3 .ident "ia64.S, Version 2.1"
4 .ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
7 // ====================================================================
8 // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
11 // Rights for redistribution and usage in source and binary forms are
12 // granted according to the OpenSSL license. Warranty of any kind is
14 // ====================================================================
16 // Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is
17 // different from Itanium to this module viewpoint. Most notably, is it
18 // "wider" than Itanium? Can you experience loop scalability as
19 // discussed in commentary sections? Not really:-( Itanium2 has 6
20 // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
21 // spin twice as fast, as I need 8 IALU ports. Amount of floating point
22 // ports is the same, i.e. 2, while I need 4. In other words, to this
23 // module Itanium2 remains effectively as "wide" as Itanium. Yet it's
24 // essentially different in respect to this module, and a re-tune was
25 // required. Well, because some intruction latencies has changed. Most
26 // noticeably those intensively used:
32 // xma[->getf] 7[+1] 4[+0]
33 // add[->st8] 1[+1] 1[+0]
35 // What does it mean? You might ratiocinate that the original code
36 // should run just faster... Because sum of latencies is smaller...
37 // Wrong! Note that getf latency increased. This means that if a loop is
38 // scheduled for lower latency (as they were), then it will suffer from
39 // stall condition and the code will therefore turn anti-scalable, e.g.
40 // original bn_mul_words spun at 5*n or 2.5 times slower than expected
41 // on Itanium2! What to do? Reschedule loops for Itanium2? But then
42 // Itanium would exhibit anti-scalability. So I've chosen to reschedule
43 // for worst latency for every instruction aiming for best *all-round*
46 // Q. How much faster does it get?
47 // A. Here is the output from 'openssl speed rsa dsa' for vanilla
48 // 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
49 // Linux 7.1 2.96-81):
51 // sign verify sign/s verify/s
52 // rsa 512 bits 0.0036s 0.0003s 275.3 2999.2
53 // rsa 1024 bits 0.0203s 0.0011s 49.3 894.1
54 // rsa 2048 bits 0.1331s 0.0040s 7.5 250.9
55 // rsa 4096 bits 0.9270s 0.0147s 1.1 68.1
56 // sign verify sign/s verify/s
57 // dsa 512 bits 0.0035s 0.0043s 288.3 234.8
58 // dsa 1024 bits 0.0111s 0.0135s 90.0 74.2
60 // And here is similar output but for this assembler
63 // sign verify sign/s verify/s
64 // rsa 512 bits 0.0021s 0.0001s 549.4 9638.5
65 // rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1
66 // rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3
67 // rsa 4096 bits 0.1295s 0.0018s 7.7 561.5
68 // sign verify sign/s verify/s
69 // dsa 512 bits 0.0012s 0.0013s 891.9 756.6
70 // dsa 1024 bits 0.0023s 0.0028s 440.4 376.2
72 // Yes, you may argue that it's not fair comparison as it's
73 // possible to craft the C implementation with BN_UMULT_HIGH
74 // inline assembler macro. But of course! Here is the output
77 // sign verify sign/s verify/s
78 // rsa 512 bits 0.0020s 0.0002s 495.0 6561.0
79 // rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7
80 // rsa 2048 bits 0.0519s 0.0015s 19.3 667.3
81 // rsa 4096 bits 0.3464s 0.0053s 2.9 187.7
82 // sign verify sign/s verify/s
83 // dsa 512 bits 0.0016s 0.0020s 613.1 510.5
84 // dsa 1024 bits 0.0045s 0.0054s 221.0 183.9
86 // My code is still way faster, huh:-) And I believe that even
87 // higher performance can be achieved. Note that as keys get
88 // longer, performance gain is larger. Why? According to the
89 // profiler there is another player in the field, namely
90 // BN_from_montgomery consuming larger and larger portion of CPU
91 // time as keysize decreases. I therefore consider putting effort
92 // to assembler implementation of the following routine:
94 // void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
99 // for (i=0; i<nl; i++)
101 // v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
104 // if (((nrp[-1]+=v)&BN_MASK2) < v)
105 // for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
109 // It might as well be beneficial to implement even combaX
110 // variants, as it appears as it can literally unleash the
111 // performance (see comment section to bn_mul_comba8 below).
113 // And finally for your reference the output for 0.9.6a compiled
114 // with SGIcc version 0.01.0-12 (keep in mind that for the moment
115 // of this writing it's not possible to convince SGIcc to use
116 // BN_UMULT_HIGH inline assembler macro, yet the code is fast,
117 // i.e. for a compiler generated one:-):
119 // sign verify sign/s verify/s
120 // rsa 512 bits 0.0022s 0.0002s 452.7 5894.3
121 // rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9
122 // rsa 2048 bits 0.0578s 0.0017s 17.3 600.2
123 // rsa 4096 bits 0.3838s 0.0061s 2.6 164.5
124 // sign verify sign/s verify/s
125 // dsa 512 bits 0.0018s 0.0022s 547.3 459.6
126 // dsa 1024 bits 0.0051s 0.0062s 196.6 161.3
128 // Oh! Benchmarks were performed on 733MHz Lion-class Itanium
129 // system running Redhat Linux 7.1 (very special thanks to Ray
130 // McCaffity of Williams Communications for providing an account).
132 // Q. What's the heck with 'rum 1<<5' at the end of every function?
133 // A. Well, by clearing the "upper FP registers written" bit of the
134 // User Mask I want to excuse the kernel from preserving upper
135 // (f32-f128) FP register bank over process context switch, thus
136 // minimizing bus bandwidth consumption during the switch (i.e.
137 // after PKI opration completes and the program is off doing
138 // something else like bulk symmetric encryption). Having said
139 // this, I also want to point out that it might be good idea
140 // to compile the whole toolkit (as well as majority of the
141 // programs for that matter) with -mfixed-range=f32-f127 command
142 // line option. No, it doesn't prevent the compiler from writing
143 // to upper bank, but at least discourages to do so. If you don't
144 // like the idea you have the option to compile the module with
145 // -Drum=nop.m in command line.
148 #if defined(_HPUX_SOURCE) && !defined(_LP64)
156 // bn_[add|sub]_words routines.
158 // Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the
159 // data reside in L1 cache, i.e. 2 ticks away). It's possible to
160 // compress the epilogue and get down to 2*n+6, but at the cost of
161 // scalability (the neat feature of this implementation is that it
162 // shall automagically spin in n+5 on "wider" IA-64 implementations:-)
163 // I consider that the epilogue is short enough as it is to trade tiny
164 // performance loss on Itanium for scalability.
