3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # This module implements support for Intel AES-NI extension. In
11 # OpenSSL context it's used with Intel engine, but can also be used as
12 # drop-in replacement for crypto/aes/asm/aes-x86_64.pl [see below for
17 # Given aes(enc|dec) instructions' latency asymptotic performance for
18 # non-parallelizable modes such as CBC encrypt is 3.75 cycles per byte
19 # processed with 128-bit key. And given their throughput asymptotic
20 # performance for parallelizable modes is 1.25 cycles per byte. Being
21 # asymptotic limit it's not something you commonly achieve in reality,
22 # but how close does one get? Below are results collected for
23 # different modes and block sized. Pairs of numbers are for en-/
26 # 16-byte 64-byte 256-byte 1-KB 8-KB
27 # ECB 4.25/4.25 1.38/1.38 1.28/1.28 1.26/1.26 1.26/1.26
28 # CTR 5.42/5.42 1.92/1.92 1.44/1.44 1.28/1.28 1.26/1.26
29 # CBC 4.38/4.43 4.15/1.43 4.07/1.32 4.07/1.29 4.06/1.28
30 # CCM 5.66/9.42 4.42/5.41 4.16/4.40 4.09/4.15 4.06/4.07
31 # OFB 5.42/5.42 4.64/4.64 4.44/4.44 4.39/4.39 4.38/4.38
32 # CFB 5.73/5.85 5.56/5.62 5.48/5.56 5.47/5.55 5.47/5.55
34 # ECB, CTR, CBC and CCM results are free from EVP overhead. This means
35 # that otherwise used 'openssl speed -evp aes-128-??? -engine aesni
36 # [-decrypt]' will exhibit 10-15% worse results for smaller blocks.
37 # The results were collected with specially crafted speed.c benchmark
38 # in order to compare them with results reported in "Intel Advanced
39 # Encryption Standard (AES) New Instruction Set" White Paper Revision
40 # 3.0 dated May 2010. All above results are consistently better. This
41 # module also provides better performance for block sizes smaller than
42 # 128 bytes in points *not* represented in the above table.
44 # Looking at the results for 8-KB buffer.
46 # CFB and OFB results are far from the limit, because implementation
47 # uses "generic" CRYPTO_[c|o]fb128_encrypt interfaces relying on
48 # single-block aesni_encrypt, which is not the most optimal way to go.
49 # CBC encrypt result is unexpectedly high and there is no documented
50 # explanation for it. Seemingly there is a small penalty for feeding
51 # the result back to AES unit the way it's done in CBC mode. There is
52 # nothing one can do and the result appears optimal. CCM result is
53 # identical to CBC, because CBC-MAC is essentially CBC encrypt without
54 # saving output. CCM CTR "stays invisible," because it's neatly
55 # interleaved wih CBC-MAC. This provides ~30% improvement over
56 # "straghtforward" CCM implementation with CTR and CBC-MAC performed
57 # disjointly. Parallelizable modes practically achieve the theoretical
60 # Looking at how results vary with buffer size.
62 # Curves are practically saturated at 1-KB buffer size. In most cases
63 # "256-byte" performance is >95%, and "64-byte" is ~90% of "8-KB" one.
64 # CTR curve doesn't follow this pattern and is "slowest" changing one
65 # with "256-byte" result being 87% of "8-KB." This is because overhead
66 # in CTR mode is most computationally intensive. Small-block CCM
67 # decrypt is slower than encrypt, because first CTR and last CBC-MAC
68 # iterations can't be interleaved.
70 # Results for 192- and 256-bit keys.
72 # EVP-free results were observed to scale perfectly with number of
73 # rounds for larger block sizes, i.e. 192-bit result being 10/12 times
74 # lower and 256-bit one - 10/14. Well, in CBC encrypt case differences
75 # are a tad smaller, because the above mentioned penalty biases all
76 # results by same constant value. In similar way function call
77 # overhead affects small-block performance, as well as OFB and CFB
78 # results. Differences are not large, most common coefficients are
79 # 10/11.7 and 10/13.4 (as opposite to 10/12.0 and 10/14.0), but one
80 # observe even 10/11.2 and 10/12.4 (CTR, OFB, CFB)...
84 # While Westmere processor features 6 cycles latency for aes[enc|dec]
85 # instructions, which can be scheduled every second cycle, Sandy
86 # Bridge spends 8 cycles per instruction, but it can schedule them
87 # every cycle. This means that code targeting Westmere would perform
88 # suboptimally on Sandy Bridge. Therefore this update.
90 # In addition, non-parallelizable CBC encrypt (as well as CCM) is
91 # optimized. Relative improvement might appear modest, 8% on Westmere,
92 # but in absolute terms it's 3.77 cycles per byte encrypted with
93 # 128-bit key on Westmere, and 5.07 - on Sandy Bridge. These numbers
94 # should be compared to asymptotic limits of 3.75 for Westmere and
95 # 5.00 for Sandy Bridge. Actually, the fact that they get this close
96 # to asymptotic limits is quite amazing. Indeed, the limit is
97 # calculated as latency times number of rounds, 10 for 128-bit key,
98 # and divided by 16, the number of bytes in block, or in other words
99 # it accounts *solely* for aesenc instructions. But there are extra
100 # instructions, and numbers so close to the asymptotic limits mean
101 # that it's as if it takes as little as *one* additional cycle to
102 # execute all of them. How is it possible? It is possible thanks to
103 # out-of-order execution logic, which manages to overlap post-
104 # processing of previous block, things like saving the output, with
105 # actual encryption of current block, as well as pre-processing of
106 # current block, things like fetching input and xor-ing it with
107 # 0-round element of the key schedule, with actual encryption of
108 # previous block. Keep this in mind...
110 # For parallelizable modes, such as ECB, CBC decrypt, CTR, higher
111 # performance is achieved by interleaving instructions working on
112 # independent blocks. In which case asymptotic limit for such modes
113 # can be obtained by dividing above mentioned numbers by AES
114 # instructions' interleave factor. Westmere can execute at most 3
115 # instructions at a time, meaning that optimal interleave factor is 3,
116 # and that's where the "magic" number of 1.25 come from. "Optimal
117 # interleave factor" means that increase of interleave factor does
118 # not improve performance. The formula has proven to reflect reality
119 # pretty well on Westmere... Sandy Bridge on the other hand can
120 # execute up to 8 AES instructions at a time, so how does varying
121 # interleave factor affect the performance? Here is table for ECB
122 # (numbers are cycles per byte processed with 128-bit key):
124 # instruction interleave factor 3x 6x 8x
125 # theoretical asymptotic limit 1.67 0.83 0.625
126 # measured performance for 8KB block 1.05 0.86 0.84
128 # "as if" interleave factor 4.7x 5.8x 6.0x
130 # Further data for other parallelizable modes:
132 # CBC decrypt 1.16 0.93 0.93
135 # Well, given 3x column it's probably inappropriate to call the limit
136 # asymptotic, if it can be surpassed, isn't it? What happens there?
137 # Rewind to CBC paragraph for the answer. Yes, out-of-order execution
138 # magic is responsible for this. Processor overlaps not only the
139 # additional instructions with AES ones, but even AES instuctions
140 # processing adjacent triplets of independent blocks. In the 6x case
141 # additional instructions still claim disproportionally small amount
142 # of additional cycles, but in 8x case number of instructions must be
143 # a tad too high for out-of-order logic to cope with, and AES unit
144 # remains underutilized... As you can see 8x interleave is hardly
145 # justifiable, so there no need to feel bad that 32-bit aesni-x86.pl
146 # utilizies 6x interleave because of limited register bank capacity.
148 # Higher interleave factors do have negative impact on Westmere
149 # performance. While for ECB mode it's negligible ~1.5%, other
150 # parallelizables perform ~5% worse, which is outweighed by ~25%
151 # improvement on Sandy Bridge. To balance regression on Westmere
152 # CTR mode was implemented with 6x aesenc interleave factor.
156 # Add aesni_xts_[en|de]crypt. Westmere spends 1.33 cycles processing
157 # one byte out of 8KB with 128-bit key, Sandy Bridge - 0.97. Just like
158 # in CTR mode AES instruction interleave factor was chosen to be 6x.
160 $PREFIX="aesni"; # if $PREFIX is set to "AES", the script
161 # generates drop-in replacement for
162 # crypto/aes/asm/aes-x86_64.pl:-)
166 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
168 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
170 $0 =~ m/(.*[\/\\])[^\
/\\]+$/; $dir=$1;
171 ( $xlate="${dir}x86_64-xlate.pl" and -f
$xlate ) or
172 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f
$xlate) or
173 die "can't locate x86_64-xlate.pl";
175 open STDOUT
,"| $^X $xlate $flavour $output";
177 $movkey = $PREFIX eq "aesni" ?
"movups" : "movups";
178 @_4args=$win64?
("%rcx","%rdx","%r8", "%r9") : # Win64 order
179 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
183 $rounds="%eax"; # input to and changed by aesni_[en|de]cryptN !!!
184 # this is natural Unix argument order for public $PREFIX_[ecb|cbc]_encrypt ...
188 $key="%rcx"; # input to and changed by aesni_[en|de]cryptN !!!
189 $ivp="%r8"; # cbc, ctr, ...
191 $rnds_="%r10d"; # backup copy for $rounds
192 $key_="%r11"; # backup copy for $key
194 # %xmm register layout
195 $rndkey0="%xmm0"; $rndkey1="%xmm1";
196 $inout0="%xmm2"; $inout1="%xmm3";
197 $inout2="%xmm4"; $inout3="%xmm5";
198 $inout4="%xmm6"; $inout5="%xmm7";
199 $inout6="%xmm8"; $inout7="%xmm9";
201 $in2="%xmm6"; $in1="%xmm7"; # used in CBC decrypt, CTR, ...
202 $in0="%xmm8"; $iv="%xmm9";
204 # Inline version of internal aesni_[en|de]crypt1.
206 # Why folded loop? Because aes[enc|dec] is slow enough to accommodate
207 # cycles which take care of loop variables...
209 sub aesni_generate1
{
210 my ($p,$key,$rounds,$inout,$ivec)=@_; $inout=$inout0 if (!defined($inout));
213 $movkey ($key),$rndkey0
214 $movkey 16($key),$rndkey1
216 $code.=<<___
if (defined($ivec));
221 $code.=<<___
if (!defined($ivec));
223 xorps
$rndkey0,$inout
227 aes
${p
} $rndkey1,$inout
229 $movkey ($key),$rndkey1
231 jnz
.Loop_
${p
}1_
$sn # loop body is 16 bytes
232 aes
${p
}last $rndkey1,$inout
235 # void $PREFIX_[en|de]crypt (const void *inp,void *out,const AES_KEY *key);
237 { my ($inp,$out,$key) = @_4args;
240 .globl
${PREFIX
}_encrypt
241 .type
${PREFIX
}_encrypt
,\
@abi-omnipotent
244 movups
($inp),$inout0 # load input
245 mov
240($key),$rounds # key->rounds
247 &aesni_generate1
("enc",$key,$rounds);
249 movups
$inout0,($out) # output
251 .size
${PREFIX
}_encrypt
,.-${PREFIX
}_encrypt
253 .globl
${PREFIX
}_decrypt
254 .type
${PREFIX
}_decrypt
,\
@abi-omnipotent
257 movups
($inp),$inout0 # load input
258 mov
240($key),$rounds # key->rounds
260 &aesni_generate1
("dec",$key,$rounds);
262 movups
$inout0,($out) # output
264 .size
${PREFIX
}_decrypt
, .-${PREFIX
}_decrypt
268 # _aesni_[en|de]cryptN are private interfaces, N denotes interleave
269 # factor. Why 3x subroutine were originally used in loops? Even though
270 # aes[enc|dec] latency was originally 6, it could be scheduled only
271 # every *2nd* cycle. Thus 3x interleave was the one providing optimal
272 # utilization, i.e. when subroutine's throughput is virtually same as
273 # of non-interleaved subroutine [for number of input blocks up to 3].
274 # This is why it makes no sense to implement 2x subroutine.
275 # aes[enc|dec] latency in next processor generation is 8, but the
276 # instructions can be scheduled every cycle. Optimal interleave for
277 # new processor is therefore 8x...
278 sub aesni_generate3
{
280 # As already mentioned it takes in $key and $rounds, which are *not*
281 # preserved. $inout[0-2] is cipher/clear text...
