite3MinimumFileFormat(Parse*, int, int);
3047 void sqlite3SchemaClear(void *);
3048 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3049 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3050 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
3051 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3052 void (*)(sqlite3_context*,int,sqlite3_value **),
3053 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3054 FuncDestructor *pDestructor
3056 int sqlite3ApiExit(sqlite3 *db, int);
3057 int sqlite3OpenTempDatabase(Parse *);
3059 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
3060 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3061 void sqlite3AppendSpace(StrAccum*,int);
3062 char *sqlite3StrAccumFinish(StrAccum*);
3063 void sqlite3StrAccumReset(StrAccum*);
3064 void sqlite3SelectDestInit(SelectDest*,int,int);
3065 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3067 void sqlite3BackupRestart(sqlite3_backup *);
3068 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3071 ** The interface to the LEMON-generated parser
3073 void *sqlite3ParserAlloc(void*(*)(size_t));
3074 void sqlite3ParserFree(void*, void(*)(void*));
3075 void sqlite3Parser(void*, int, Token, Parse*);
3076 #ifdef YYTRACKMAXSTACKDEPTH
3077 int sqlite3ParserStackPeak(void*);
3078 #endif
3080 void sqlite3AutoLoadExtensions(sqlite3*);
3081 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3082 void sqlite3CloseExtensions(sqlite3*);
3083 #else
3084 # define sqlite3CloseExtensions(X)
3085 #endif
3087 #ifndef SQLITE_OMIT_SHARED_CACHE
3088 void sqlite3TableLock(Parse *, int, int, u8, const char *);
3089 #else
3090 #define sqlite3TableLock(v,w,x,y,z)
3091 #endif
3093 #ifdef SQLITE_TEST
3094 int sqlite3Utf8To8(unsigned char*);
3095 #endif
3097 #ifdef SQLITE_OMIT_VIRTUALTABLE
3098 # define sqlite3VtabClear(Y)
3099 # define sqlite3VtabSync(X,Y) SQLITE_OK
3100 # define sqlite3VtabRollback(X)
3101 # define sqlite3VtabCommit(X)
3102 # define sqlite3VtabInSync(db) 0
3103 # define sqlite3VtabLock(X)
3104 # define sqlite3VtabUnlock(X)
3105 # define sqlite3VtabUnlockList(X)
3106 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3107 # define sqlite3GetVTable(X,Y) ((VTable*)0)
3108 #else
3109 void sqlite3VtabClear(sqlite3 *db, Table*);
3110 int sqlite3VtabSync(sqlite3 *db, char **);
3111 int sqlite3VtabRollback(sqlite3 *db);
3112 int sqlite3VtabCommit(sqlite3 *db);
3113 void sqlite3VtabLock(VTable *);
3114 void sqlite3VtabUnlock(VTable *);
3115 void sqlite3VtabUnlockList(sqlite3*);
3116 int sqlite3VtabSavepoint(sqlite3 *, int, int);
3117 VTable *sqlite3GetVTable(sqlite3*, Table*);
3118 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3119 #endif
3120 void sqlite3VtabMakeWritable(Parse*,Table*);
3121 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3122 void sqlite3VtabFinishParse(Parse*, Token*);
3123 void sqlite3VtabArgInit(Parse*);
3124 void sqlite3VtabArgExtend(Parse*, Token*);
3125 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3126 int sqlite3VtabCallConnect(Parse*, Table*);
3127 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3128 int sqlite3VtabBegin(sqlite3 *, VTable *);
3129 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3130 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3131 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3132 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3133 int sqlite3Reprepare(Vdbe*);
3134 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3135 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3136 int sqlite3TempInMemory(const sqlite3*);
3137 const char *sqlite3JournalModename(int);
3138 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3139 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3141 /* Declarations for functions in fkey.c. All of these are replaced by
3142 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3143 ** key functionality is available. If OMIT_TRIGGER is defined but
3144 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3145 ** this case foreign keys are parsed, but no other functionality is
3146 ** provided (enforcement of FK constraints requires the triggers sub-system).
3148 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3149 void sqlite3FkCheck(Parse*, Table*, int, int);
3150 void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3151 void sqlite3FkActions(Parse*, Table*, ExprList*, int);
3152 int sqlite3FkRequired(Parse*, Table*, int*, int);
3153 u32 sqlite3FkOldmask(Parse*, Table*);
3154 FKey *sqlite3FkReferences(Table *);
3155 #else
3156 #define sqlite3FkActions(a,b,c,d)
3157 #define sqlite3FkCheck(a,b,c,d)
3158 #define sqlite3FkDropTable(a,b,c)
3159 #define sqlite3FkOldmask(a,b) 0
3160 #define sqlite3FkRequired(a,b,c,d) 0
3161 #endif
3162 #ifndef SQLITE_OMIT_FOREIGN_KEY
3163 void sqlite3FkDelete(sqlite3 *, Table*);
3164 #else
3165 #define sqlite3FkDelete(a,b)
3166 #endif
3170 ** Available fault injectors. Should be numbered beginning with 0.