166 // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
168 .global bn_add_words#
171 .skip 32 // makes the loop body aligned at 64-byte boundary
175 { .mii; alloc r2=ar.pfs,4,12,0,16
176 cmp4.le p6,p0=r35,r0 };;
177 { .mfb; mov r8=r0 // return value
178 (p6) br.ret.spnt.many b0 };;
180 { .mib; sub r10=r35,r0,1
183 brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16
185 { .mib; ADDP r14=0,r32 // rp
189 { .mii; ADDP r15=0,r33 // ap
192 { .mib; ADDP r16=0,r34 // bp
195 .L_bn_add_words_ctop:
196 { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
197 (p18) add r39=r37,r34
198 (p19) cmp.ltu.unc p56,p0=r40,r38 }
199 { .mfb; (p0) nop.m 0x0
202 { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
203 (p58) cmp.eq.or p57,p0=-1,r41 // (p20)
204 (p58) add r41=1,r41 } // (p20)
205 { .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r
207 br.ctop.sptk .L_bn_add_words_ctop };;
208 .L_bn_add_words_cend:
211 (p59) add r8=1,r8 // return value
215 br.ret.sptk.many b0 };;
219 // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
221 .global bn_sub_words#
224 .skip 32 // makes the loop body aligned at 64-byte boundary
228 { .mii; alloc r2=ar.pfs,4,12,0,16
229 cmp4.le p6,p0=r35,r0 };;
230 { .mfb; mov r8=r0 // return value
231 (p6) br.ret.spnt.many b0 };;
233 { .mib; sub r10=r35,r0,1
236 brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
238 { .mib; ADDP r14=0,r32 // rp
242 { .mii; ADDP r15=0,r33 // ap
245 { .mib; ADDP r16=0,r34 // bp
248 .L_bn_sub_words_ctop:
249 { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
250 (p18) sub r39=r37,r34
251 (p19) cmp.gtu.unc p56,p0=r40,r38 }
252 { .mfb; (p0) nop.m 0x0
255 { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
256 (p58) cmp.eq.or p57,p0=0,r41 // (p20)
257 (p58) add r41=-1,r41 } // (p20)
258 { .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r
260 br.ctop.sptk .L_bn_sub_words_ctop };;
261 .L_bn_sub_words_cend:
264 (p59) add r8=1,r8 // return value
268 br.ret.sptk.many b0 };;
273 #define XMA_TEMPTATION
278 // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
280 .global bn_mul_words#
283 .skip 32 // makes the loop body aligned at 64-byte boundary
287 #ifdef XMA_TEMPTATION
288 { .mfi; alloc r2=ar.pfs,4,0,0,0 };;
290 { .mfi; alloc r2=ar.pfs,4,12,0,16 };;
292 { .mib; mov r8=r0 // return value
294 (p6) br.ret.spnt.many b0 };;
296 { .mii; sub r10=r34,r0,1
303 { .mib; setf.sig f8=r35 // w
304 mov pr.rot=0x800001<<16
305 // ------^----- serves as (p50) at first (p27)
306 brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
309 #ifndef XMA_TEMPTATION
311 { .mmi; ADDP r14=0,r32 // rp
314 { .mmi; mov r40=0 // serves as r35 at first (p27)
317 // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
318 // L2 cache (i.e. 9 ticks away) as floating point load/store instructions
319 // bypass L1 cache and L2 latency is actually best-case scenario for
320 // ldf8. The loop is not scalable and shall run in 2*(n+12) even on
321 // "wider" IA-64 implementations. It's a trade-off here. n+24 loop
322 // would give us ~5% in *overall* performance improvement on "wider"
323 // IA-64, but would hurt Itanium for about same because of longer
324 // epilogue. As it's a matter of few percents in either case I've
325 // chosen to trade the scalability for development time (you can see
326 // this very instruction sequence in bn_mul_add_words loop which in
327 // turn is scalable).
328 .L_bn_mul_words_ctop:
329 { .mfi; (p25) getf.sig r36=f52 // low
330 (p21) xmpy.lu f48=f37,f8
331 (p28) cmp.ltu p54,p50=r41,r39 }
332 { .mfi; (p16) ldf8 f32=[r15],8
333 (p21) xmpy.hu f40=f37,f8
335 { .mii; (p25) getf.sig r32=f44 // high
336 .pred.rel "mutex",p50,p54
337 (p50) add r40=r38,r35 // (p27)
338 (p54) add r40=r38,r35,1 } // (p27)
339 { .mfb; (p28) st8 [r14]=r41,8
341 br.ctop.sptk .L_bn_mul_words_ctop };;
342 .L_bn_mul_words_cend:
345 .pred.rel "mutex",p51,p55
347 (p55) add r8=r36,r0,1 }
352 #else // XMA_TEMPTATION
354 setf.sig f37=r0 // serves as carry at (p18) tick
358 // Most of you examining this code very likely wonder why in the name
359 // of Intel the following loop is commented out? Indeed, it looks so
360 // neat that you find it hard to believe that it's something wrong
361 // with it, right? The catch is that every iteration depends on the
362 // result from previous one and the latter isn't available instantly.
363 // The loop therefore spins at the latency of xma minus 1, or in other
364 // words at 6*(n+4) ticks:-( Compare to the "production" loop above
365 // that runs in 2*(n+11) where the low latency problem is worked around
366 // by moving the dependency to one-tick latent interger ALU. Note that
367 // "distance" between ldf8 and xma is not latency of ldf8, but the
368 // *difference* between xma and ldf8 latencies.
369 .L_bn_mul_words_ctop:
370 { .mfi; (p16) ldf8 f32=[r33],8
371 (p18) xma.hu f38=f34,f8,f39 }
372 { .mfb; (p20) stf8 [r32]=f37,8
373 (p18) xma.lu f35=f34,f8,f39
374 br.ctop.sptk .L_bn_mul_words_ctop };;
375 .L_bn_mul_words_cend:
377 getf.sig r8=f41 // the return value
379 #endif // XMA_TEMPTATION
384 { .mfb; rum 1<<5 // clear um.mfh
386 br.ret.sptk.many b0 };;
392 // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
394 .global bn_mul_add_words#
395 .proc bn_mul_add_words#
397 .skip 48 // makes the loop body aligned at 64-byte boundary
401 { .mmi; alloc r2=ar.pfs,4,4,0,8
405 { .mib; mov r8=r0 // return value
407 (p6) br.ret.spnt.many b0 };;
409 { .mib; setf.sig f8=r35 // w
412 brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
415 { .mmi; ADDP r14=0,r32 // rp
418 { .mii; ADDP r16=0,r32 // rp copy
419 mov pr.rot=0x2001<<16
420 // ------^----- serves as (p40) at first (p27)
423 // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
424 // Itanium 2. Yes, unlike previous versions it scales:-) Previous
425 // version was peforming *all* additions in IALU and was starving
426 // for those even on Itanium 2. In this version one addition is
427 // moved to FPU and is folded with multiplication. This is at cost
428 // of propogating the result from previous call to this subroutine
429 // to L2 cache... In other words negligible even for shorter keys.