283 .type _aesni_
${dir
}rypt3
,\
@abi-omnipotent
286 $movkey ($key),$rndkey0
288 $movkey 16($key),$rndkey1
290 xorps
$rndkey0,$inout0
291 xorps
$rndkey0,$inout1
292 xorps
$rndkey0,$inout2
293 $movkey ($key),$rndkey0
296 aes
${dir
} $rndkey1,$inout0
297 aes
${dir
} $rndkey1,$inout1
299 aes
${dir
} $rndkey1,$inout2
300 $movkey 16($key),$rndkey1
301 aes
${dir
} $rndkey0,$inout0
302 aes
${dir
} $rndkey0,$inout1
304 aes
${dir
} $rndkey0,$inout2
305 $movkey ($key),$rndkey0
308 aes
${dir
} $rndkey1,$inout0
309 aes
${dir
} $rndkey1,$inout1
310 aes
${dir
} $rndkey1,$inout2
311 aes
${dir
}last $rndkey0,$inout0
312 aes
${dir
}last $rndkey0,$inout1
313 aes
${dir
}last $rndkey0,$inout2
315 .size _aesni_
${dir
}rypt3
,.-_aesni_
${dir
}rypt3
318 # 4x interleave is implemented to improve small block performance,
319 # most notably [and naturally] 4 block by ~30%. One can argue that one
320 # should have implemented 5x as well, but improvement would be <20%,
321 # so it's not worth it...
322 sub aesni_generate4
{
324 # As already mentioned it takes in $key and $rounds, which are *not*
325 # preserved. $inout[0-3] is cipher/clear text...
327 .type _aesni_
${dir
}rypt4
,\
@abi-omnipotent
330 $movkey ($key),$rndkey0
332 $movkey 16($key),$rndkey1
334 xorps
$rndkey0,$inout0
335 xorps
$rndkey0,$inout1
336 xorps
$rndkey0,$inout2
337 xorps
$rndkey0,$inout3
338 $movkey ($key),$rndkey0
341 aes
${dir
} $rndkey1,$inout0
342 aes
${dir
} $rndkey1,$inout1
344 aes
${dir
} $rndkey1,$inout2
345 aes
${dir
} $rndkey1,$inout3
346 $movkey 16($key),$rndkey1
347 aes
${dir
} $rndkey0,$inout0
348 aes
${dir
} $rndkey0,$inout1
350 aes
${dir
} $rndkey0,$inout2
351 aes
${dir
} $rndkey0,$inout3
352 $movkey ($key),$rndkey0
355 aes
${dir
} $rndkey1,$inout0
356 aes
${dir
} $rndkey1,$inout1
357 aes
${dir
} $rndkey1,$inout2
358 aes
${dir
} $rndkey1,$inout3
359 aes
${dir
}last $rndkey0,$inout0
360 aes
${dir
}last $rndkey0,$inout1
361 aes
${dir
}last $rndkey0,$inout2
362 aes
${dir
}last $rndkey0,$inout3
364 .size _aesni_
${dir
}rypt4
,.-_aesni_
${dir
}rypt4
367 sub aesni_generate6
{
369 # As already mentioned it takes in $key and $rounds, which are *not*
370 # preserved. $inout[0-5] is cipher/clear text...
372 .type _aesni_
${dir
}rypt6
,\
@abi-omnipotent
375 $movkey ($key),$rndkey0
377 $movkey 16($key),$rndkey1
379 xorps
$rndkey0,$inout0
380 pxor
$rndkey0,$inout1
381 aes
${dir
} $rndkey1,$inout0
382 pxor
$rndkey0,$inout2
383 aes
${dir
} $rndkey1,$inout1
384 pxor
$rndkey0,$inout3
385 aes
${dir
} $rndkey1,$inout2
386 pxor
$rndkey0,$inout4
387 aes
${dir
} $rndkey1,$inout3
388 pxor
$rndkey0,$inout5
390 aes
${dir
} $rndkey1,$inout4
391 $movkey ($key),$rndkey0
392 aes
${dir
} $rndkey1,$inout5
393 jmp
.L
${dir
}_loop6_enter
396 aes
${dir
} $rndkey1,$inout0
397 aes
${dir
} $rndkey1,$inout1
399 aes
${dir
} $rndkey1,$inout2
400 aes
${dir
} $rndkey1,$inout3
401 aes
${dir
} $rndkey1,$inout4
402 aes
${dir
} $rndkey1,$inout5
403 .L
${dir
}_loop6_enter
: # happens to be 16-byte aligned
404 $movkey 16($key),$rndkey1
405 aes
${dir
} $rndkey0,$inout0
406 aes
${dir
} $rndkey0,$inout1
408 aes
${dir
} $rndkey0,$inout2
409 aes
${dir
} $rndkey0,$inout3
410 aes
${dir
} $rndkey0,$inout4
411 aes
${dir
} $rndkey0,$inout5
412 $movkey ($key),$rndkey0
415 aes
${dir
} $rndkey1,$inout0
416 aes
${dir
} $rndkey1,$inout1
417 aes
${dir
} $rndkey1,$inout2
418 aes
${dir
} $rndkey1,$inout3
419 aes
${dir
} $rndkey1,$inout4
420 aes
${dir
} $rndkey1,$inout5
421 aes
${dir
}last $rndkey0,$inout0
422 aes
${dir
}last $rndkey0,$inout1
423 aes
${dir
}last $rndkey0,$inout2
424 aes
${dir
}last $rndkey0,$inout3
425 aes
${dir
}last $rndkey0,$inout4
426 aes
${dir
}last $rndkey0,$inout5
428 .size _aesni_
${dir
}rypt6
,.-_aesni_
${dir
}rypt6
431 sub aesni_generate8
{
433 # As already mentioned it takes in $key and $rounds, which are *not*
434 # preserved. $inout[0-7] is cipher/clear text...
436 .type _aesni_
${dir
}rypt8
,\
@abi-omnipotent
439 $movkey ($key),$rndkey0
441 $movkey 16($key),$rndkey1
443 xorps
$rndkey0,$inout0
444 xorps
$rndkey0,$inout1
445 aes
${dir
} $rndkey1,$inout0
446 pxor
$rndkey0,$inout2
447 aes
${dir
} $rndkey1,$inout1
448 pxor
$rndkey0,$inout3
449 aes
${dir
} $rndkey1,$inout2
450 pxor
$rndkey0,$inout4
451 aes
${dir
} $rndkey1,$inout3
452 pxor
$rndkey0,$inout5
454 aes
${dir
} $rndkey1,$inout4
455 pxor
$rndkey0,$inout6
456 aes
${dir
} $rndkey1,$inout5
457 pxor
$rndkey0,$inout7
458 $movkey ($key),$rndkey0
459 aes
${dir
} $rndkey1,$inout6
460 aes
${dir
} $rndkey1,$inout7
461 $movkey 16($key),$rndkey1
462 jmp
.L
${dir
}_loop8_enter
465 aes
${dir
} $rndkey1,$inout0
466 aes
${dir
} $rndkey1,$inout1
468 aes
${dir
} $rndkey1,$inout2
469 aes
${dir
} $rndkey1,$inout3
470 aes
${dir
} $rndkey1,$inout4
471 aes
${dir
} $rndkey1,$inout5
472 aes
${dir
} $rndkey1,$inout6
473 aes
${dir
} $rndkey1,$inout7
474 $movkey 16($key),$rndkey1
475 .L
${dir
}_loop8_enter
: # happens to be 16-byte aligned
476 aes
${dir
} $rndkey0,$inout0
477 aes
${dir
} $rndkey0,$inout1
479 aes
${dir
} $rndkey0,$inout2
480 aes
${dir
} $rndkey0,$inout3
481 aes
${dir
} $rndkey0,$inout4
482 aes
${dir
} $rndkey0,$inout5
483 aes
${dir
} $rndkey0,$inout6
484 aes
${dir
} $rndkey0,$inout7
485 $movkey ($key),$rndkey0
488 aes
${dir
} $rndkey1,$inout0
489 aes
${dir
} $rndkey1,$inout1
490 aes
${dir
} $rndkey1,$inout2
491 aes
${dir
} $rndkey1,$inout3
492 aes
${dir
} $rndkey1,$inout4
493 aes
${dir
} $rndkey1,$inout5
494 aes
${dir
} $rndkey1,$inout6
495 aes
${dir
} $rndkey1,$inout7
496 aes
${dir
}last $rndkey0,$inout0
497 aes
${dir
}last $rndkey0,$inout1
498 aes
${dir
}last $rndkey0,$inout2
499 aes
${dir
}last $rndkey0,$inout3
500 aes
${dir
}last $rndkey0,$inout4
501 aes
${dir
}last $rndkey0,$inout5
502 aes
${dir
}last $rndkey0,$inout6
503 aes
${dir
}last $rndkey0,$inout7
505 .size _aesni_
${dir
}rypt8
,.-_aesni_
${dir
}rypt8
508 &aesni_generate3
("enc") if ($PREFIX eq "aesni");
509 &aesni_generate3
("dec");
510 &aesni_generate4
("enc") if ($PREFIX eq "aesni");
511 &aesni_generate4
("dec");
512 &aesni_generate6
("enc") if ($PREFIX eq "aesni");
513 &aesni_generate6
("dec");
514 &aesni_generate8
("enc") if ($PREFIX eq "aesni");
515 &aesni_generate8
("dec");
517 if ($PREFIX eq "aesni") {
518 ########################################################################
519 # void aesni_ecb_encrypt (const void *in, void *out,
520 # size_t length, const AES_KEY *key,
523 .globl aesni_ecb_encrypt
524 .type aesni_ecb_encrypt
,\
@function,5
530 mov
240($key),$rounds # key->rounds
531 $movkey ($key),$rndkey0
532 mov
$key,$key_ # backup $key
533 mov
$rounds,$rnds_ # backup $rounds
534 test
%r8d,%r8d # 5th argument
536 #--------------------------- ECB ENCRYPT ------------------------------#
540 movdqu
($inp),$inout0
541 movdqu
0x10($inp),$inout1
542 movdqu
0x20($inp),$inout2
543 movdqu
0x30($inp),$inout3
544 movdqu
0x40($inp),$inout4
545 movdqu
0x50($inp),$inout5
546 movdqu
0x60($inp),$inout6
547 movdqu
0x70($inp),$inout7
550 jmp
.Lecb_enc_loop8_enter
553 movups
$inout0,($out)
554 mov
$key_,$key # restore $key
555 movdqu
($inp),$inout0
556 mov
$rnds_,$rounds # restore $rounds
557 movups
$inout1,0x10($out)
558 movdqu
0x10($inp),$inout1
559 movups
$inout2,0x20($out)
560 movdqu
0x20($inp),$inout2
561 movups
$inout3,0x30($out)
562 movdqu
0x30($inp),$inout3
563 movups
$inout4,0x40($out)
564 movdqu
0x40($inp),$inout4
565 movups
$inout5,0x50($out)
566 movdqu
0x50($inp),$inout5
567 movups
$inout6,0x60($out)
568 movdqu
0x60($inp),$inout6
569 movups
$inout7,0x70($out)
571 movdqu
0x70($inp),$inout7
573 .Lecb_enc_loop8_enter
:
580 movups
$inout0,($out)
581 mov
