Allow IPv6 address entry in tools>ping - Loosens valid character check
[tomato/davidwu.git] / release / src / router / openssl / crypto / bn / asm / s390x-mont.pl
blob9fd64e81eef36cbde53332d10743b934218530e5
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # April 2007.
12 # Performance improvement over vanilla C code varies from 85% to 45%
13 # depending on key length and benchmark. Unfortunately in this context
14 # these are not very impressive results [for code that utilizes "wide"
15 # 64x64=128-bit multiplication, which is not commonly available to C
16 # programmers], at least hand-coded bn_asm.c replacement is known to
17 # provide 30-40% better results for longest keys. Well, on a second
18 # thought it's not very surprising, because z-CPUs are single-issue
19 # and _strictly_ in-order execution, while bn_mul_mont is more or less
20 # dependent on CPU ability to pipe-line instructions and have several
21 # of them "in-flight" at the same time. I mean while other methods,
22 # for example Karatsuba, aim to minimize amount of multiplications at
23 # the cost of other operations increase, bn_mul_mont aim to neatly
24 # "overlap" multiplications and the other operations [and on most
25 # platforms even minimize the amount of the other operations, in
26 # particular references to memory]. But it's possible to improve this
27 # module performance by implementing dedicated squaring code-path and
28 # possibly by unrolling loops...
30 # January 2009.
32 # Reschedule to minimize/avoid Address Generation Interlock hazard,
33 # make inner loops counter-based.
35 # November 2010.
37 # Adapt for -m31 build. If kernel supports what's called "highgprs"
38 # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
39 # instructions and achieve "64-bit" performance even in 31-bit legacy
40 # application context. The feature is not specific to any particular
41 # processor, as long as it's "z-CPU". Latter implies that the code
42 # remains z/Architecture specific. Compatibility with 32-bit BN_ULONG
43 # is achieved by swapping words after 64-bit loads, follow _dswap-s.
44 # On z990 it was measured to perform 2.6-2.2 times better than
45 # compiler-generated code, less for longer keys...
47 $flavour = shift;
49 if ($flavour =~ /3[12]/) {
50 $SIZE_T=4;
51 $g="";
52 } else {
53 $SIZE_T=8;
54 $g="g";
57 while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
58 open STDOUT,">$output";
60 $stdframe=16*$SIZE_T+4*8;
62 $mn0="%r0";
63 $num="%r1";
65 # int bn_mul_mont(
66 $rp="%r2"; # BN_ULONG *rp,
67 $ap="%r3"; # const BN_ULONG *ap,
68 $bp="%r4"; # const BN_ULONG *bp,
69 $np="%r5"; # const BN_ULONG *np,
70 $n0="%r6"; # const BN_ULONG *n0,
71 #$num="160(%r15)" # int num);
73 $bi="%r2"; # zaps rp
74 $j="%r7";
76 $ahi="%r8";
77 $alo="%r9";
78 $nhi="%r10";
79 $nlo="%r11";
80 $AHI="%r12";
81 $NHI="%r13";
82 $count="%r14";
83 $sp="%r15";
85 $code.=<<___;
86 .text
87 .globl bn_mul_mont
88 .type bn_mul_mont,\@function
89 bn_mul_mont:
90 lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num
91 sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes
92 la $bp,0($num,$bp)
94 st${g} %r2,2*$SIZE_T($sp)
96 cghi $num,16 #
97 lghi %r2,0 #
98 blr %r14 # if($num<16) return 0;
99 ___
100 $code.=<<___ if ($flavour =~ /3[12]/);
101 tmll $num,4
102 bnzr %r14 # if ($num&1) return 0;
104 $code.=<<___ if ($flavour !~ /3[12]/);
105 cghi $num,96 #
106 bhr %r14 # if($num>96) return 0;
108 $code.=<<___;
109 stm${g} %r3,%r15,3*$SIZE_T($sp)
111 lghi $rp,-$stdframe-8 # leave room for carry bit
112 lcgr $j,$num # -$num