430 // *Overall* performance improvement [over previous version] varies
431 // from 11 to 22 percent depending on key length.
432 .L_bn_mul_add_words_ctop:
433 .pred.rel "mutex",p40,p42
434 { .mfi; (p23) getf.sig r36=f45 // low
435 (p20) xma.lu f42=f36,f8,f50 // low
436 (p40) add r39=r39,r35 } // (p27)
437 { .mfi; (p16) ldf8 f32=[r15],8 // *(ap++)
438 (p20) xma.hu f36=f36,f8,f50 // high
439 (p42) add r39=r39,r35,1 };; // (p27)
440 { .mmi; (p24) getf.sig r32=f40 // high
441 (p16) ldf8 f46=[r16],8 // *(rp1++)
442 (p40) cmp.ltu p41,p39=r39,r35 } // (p27)
443 { .mib; (p26) st8 [r14]=r39,8 // *(rp2++)
444 (p42) cmp.leu p41,p39=r39,r35 // (p27)
445 br.ctop.sptk .L_bn_mul_add_words_ctop};;
446 .L_bn_mul_add_words_cend:
448 { .mmi; .pred.rel "mutex",p40,p42
450 (p42) add r8=r35,r0,1
452 { .mib; rum 1<<5 // clear um.mfh
454 br.ret.sptk.many b0 };;
455 .endp bn_mul_add_words#
460 // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
462 .global bn_sqr_words#
465 .skip 32 // makes the loop body aligned at 64-byte boundary
469 { .mii; alloc r2=ar.pfs,3,0,0,0
471 { .mii; cmp.le p6,p0=r34,r0
472 mov r8=r0 } // return value
473 { .mfb; ADDP r32=0,r32
475 (p6) br.ret.spnt.many b0 };;
477 { .mii; sub r10=r34,r0,1
484 { .mib; ADDP r33=0,r33
486 brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
488 { .mii; add r34=8,r32
492 // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
493 // possible to compress the epilogue (I'm getting tired to write this
494 // comment over and over) and get down to 2*n+16 at the cost of
495 // scalability. The decision will very likely be reconsidered after the
496 // benchmark program is profiled. I.e. if perfomance gain on Itanium
497 // will appear larger than loss on "wider" IA-64, then the loop should
498 // be explicitely split and the epilogue compressed.
499 .L_bn_sqr_words_ctop:
500 { .mfi; (p16) ldf8 f32=[r33],8
501 (p25) xmpy.lu f42=f41,f41
503 { .mib; (p33) stf8 [r32]=f50,16
506 { .mfi; (p0) nop.m 0x0
507 (p25) xmpy.hu f52=f41,f41
509 { .mib; (p33) stf8 [r34]=f60,16
511 br.ctop.sptk .L_bn_sqr_words_ctop };;
512 .L_bn_sqr_words_cend:
517 { .mfb; rum 1<<5 // clear um.mfh
519 br.ret.sptk.many b0 };;
524 // Apparently we win nothing by implementing special bn_sqr_comba8.
525 // Yes, it is possible to reduce the number of multiplications by
526 // almost factor of two, but then the amount of additions would
527 // increase by factor of two (as we would have to perform those
528 // otherwise performed by xma ourselves). Normally we would trade
529 // anyway as multiplications are way more expensive, but not this
530 // time... Multiplication kernel is fully pipelined and as we drain
531 // one 128-bit multiplication result per clock cycle multiplications
532 // are effectively as inexpensive as additions. Special implementation
533 // might become of interest for "wider" IA-64 implementation as you'll
534 // be able to get through the multiplication phase faster (there won't
535 // be any stall issues as discussed in the commentary section below and
536 // you therefore will be able to employ all 4 FP units)... But these
537 // Itanium days it's simply too hard to justify the effort so I just
538 // drop down to bn_mul_comba8 code:-)
540 // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
542 .global bn_sqr_comba8#
548 #if defined(_HPUX_SOURCE) && !defined(_LP64)
549 { .mii; alloc r2=ar.pfs,2,1,0,0
554 { .mii; alloc r2=ar.pfs,2,1,0,0
559 { .mii; add r17=8,r34
562 { .mfb; add r16=24,r33
563 br .L_cheat_entry_point8 };;
568 // I've estimated this routine to run in ~120 ticks, but in reality
569 // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
570 // cycles consumed for instructions fetch? Or did I misinterpret some
571 // clause in Itanium µ-architecture manual? Comments are welcomed and
572 // highly appreciated.
574 // On Itanium 2 it takes ~190 ticks. This is because of stalls on
575 // result from getf.sig. I do nothing about it at this point for
576 // reasons depicted below.
578 // However! It should be noted that even 160 ticks is darn good result
579 // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
580 // C version (compiled with gcc with inline assembler). I really
581 // kicked compiler's butt here, didn't I? Yeah! This brings us to the
582 // following statement. It's damn shame that this routine isn't called
583 // very often nowadays! According to the profiler most CPU time is
584 // consumed by bn_mul_add_words called from BN_from_montgomery. In
585 // order to estimate what we're missing, I've compared the performance
586 // of this routine against "traditional" implementation, i.e. against
587 // following routine:
589 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
590 // { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
591 // r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
592 // r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
593 // r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
594 // r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
595 // r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
596 // r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
597 // r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
600 // The one below is over 8 times faster than the one above:-( Even
601 // more reasons to "combafy" bn_mul_add_mont...
603 // And yes, this routine really made me wish there were an optimizing
604 // assembler! It also feels like it deserves a dedication.
606 // To my wife for being there and to my kids...