$key_,$key # restore $key
582 movups
$inout1,0x10($out)
583 mov
$rnds_,$rounds # restore $rounds
584 movups
$inout2,0x20($out)
585 movups
$inout3,0x30($out)
586 movups
$inout4,0x40($out)
587 movups
$inout5,0x50($out)
588 movups
$inout6,0x60($out)
589 movups
$inout7,0x70($out)
595 movups
($inp),$inout0
598 movups
0x10($inp),$inout1
600 movups
0x20($inp),$inout2
603 movups
0x30($inp),$inout3
605 movups
0x40($inp),$inout4
608 movups
0x50($inp),$inout5
610 movdqu
0x60($inp),$inout6
612 movups
$inout0,($out)
613 movups
$inout1,0x10($out)
614 movups
$inout2,0x20($out)
615 movups
$inout3,0x30($out)
616 movups
$inout4,0x40($out)
617 movups
$inout5,0x50($out)
618 movups
$inout6,0x60($out)
623 &aesni_generate1
("enc",$key,$rounds);
625 movups
$inout0,($out)
629 xorps
$inout2,$inout2
631 movups
$inout0,($out)
632 movups
$inout1,0x10($out)
637 movups
$inout0,($out)
638 movups
$inout1,0x10($out)
639 movups
$inout2,0x20($out)
644 movups
$inout0,($out)
645 movups
$inout1,0x10($out)
646 movups
$inout2,0x20($out)
647 movups
$inout3,0x30($out)
651 xorps
$inout5,$inout5
653 movups
$inout0,($out)
654 movups
$inout1,0x10($out)
655 movups
$inout2,0x20($out)
656 movups
$inout3,0x30($out)
657 movups
$inout4,0x40($out)
662 movups
$inout0,($out)
663 movups
$inout1,0x10($out)
664 movups
$inout2,0x20($out)
665 movups
$inout3,0x30($out)
666 movups
$inout4,0x40($out)
667 movups
$inout5,0x50($out)
669 \f#--------------------------- ECB DECRYPT ------------------------------#
675 movdqu
($inp),$inout0
676 movdqu
0x10($inp),$inout1
677 movdqu
0x20($inp),$inout2
678 movdqu
0x30($inp),$inout3
679 movdqu
0x40($inp),$inout4
680 movdqu
0x50($inp),$inout5
681 movdqu
0x60($inp),$inout6
682 movdqu
0x70($inp),$inout7
685 jmp
.Lecb_dec_loop8_enter
688 movups
$inout0,($out)
689 mov
$key_,$key # restore $key
690 movdqu
($inp),$inout0
691 mov
$rnds_,$rounds # restore $rounds
692 movups
$inout1,0x10($out)
693 movdqu
0x10($inp),$inout1
694 movups
$inout2,0x20($out)
695 movdqu
0x20($inp),$inout2
696 movups
$inout3,0x30($out)
697 movdqu
0x30($inp),$inout3
698 movups
$inout4,0x40($out)
699 movdqu
0x40($inp),$inout4
700 movups
$inout5,0x50($out)
701 movdqu
0x50($inp),$inout5
702 movups
$inout6,0x60($out)
703 movdqu
0x60($inp),$inout6
704 movups
$inout7,0x70($out)
706 movdqu
0x70($inp),$inout7
708 .Lecb_dec_loop8_enter
:
712 $movkey ($key_),$rndkey0
716 movups
$inout0,($out)
717 mov
$key_,$key # restore $key
718 movups
$inout1,0x10($out)
719 mov
$rnds_,$rounds # restore $rounds
720 movups
$inout2,0x20($out)
721 movups
$inout3,0x30($out)
722 movups
$inout4,0x40($out)
723 movups
$inout5,0x50($out)
724 movups
$inout6,0x60($out)
725 movups
$inout7,0x70($out)
731 movups
($inp),$inout0
734 movups
0x10($inp),$inout1
736 movups
0x20($inp),$inout2
739 movups
0x30($inp),$inout3
741 movups
0x40($inp),$inout4
744 movups
0x50($inp),$inout5
746 movups
0x60($inp),$inout6
747 $movkey ($key),$rndkey0
749 movups
$inout0,($out)
750 movups
$inout1,0x10($out)
751 movups
$inout2,0x20($out)
752 movups
$inout3,0x30($out)
753 movups
$inout4,0x40($out)
754 movups
$inout5,0x50($out)
755 movups
$inout6,0x60($out)
760 &aesni_generate1
("dec",$key,$rounds);
762 movups
$inout0,($out)
766 xorps
$inout2,$inout2
768 movups
$inout0,($out)
769 movups
$inout1,0x10($out)
774 movups
$inout0,($out)
775 movups
$inout1,0x10($out)
776 movups
$inout2,0x20($out)
781 movups
$inout0,($out)
782 movups
$inout1,0x10($out)
783 movups
$inout2,0x20($out)
784 movups
$inout3,0x30($out)
788 xorps
$inout5,$inout5
790 movups
$inout0,($out)
791 movups
$inout1,0x10($out)
792 movups
$inout2,0x20($out)
793 movups
$inout3,0x30($out)
794 movups
$inout4,0x40($out)
799 movups
$inout0,($out)
800 movups
$inout1,0x10($out)
801 movups
$inout2,0x20($out)
802 movups
$inout3,0x30($out)
803 movups
$inout4,0x40($out)
804 movups
$inout5,0x50($out)
808 .size aesni_ecb_encrypt
,.-aesni_ecb_encrypt
812 ######################################################################
813 # void aesni_ccm64_[en|de]crypt_blocks (const void *in, void *out,
814 # size_t blocks, const AES_KEY *key,
815 # const char *ivec,char *cmac);
817 # Handles only complete blocks, operates on 64-bit counter and
818 # does not update *ivec! Nor does it finalize CMAC value
819 # (see engine/eng_aesni.c for details)
822 my $cmac="%r9"; # 6th argument
824 my $increment="%xmm6";
825 my $bswap_mask="%xmm7";
828 .globl aesni_ccm64_encrypt_blocks
829 .type aesni_ccm64_encrypt_blocks
,\
@function,6
831 aesni_ccm64_encrypt_blocks
:
833 $code.=<<___
if ($win64);
836 movaps
%xmm7,0x10(%rsp)
837 movaps
%xmm8,0x20(%rsp)
838 movaps
%xmm9,0x30(%rsp)
842 mov
240($key),$rounds # key->rounds
844 movdqa
.Lincrement64
(%rip),$increment
845 movdqa
.Lbswap_mask
(%rip),$bswap_mask
849 movdqu
($cmac),$inout1
852 pshufb
$bswap_mask,$iv
853 jmp
.Lccm64_enc_outer
856 $movkey ($key_),$rndkey0
858 movups
($inp),$in0 # load inp
860 xorps
$rndkey0,$inout0 # counter
861 $movkey 16($key_),$rndkey1
864 xorps
$rndkey0,$inout1 # cmac^=inp
865 $movkey ($key),$rndkey0
868 aesenc
$rndkey1,$inout0
870 aesenc
$rndkey1,$inout1
871 $movkey 16($key),$rndkey1
872 aesenc
$rndkey0,$inout0
874 aesenc
$rndkey0,$inout1
875 $movkey 0($key),$rndkey0
876 jnz
.Lccm64_enc2_loop
877 aesenc
$rndkey1,$inout0
878 aesenc
$rndkey1,$inout1
880 aesenclast
$rndkey0,$inout0
881 aesenclast
$rndkey0,$inout1
885 xorps
$inout0,$in0 # inp ^= E(iv)
887 movups
$in0,($out) # save output
889 pshufb
$bswap_mask,$inout0
890 jnz
.Lccm64_enc_outer
892 movups
$inout1,($cmac)
894 $code.=<<___
if ($win64);
896 movaps
0x10(%rsp),%xmm7
897 movaps
0x20(%rsp),%xmm8
898 movaps
0x30(%rsp),%xmm9
904 .size aesni_ccm64_encrypt_blocks
,.-aesni_ccm64_encrypt_blocks
906 ######################################################################
908 .globl aesni_ccm64_decrypt_blocks
909 .type aesni_ccm64_decrypt_blocks
,\
@function,6
911 aesni_ccm64_decrypt_blocks
:
913 $code.=<<___
if ($win64);
916 movaps
%xmm7,0x10(%rsp)
917 movaps
%xmm8,0x20(%rsp)
918 movaps
%xmm9,0x30(%rsp)
922 mov
240($key),$rounds # key->rounds
924 movdqu
($cmac),$inout1
925 movdqa
.Lincrement64
(%rip),$increment
926 movdqa
.Lbswap_mask
(%rip),$bswap_mask
931 pshufb
$bswap_mask,$iv
933 &aesni_generate1
("enc",$key,$rounds);
935 movups
($inp),$in0 # load inp
938 jmp
.Lccm64_dec_outer
941 xorps
$inout0,$in0 # inp ^= E(iv)
944 movups
$in0,($out) # save output
946 pshufb
$bswap_mask,$inout0
951 $movkey ($key_),$rndkey0
953 $movkey 16($key_),$rndkey1
956 xorps
$rndkey0,$inout0
957 xorps
$in0,$inout1 # cmac^=out
958 $movkey ($key),$rndkey0
961 aesenc
$rndkey1,$inout0
963 aesenc
$rndkey1,$inout1
964 $movkey 16($key),$rndkey1
965 aesenc
$rndkey0,$inout0
967 aesenc
$rndkey0,$inout1
968 $movkey 0($key),$rndkey0
969 jnz
.Lccm64_dec2_loop
970 movups
($inp),$in0 # load inp
972 aesenc
$rndkey1,$inout0
973 aesenc
$rndkey1,$inout1
975 aesenclast
$rndkey0,$inout0
976 aesenclast
$rndkey0,$inout1
977 jmp
.Lccm64_dec_outer
981 #xorps $in0,$inout1 # cmac^=out
983 &aesni_generate1
("enc",$key_,$rounds,$inout1,$in0);
985 movups
$inout1,($cmac)
987 $code.=<<___
if ($win64);
989 movaps
0x10(%rsp),%xmm7
990 movaps
0x20(%rsp),%xmm8
991 movaps
0x30(%rsp),%xmm9
997 .size aesni_ccm64_decrypt_blocks
,.-aesni_ccm64_decrypt_blocks
1000 ######################################################################
1001 # void aesni_ctr32_encrypt_blocks (const void *in, void *out,
1002 # size_t blocks, const AES_KEY *key,
1003 # const char *ivec);
1005 # Handles only complete blocks, operates on 32-bit counter and
1006 # does not update *ivec! (see engine/eng_aesni.c for details)
1009 my $reserved = $win64?