113 lgr %r0,$sp
114 la $rp,0($rp,$sp)
115 la $sp,0($j,$rp) # alloca
116 st${g} %r0,0($sp) # back chain
118 sra $num,3 # restore $num
119 la $bp,0($j,$bp) # restore $bp
120 ahi $num,-1 # adjust $num for inner loop
121 lg $n0,0($n0) # pull n0
122 _dswap $n0
124 lg $bi,0($bp)
125 _dswap $bi
126 lg $alo,0($ap)
127 _dswap $alo
128 mlgr $ahi,$bi # ap[0]*bp[0]
129 lgr $AHI,$ahi
131 lgr $mn0,$alo # "tp[0]"*n0
132 msgr $mn0,$n0
134 lg $nlo,0($np) #
135 _dswap $nlo
136 mlgr $nhi,$mn0 # np[0]*m1
137 algr $nlo,$alo # +="tp[0]"
138 lghi $NHI,0
139 alcgr $NHI,$nhi
141 la $j,8(%r0) # j=1
142 lr $count,$num
144 .align 16
145 .L1st:
146 lg $alo,0($j,$ap)
147 _dswap $alo
148 mlgr $ahi,$bi # ap[j]*bp[0]
149 algr $alo,$AHI
150 lghi $AHI,0
151 alcgr $AHI,$ahi
153 lg $nlo,0($j,$np)
154 _dswap $nlo
155 mlgr $nhi,$mn0 # np[j]*m1
156 algr $nlo,$NHI
157 lghi $NHI,0
158 alcgr $nhi,$NHI # +="tp[j]"
159 algr $nlo,$alo
160 alcgr $NHI,$nhi
162 stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
163 la $j,8($j) # j++
164 brct $count,.L1st
166 algr $NHI,$AHI
167 lghi $AHI,0
168 alcgr $AHI,$AHI # upmost overflow bit
169 stg $NHI,$stdframe-8($j,$sp)
170 stg $AHI,$stdframe($j,$sp)
171 la $bp,8($bp) # bp++
173 .Louter:
174 lg $bi,0($bp) # bp[i]
175 _dswap $bi
176 lg $alo,0($ap)
177 _dswap $alo
178 mlgr $ahi,$bi # ap[0]*bp[i]
179 alg $alo,$stdframe($sp) # +=tp[0]
180 lghi $AHI,0
181 alcgr $AHI,$ahi
183 lgr $mn0,$alo
184 msgr $mn0,$n0 # tp[0]*n0
186 lg $nlo,0($np) # np[0]
187 _dswap $nlo
188 mlgr $nhi,$mn0 # np[0]*m1
189 algr $nlo,$alo # +="tp[0]"
190 lghi $NHI,0
191 alcgr $NHI,$nhi
193 la $j,8(%r0) # j=1
194 lr $count,$num
196 .align 16
197 .Linner:
198 lg $alo,0($j,$ap)
199 _dswap $alo
200 mlgr $ahi,$bi # ap[j]*bp[i]
201 algr $alo,$AHI
202 lghi $AHI,0
203 alcgr $ahi,$AHI
204 alg $alo,$stdframe($j,$sp)# +=tp[j]
205 alcgr $AHI,$ahi
207 lg $nlo,0($j,$np)
208 _dswap $nlo
209 mlgr $nhi,$mn0 # np[j]*m1
210 algr $nlo,$NHI
211 lghi $NHI,0
212 alcgr $nhi,$NHI
213 algr $nlo,$alo # +="tp[j]"
214 alcgr $NHI,$nhi
216 stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
217 la $j,8($j) # j++
218 brct $count,.Linner
220 algr $NHI,$AHI
221 lghi $AHI,0
222 alcgr $AHI,$AHI
223 alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit
224 lghi $ahi,0
225 alcgr $AHI,$ahi # new upmost overflow bit
226 stg $NHI,$stdframe-8($j,$sp)
227 stg $AHI,$stdframe($j,$sp)
229 la $bp,8($bp) # bp++
230 cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num]
231 jne .Louter
233 l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp
234 la $ap,$stdframe($sp)
235 ahi $num,1 # restore $num, incidentally clears "borrow"
237 la $j,0(%r0)
238 lr $count,$num
239 .Lsub: lg $alo,0($j,$ap)
240 lg $nlo,0($j,$np)
241 _dswap $nlo
242 slbgr $alo,$nlo
243 stg $alo,0($j,$rp)
244 la $j,8($j)
245 brct $count,.Lsub
246 lghi $ahi,0
247 slbgr $AHI,$ahi # handle upmost carry
249 ngr $ap,$AHI
250 lghi $np,-1
251 xgr $np,$AHI
252 ngr $np,$rp
253 ogr $ap,$np # ap=borrow?tp:rp
255 la $j,0(%r0)
256 lgr $count,$num
257 .Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh
258 _dswap $alo
259 stg $j,$stdframe($j,$sp) # zap tp
260 stg $alo,0($j,$rp)
261 la $j,8($j)
262 brct $count,.Lcopy
264 la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp)
265 lm${g} %r6,%r15,0(%r1)
266 lghi %r2,1 # signal "processed"
267 br %r14
268 .size bn_mul_mont,.-bn_mul_mont
269 .string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
272 foreach (split("\n",$code)) {
273 s/\`([^\`]*)\`/eval $1/ge;
274 s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e;
275 print $_,"\n";
277 close STDOUT;