608 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
613 .global bn_mul_comba8#
619 #if defined(_HPUX_SOURCE) && !defined(_LP64)
620 { .mii; alloc r2=ar.pfs,3,0,0,0
623 { .mii; addp4 r32=0,r32
625 { .mii; alloc r2=ar.pfs,3,0,0,0
630 { .mii; add r15=16,r33
633 .L_cheat_entry_point8:
634 { .mmi; add r19=24,r34
636 ldf8 f32=[r33],32 };;
638 { .mmi; ldf8 f120=[r34],32
640 { .mmi; ldf8 f122=[r18],32
641 ldf8 f123=[r19],32 };;
642 { .mmi; ldf8 f124=[r34]
644 { .mmi; ldf8 f126=[r18]
647 { .mmi; ldf8 f33=[r14],32
649 { .mmi; ldf8 f35=[r16],32;;
651 { .mmi; ldf8 f37=[r14]
653 { .mfi; ldf8 f39=[r16]
654 // -------\ Entering multiplier's heaven /-------
655 // ------------\ /------------
656 // -----------------\ /-----------------
657 // ----------------------\/----------------------
658 xma.hu f41=f32,f120,f0 }
659 { .mfi; xma.lu f40=f32,f120,f0 };; // (*)
660 { .mfi; xma.hu f51=f32,f121,f0 }
661 { .mfi; xma.lu f50=f32,f121,f0 };;
662 { .mfi; xma.hu f61=f32,f122,f0 }
663 { .mfi; xma.lu f60=f32,f122,f0 };;
664 { .mfi; xma.hu f71=f32,f123,f0 }
665 { .mfi; xma.lu f70=f32,f123,f0 };;
666 { .mfi; xma.hu f81=f32,f124,f0 }
667 { .mfi; xma.lu f80=f32,f124,f0 };;
668 { .mfi; xma.hu f91=f32,f125,f0 }
669 { .mfi; xma.lu f90=f32,f125,f0 };;
670 { .mfi; xma.hu f101=f32,f126,f0 }
671 { .mfi; xma.lu f100=f32,f126,f0 };;
672 { .mfi; xma.hu f111=f32,f127,f0 }
673 { .mfi; xma.lu f110=f32,f127,f0 };;//
674 // (*) You can argue that splitting at every second bundle would
675 // prevent "wider" IA-64 implementations from achieving the peak
676 // performance. Well, not really... The catch is that if you
677 // intend to keep 4 FP units busy by splitting at every fourth
678 // bundle and thus perform these 16 multiplications in 4 ticks,
679 // the first bundle *below* would stall because the result from
680 // the first xma bundle *above* won't be available for another 3
681 // ticks (if not more, being an optimist, I assume that "wider"
682 // implementation will have same latency:-). This stall will hold
683 // you back and the performance would be as if every second bundle
684 // were split *anyway*...
685 { .mfi; getf.sig r16=f40
686 xma.hu f42=f33,f120,f41
688 { .mfi; xma.lu f41=f33,f120,f41 };;
689 { .mfi; getf.sig r24=f50
690 xma.hu f52=f33,f121,f51 }
691 { .mfi; xma.lu f51=f33,f121,f51 };;
692 { .mfi; st8 [r32]=r16,16
693 xma.hu f62=f33,f122,f61 }
694 { .mfi; xma.lu f61=f33,f122,f61 };;
695 { .mfi; xma.hu f72=f33,f123,f71 }
696 { .mfi; xma.lu f71=f33,f123,f71 };;
697 { .mfi; xma.hu f82=f33,f124,f81 }
698 { .mfi; xma.lu f81=f33,f124,f81 };;
699 { .mfi; xma.hu f92=f33,f125,f91 }
700 { .mfi; xma.lu f91=f33,f125,f91 };;
701 { .mfi; xma.hu f102=f33,f126,f101 }
702 { .mfi; xma.lu f101=f33,f126,f101 };;
703 { .mfi; xma.hu f112=f33,f127,f111 }
704 { .mfi; xma.lu f111=f33,f127,f111 };;//
705 //-------------------------------------------------//
706 { .mfi; getf.sig r25=f41
707 xma.hu f43=f34,f120,f42 }
708 { .mfi; xma.lu f42=f34,f120,f42 };;
709 { .mfi; getf.sig r16=f60
710 xma.hu f53=f34,f121,f52 }
711 { .mfi; xma.lu f52=f34,f121,f52 };;
712 { .mfi; getf.sig r17=f51
713 xma.hu f63=f34,f122,f62
715 { .mfi; xma.lu f62=f34,f122,f62
717 { .mfi; cmp.ltu p6,p0=r25,r24
718 xma.hu f73=f34,f123,f72 }
719 { .mfi; xma.lu f72=f34,f123,f72 };;
720 { .mfi; st8 [r33]=r25,16
721 xma.hu f83=f34,f124,f82
722 (p6) add carry1=1,carry1 }
723 { .mfi; xma.lu f82=f34,f124,f82 };;
724 { .mfi; xma.hu f93=f34,f125,f92 }
725 { .mfi; xma.lu f92=f34,f125,f92 };;
726 { .mfi; xma.hu f103=f34,f126,f102 }
727 { .mfi; xma.lu f102=f34,f126,f102 };;
728 { .mfi; xma.hu f113=f34,f127,f112 }
729 { .mfi; xma.lu f112=f34,f127,f112 };;//
730 //-------------------------------------------------//
731 { .mfi; getf.sig r18=f42
732 xma.hu f44=f35,f120,f43
734 { .mfi; xma.lu f43=f35,f120,f43 };;
735 { .mfi; getf.sig r24=f70
736 xma.hu f54=f35,f121,f53 }
738 xma.lu f53=f35,f121,f53 };;
739 { .mfi; getf.sig r25=f61
740 xma.hu f64=f35,f122,f63
741 cmp.ltu p7,p0=r17,r16 }
742 { .mfi; add r18=r18,r17
743 xma.lu f63=f35,f122,f63 };;
744 { .mfi; getf.sig r26=f52
745 xma.hu f74=f35,f123,f73
746 (p7) add carry2=1,carry2 }
747 { .mfi; cmp.ltu p7,p0=r18,r17
748 xma.lu f73=f35,f123,f73
749 add r18=r18,carry1 };;
751 xma.hu f84=f35,f124,f83
752 (p7) add carry2=1,carry2 }
753 { .mfi; cmp.ltu p7,p0=r18,carry1
754 xma.lu f83=f35,f124,f83 };;
755 { .mfi; st8 [r32]=r18,16
756 xma.hu f94=f35,f125,f93
757 (p7) add carry2=1,carry2 }
758 { .mfi; xma.lu f93=f35,f125,f93 };;
759 { .mfi; xma.hu f104=f35,f126,f103 }
760 { .mfi; xma.lu f103=f35,f126,f103 };;
761 { .mfi; xma.hu f114=f35,f127,f113 }
763 xma.lu f113=f35,f127,f113
764 add r25=r25,r24 };;//
765 //-------------------------------------------------//
766 { .mfi; getf.sig r27=f43