0:-0x28;
1010 my ($in0,$in1,$in2,$in3)=map("%xmm$_",(8..11));
1011 my ($iv0,$iv1,$ivec)=("%xmm12","%xmm13","%xmm14");
1012 my $bswap_mask="%xmm15";
1015 .globl aesni_ctr32_encrypt_blocks
1016 .type aesni_ctr32_encrypt_blocks
,\
@function,5
1018 aesni_ctr32_encrypt_blocks
:
1020 $code.=<<___
if ($win64);
1021 lea
-0xc8(%rsp),%rsp
1022 movaps
%xmm6,0x20(%rsp)
1023 movaps
%xmm7,0x30(%rsp)
1024 movaps
%xmm8,0x40(%rsp)
1025 movaps
%xmm9,0x50(%rsp)
1026 movaps
%xmm10,0x60(%rsp)
1027 movaps
%xmm11,0x70(%rsp)
1028 movaps
%xmm12,0x80(%rsp)
1029 movaps
%xmm13,0x90(%rsp)
1030 movaps
%xmm14,0xa0(%rsp)
1031 movaps
%xmm15,0xb0(%rsp)
1036 je
.Lctr32_one_shortcut
1039 movdqa
.Lbswap_mask
(%rip),$bswap_mask
1041 pextrd \
$3,$ivec,$rnds_ # pull 32-bit counter
1042 pinsrd \
$3,$rounds,$ivec # wipe 32-bit counter
1044 mov
240($key),$rounds # key->rounds
1046 pxor
$iv0,$iv0 # vector of 3 32-bit counters
1047 pxor
$iv1,$iv1 # vector of 3 32-bit counters
1048 pinsrd \
$0,$rnds_,$iv0
1050 pinsrd \
$0,$key_,$iv1
1052 pinsrd \
$1,$rnds_,$iv0
1054 pinsrd \
$1,$key_,$iv1
1056 pinsrd \
$2,$rnds_,$iv0
1058 pinsrd \
$2,$key_,$iv1
1059 movdqa
$iv0,$reserved(%rsp)
1060 pshufb
$bswap_mask,$iv0
1061 movdqa
$iv1,`$reserved+0x10`(%rsp)
1062 pshufb
$bswap_mask,$iv1
1064 pshufd \
$`3<<6`,$iv0,$inout0 # place counter to upper dword
1065 pshufd \
$`2<<6`,$iv0,$inout1
1066 pshufd \
$`1<<6`,$iv0,$inout2
1070 mov
$key,$key_ # backup $key
1071 mov
$rounds,$rnds_ # backup $rounds
1077 pshufd \
$`3<<6`,$iv1,$inout3
1078 por
$ivec,$inout0 # merge counter-less ivec
1079 $movkey ($key_),$rndkey0
1080 pshufd \
$`2<<6`,$iv1,$inout4
1082 $movkey 16($key_),$rndkey1
1083 pshufd \
$`1<<6`,$iv1,$inout5
1086 xorps
$rndkey0,$inout0
1090 # inline _aesni_encrypt6 and interleave last rounds
1093 pxor
$rndkey0,$inout1
1094 aesenc
$rndkey1,$inout0
1096 pxor
$rndkey0,$inout2
1097 aesenc
$rndkey1,$inout1
1098 movdqa
.Lincrement32
(%rip),$iv1
1099 pxor
$rndkey0,$inout3
1100 aesenc
$rndkey1,$inout2
1101 movdqa
$reserved(%rsp),$iv0
1102 pxor
$rndkey0,$inout4
1103 aesenc
$rndkey1,$inout3
1104 pxor
$rndkey0,$inout5
1105 $movkey ($key),$rndkey0
1107 aesenc
$rndkey1,$inout4
1108 aesenc
$rndkey1,$inout5
1109 jmp
.Lctr32_enc_loop6_enter
1112 aesenc
$rndkey1,$inout0
1113 aesenc
$rndkey1,$inout1
1115 aesenc
$rndkey1,$inout2
1116 aesenc
$rndkey1,$inout3
1117 aesenc
$rndkey1,$inout4
1118 aesenc
$rndkey1,$inout5
1119 .Lctr32_enc_loop6_enter
:
1120 $movkey 16($key),$rndkey1
1121 aesenc
$rndkey0,$inout0
1122 aesenc
$rndkey0,$inout1
1124 aesenc
$rndkey0,$inout2
1125 aesenc
$rndkey0,$inout3
1126 aesenc
$rndkey0,$inout4
1127 aesenc
$rndkey0,$inout5
1128 $movkey ($key),$rndkey0
1129 jnz
.Lctr32_enc_loop6
1131 aesenc
$rndkey1,$inout0
1132 paddd
$iv1,$iv0 # increment counter vector
1133 aesenc
$rndkey1,$inout1
1134 paddd
`$reserved+0x10`(%rsp),$iv1
1135 aesenc
$rndkey1,$inout2
1136 movdqa
$iv0,$reserved(%rsp) # save counter vector
1137 aesenc
$rndkey1,$inout3
1138 movdqa
$iv1,`$reserved+0x10`(%rsp)
1139 aesenc
$rndkey1,$inout4
1140 pshufb
$bswap_mask,$iv0 # byte swap
1141 aesenc
$rndkey1,$inout5
1142 pshufb
$bswap_mask,$iv1
1144 aesenclast
$rndkey0,$inout0
1145 movups
($inp),$in0 # load input
1146 aesenclast
$rndkey0,$inout1
1147 movups
0x10($inp),$in1
1148 aesenclast
$rndkey0,$inout2
1149 movups
0x20($inp),$in2
1150 aesenclast
$rndkey0,$inout3
1151 movups
0x30($inp),$in3
1152 aesenclast
$rndkey0,$inout4
1153 movups
0x40($inp),$rndkey1
1154 aesenclast
$rndkey0,$inout5
1155 movups
0x50($inp),$rndkey0
1158 xorps
$inout0,$in0 # xor
1159 pshufd \
$`3<<6`,$iv0,$inout0
1161 pshufd \
$`2<<6`,$iv0,$inout1
1162 movups
$in0,($out) # store output
1164 pshufd \
$`1<<6`,$iv0,$inout2
1165 movups
$in1,0x10($out)
1167 movups
$in2,0x20($out)
1168 xorps
$inout4,$rndkey1
1169 movups
$in3,0x30($out)
1170 xorps
$inout5,$rndkey0
1171 movups
$rndkey1,0x40($out)
1172 movups
$rndkey0,0x50($out)
1180 mov
$key_,$key # restore $key
1181 lea
1($rounds,$rounds),$rounds # restore original value
1190 movups
0x10($inp),$in1
1193 pshufd \
$`3<<6`,$iv1,$inout3
1195 movups
0x20($inp),$in2
1199 pshufd \
$`2<<6`,$iv1,$inout4
1201 movups
0x30($inp),$in3
1205 xorps
$inout5,$inout5
1207 call _aesni_encrypt6
1209 movups
0x40($inp),$rndkey1
1214 movups
$in1,0x10($out)
1216 movups
$in2,0x20($out)
1217 xorps
$inout4,$rndkey1
1218 movups
$in3,0x30($out)
1219 movups
$rndkey1,0x40($out)
1223 .Lctr32_one_shortcut
:
1224 movups
($ivp),$inout0
1226 mov
240($key),$rounds # key->rounds
1229 &aesni_generate1
("enc",$key,$rounds);
1237 xorps
$inout2,$inout2
1238 call _aesni_encrypt3
1242 movups
$in1,0x10($out)
1247 call _aesni_encrypt3
1252 movups
$in1,0x10($out)
1253 movups
$in2,0x20($out)
1258 call _aesni_encrypt4
1263 movups
$in1,0x10($out)
1265 movups
$in2,0x20($out)
1266 movups
$in3,0x30($out)
1270 $code.=<<___
if ($win64);
1271 movaps
0x20(%rsp),%xmm6
1272 movaps
0x30(%rsp),%xmm7
1273 movaps
0x40(%rsp),%xmm8
1274 movaps
0x50(%rsp),%xmm9
1275 movaps
0x60(%rsp),%xmm10
1276 movaps
0x70(%rsp),%xmm11
1277 movaps
0x80(%rsp),%xmm12
1278 movaps
0x90(%rsp),%xmm13
1279 movaps
0xa0(%rsp),%xmm14
1280 movaps
0xb0(%rsp),%xmm15
1286 .size aesni_ctr32_encrypt_blocks
,.-aesni_ctr32_encrypt_blocks
1290 ######################################################################
1291 # void aesni_xts_[en|de]crypt(const char *inp,char *out,size_t len,
1292 # const AES_KEY *key1, const AES_KEY *key2
1293 # const unsigned char iv[16]);
1296 my @tweak=map("%xmm$_",(10..15));
1297 my ($twmask,$twres,$twtmp)=("%xmm8","%xmm9",@tweak[4]);
1298 my ($key2,$ivp,$len_)=("%r8","%r9","%r9");
1299 my $frame_size = 0x68 + ($win64?
160:0);
1302 .globl aesni_xts_encrypt
1303 .type aesni_xts_encrypt
,\
@function,6
1306 lea
-$frame_size(%rsp),%rsp
1308 $code.=<<___
if ($win64);
1309 movaps
%xmm6,0x60(%rsp)
1310 movaps
%xmm7,0x70(%rsp)
1311 movaps
%xmm8,0x80(%rsp)
1312 movaps
%xmm9,0x90(%rsp)
1313 movaps
%xmm10,0xa0(%rsp)
1314 movaps
%xmm11,0xb0(%rsp)
1315 movaps
%xmm12,0xc0(%rsp)
1316 movaps
%xmm13,0xd0(%rsp)
1317 movaps
%xmm14,0xe0(%rsp)
1318 movaps
%xmm15,0xf0(%rsp)
1322 movups
($ivp),@tweak[5] # load clear-text tweak
1323 mov
240(%r8),$rounds # key2->rounds
1324 mov
240($key),$rnds_ # key1->rounds
1326 # generate the tweak
1327 &aesni_generate1
("enc",$key2,$rounds,@tweak[5]);
1329 mov
$key,$key_ # backup $key
1330 mov
$rnds_,$rounds # backup $rounds
1331 mov
$len,$len_ # backup $len
1334 movdqa
.Lxts_magic
(%rip),$twmask
1336 pcmpgtd
@tweak[5],$twtmp # broadcast upper bits
1338 for ($i=0;$i<4;$i++) {
1340 pshufd \
$0x13,$twtmp,$twres
1342 movdqa
@tweak[5],@tweak[$i]
1343 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1344 pand
$twmask,$twres # isolate carry and residue
1345 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1346 pxor
$twres,@tweak[5]
1356 jmp
.Lxts_enc_grandloop
1359 .Lxts_enc_grandloop
:
1360 pshufd \
$0x13,$twtmp,$twres
1361 movdqa
@tweak[5],@tweak[4]
1362 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1363 movdqu
`16*0`($inp),$inout0 # load input
1364 pand
$twmask,$twres # isolate carry and residue
1365 movdqu
`16*1`($inp),$inout1
1366 pxor
$twres,@tweak[5]
1368 movdqu
`16*2`($inp),$inout2
1369 pxor
@tweak[0],$inout0 # input^=tweak
1370 movdqu
`16*3`($inp),$inout3
1371 pxor
@tweak[1],$inout1
1372 movdqu
`16*4`($inp),$inout4
1373 pxor
@tweak[2],$inout2
1374 movdqu
`16*5`($inp),$inout5
1375 lea
`16*6`($inp),$inp
1376 pxor
@tweak[3],$inout3
1377 $movkey ($key_),$rndkey0
1378 pxor
@tweak[4],$inout4
1379 pxor
@tweak[5],$inout5
1381 # inline _aesni_encrypt6 and interleave first and last rounds
1383 $movkey 16($key_),$rndkey1
1384 pxor
$rndkey0,$inout0
1385 pxor
$rndkey0,$inout1
1386 movdqa
@tweak[0],`16*0`(%rsp) # put aside tweaks
1387 aesenc
$rndkey1,$inout0
1389 pxor
$rndkey0,$inout2
1390 movdqa
@tweak[1],`16*1`(%rsp)
1391 aesenc
$rndkey1,$inout1
1392 pxor
$rndkey0,$inout3
1393 movdqa
@tweak[2],`16*2`(%rsp)
1394 aesenc
$rndkey1,$inout2
1395 pxor
$rndkey0,$inout4
1396 movdqa
@tweak[3],`16*3`(%rsp)
1397 aesenc
$rndkey1,$inout3
1398 pxor
$rndkey0,$inout5
1399 $movkey ($key),$rndkey0
1401 movdqa
@tweak[4],`16*4`(%rsp)
1402 aesenc
$rndkey1,$inout4
1403 movdqa
@tweak[5],`16*5`(%rsp)
1404 aesenc
$rndkey1,$inout5
1406 pcmpgtd
@tweak[5],$twtmp
1407 jmp
.Lxts_enc_loop6_enter
1411 aesenc
$rndkey1,$inout0
1412 aesenc
$rndkey1,$inout1
1414 aesenc
$rndkey1,$inout2
1415 aesenc
$rndkey1,$inout3
1416 aesenc
$rndkey1,$inout4
1417 aesenc
$rndkey1,$inout5
1418 .Lxts_enc_loop6_enter
:
1419 $movkey 16($key),$rndkey1
1420 aesenc
$rndkey0,$inout0
1421 aesenc
$rndkey0,$inout1
1423 aesenc
$rndkey0,$inout2
1424 aesenc
$rndkey0,$inout3
1425 aesenc
$rndkey0,$inout4
1426 aesenc
$rndkey0,$inout5
1427 $movkey ($key),$rndkey0
1430 pshufd \
$0x13,$twtmp,$twres