3172 #define SQLITE_FAULTINJECTOR_MALLOC 0
3173 #define SQLITE_FAULTINJECTOR_COUNT 1
3176 ** The interface to the code in fault.c used for identifying "benign"
3177 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3178 ** is not defined.
3180 #ifndef SQLITE_OMIT_BUILTIN_TEST
3181 void sqlite3BeginBenignMalloc(void);
3182 void sqlite3EndBenignMalloc(void);
3183 #else
3184 #define sqlite3BeginBenignMalloc()
3185 #define sqlite3EndBenignMalloc()
3186 #endif
3188 #define IN_INDEX_ROWID 1
3189 #define IN_INDEX_EPH 2
3190 #define IN_INDEX_INDEX 3
3191 int sqlite3FindInIndex(Parse *, Expr *, int*);
3193 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3194 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3195 int sqlite3JournalSize(sqlite3_vfs *);
3196 int sqlite3JournalCreate(sqlite3_file *);
3197 #else
3198 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3199 #endif
3201 void sqlite3MemJournalOpen(sqlite3_file *);
3202 int sqlite3MemJournalSize(void);
3203 int sqlite3IsMemJournal(sqlite3_file *);
3205 #if SQLITE_MAX_EXPR_DEPTH>0
3206 void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
3207 int sqlite3SelectExprHeight(Select *);
3208 int sqlite3ExprCheckHeight(Parse*, int);
3209 #else
3210 #define sqlite3ExprSetHeight(x,y)
3211 #define sqlite3SelectExprHeight(x) 0
3212 #define sqlite3ExprCheckHeight(x,y)
3213 #endif
3215 u32 sqlite3Get4byte(const u8*);
3216 void sqlite3Put4byte(u8*, u32);
3218 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3219 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3220 void sqlite3ConnectionUnlocked(sqlite3 *db);
3221 void sqlite3ConnectionClosed(sqlite3 *db);
3222 #else
3223 #define sqlite3ConnectionBlocked(x,y)
3224 #define sqlite3ConnectionUnlocked(x)
3225 #define sqlite3ConnectionClosed(x)
3226 #endif
3228 #ifdef SQLITE_DEBUG
3229 void sqlite3ParserTrace(FILE*, char *);
3230 #endif
3233 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3234 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3235 ** print I/O tracing messages.
3237 #ifdef SQLITE_ENABLE_IOTRACE
3238 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3239 void sqlite3VdbeIOTraceSql(Vdbe*);
3240 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3241 #else
3242 # define IOTRACE(A)
3243 # define sqlite3VdbeIOTraceSql(X)
3244 #endif
3247 ** These routines are available for the mem2.c debugging memory allocator
3248 ** only. They are used to verify that different "types" of memory
3249 ** allocations are properly tracked by the system.
3251 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3252 ** the MEMTYPE_* macros defined below. The type must be a bitmask with
3253 ** a single bit set.
3255 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3256 ** argument match the type set by the previous sqlite3MemdebugSetType().
3257 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3259 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3260 ** argument match the type set by the previous sqlite3MemdebugSetType().
3262 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3263 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means
3264 ** it might have been allocated by lookaside, except the allocation was
3265 ** too large or lookaside was already full. It is important to verify
3266 ** that allocations that might have been satisfied by lookaside are not
3267 ** passed back to non-lookaside free() routines. Asserts such as the
3268 ** example above are placed on the non-lookaside free() routines to verify
3269 ** this constraint.
3271 ** All of this is no-op for a production build. It only comes into
3272 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3274 #ifdef SQLITE_MEMDEBUG
3275 void sqlite3MemdebugSetType(void*,u8);
3276 int sqlite3MemdebugHasType(void*,u8);
3277 int sqlite3MemdebugNoType(void*,u8);
3278 #else
3279 # define sqlite3MemdebugSetType(X,Y) /* no-op */
3280 # define sqlite3MemdebugHasType(X,Y) 1
3281 # define sqlite3MemdebugNoType(X,Y) 1
3282 #endif
3283 #define MEMTYPE_HEAP 0x01 /* General heap allocations */
3284 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */
3285 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */
3286 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */
3287 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */
3289 #endif /* _SQLITEINT_H_ */