767 xma.hu f45=f36,f120,f44
768 cmp.ltu p6,p0=r25,r24 }
769 { .mfi; xma.lu f44=f36,f120,f44
771 { .mfi; getf.sig r16=f80
772 xma.hu f55=f36,f121,f54
773 (p6) add carry1=1,carry1 }
774 { .mfi; xma.lu f54=f36,f121,f54 };;
775 { .mfi; getf.sig r17=f71
776 xma.hu f65=f36,f122,f64
777 cmp.ltu p6,p0=r26,r25 }
778 { .mfi; xma.lu f64=f36,f122,f64
780 { .mfi; getf.sig r18=f62
781 xma.hu f75=f36,f123,f74
782 (p6) add carry1=1,carry1 }
783 { .mfi; cmp.ltu p6,p0=r27,r26
784 xma.lu f74=f36,f123,f74
785 add r27=r27,carry2 };;
786 { .mfi; getf.sig r19=f53
787 xma.hu f85=f36,f124,f84
788 (p6) add carry1=1,carry1 }
789 { .mfi; xma.lu f84=f36,f124,f84
790 cmp.ltu p6,p0=r27,carry2 };;
791 { .mfi; st8 [r33]=r27,16
792 xma.hu f95=f36,f125,f94
793 (p6) add carry1=1,carry1 }
794 { .mfi; xma.lu f94=f36,f125,f94 };;
795 { .mfi; xma.hu f105=f36,f126,f104 }
797 xma.lu f104=f36,f126,f104
799 { .mfi; xma.hu f115=f36,f127,f114
800 cmp.ltu p7,p0=r17,r16 }
801 { .mfi; xma.lu f114=f36,f127,f114
802 add r18=r18,r17 };;//
803 //-------------------------------------------------//
804 { .mfi; getf.sig r20=f44
805 xma.hu f46=f37,f120,f45
806 (p7) add carry2=1,carry2 }
807 { .mfi; cmp.ltu p7,p0=r18,r17
808 xma.lu f45=f37,f120,f45
810 { .mfi; getf.sig r24=f90
811 xma.hu f56=f37,f121,f55 }
812 { .mfi; xma.lu f55=f37,f121,f55 };;
813 { .mfi; getf.sig r25=f81
814 xma.hu f66=f37,f122,f65
815 (p7) add carry2=1,carry2 }
816 { .mfi; cmp.ltu p7,p0=r19,r18
817 xma.lu f65=f37,f122,f65
819 { .mfi; getf.sig r26=f72
820 xma.hu f76=f37,f123,f75
821 (p7) add carry2=1,carry2 }
822 { .mfi; cmp.ltu p7,p0=r20,r19
823 xma.lu f75=f37,f123,f75
824 add r20=r20,carry1 };;
825 { .mfi; getf.sig r27=f63
826 xma.hu f86=f37,f124,f85
827 (p7) add carry2=1,carry2 }
828 { .mfi; xma.lu f85=f37,f124,f85
829 cmp.ltu p7,p0=r20,carry1 };;
830 { .mfi; getf.sig r28=f54
831 xma.hu f96=f37,f125,f95
832 (p7) add carry2=1,carry2 }
833 { .mfi; st8 [r32]=r20,16
834 xma.lu f95=f37,f125,f95 };;
835 { .mfi; xma.hu f106=f37,f126,f105 }
837 xma.lu f105=f37,f126,f105
839 { .mfi; xma.hu f116=f37,f127,f115
840 cmp.ltu p6,p0=r25,r24 }
841 { .mfi; xma.lu f115=f37,f127,f115
842 add r26=r26,r25 };;//
843 //-------------------------------------------------//
844 { .mfi; getf.sig r29=f45
845 xma.hu f47=f38,f120,f46
846 (p6) add carry1=1,carry1 }
847 { .mfi; cmp.ltu p6,p0=r26,r25
848 xma.lu f46=f38,f120,f46
850 { .mfi; getf.sig r16=f100
851 xma.hu f57=f38,f121,f56
852 (p6) add carry1=1,carry1 }
853 { .mfi; cmp.ltu p6,p0=r27,r26
854 xma.lu f56=f38,f121,f56
856 { .mfi; getf.sig r17=f91
857 xma.hu f67=f38,f122,f66
858 (p6) add carry1=1,carry1 }
859 { .mfi; cmp.ltu p6,p0=r28,r27
860 xma.lu f66=f38,f122,f66
862 { .mfi; getf.sig r18=f82
863 xma.hu f77=f38,f123,f76
864 (p6) add carry1=1,carry1 }
865 { .mfi; cmp.ltu p6,p0=r29,r28
866 xma.lu f76=f38,f123,f76
867 add r29=r29,carry2 };;
868 { .mfi; getf.sig r19=f73
869 xma.hu f87=f38,f124,f86
870 (p6) add carry1=1,carry1 }
871 { .mfi; xma.lu f86=f38,f124,f86
872 cmp.ltu p6,p0=r29,carry2 };;
873 { .mfi; getf.sig r20=f64
874 xma.hu f97=f38,f125,f96
875 (p6) add carry1=1,carry1 }
876 { .mfi; st8 [r33]=r29,16
877 xma.lu f96=f38,f125,f96 };;
878 { .mfi; getf.sig r21=f55
879 xma.hu f107=f38,f126,f106 }
881 xma.lu f106=f38,f126,f106
883 { .mfi; xma.hu f117=f38,f127,f116
884 cmp.ltu p7,p0=r17,r16 }
885 { .mfi; xma.lu f116=f38,f127,f116
886 add r18=r18,r17 };;//
887 //-------------------------------------------------//
888 { .mfi; getf.sig r22=f46
889 xma.hu f48=f39,f120,f47
890 (p7) add carry2=1,carry2 }
891 { .mfi; cmp.ltu p7,p0=r18,r17
892 xma.lu f47=f39,f120,f47
894 { .mfi; getf.sig r24=f110
895 xma.hu f58=f39,f121,f57
896 (p7) add carry2=1,carry2 }
897 { .mfi; cmp.ltu p7,p0=r19,r18
898 xma.lu f57=f39,f121,f57
900 { .mfi; getf.sig r25=f101
901 xma.hu f68=f39,f122,f67
902 (p7) add carry2=1,carry2 }
903 { .mfi; cmp.ltu p7,p0=r20,r19
904 xma.lu f67=f39,f122,f67
906 { .mfi; getf.sig r26=f92
907 xma.hu f78=f39,f123,f77
908 (p7) add carry2=1,carry2 }
909 { .mfi; cmp.ltu p7,p0=r21,r20
910 xma.lu f77=f39,f123,f77
912 { .mfi; getf.sig r27=f83
913 xma.hu f88=f39,f124,f87
914 (p7) add carry2=1,carry2 }
915 { .mfi; cmp.ltu p7,p0=r22,r21
916 xma.lu f87=f39,f124,f87
917 add r22=r22,carry1 };;
918 { .mfi; getf.sig r28=f74
919 xma.hu f98=f39,f125,f97
920 (p7) add carry2=1,carry2 }
921 { .mfi; xma.lu f97=f39,f125,f97
922 cmp.ltu p7,p0=r22,carry1 };;
923 { .mfi; getf.sig r29=f65
924 xma.hu f108=f39,f126,f107
925 (p7) add carry2=1,carry2 }
926 { .mfi; st8 [r32]=r22,16
927 xma.lu f107=f39,f126,f107 };;
928 { .mfi; getf.sig r30=f56
929 xma.hu f118=f39,f127,f117 }
930 { .mfi; xma.lu f117=f39,f127,f117 };;//
931 //-------------------------------------------------//
932 // Leaving muliplier's heaven... Quite a ride, huh?