1432 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1433 aesenc
$rndkey1,$inout0
1434 pand
$twmask,$twres # isolate carry and residue
1435 aesenc
$rndkey1,$inout1
1436 pcmpgtd
@tweak[5],$twtmp # broadcast upper bits
1437 aesenc
$rndkey1,$inout2
1438 pxor
$twres,@tweak[5]
1439 aesenc
$rndkey1,$inout3
1440 aesenc
$rndkey1,$inout4
1441 aesenc
$rndkey1,$inout5
1442 $movkey 16($key),$rndkey1
1444 pshufd \
$0x13,$twtmp,$twres
1446 movdqa
@tweak[5],@tweak[0]
1447 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1448 aesenc
$rndkey0,$inout0
1449 pand
$twmask,$twres # isolate carry and residue
1450 aesenc
$rndkey0,$inout1
1451 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1452 aesenc
$rndkey0,$inout2
1453 pxor
$twres,@tweak[5]
1454 aesenc
$rndkey0,$inout3
1455 aesenc
$rndkey0,$inout4
1456 aesenc
$rndkey0,$inout5
1457 $movkey 32($key),$rndkey0
1459 pshufd \
$0x13,$twtmp,$twres
1461 movdqa
@tweak[5],@tweak[1]
1462 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1463 aesenc
$rndkey1,$inout0
1464 pand
$twmask,$twres # isolate carry and residue
1465 aesenc
$rndkey1,$inout1
1466 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1467 aesenc
$rndkey1,$inout2
1468 pxor
$twres,@tweak[5]
1469 aesenc
$rndkey1,$inout3
1470 aesenc
$rndkey1,$inout4
1471 aesenc
$rndkey1,$inout5
1473 pshufd \
$0x13,$twtmp,$twres
1475 movdqa
@tweak[5],@tweak[2]
1476 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1477 aesenclast
$rndkey0,$inout0
1478 pand
$twmask,$twres # isolate carry and residue
1479 aesenclast
$rndkey0,$inout1
1480 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1481 aesenclast
$rndkey0,$inout2
1482 pxor
$twres,@tweak[5]
1483 aesenclast
$rndkey0,$inout3
1484 aesenclast
$rndkey0,$inout4
1485 aesenclast
$rndkey0,$inout5
1487 pshufd \
$0x13,$twtmp,$twres
1489 movdqa
@tweak[5],@tweak[3]
1490 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1491 xorps
`16*0`(%rsp),$inout0 # output^=tweak
1492 pand
$twmask,$twres # isolate carry and residue
1493 xorps
`16*1`(%rsp),$inout1
1494 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1495 pxor
$twres,@tweak[5]
1497 xorps
`16*2`(%rsp),$inout2
1498 movups
$inout0,`16*0`($out) # write output
1499 xorps
`16*3`(%rsp),$inout3
1500 movups
$inout1,`16*1`($out)
1501 xorps
`16*4`(%rsp),$inout4
1502 movups
$inout2,`16*2`($out)
1503 xorps
`16*5`(%rsp),$inout5
1504 movups
$inout3,`16*3`($out)
1505 mov
$rnds_,$rounds # restore $rounds
1506 movups
$inout4,`16*4`($out)
1507 movups
$inout5,`16*5`($out)
1508 lea
`16*6`($out),$out
1510 jnc
.Lxts_enc_grandloop
1512 lea
3($rounds,$rounds),$rounds # restore original value
1513 mov
$key_,$key # restore $key
1514 mov
$rounds,$rnds_ # backup $rounds
1528 pshufd \
$0x13,$twtmp,$twres
1529 movdqa
@tweak[5],@tweak[4]
1530 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1531 movdqu
($inp),$inout0
1532 pand
$twmask,$twres # isolate carry and residue
1533 movdqu
16*1($inp),$inout1
1534 pxor
$twres,@tweak[5]
1536 movdqu
16*2($inp),$inout2
1537 pxor
@tweak[0],$inout0
1538 movdqu
16*3($inp),$inout3
1539 pxor
@tweak[1],$inout1
1540 movdqu
16*4($inp),$inout4
1542 pxor
@tweak[2],$inout2
1543 pxor
@tweak[3],$inout3
1544 pxor
@tweak[4],$inout4
1546 call _aesni_encrypt6
1548 xorps
@tweak[0],$inout0
1549 movdqa
@tweak[5],@tweak[0]
1550 xorps
@tweak[1],$inout1
1551 xorps
@tweak[2],$inout2
1552 movdqu
$inout0,($out)
1553 xorps
@tweak[3],$inout3
1554 movdqu
$inout1,16*1($out)
1555 xorps
@tweak[4],$inout4
1556 movdqu
$inout2,16*2($out)
1557 movdqu
$inout3,16*3($out)
1558 movdqu
$inout4,16*4($out)
1564 movups
($inp),$inout0
1566 xorps
@tweak[0],$inout0
1568 &aesni_generate1
("enc",$key,$rounds);
1570 xorps
@tweak[0],$inout0
1571 movdqa
@tweak[1],@tweak[0]
1572 movups
$inout0,($out)
1578 movups
($inp),$inout0
1579 movups
16($inp),$inout1
1581 xorps
@tweak[0],$inout0
1582 xorps
@tweak[1],$inout1
1584 call _aesni_encrypt3
1586 xorps
@tweak[0],$inout0
1587 movdqa
@tweak[2],@tweak[0]
1588 xorps
@tweak[1],$inout1
1589 movups
$inout0,($out)
1590 movups
$inout1,16*1($out)
1596 movups
($inp),$inout0
1597 movups
16*1($inp),$inout1
1598 movups
16*2($inp),$inout2
1600 xorps
@tweak[0],$inout0
1601 xorps
@tweak[1],$inout1
1602 xorps
@tweak[2],$inout2
1604 call _aesni_encrypt3
1606 xorps
@tweak[0],$inout0
1607 movdqa
@tweak[3],@tweak[0]
1608 xorps
@tweak[1],$inout1
1609 xorps
@tweak[2],$inout2
1610 movups
$inout0,($out)
1611 movups
$inout1,16*1($out)
1612 movups
$inout2,16*2($out)
1618 movups
($inp),$inout0
1619 movups
16*1($inp),$inout1
1620 movups
16*2($inp),$inout2
1621 xorps
@tweak[0],$inout0
1622 movups
16*3($inp),$inout3
1624 xorps
@tweak[1],$inout1
1625 xorps
@tweak[2],$inout2
1626 xorps
@tweak[3],$inout3
1628 call _aesni_encrypt4
1630 xorps
@tweak[0],$inout0
1631 movdqa
@tweak[5],@tweak[0]
1632 xorps
@tweak[1],$inout1
1633 xorps
@tweak[2],$inout2
1634 movups
$inout0,($out)
1635 xorps
@tweak[3],$inout3
1636 movups
$inout1,16*1($out)
1637 movups
$inout2,16*2($out)
1638 movups
$inout3,16*3($out)
1649 movzb
($inp),%eax # borrow $rounds ...
1650 movzb
-16($out),%ecx # ... and $key
1658 sub $len_,$out # rewind $out
1659 mov
$key_,$key # restore $key
1660 mov
$rnds_,$rounds # restore $rounds
1662 movups
-16($out),$inout0
1663 xorps
@tweak[0],$inout0
1665 &aesni_generate1
("enc",$key,$rounds);
1667 xorps
@tweak[0],$inout0
1668 movups
$inout0,-16($out)
1672 $code.=<<___
if ($win64);
1673 movaps
0x60(%rsp),%xmm6
1674 movaps
0x70(%rsp),%xmm7
1675 movaps
0x80(%rsp),%xmm8
1676 movaps
0x90(%rsp),%xmm9
1677 movaps
0xa0(%rsp),%xmm10
1678 movaps
0xb0(%rsp),%xmm11
1679 movaps
0xc0(%rsp),%xmm12
1680 movaps
0xd0(%rsp),%xmm13
1681 movaps
0xe0(%rsp),%xmm14
1682 movaps
0xf0(%rsp),%xmm15
1685 lea
$frame_size(%rsp),%rsp
1688 .size aesni_xts_encrypt
,.-aesni_xts_encrypt
1692 .globl aesni_xts_decrypt
1693 .type aesni_xts_decrypt
,\
@function,6
1696 lea
-$frame_size(%rsp),%rsp
1698 $code.=<<___
if ($win64);
1699 movaps
%xmm6,0x60(%rsp)
1700 movaps
%xmm7,0x70(%rsp)
1701 movaps
%xmm8,0x80(%rsp)
1702 movaps
%xmm9,0x90(%rsp)
1703 movaps
%xmm10,0xa0(%rsp)
1704 movaps
%xmm11,0xb0(%rsp)
1705 movaps
%xmm12,0xc0(%rsp)
1706 movaps
%xmm13,0xd0(%rsp)
1707 movaps
%xmm14,0xe0(%rsp)
1708 movaps
%xmm15,0xf0(%rsp)
1712 movups
($ivp),@tweak[5] # load clear-text tweak
1713 mov
240($key2),$rounds # key2->rounds
1714 mov
240($key),$rnds_ # key1->rounds
1716 # generate the tweak
1717 &aesni_generate1
("enc",$key2,$rounds,@tweak[5]);
1719 xor %eax,%eax # if ($len%16) len-=16;
1725 mov
$key,$key_ # backup $key
1726 mov
$rnds_,$rounds # backup $rounds
1727 mov
$len,$len_ # backup $len
1730 movdqa
.Lxts_magic
(%rip),$twmask
1732 pcmpgtd
@tweak[5],$twtmp # broadcast upper bits
1734 for ($i=0;$i<4;$i++) {
1736 pshufd \
$0x13,$twtmp,$twres
1738 movdqa
@tweak[5],@tweak[$i]
1739 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1740 pand
$twmask,$twres # isolate carry and residue
1741 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1742 pxor
$twres,@tweak[5]
1752 jmp
.Lxts_dec_grandloop
1755 .Lxts_dec_grandloop
:
1756 pshufd \
$0x13,$twtmp,$twres
1757 movdqa
@tweak[5],@tweak[4]
1758 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1759 movdqu
`16*0`($inp),$inout0 # load input
1760 pand
$twmask,$twres # isolate carry and residue
1761 movdqu
`16*1`($inp),$inout1
1762 pxor
$twres,@tweak[5]
1764 movdqu
`16*2`($inp),$inout2
1765 pxor
@tweak[0],$inout0 # input^=tweak
1766 movdqu
`16*3`($inp),$inout3
1767 pxor
@tweak[1],$inout1
1768 movdqu
`16*4`($inp),$inout4
1769 pxor
@tweak[2],$inout2
1770 movdqu
`16*5`($inp),$inout5
1771 lea
`16*6`($inp),$inp
1772 pxor
@tweak[3],$inout3
1773 $movkey ($key_),$rndkey0
1774 pxor
@tweak[4],$inout4
1775 pxor
@tweak[5],$inout5
1777 # inline _aesni_decrypt6 and interleave first and last rounds
1779 $movkey 16($key_),$rndkey1
1780 pxor
$rndkey0,$inout0
1781 pxor
$rndkey0,$inout1
1782 movdqa
@tweak[0],`16*0`(%rsp) # put aside tweaks
1783 aesdec
$rndkey1,$inout0
1785 pxor
$rndkey0,$inout2
1786 movdqa
@tweak[1],`16*1`(%rsp)
1787 aesdec
$rndkey1,$inout1
1788 pxor
$rndkey0,$inout3
1789 movdqa
@tweak[2],`16*2`(%rsp)
1790 aesdec
$rndkey1,$inout2
1791 pxor
$rndkey0,$inout4
1792 movdqa
@tweak[3],`16*3`(%rsp)
1793 aesdec
$rndkey1,$inout3
1794 pxor
$rndkey0,$inout5
1795 $movkey ($key),$rndkey0
1797 movdqa
@tweak[4],`16*4`(%rsp)
1798 aesdec
$rndkey1,$inout4
1799 movdqa
@tweak[5],`16*5`(%rsp)
1800 aesdec
$rndkey1,$inout5
1802 pcmpgtd
@tweak[5],$twtmp
1803 jmp
.Lxts_dec_loop6_enter
1807 aesdec
$rndkey1,$inout0
1808 aesdec
$rndkey1,$inout1
1810 aesdec
$rndkey1,$inout2
1811 aesdec
$rndkey1,$inout3
1812 aesdec
$rndkey1,$inout4
1813 aesdec
$rndkey1,$inout5
1814 .Lxts_dec_loop6_enter
:
1815 $movkey 16($key),$rndkey1
1816 aesdec
$rndkey0,$inout0
1817 aesdec
$rndkey0,$inout1
