2 summary:: Reduce precision.
3 categories:: UGens>Filters>Nonlinear
8 Masks off bits in the mantissa of the floating point sample value.
9 This introduces a quantization noise, but is less severe than linearly
10 quantizing the signal.
22 The number of mantissa bits to preserve. A number from 0 to 23.
26 Output will be multiplied by this value.
29 This value will be added to the output.
35 // preserve only 3 bits of mantissa.
36 { MantissaMask.ar(SinOsc.ar(SinOsc.kr(0.2,0,400,500), 0, 0.4), 3) }.play
39 { SinOsc.ar(SinOsc.kr(0.2,0,400,500), 0, 0.4) }.play
45 in = SinOsc.ar(SinOsc.kr(0.2,0,400,500), 0, 0.4);
46 Out.ar(0, in - MantissaMask.ar(in, 3));
51 // preserve 7 bits of mantissa.
52 // This makes the lower 16 bits of the floating point number become zero.
53 { MantissaMask.ar(SinOsc.ar(SinOsc.kr(0.2,0,400,500), 0, 0.4), 7) }.play
56 { SinOsc.ar(SinOsc.kr(0.2,0,400,500), 0, 0.4) }.play
62 in = SinOsc.ar(SinOsc.kr(0.2,0,400,500), 0, 0.4);
63 Out.ar(0, in - MantissaMask.ar(in, 7));