934 { .mii; getf.sig r31=f47
937 { .mii; getf.sig r16=f111
938 cmp.ltu p6,p0=r25,r24
940 { .mfb; getf.sig r17=f102 }
942 (p6) add carry1=1,carry1
943 cmp.ltu p6,p0=r26,r25
947 (p6) add carry1=1,carry1
948 cmp.ltu p6,p0=r27,r26
950 { .mii; getf.sig r18=f93
954 (p6) add carry1=1,carry1
955 cmp.ltu p6,p0=r28,r27
957 { .mii; getf.sig r19=f84
958 cmp.ltu p7,p0=r17,r16 }
960 (p6) add carry1=1,carry1
961 cmp.ltu p6,p0=r29,r28
963 { .mii; getf.sig r20=f75
966 (p6) add carry1=1,carry1
967 cmp.ltu p6,p0=r30,r29
969 { .mfb; getf.sig r21=f66 }
970 { .mii; (p7) add carry3=1,carry3
971 cmp.ltu p7,p0=r18,r17
975 (p6) add carry1=1,carry1
976 cmp.ltu p6,p0=r31,r30
977 add r31=r31,carry2 };;
978 { .mfb; getf.sig r22=f57 }
979 { .mii; (p7) add carry3=1,carry3
980 cmp.ltu p7,p0=r19,r18
984 (p6) add carry1=1,carry1
985 cmp.ltu p6,p0=r31,carry2 };;
986 { .mfb; getf.sig r23=f48 }
987 { .mii; (p7) add carry3=1,carry3
988 cmp.ltu p7,p0=r20,r19
991 (p6) add carry1=1,carry1 }
992 { .mfb; st8 [r33]=r31,16 };;
994 { .mfb; getf.sig r24=f112 }
995 { .mii; (p7) add carry3=1,carry3
996 cmp.ltu p7,p0=r21,r20
998 { .mfb; getf.sig r25=f103 }
999 { .mii; (p7) add carry3=1,carry3
1000 cmp.ltu p7,p0=r22,r21
1002 { .mfb; getf.sig r26=f94 }
1003 { .mii; (p7) add carry3=1,carry3
1004 cmp.ltu p7,p0=r23,r22
1005 add r23=r23,carry1 };;
1006 { .mfb; getf.sig r27=f85 }
1007 { .mii; (p7) add carry3=1,carry3
1008 cmp.ltu p7,p8=r23,carry1};;
1009 { .mii; getf.sig r28=f76
1012 { .mii; st8 [r32]=r23,16
1013 (p7) add carry2=1,carry3
1014 (p8) add carry2=0,carry3 };;
1017 { .mii; getf.sig r29=f67
1018 cmp.ltu p6,p0=r25,r24
1020 { .mfb; getf.sig r30=f58 }
1022 (p6) add carry1=1,carry1
1023 cmp.ltu p6,p0=r26,r25
1025 { .mfb; getf.sig r16=f113 }
1027 (p6) add carry1=1,carry1
1028 cmp.ltu p6,p0=r27,r26
1030 { .mfb; getf.sig r17=f104 }
1032 (p6) add carry1=1,carry1
1033 cmp.ltu p6,p0=r28,r27
1035 { .mfb; getf.sig r18=f95 }
1037 (p6) add carry1=1,carry1
1038 cmp.ltu p6,p0=r29,r28
1040 { .mii; getf.sig r19=f86
1044 (p6) add carry1=1,carry1
1045 cmp.ltu p6,p0=r30,r29
1046 add r30=r30,carry2 };;
1047 { .mii; getf.sig r20=f77
1048 cmp.ltu p7,p0=r17,r16
1051 (p6) add carry1=1,carry1
1052 cmp.ltu p6,p0=r30,carry2 };;
1053 { .mfb; getf.sig r21=f68 }
1054 { .mii; st8 [r33]=r30,16
1055 (p6) add carry1=1,carry1 };;
1057 { .mfb; getf.sig r24=f114 }
1058 { .mii; (p7) add carry3=1,carry3
1059 cmp.ltu p7,p0=r18,r17
1061 { .mfb; getf.sig r25=f105 }
1062 { .mii; (p7) add carry3=1,carry3
1063 cmp.ltu p7,p0=r19,r18
1065 { .mfb; getf.sig r26=f96 }
1066 { .mii; (p7) add carry3=1,carry3
1067 cmp.ltu p7,p0=r20,r19
1069 { .mfb; getf.sig r27=f87 }
1070 { .mii; (p7) add carry3=1,carry3
1071 cmp.ltu p7,p0=r21,r20
1072 add r21=r21,carry1 };;
1073 { .mib; getf.sig r28=f78
1075 { .mib; (p7) add carry3=1,carry3
1076 cmp.ltu p7,p8=r21,carry1};;
1077 { .mii; st8 [r32]=r21,16
1078 (p7) add carry2=1,carry3
1079 (p8) add carry2=0,carry3 }
1081 { .mii; mov carry1=0
1082 cmp.ltu p6,p0=r25,r24
1084 { .mfb; getf.sig r16=f115 }
1086 (p6) add carry1=1,carry1
1087 cmp.ltu p6,p0=r26,r25
1089 { .mfb; getf.sig r17=f106 }
1091 (p6) add carry1=1,carry1
1092 cmp.ltu p6,p0=r27,r26
1094 { .mfb; getf.sig r18=f97 }
1096 (p6) add carry1=1,carry1
1097 cmp.ltu p6,p0=r28,r27
1098 add r28=r28,carry2 };;
1099 { .mib; getf.sig r19=f88
1102 (p6) add carry1=1,carry1
1103 cmp.ltu p6,p0=r28,carry2 };;
1104 { .mii; st8 [r33]=r28,16
1105 (p6) add carry1=1,carry1 }
1107 { .mii; mov carry2=0
1108 cmp.ltu p7,p0=r17,r16
1110 { .mfb; getf.sig r24=f116 }
1111 { .mii; (p7) add carry2=1,carry2
1112 cmp.ltu p7,p0=r18,r17
1114 { .mfb; getf.sig r25=f107 }
1115 { .mii; (p7) add carry2=1,carry2
1116 cmp.ltu p7,p0=r19,r18
1117 add r19=r19,carry1 };;
1118 { .mfb; getf.sig r26=f98 }
1119 { .mii; (p7) add carry2=1,carry2
1120 cmp.ltu p7,p0=r19,carry1};;
1121 { .mii; st8 [r32]=r19,16
1122 (p7) add carry2=1,carry2 }
1124 { .mfb; add r25=r25,r24 };;
1126 { .mfb; getf.sig r16=f117 }
1127 { .mii; mov carry1=0
1128 cmp.ltu p6,p0=r25,r24
1130 { .mfb; getf.sig r17=f108 }
1132 (p6) add carry1=1,carry1
1133 cmp.ltu p6,p0=r26,r25
1134 add r26=r26,carry2 };;
1137 (p6) add carry1=1,carry1
1138 cmp.ltu p6,p0=r26,carry2 };;
1139 { .mii; st8 [r33]=r26,16
1140 (p6) add carry1=1,carry1 }
1142 { .mfb; add r17=r17,r16 };;
1143 { .mfb; getf.sig r24=f118 }
1144 { .mii; mov carry2=0
1145 cmp.ltu p7,p0=r17,r16
1146 add r17=r17,carry1 };;
1147 { .mii; (p7) add carry2=1,carry2
1148 cmp.ltu p7,p0=r17,carry1};;
1149 { .mii; st8 [r32]=r17
1150 (p7) add carry2=1,carry2 };;
1151 { .mfb; add r24=r24,carry2 };;
1152 { .mib; st8 [r33]=r24 }
1154 { .mib; rum 1<<5 // clear um.mfh
1155 br.ret.sptk.many b0 };;
1156 .endp bn_mul_comba8#
1163 // It's possible to make it faster (see comment to bn_sqr_comba8), but
1164 // I reckon it doesn't worth the effort. Basically because the routine
1165 // (actually both of them) practically never called... So I just play
1166 // same trick as with bn_sqr_comba8.