1819 aesdec
$rndkey0,$inout2
1820 aesdec
$rndkey0,$inout3
1821 aesdec
$rndkey0,$inout4
1822 aesdec
$rndkey0,$inout5
1823 $movkey ($key),$rndkey0
1826 pshufd \
$0x13,$twtmp,$twres
1828 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1829 aesdec
$rndkey1,$inout0
1830 pand
$twmask,$twres # isolate carry and residue
1831 aesdec
$rndkey1,$inout1
1832 pcmpgtd
@tweak[5],$twtmp # broadcast upper bits
1833 aesdec
$rndkey1,$inout2
1834 pxor
$twres,@tweak[5]
1835 aesdec
$rndkey1,$inout3
1836 aesdec
$rndkey1,$inout4
1837 aesdec
$rndkey1,$inout5
1838 $movkey 16($key),$rndkey1
1840 pshufd \
$0x13,$twtmp,$twres
1842 movdqa
@tweak[5],@tweak[0]
1843 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1844 aesdec
$rndkey0,$inout0
1845 pand
$twmask,$twres # isolate carry and residue
1846 aesdec
$rndkey0,$inout1
1847 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1848 aesdec
$rndkey0,$inout2
1849 pxor
$twres,@tweak[5]
1850 aesdec
$rndkey0,$inout3
1851 aesdec
$rndkey0,$inout4
1852 aesdec
$rndkey0,$inout5
1853 $movkey 32($key),$rndkey0
1855 pshufd \
$0x13,$twtmp,$twres
1857 movdqa
@tweak[5],@tweak[1]
1858 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1859 aesdec
$rndkey1,$inout0
1860 pand
$twmask,$twres # isolate carry and residue
1861 aesdec
$rndkey1,$inout1
1862 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1863 aesdec
$rndkey1,$inout2
1864 pxor
$twres,@tweak[5]
1865 aesdec
$rndkey1,$inout3
1866 aesdec
$rndkey1,$inout4
1867 aesdec
$rndkey1,$inout5
1869 pshufd \
$0x13,$twtmp,$twres
1871 movdqa
@tweak[5],@tweak[2]
1872 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1873 aesdeclast
$rndkey0,$inout0
1874 pand
$twmask,$twres # isolate carry and residue
1875 aesdeclast
$rndkey0,$inout1
1876 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1877 aesdeclast
$rndkey0,$inout2
1878 pxor
$twres,@tweak[5]
1879 aesdeclast
$rndkey0,$inout3
1880 aesdeclast
$rndkey0,$inout4
1881 aesdeclast
$rndkey0,$inout5
1883 pshufd \
$0x13,$twtmp,$twres
1885 movdqa
@tweak[5],@tweak[3]
1886 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1887 xorps
`16*0`(%rsp),$inout0 # output^=tweak
1888 pand
$twmask,$twres # isolate carry and residue
1889 xorps
`16*1`(%rsp),$inout1
1890 pcmpgtd
@tweak[5],$twtmp # broadcat upper bits
1891 pxor
$twres,@tweak[5]
1893 xorps
`16*2`(%rsp),$inout2
1894 movups
$inout0,`16*0`($out) # write output
1895 xorps
`16*3`(%rsp),$inout3
1896 movups
$inout1,`16*1`($out)
1897 xorps
`16*4`(%rsp),$inout4
1898 movups
$inout2,`16*2`($out)
1899 xorps
`16*5`(%rsp),$inout5
1900 movups
$inout3,`16*3`($out)
1901 mov
$rnds_,$rounds # restore $rounds
1902 movups
$inout4,`16*4`($out)
1903 movups
$inout5,`16*5`($out)
1904 lea
`16*6`($out),$out
1906 jnc
.Lxts_dec_grandloop
1908 lea
3($rounds,$rounds),$rounds # restore original value
1909 mov
$key_,$key # restore $key
1910 mov
$rounds,$rnds_ # backup $rounds
1924 pshufd \
$0x13,$twtmp,$twres
1925 movdqa
@tweak[5],@tweak[4]
1926 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1927 movdqu
($inp),$inout0
1928 pand
$twmask,$twres # isolate carry and residue
1929 movdqu
16*1($inp),$inout1
1930 pxor
$twres,@tweak[5]
1932 movdqu
16*2($inp),$inout2
1933 pxor
@tweak[0],$inout0
1934 movdqu
16*3($inp),$inout3
1935 pxor
@tweak[1],$inout1
1936 movdqu
16*4($inp),$inout4
1938 pxor
@tweak[2],$inout2
1939 pxor
@tweak[3],$inout3
1940 pxor
@tweak[4],$inout4
1942 call _aesni_decrypt6
1944 xorps
@tweak[0],$inout0
1945 xorps
@tweak[1],$inout1
1946 xorps
@tweak[2],$inout2
1947 movdqu
$inout0,($out)
1948 xorps
@tweak[3],$inout3
1949 movdqu
$inout1,16*1($out)
1950 xorps
@tweak[4],$inout4
1951 movdqu
$inout2,16*2($out)
1953 movdqu
$inout3,16*3($out)
1954 pcmpgtd
@tweak[5],$twtmp
1955 movdqu
$inout4,16*4($out)
1957 pshufd \
$0x13,$twtmp,@tweak[1] # $twres
1961 movdqa
@tweak[5],@tweak[0]
1962 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
1963 pand
$twmask,@tweak[1] # isolate carry and residue
1964 pxor
@tweak[5],@tweak[1]
1969 movups
($inp),$inout0
1971 xorps
@tweak[0],$inout0
1973 &aesni_generate1
("dec",$key,$rounds);
1975 xorps
@tweak[0],$inout0
1976 movdqa
@tweak[1],@tweak[0]
1977 movups
$inout0,($out)
1978 movdqa
@tweak[2],@tweak[1]
1984 movups
($inp),$inout0
1985 movups
16($inp),$inout1
1987 xorps
@tweak[0],$inout0
1988 xorps
@tweak[1],$inout1
1990 call _aesni_decrypt3
1992 xorps
@tweak[0],$inout0
1993 movdqa
@tweak[2],@tweak[0]
1994 xorps
@tweak[1],$inout1
1995 movdqa
@tweak[3],@tweak[1]
1996 movups
$inout0,($out)
1997 movups
$inout1,16*1($out)
2003 movups
($inp),$inout0
2004 movups
16*1($inp),$inout1
2005 movups
16*2($inp),$inout2
2007 xorps
@tweak[0],$inout0
2008 xorps
@tweak[1],$inout1
2009 xorps
@tweak[2],$inout2
2011 call _aesni_decrypt3
2013 xorps
@tweak[0],$inout0
2014 movdqa
@tweak[3],@tweak[0]
2015 xorps
@tweak[1],$inout1
2016 movdqa
@tweak[5],@tweak[1]
2017 xorps
@tweak[2],$inout2
2018 movups
$inout0,($out)
2019 movups
$inout1,16*1($out)
2020 movups
$inout2,16*2($out)
2026 pshufd \
$0x13,$twtmp,$twres
2027 movdqa
@tweak[5],@tweak[4]
2028 paddq
@tweak[5],@tweak[5] # psllq 1,$tweak
2029 movups
($inp),$inout0
2030 pand
$twmask,$twres # isolate carry and residue
2031 movups
16*1($inp),$inout1
2032 pxor
$twres,@tweak[5]
2034 movups
16*2($inp),$inout2
2035 xorps
@tweak[0],$inout0
2036 movups
16*3($inp),$inout3
2038 xorps
@tweak[1],$inout1
2039 xorps
@tweak[2],$inout2
2040 xorps
@tweak[3],$inout3
2042 call _aesni_decrypt4
2044 xorps
@tweak[0],$inout0
2045 movdqa
@tweak[4],@tweak[0]
2046 xorps
@tweak[1],$inout1
2047 movdqa
@tweak[5],@tweak[1]
2048 xorps
@tweak[2],$inout2
2049 movups
$inout0,($out)
2050 xorps
@tweak[3],$inout3
2051 movups
$inout1,16*1($out)
2052 movups
$inout2,16*2($out)
2053 movups
$inout3,16*3($out)
2063 mov
$key_,$key # restore $key
2064 mov
$rnds_,$rounds # restore $rounds
2066 movups
($inp),$inout0
2067 xorps
@tweak[1],$inout0
2069 &aesni_generate1
("dec",$key,$rounds);
2071 xorps
@tweak[1],$inout0
2072 movups
$inout0,($out)
2075 movzb
16($inp),%eax # borrow $rounds ...
2076 movzb
($out),%ecx # ... and $key
2084 sub $len_,$out # rewind $out
2085 mov
$key_,$key # restore $key
2086 mov
$rnds_,$rounds # restore $rounds
2088 movups
($out),$inout0
2089 xorps
@tweak[0],$inout0
2091 &aesni_generate1
("dec",$key,$rounds);
2093 xorps
@tweak[0],$inout0
2094 movups
$inout0,($out)
2098 $code.=<<___
if ($win64);
2099 movaps
0x60(%rsp),%xmm6
2100 movaps
0x70(%rsp),%xmm7
2101 movaps
0x80(%rsp),%xmm8
2102 movaps
0x90(%rsp),%xmm9
2103 movaps
0xa0(%rsp),%xmm10
2104 movaps
0xb0(%rsp),%xmm11
2105 movaps
0xc0(%rsp),%xmm12
2106 movaps
0xd0(%rsp),%xmm13
2107 movaps
0xe0(%rsp),%xmm14
2108 movaps
0xf0(%rsp),%xmm15
2111 lea
$frame_size(%rsp),%rsp
2114 .size aesni_xts_decrypt
,.-aesni_xts_decrypt
2118 ########################################################################
2119 # void $PREFIX_cbc_encrypt (const void *inp, void *out,
2120 # size_t length, const AES_KEY *key,
2121 # unsigned char *ivp,const int enc);
2123 my $reserved = $win64?
0x40:-0x18; # used in decrypt
2125 .globl
${PREFIX
}_cbc_encrypt
2126 .type
${PREFIX
}_cbc_encrypt
,\
@function,6
2128 ${PREFIX
}_cbc_encrypt
:
2129 test
$len,$len # check length
2132 mov
240($key),$rnds_ # key->rounds
2133 mov
$key,$key_ # backup $key
2134 test
%r9d,%r9d # 6th argument
2136 #--------------------------- CBC ENCRYPT ------------------------------#
2137 movups
($ivp),$inout0 # load iv as initial state
2145 movups
($inp),$inout1 # load input
2147 #xorps $inout1,$inout0
2149 &aesni_generate1
("enc",$key,$rounds,$inout0,$inout1);
2151 mov
$rnds_,$rounds # restore $rounds
2152 mov
$key_,$key # restore $key
2153 movups
$inout0,0($out) # store output
2159 movups
$inout0,($ivp)
2163 mov
$len,%rcx # zaps $key
2164 xchg
$inp,$out # $inp is %rsi and $out is %rdi now
2165 .long
0x9066A4F3 # rep movsb
2166 mov \
$16,%ecx # zero tail
2169 .long
0x9066AAF3 # rep stosb
2170 lea
-16(%rdi),%rdi # rewind $out by 1 block
2171 mov
$rnds_,$rounds # restore $rounds
2172 mov
%rdi,%rsi # $inp and $out are the same
2173 mov
$key_,$key # restore $key
2174 xor $len,$len # len=16
2175 jmp
.Lcbc_enc_loop
# one more spin
2176 \f#--------------------------- CBC DECRYPT ------------------------------#
2180 $code.=<<___
if ($win64);
2181 lea
-0x58(%rsp),%rsp
2183 movaps
%xmm7,0x10(%rsp)
2184 movaps
%xmm8,0x20(%rsp)
2185 movaps
%xmm9,0x30(%rsp)
2196 movaps
$iv,$reserved(%rsp)
2197 jmp
.Lcbc_dec_loop8_enter
2200 movaps
$rndkey0,$reserved(%rsp) # save IV
2201 movups
$inout7,($out)
2203 .Lcbc_dec_loop8_enter
:
2204 $movkey ($key),$rndkey0
2205 movups
($inp),$inout0 # load input
2206 movups
0x10($inp),$inout1
2207 $movkey 16($key),$rndkey1
2210 movdqu
0x20($inp),$inout2
2211 xorps
$rndkey0,$inout0
2212 movdqu
0x30($inp),$inout3
2213 xorps
