1 /* @(#)k_tan.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
14 static char rcsid
[] = "$FreeBSD: src/lib/msun/src/k_tan.c,v 1.5 1999/08/28 00:06:42 peter Exp $";
17 /* __kernel_tan( x, y, k )
18 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
19 * Input x is assumed to be bounded by ~pi/4 in magnitude.
20 * Input y is the tail of x.
21 * Input k indicates whether tan (if k=1) or
22 * -1/tan (if k= -1) is returned.
25 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
26 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
27 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
30 * tan(x) ~ x + T1*x + ... + T13*x
33 * |tan(x) 2 4 26 | -59.2
34 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
37 * Note: tan(x+y) = tan(x) + tan'(x)*y
38 * ~ tan(x) + (1+x*x)*y
39 * Therefore, for better accuracy in computing tan(x+y), let
41 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
44 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
46 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
47 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
48 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
52 #include "math_private.h"
58 one
= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
59 pio4
= 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
60 pio4lo
= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
62 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
63 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
64 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
65 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
66 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
67 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
68 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
69 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
70 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
71 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
72 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
73 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
74 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
78 double __kernel_tan(double x
, double y
, int iy
)
80 double __kernel_tan(x
, y
, iy
)
87 ix
= hx
&0x7fffffff; /* high word of |x| */
88 if(ix
<0x3e300000) /* x < 2**-28 */
89 {if((int)x
==0) { /* generate inexact */
92 if(((ix
|low
)|(iy
+1))==0) return one
/fabs(x
);
93 else return (iy
==1)? x
: -one
/x
;
96 if(ix
>=0x3FE59428) { /* |x|>=0.6744 */
97 if(hx
<0) {x
= -x
; y
= -y
;}
104 /* Break x^5*(T[1]+x^2*T[2]+...) into
105 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
106 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
108 r
= T
[1]+w
*(T
[3]+w
*(T
[5]+w
*(T
[7]+w
*(T
[9]+w
*T
[11]))));
109 v
= z
*(T
[2]+w
*(T
[4]+w
*(T
[6]+w
*(T
[8]+w
*(T
[10]+w
*T
[12])))));
111 r
= y
+ z
*(s
*(r
+v
)+y
);
116 return (double)(1-((hx
>>30)&2))*(v
-2.0*(x
-(w
*w
/(w
+v
)-r
)));
119 else { /* if allow error up to 2 ulp,
120 simply return -1.0/(x+r) here */
121 /* compute -1.0/(x+r) accurately */
125 v
= r
-(z
- x
); /* z+v = r+x */
126 t
= a
= -1.0/w
; /* a = -1.0/w */