1168 // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1170 .global bn_sqr_comba4#
1171 .proc bn_sqr_comba4#
1176 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1177 { .mii; alloc r2=ar.pfs,2,1,0,0
1182 { .mii; alloc r2=ar.pfs,2,1,0,0
1187 { .mii; add r17=8,r34
1190 { .mfb; add r16=24,r33
1191 br .L_cheat_entry_point4 };;
1192 .endp bn_sqr_comba4#
1196 // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1198 // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1202 .global bn_mul_comba4#
1203 .proc bn_mul_comba4#
1208 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1209 { .mii; alloc r2=ar.pfs,3,0,0,0
1212 { .mii; addp4 r32=0,r32
1214 { .mii; alloc r2=ar.pfs,3,0,0,0
1219 { .mii; add r15=16,r33
1222 .L_cheat_entry_point4:
1223 { .mmi; add r19=24,r34
1227 { .mmi; ldf8 f120=[r34]
1229 { .mmi; ldf8 f122=[r18]
1232 { .mmi; ldf8 f33=[r14]
1234 { .mfi; ldf8 f35=[r16]
1236 xma.hu f41=f32,f120,f0 }
1237 { .mfi; xma.lu f40=f32,f120,f0 };;
1238 { .mfi; xma.hu f51=f32,f121,f0 }
1239 { .mfi; xma.lu f50=f32,f121,f0 };;
1240 { .mfi; xma.hu f61=f32,f122,f0 }
1241 { .mfi; xma.lu f60=f32,f122,f0 };;
1242 { .mfi; xma.hu f71=f32,f123,f0 }
1243 { .mfi; xma.lu f70=f32,f123,f0 };;//
1244 // Major stall takes place here, and 3 more places below. Result from
1245 // first xma is not available for another 3 ticks.
1246 { .mfi; getf.sig r16=f40
1247 xma.hu f42=f33,f120,f41
1249 { .mfi; xma.lu f41=f33,f120,f41 };;
1250 { .mfi; getf.sig r24=f50
1251 xma.hu f52=f33,f121,f51 }
1252 { .mfi; xma.lu f51=f33,f121,f51 };;
1253 { .mfi; st8 [r32]=r16,16
1254 xma.hu f62=f33,f122,f61 }
1255 { .mfi; xma.lu f61=f33,f122,f61 };;
1256 { .mfi; xma.hu f72=f33,f123,f71 }
1257 { .mfi; xma.lu f71=f33,f123,f71 };;//
1258 //-------------------------------------------------//
1259 { .mfi; getf.sig r25=f41
1260 xma.hu f43=f34,f120,f42 }
1261 { .mfi; xma.lu f42=f34,f120,f42 };;
1262 { .mfi; getf.sig r16=f60
1263 xma.hu f53=f34,f121,f52 }
1264 { .mfi; xma.lu f52=f34,f121,f52 };;
1265 { .mfi; getf.sig r17=f51
1266 xma.hu f63=f34,f122,f62
1268 { .mfi; mov carry1=0
1269 xma.lu f62=f34,f122,f62 };;
1270 { .mfi; st8 [r33]=r25,16
1271 xma.hu f73=f34,f123,f72
1272 cmp.ltu p6,p0=r25,r24 }
1273 { .mfi; xma.lu f72=f34,f123,f72 };;//
1274 //-------------------------------------------------//
1275 { .mfi; getf.sig r18=f42
1276 xma.hu f44=f35,f120,f43
1277 (p6) add carry1=1,carry1 }
1278 { .mfi; add r17=r17,r16
1279 xma.lu f43=f35,f120,f43
1281 { .mfi; getf.sig r24=f70
1282 xma.hu f54=f35,f121,f53
1283 cmp.ltu p7,p0=r17,r16 }
1284 { .mfi; xma.lu f53=f35,f121,f53 };;
1285 { .mfi; getf.sig r25=f61
1286 xma.hu f64=f35,f122,f63
1288 { .mfi; xma.lu f63=f35,f122,f63
1289 (p7) add carry2=1,carry2 };;
1290 { .mfi; getf.sig r26=f52
1291 xma.hu f74=f35,f123,f73
1292 cmp.ltu p7,p0=r18,r17 }
1293 { .mfi; xma.lu f73=f35,f123,f73
1294 add r18=r18,carry1 };;
1295 //-------------------------------------------------//
1296 { .mii; st8 [r32]=r18,16
1297 (p7) add carry2=1,carry2
1298 cmp.ltu p7,p0=r18,carry1 };;
1300 { .mfi; getf.sig r27=f43 // last major stall
1301 (p7) add carry2=1,carry2 };;
1302 { .mii; getf.sig r16=f71
1305 { .mii; getf.sig r17=f62
1306 cmp.ltu p6,p0=r25,r24
1309 (p6) add carry1=1,carry1
1310 cmp.ltu p6,p0=r26,r25
1313 (p6) add carry1=1,carry1
1314 cmp.ltu p6,p0=r27,r26
1315 add r27=r27,carry2 };;
1316 { .mii; getf.sig r18=f53
1317 (p6) add carry1=1,carry1
1318 cmp.ltu p6,p0=r27,carry2 };;
1319 { .mfi; st8 [r33]=r27,16
1320 (p6) add carry1=1,carry1 }
1322 { .mii; getf.sig r19=f44
1325 { .mii; getf.sig r24=f72
1326 cmp.ltu p7,p0=r17,r16
1328 { .mii; (p7) add carry2=1,carry2
1329 cmp.ltu p7,p0=r18,r17
1331 { .mii; (p7) add carry2=1,carry2
1332 cmp.ltu p7,p0=r19,r18
1333 add r19=r19,carry1 };;
1334 { .mii; getf.sig r25=f63
1335 (p7) add carry2=1,carry2
1336 cmp.ltu p7,p0=r19,carry1};;
1337 { .mii; st8 [r32]=r19,16
1338 (p7) add carry2=1,carry2 }
1340 { .mii; getf.sig r26=f54
1343 { .mii; getf.sig r16=f73
1344 cmp.ltu p6,p0=r25,r24
1347 (p6) add carry1=1,carry1
1348 cmp.ltu p6,p0=r26,r25
1349 add r26=r26,carry2 };;
1350 { .mii; getf.sig r17=f64
1351 (p6) add carry1=1,carry1
1352 cmp.ltu p6,p0=r26,carry2 };;
1353 { .mii; st8 [r33]=r26,16
1354 (p6) add carry1=1,carry1 }
1356 { .mii; getf.sig r24=f74
1359 { .mii; cmp.ltu p7,p0=r17,r16
1360 add r17=r17,carry1 };;
1362 { .mii; (p7) add carry2=1,carry2