$rndkey0,$inout1
2214 movdqu
0x40($inp),$inout4
2215 aesdec
$rndkey1,$inout0
2216 pxor
$rndkey0,$inout2
2217 movdqu
0x50($inp),$inout5
2218 aesdec
$rndkey1,$inout1
2219 pxor
$rndkey0,$inout3
2220 movdqu
0x60($inp),$inout6
2221 aesdec
$rndkey1,$inout2
2222 pxor
$rndkey0,$inout4
2223 movdqu
0x70($inp),$inout7
2224 aesdec
$rndkey1,$inout3
2225 pxor
$rndkey0,$inout5
2227 aesdec
$rndkey1,$inout4
2228 pxor
$rndkey0,$inout6
2229 aesdec
$rndkey1,$inout5
2230 pxor
$rndkey0,$inout7
2231 $movkey ($key),$rndkey0
2232 aesdec
$rndkey1,$inout6
2233 aesdec
$rndkey1,$inout7
2234 $movkey 16($key),$rndkey1
2236 call
.Ldec_loop8_enter
2238 movups
($inp),$rndkey1 # re-load input
2239 movups
0x10($inp),$rndkey0
2240 xorps
$reserved(%rsp),$inout0 # ^= IV
2241 xorps
$rndkey1,$inout1
2242 movups
0x20($inp),$rndkey1
2243 xorps
$rndkey0,$inout2
2244 movups
0x30($inp),$rndkey0
2245 xorps
$rndkey1,$inout3
2246 movups
0x40($inp),$rndkey1
2247 xorps
$rndkey0,$inout4
2248 movups
0x50($inp),$rndkey0
2249 xorps
$rndkey1,$inout5
2250 movups
0x60($inp),$rndkey1
2251 xorps
$rndkey0,$inout6
2252 movups
0x70($inp),$rndkey0 # IV
2253 xorps
$rndkey1,$inout7
2254 movups
$inout0,($out)
2255 movups
$inout1,0x10($out)
2256 movups
$inout2,0x20($out)
2257 movups
$inout3,0x30($out)
2258 mov
$rnds_,$rounds # restore $rounds
2259 movups
$inout4,0x40($out)
2260 mov
$key_,$key # restore $key
2261 movups
$inout5,0x50($out)
2263 movups
$inout6,0x60($out)
2268 movaps
$inout7,$inout0
2271 jle
.Lcbc_dec_tail_collected
2272 movups
$inout0,($out)
2273 lea
1($rnds_,$rnds_),$rounds
2276 movups
($inp),$inout0
2281 movups
0x10($inp),$inout1
2286 movups
0x20($inp),$inout2
2291 movups
0x30($inp),$inout3
2295 movups
0x40($inp),$inout4
2299 movups
0x50($inp),$inout5
2303 movups
0x60($inp),$inout6
2304 movaps
$iv,$reserved(%rsp) # save IV
2305 call _aesni_decrypt8
2306 movups
($inp),$rndkey1
2307 movups
0x10($inp),$rndkey0
2308 xorps
$reserved(%rsp),$inout0 # ^= IV
2309 xorps
$rndkey1,$inout1
2310 movups
0x20($inp),$rndkey1
2311 xorps
$rndkey0,$inout2
2312 movups
0x30($inp),$rndkey0
2313 xorps
$rndkey1,$inout3
2314 movups
0x40($inp),$rndkey1
2315 xorps
$rndkey0,$inout4
2316 movups
0x50($inp),$rndkey0
2317 xorps
$rndkey1,$inout5
2318 movups
0x60($inp),$iv # IV
2319 xorps
$rndkey0,$inout6
2320 movups
$inout0,($out)
2321 movups
$inout1,0x10($out)
2322 movups
$inout2,0x20($out)
2323 movups
$inout3,0x30($out)
2324 movups
$inout4,0x40($out)
2325 movups
$inout5,0x50($out)
2327 movaps
$inout6,$inout0
2329 jmp
.Lcbc_dec_tail_collected
2333 &aesni_generate1
("dec",$key,$rounds);
2338 jmp
.Lcbc_dec_tail_collected
2341 xorps
$inout2,$inout2
2342 call _aesni_decrypt3
2345 movups
$inout0,($out)
2347 movaps
$inout1,$inout0
2350 jmp
.Lcbc_dec_tail_collected
2353 call _aesni_decrypt3
2356 movups
$inout0,($out)
2358 movups
$inout1,0x10($out)
2360 movaps
$inout2,$inout0
2363 jmp
.Lcbc_dec_tail_collected
2366 call _aesni_decrypt4
2368 movups
0x30($inp),$iv
2370 movups
$inout0,($out)
2372 movups
$inout1,0x10($out)
2374 movups
$inout2,0x20($out)
2375 movaps
$inout3,$inout0
2378 jmp
.Lcbc_dec_tail_collected
2381 xorps
$inout5,$inout5
2382 call _aesni_decrypt6
2383 movups
0x10($inp),$rndkey1
2384 movups
0x20($inp),$rndkey0
2387 xorps
$rndkey1,$inout2
2388 movups
0x30($inp),$rndkey1
2389 xorps
$rndkey0,$inout3
2390 movups
0x40($inp),$iv
2391 xorps
$rndkey1,$inout4
2392 movups
$inout0,($out)
2393 movups
$inout1,0x10($out)
2394 movups
$inout2,0x20($out)
2395 movups
$inout3,0x30($out)
2397 movaps
$inout4,$inout0
2399 jmp
.Lcbc_dec_tail_collected
2402 call _aesni_decrypt6
2403 movups
0x10($inp),$rndkey1
2404 movups
0x20($inp),$rndkey0
2407 xorps
$rndkey1,$inout2
2408 movups
0x30($inp),$rndkey1
2409 xorps
$rndkey0,$inout3
2410 movups
0x40($inp),$rndkey0
2411 xorps
$rndkey1,$inout4
2412 movups
0x50($inp),$iv
2413 xorps
$rndkey0,$inout5
2414 movups
$inout0,($out)
2415 movups
$inout1,0x10($out)
2416 movups
$inout2,0x20($out)
2417 movups
$inout3,0x30($out)
2418 movups
$inout4,0x40($out)
2420 movaps
$inout5,$inout0
2422 jmp
.Lcbc_dec_tail_collected
2424 .Lcbc_dec_tail_collected
:
2427 jnz
.Lcbc_dec_tail_partial
2428 movups
$inout0,($out)
2431 .Lcbc_dec_tail_partial
:
2432 movaps
$inout0,$reserved(%rsp)
2436 lea
$reserved(%rsp),%rsi
2437 .long
0x9066A4F3 # rep movsb
2441 $code.=<<___
if ($win64);
2443 movaps
0x10(%rsp),%xmm7
2444 movaps
0x20(%rsp),%xmm8
2445 movaps
0x30(%rsp),%xmm9
2451 .size
${PREFIX
}_cbc_encrypt
,.-${PREFIX
}_cbc_encrypt
2454 # int $PREFIX_set_[en|de]crypt_key (const unsigned char *userKey,
2455 # int bits, AES_KEY *key)
2456 { my ($inp,$bits,$key) = @_4args;
2460 .globl
${PREFIX
}_set_decrypt_key
2461 .type
${PREFIX
}_set_decrypt_key
,\
@abi-omnipotent
2463 ${PREFIX
}_set_decrypt_key
:
2464 .byte
0x48,0x83,0xEC,0x08 # sub rsp,8
2465 call __aesni_set_encrypt_key
2466 shl \
$4,$bits # rounds-1 after _aesni_set_encrypt_key
2469 lea
16($key,$bits),$inp # points at the end of key schedule
2471 $movkey ($key),%xmm0 # just swap
2472 $movkey ($inp),%xmm1
2473 $movkey %xmm0,($inp)
2474 $movkey %xmm1,($key)
2479 $movkey ($key),%xmm0 # swap and inverse
2480 $movkey ($inp),%xmm1
2485 $movkey %xmm0,16($inp)
2486 $movkey %xmm1,-16($key)
2488 ja
.Ldec_key_inverse
2490 $movkey ($key),%xmm0 # inverse middle
2492 $movkey %xmm0,($inp)
2496 .LSEH_end_set_decrypt_key
:
2497 .size
${PREFIX
}_set_decrypt_key
,.-${PREFIX
}_set_decrypt_key
2500 # This is based on submission by
2502 # Huang Ying <ying.huang@intel.com>
2503 # Vinodh Gopal <vinodh.gopal@intel.com>
2506 # Agressively optimized in respect to aeskeygenassist's critical path
2507 # and is contained in %xmm0-5 to meet Win64 ABI requirement.
2510 .globl
${PREFIX
}_set_encrypt_key
2511 .type
${PREFIX
}_set_encrypt_key
,\
@abi-omnipotent
2513 ${PREFIX
}_set_encrypt_key
:
2514 __aesni_set_encrypt_key
:
2515 .byte
0x48,0x83,0xEC,0x08 # sub rsp,8
2522 movups
($inp),%xmm0 # pull first 128 bits of *userKey
2523 xorps
%xmm4,%xmm4 # low dword of xmm4 is assumed 0
2533 mov \
$9,$bits # 10 rounds for 128-bit key
2534 $movkey %xmm0,($key) # round 0
2535 aeskeygenassist \
$0x1,%xmm0,%xmm1 # round 1
2536 call
.Lkey_expansion_128_cold
2537 aeskeygenassist \
$0x2,%xmm0,%xmm1 # round 2
2538 call
.Lkey_expansion_128
2539 aeskeygenassist \
$0x4,%xmm0,%xmm1 # round 3
2540 call
.Lkey_expansion_128
2541 aeskeygenassist \
$0x8,%xmm0,%xmm1 # round 4
2542 call
.Lkey_expansion_128
2543 aeskeygenassist \
$0x10,%xmm0,%xmm1 # round 5
2544 call
.Lkey_expansion_128
2545 aeskeygenassist \
$0x20,%xmm0,%xmm1 # round 6
2546 call
.Lkey_expansion_128
2547 aeskeygenassist \
$0x40,%xmm0,%xmm1 # round 7
2548 call
.Lkey_expansion_128
2549 aeskeygenassist \
$0x80,%xmm0,%xmm1 # round 8
2550 call
.Lkey_expansion_128
2551 aeskeygenassist \
$0x1b,%xmm0,%xmm1 # round 9
2552 call
.Lkey_expansion_128
2553 aeskeygenassist \
$0x36,%xmm0,%xmm1 # round 10
2554 call
.Lkey_expansion_128
2555 $movkey %xmm0,(%rax)
2556 mov
$bits,80(%rax) # 240(%rdx)
2562 movq
16($inp),%xmm2 # remaining 1/3 of *userKey
2563 mov \
$11,$bits # 12 rounds for 192
2564 $movkey %xmm0,($key) # round 0
2565 aeskeygenassist \
$0x1,%xmm2,%xmm1 # round 1,2
2566 call
.Lkey_expansion_192a_cold
2567 aeskeygenassist \
$0x2,%xmm2,%xmm1 # round 2,3
2568 call
.Lkey_expansion_192b
2569 aeskeygenassist \
$0x4,%xmm2,%xmm1 # round 4,5
2570 call
.Lkey_expansion_192a
2571 aeskeygenassist \
$0x8,%xmm2,%xmm1 # round 5,6
2572 call
.Lkey_expansion_192b
2573 aeskeygenassist \
$0x10,%xmm2,%xmm1 # round 7,8
2574 call
.Lkey_expansion_192a
2575 aeskeygenassist \
$0x20,%xmm2,%xmm1 # round 8,9
2576 call
.Lkey_expansion_192b
2577 aeskeygenassist \
$0x40,%xmm2,%xmm1 # round 10,11
2578 call
.Lkey_expansion_192a
2579 aeskeygenassist \
$0x80,%xmm2,%xmm1 # round 11,12
2580 call
.Lkey_expansion_192b
2581 $movkey %xmm0,(%rax)
2582 mov
$bits,48(%rax) # 240(%rdx)
2588 movups
16($inp),%xmm2 # remaning half of *userKey
2589 mov \
$13,$bits # 14 rounds for 256
2591 $movkey %xmm0,($key) # round 0
2592 $movkey %xmm2,16($key) # round 1
2593 aeskeygenassist \
$0x1,%xmm2,%xmm1 # round 2
2594 call
.Lkey_expansion_256a_cold
2595 aeskeygenassist \
$0x1,%xmm0,%xmm1 # round 3
2596 call
.Lkey_expansion_256b
2597 aeskeygenassist \
$0x2,%xmm2,%xmm1 # round 4
2598 call
.Lkey_expansion_256a
2599 aeskeygenassist \
$0x2,%xmm0,%xmm1 # round 5
2600 call
.Lkey_expansion_256b
2601 aeskeygenassist \
$0x4,%xmm2,%xmm1 # round 6
2602 call
.Lkey_expansion_256a
2603 aeskeygenassist \
$0x4,%xmm0,%xmm1 # round 7
2604 call
.Lkey_expansion_256b
2605 aeskeygenassist \
$0x8,%xmm2,%xmm1 # round 8
2606 call
.Lkey_expansion_256a
2607 aeskeygenassist \
$0x8,%xmm0,%xmm1 # round 9
2608 call
.Lkey_expansion_256b
2609 aeskeygenassist \
$0x10,%xmm2,%xmm1 # round 10
2610 call
.Lkey_expansion_256a