1363 cmp.ltu p7,p0=r17,carry1};;
1364 { .mii; st8 [r32]=r17,16
1365 (p7) add carry2=1,carry2 };;
1367 { .mii; add r24=r24,carry2 };;
1368 { .mii; st8 [r33]=r24 }
1370 { .mib; rum 1<<5 // clear um.mfh
1371 br.ret.sptk.many b0 };;
1372 .endp bn_mul_comba4#
1379 // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1381 // In the nutshell it's a port of my MIPS III/IV implementation.
1392 // Some preprocessors (most notably HP-UX) appear to be allergic to
1393 // macros enclosed to parenthesis [as these three were].
1395 #define break p0 // p20
1404 .global bn_div_words#
1410 { .mii; alloc r2=ar.pfs,3,5,0,8
1415 { .mmb; cmp.eq p6,p0=r34,r0
1417 (p6) br.ret.spnt.many b0 };;
1420 { .mii; mov H=r32 // save h
1421 mov ar.ec=0 // don't rotate at exit
1423 { .mii; mov L=r33 // save l
1426 .L_divw_shift: // -vv- note signed comparison
1427 { .mfi; (p0) cmp.lt p16,p0=r0,r34 // d
1428 (p0) shladd r33=r34,1,r0 }
1429 { .mfb; (p0) add r35=1,r36
1431 (p16) br.wtop.dpnt .L_divw_shift };;
1436 { .mii; setf.sig f7=DH
1439 { .mib; cmp.ne p6,p0=r0,AT
1441 (p6) br.call.spnt.clr b0=abort };; // overflow, die...
1443 { .mfi; fcvt.xuf.s1 f7=f7
1452 { .mlx; setf.sig f14=D
1453 movl AT=0xffffffff };;
1454 ///////////////////////////////////////////////////////////
1455 { .mii; setf.sig f6=H
1457 cmp.eq p6,p7=HH,DH };;
1460 (p7) fcvt.xuf.s1 f6=f6
1461 (p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1463 { .mfi; getf.sig r33=f8 // q
1465 { .mfi; xmpy.hu f10=f8,f14
1468 { .mmi; getf.sig r35=f9 // tl
1469 getf.sig r31=f10 };; // th
1472 { .mii; (p0) add r32=-1,r33
1473 (p0) cmp.eq equ,cont=HH,r31 };;
1474 { .mii; (p0) cmp.ltu p8,p0=r35,D
1476 (equ) cmp.leu break,cont=r35,H };;
1477 { .mib; (cont) cmp.leu cont,break=HH,r31
1479 (cont) br.wtop.spnt .L_divw_1st_iter };;
1480 ///////////////////////////////////////////////////////////
1484 ///////////////////////////////////////////////////////////
1485 { .mii; setf.sig f6=H
1487 cmp.eq p6,p7=HH,DH };;
1490 (p7) fcvt.xuf.s1 f6=f6
1491 (p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1493 { .mfi; getf.sig r33=f8 // q
1495 { .mfi; xmpy.hu f10=f8,f14
1498 { .mmi; getf.sig r35=f9 // tl
1499 getf.sig r31=f10 };; // th
1502 { .mii; (p0) add r32=-1,r33
1503 (p0) cmp.eq equ,cont=HH,r31 };;
1504 { .mii; (p0) cmp.ltu p8,p0=r35,D
1506 (equ) cmp.leu break,cont=r35,H };;
1507 { .mib; (cont) cmp.leu cont,break=HH,r31
1509 (cont) br.wtop.spnt .L_divw_2nd_iter };;
1510 ///////////////////////////////////////////////////////////
1514 { .mii; shr.u r9=H,I // remainder if anybody wants it
1515 mov pr=r10,0x1ffff }
1516 { .mfb; br.ret.sptk.many b0 };;
1518 // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1521 // inputs: f6 = (double)a, f7 = (double)b
1522 // output: f8 = (int)(a/b)
1523 // clobbered: f8,f9,f10,f11,pred
1525 // One can argue that this snippet is copyrighted to Intel
1526 // Corporation, as it's essentially identical to one of those
1527 // found in "Divide, Square Root and Remainder" section at
1528 // http://www.intel.com/software/products/opensource/libraries/num.htm.
1529 // Yes, I admit that the referred code was used as template,
1530 // but after I realized that there hardly is any other instruction
1531 // sequence which would perform this operation. I mean I figure that
1532 // any independent attempt to implement high-performance division
1533 // will result in code virtually identical to the Intel code. It
1534 // should be noted though that below division kernel is 1 cycle
1535 // faster than Intel one (note commented splits:-), not to mention
1536 // original prologue (rather lack of one) and epilogue.
1540 frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b
1542 (pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0
1543 (pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0
1544 (pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0
1545 (pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0
1546 (pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0
1547 (pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1
1548 (pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1
1549 (pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2
1550 (pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2
1552 fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3)
1553 br.ret.sptk.many b6;;