2611 aeskeygenassist \
$0x10,%xmm0,%xmm1 # round 11
2612 call
.Lkey_expansion_256b
2613 aeskeygenassist \
$0x20,%xmm2,%xmm1 # round 12
2614 call
.Lkey_expansion_256a
2615 aeskeygenassist \
$0x20,%xmm0,%xmm1 # round 13
2616 call
.Lkey_expansion_256b
2617 aeskeygenassist \
$0x40,%xmm2,%xmm1 # round 14
2618 call
.Lkey_expansion_256a
2619 $movkey %xmm0,(%rax)
2620 mov
$bits,16(%rax) # 240(%rdx)
2630 .LSEH_end_set_encrypt_key
:
2633 .Lkey_expansion_128
:
2634 $movkey %xmm0,(%rax)
2636 .Lkey_expansion_128_cold
:
2637 shufps \
$0b00010000,%xmm0,%xmm4
2639 shufps \
$0b10001100,%xmm0,%xmm4
2641 shufps \
$0b11111111,%xmm1,%xmm1 # critical path
2646 .Lkey_expansion_192a
:
2647 $movkey %xmm0,(%rax)
2649 .Lkey_expansion_192a_cold
:
2651 .Lkey_expansion_192b_warm
:
2652 shufps \
$0b00010000,%xmm0,%xmm4
2655 shufps \
$0b10001100,%xmm0,%xmm4
2658 pshufd \
$0b01010101,%xmm1,%xmm1 # critical path
2661 pshufd \
$0b11111111,%xmm0,%xmm3
2666 .Lkey_expansion_192b
:
2668 shufps \
$0b01000100,%xmm0,%xmm5
2669 $movkey %xmm5,(%rax)
2670 shufps \
$0b01001110,%xmm2,%xmm3
2671 $movkey %xmm3,16(%rax)
2673 jmp
.Lkey_expansion_192b_warm
2676 .Lkey_expansion_256a
:
2677 $movkey %xmm2,(%rax)
2679 .Lkey_expansion_256a_cold
:
2680 shufps \
$0b00010000,%xmm0,%xmm4
2682 shufps \
$0b10001100,%xmm0,%xmm4
2684 shufps \
$0b11111111,%xmm1,%xmm1 # critical path
2689 .Lkey_expansion_256b
:
2690 $movkey %xmm0,(%rax)
2693 shufps \
$0b00010000,%xmm2,%xmm4
2695 shufps \
$0b10001100,%xmm2,%xmm4
2697 shufps \
$0b10101010,%xmm1,%xmm1 # critical path
2700 .size
${PREFIX
}_set_encrypt_key
,.-${PREFIX
}_set_encrypt_key
2701 .size __aesni_set_encrypt_key
,.-__aesni_set_encrypt_key
2708 .byte
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
2716 .asciz
"AES for Intel AES-NI, CRYPTOGAMS by <appro\@openssl.org>"
2720 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
2721 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
2729 .extern __imp_RtlVirtualUnwind
2731 $code.=<<___
if ($PREFIX eq "aesni");
2732 .type ecb_se_handler
,\
@abi-omnipotent
2746 mov
152($context),%rax # pull context->Rsp
2748 jmp
.Lcommon_seh_tail
2749 .size ecb_se_handler
,.-ecb_se_handler
2751 .type ccm64_se_handler
,\
@abi-omnipotent
2765 mov
120($context),%rax # pull context->Rax
2766 mov
248($context),%rbx # pull context->Rip
2768 mov
8($disp),%rsi # disp->ImageBase
2769 mov
56($disp),%r11 # disp->HandlerData
2771 mov
0(%r11),%r10d # HandlerData[0]
2772 lea
(%rsi,%r10),%r10 # prologue label
2773 cmp %r10,%rbx # context->Rip<prologue label
2774 jb
.Lcommon_seh_tail
2776 mov
152($context),%rax # pull context->Rsp
2778 mov
4(%r11),%r10d # HandlerData[1]
2779 lea
(%rsi,%r10),%r10 # epilogue label
2780 cmp %r10,%rbx # context->Rip>=epilogue label
2781 jae
.Lcommon_seh_tail
2783 lea
0(%rax),%rsi # %xmm save area
2784 lea
512($context),%rdi # &context.Xmm6
2785 mov \
$8,%ecx # 4*sizeof(%xmm0)/sizeof(%rax)
2786 .long
0xa548f3fc # cld; rep movsq
2787 lea
0x58(%rax),%rax # adjust stack pointer
2789 jmp
.Lcommon_seh_tail
2790 .size ccm64_se_handler
,.-ccm64_se_handler
2792 .type ctr32_se_handler
,\
@abi-omnipotent
2806 mov
120($context),%rax # pull context->Rax
2807 mov
248($context),%rbx # pull context->Rip
2809 lea
.Lctr32_body
(%rip),%r10
2810 cmp %r10,%rbx # context->Rip<"prologue" label
2811 jb
.Lcommon_seh_tail
2813 mov
152($context),%rax # pull context->Rsp
2815 lea
.Lctr32_ret
(%rip),%r10
2817 jae
.Lcommon_seh_tail
2819 lea
0x20(%rax),%rsi # %xmm save area
2820 lea
512($context),%rdi # &context.Xmm6
2821 mov \
$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
2822 .long
0xa548f3fc # cld; rep movsq
2823 lea
0xc8(%rax),%rax # adjust stack pointer
2825 jmp
.Lcommon_seh_tail
2826 .size ctr32_se_handler
,.-ctr32_se_handler
2828 .type xts_se_handler
,\
@abi-omnipotent
2842 mov
120($context),%rax # pull context->Rax
2843 mov
248($context),%rbx # pull context->Rip
2845 mov
8($disp),%rsi # disp->ImageBase
2846 mov
56($disp),%r11 # disp->HandlerData
2848 mov
0(%r11),%r10d # HandlerData[0]
2849 lea
(%rsi,%r10),%r10 # prologue lable
2850 cmp %r10,%rbx # context->Rip<prologue label
2851 jb
.Lcommon_seh_tail
2853 mov
152($context),%rax # pull context->Rsp
2855 mov
4(%r11),%r10d # HandlerData[1]
2856 lea
(%rsi,%r10),%r10 # epilogue label
2857 cmp %r10,%rbx # context->Rip>=epilogue label
2858 jae
.Lcommon_seh_tail
2860 lea
0x60(%rax),%rsi # %xmm save area
2861 lea
512($context),%rdi # & context.Xmm6
2862 mov \
$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
2863 .long
0xa548f3fc # cld; rep movsq
2864 lea
0x68+160(%rax),%rax # adjust stack pointer
2866 jmp
.Lcommon_seh_tail
2867 .size xts_se_handler
,.-xts_se_handler
2870 .type cbc_se_handler
,\
@abi-omnipotent
2884 mov
152($context),%rax # pull context->Rsp
2885 mov
248($context),%rbx # pull context->Rip
2887 lea
.Lcbc_decrypt
(%rip),%r10
2888 cmp %r10,%rbx # context->Rip<"prologue" label
2889 jb
.Lcommon_seh_tail
2891 lea
.Lcbc_decrypt_body
(%rip),%r10
2892 cmp %r10,%rbx # context->Rip<cbc_decrypt_body
2893 jb
.Lrestore_cbc_rax
2895 lea
.Lcbc_ret
(%rip),%r10
2896 cmp %r10,%rbx # context->Rip>="epilogue" label
2897 jae
.Lcommon_seh_tail
2899 lea
0(%rax),%rsi # top of stack
2900 lea
512($context),%rdi # &context.Xmm6
2901 mov \
$8,%ecx # 4*sizeof(%xmm0)/sizeof(%rax)
2902 .long
0xa548f3fc # cld; rep movsq
2903 lea
0x58(%rax),%rax # adjust stack pointer
2904 jmp
.Lcommon_seh_tail
2907 mov
120($context),%rax
2912 mov
%rax,152($context) # restore context->Rsp
2913 mov
%rsi,168($context) # restore context->Rsi
2914 mov
%rdi,176($context) # restore context->Rdi
2916 mov
40($disp),%rdi # disp->ContextRecord
2917 mov
$context,%rsi # context
2918 mov \
$154,%ecx # sizeof(CONTEXT)
2919 .long
0xa548f3fc # cld; rep movsq
2922 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
2923 mov
8(%rsi),%rdx # arg2, disp->ImageBase
2924 mov
0(%rsi),%r8 # arg3, disp->ControlPc
2925 mov
16(%rsi),%r9 # arg4, disp->FunctionEntry
2926 mov
40(%rsi),%r10 # disp->ContextRecord
2927 lea
56(%rsi),%r11 # &disp->HandlerData
2928 lea
24(%rsi),%r12 # &disp->EstablisherFrame
2929 mov
%r10,32(%rsp) # arg5
2930 mov
%r11,40(%rsp) # arg6
2931 mov
%r12,48(%rsp) # arg7
2932 mov
%rcx,56(%rsp) # arg8, (NULL)
2933 call
*__imp_RtlVirtualUnwind
(%rip)
2935 mov \
$1,%eax # ExceptionContinueSearch
2947 .size cbc_se_handler
,.-cbc_se_handler
2952 $code.=<<___
if ($PREFIX eq "aesni");
2953 .rva
.LSEH_begin_aesni_ecb_encrypt
2954 .rva
.LSEH_end_aesni_ecb_encrypt
2957 .rva
.LSEH_begin_aesni_ccm64_encrypt_blocks
2958 .rva
.LSEH_end_aesni_ccm64_encrypt_blocks
2959 .rva
.LSEH_info_ccm64_enc
2961 .rva
.LSEH_begin_aesni_ccm64_decrypt_blocks
2962 .rva
.LSEH_end_aesni_ccm64_decrypt_blocks
2963 .rva
.LSEH_info_ccm64_dec
2965 .rva
.LSEH_begin_aesni_ctr32_encrypt_blocks
2966 .rva
.LSEH_end_aesni_ctr32_encrypt_blocks
2967 .rva
.LSEH_info_ctr32
2969 .rva
.LSEH_begin_aesni_xts_encrypt
2970 .rva
.LSEH_end_aesni_xts_encrypt
2971 .rva
.LSEH_info_xts_enc
2973 .rva
.LSEH_begin_aesni_xts_decrypt
2974 .rva
.LSEH_end_aesni_xts_decrypt
2975 .rva
.LSEH_info_xts_dec
2978 .rva
.LSEH_begin_
${PREFIX
}_cbc_encrypt
2979 .rva
.LSEH_end_
${PREFIX
}_cbc_encrypt
2982 .rva
${PREFIX
}_set_decrypt_key
2983 .rva
.LSEH_end_set_decrypt_key
2986 .rva
${PREFIX
}_set_encrypt_key
2987 .rva
.LSEH_end_set_encrypt_key
2992 $code.=<<___
if ($PREFIX eq "aesni");
2996 .LSEH_info_ccm64_enc
:
2998 .rva ccm64_se_handler
2999 .rva
.Lccm64_enc_body
,.Lccm64_enc_ret
# HandlerData[]
3000 .LSEH_info_ccm64_dec
:
3002 .rva ccm64_se_handler
3003 .rva
.Lccm64_dec_body
,.Lccm64_dec_ret
# HandlerData[]
3006 .rva ctr32_se_handler
3010 .rva
.Lxts_enc_body
,.Lxts_enc_epilogue
# HandlerData[]
3014 .rva
.Lxts_dec_body
,.Lxts_dec_epilogue
# HandlerData[]
3021 .byte
0x01,0x04,0x01,0x00
3022 .byte
0x04,0x02,0x00,0x00 # sub rsp,8
3027 local *opcode
=shift;
3031 $rex|=0x04 if($dst>=8);
3032 $rex|=0x01 if($src>=8);
3033 push @opcode,$rex|0x40 if($rex);
3040 if ($line=~/(aeskeygenassist)\s+\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
3041 rex
(\
@opcode,$4,$3);
3042 push @opcode,0x0f,0x3a,0xdf;
3043 push @opcode,0xc0|($3&7)|(($4&7)<<3); # ModR/M
3045 push @opcode,$c=~/^0/?
oct($c):$c;
3046 return ".byte\t".join(',',@opcode);
3048 elsif ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) {
3051 "aesenc" => 0xdc, "aesenclast" => 0xdd,
3052 "aesdec" => 0xde, "aesdeclast" => 0xdf
3054 return undef if (!defined($opcodelet{$1}));
3055 rex
(\
@opcode,$3,$2);
3056 push @opcode,0x0f,0x38,$opcodelet{$1};
3057 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
3058 return ".byte\t".join(',',@opcode);
3063 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
3064 $code =~ s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/gem;