1 /* crypto/bn/bn_mul.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
60 # undef NDEBUG /* avoid conflicting definitions */
69 #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
70 /* Here follows specialised variants of bn_add_words() and
71 bn_sub_words(). They have the property performing operations on
72 arrays of different sizes. The sizes of those arrays is expressed through
73 cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
74 which is the delta between the two lengths, calculated as len(a)-len(b).
75 All lengths are the number of BN_ULONGs... For the operations that require
76 a result array as parameter, it must have the length cl+abs(dl).
77 These functions should probably end up in bn_asm.c as soon as there are
78 assembler counterparts for the systems that use assembler files. */
80 BN_ULONG
bn_sub_part_words(BN_ULONG
*r
,
81 const BN_ULONG
*a
, const BN_ULONG
*b
,
87 c
= bn_sub_words(r
, a
, b
, cl
);
99 fprintf(stderr
, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl
, dl
, c
);
104 r
[0] = (0-t
-c
)&BN_MASK2
;
106 if (++dl
>= 0) break;
109 r
[1] = (0-t
-c
)&BN_MASK2
;
111 if (++dl
>= 0) break;
114 r
[2] = (0-t
-c
)&BN_MASK2
;
116 if (++dl
>= 0) break;
119 r
[3] = (0-t
-c
)&BN_MASK2
;
121 if (++dl
>= 0) break;
131 fprintf(stderr
, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl
, dl
, c
);
136 r
[0] = (t
-c
)&BN_MASK2
;
138 if (--dl
<= 0) break;
141 r
[1] = (t
-c
)&BN_MASK2
;
143 if (--dl
<= 0) break;
146 r
[2] = (t
-c
)&BN_MASK2
;
148 if (--dl
<= 0) break;
151 r
[3] = (t
-c
)&BN_MASK2
;
153 if (--dl
<= 0) break;
162 fprintf(stderr
, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl
, dl
);
166 switch (save_dl
- dl
)
170 if (--dl
<= 0) break;
173 if (--dl
<= 0) break;
176 if (--dl
<= 0) break;
185 fprintf(stderr
, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl
, dl
);
190 if (--dl
<= 0) break;
192 if (--dl
<= 0) break;
194 if (--dl
<= 0) break;
196 if (--dl
<= 0) break;
207 BN_ULONG
bn_add_part_words(BN_ULONG
*r
,
208 const BN_ULONG
*a
, const BN_ULONG
*b
,
214 c
= bn_add_words(r
, a
, b
, cl
);
227 fprintf(stderr
, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl
, dl
, c
);
234 if (++dl
>= 0) break;
239 if (++dl
>= 0) break;
244 if (++dl
>= 0) break;
249 if (++dl
>= 0) break;
258 fprintf(stderr
, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl
, dl
);
262 switch (dl
- save_dl
)
266 if (++dl
>= 0) break;
269 if (++dl
>= 0) break;
272 if (++dl
>= 0) break;
281 fprintf(stderr
, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl
, dl
);
286 if (++dl
>= 0) break;
288 if (++dl
>= 0) break;
290 if (++dl
>= 0) break;
292 if (++dl
>= 0) break;
303 fprintf(stderr
, " bn_add_part_words %d + %d (dl > 0)\n", cl
, dl
);
310 if (--dl
<= 0) break;
315 if (--dl
<= 0) break;
320 if (--dl
<= 0) break;
325 if (--dl
<= 0) break;
332 fprintf(stderr
, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl
, dl
);
338 switch (save_dl
- dl
)
342 if (--dl
<= 0) break;
345 if (--dl
<= 0) break;
348 if (--dl
<= 0) break;
357 fprintf(stderr
, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl
, dl
);
362 if (--dl
<= 0) break;
364 if (--dl
<= 0) break;
366 if (--dl
<= 0) break;
368 if (--dl
<= 0) break;
379 /* Karatsuba recursive multiplication algorithm
380 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
382 /* r is 2*n2 words in size,
383 * a and b are both n2 words in size.
384 * n2 must be a power of 2.
385 * We multiply and return the result.
386 * t must be 2*n2 words in size
389 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
392 /* dnX may not be positive, but n2/2+dnX has to be */
393 void bn_mul_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n2
,
394 int dna
, int dnb
, BN_ULONG
*t
)
397 int tna
=n
+dna
, tnb
=n
+dnb
;
398 unsigned int neg
,zero
;
402 fprintf(stderr
," bn_mul_recursive %d%+d * %d%+d\n",n2
,dna
,n2
,dnb
);
408 bn_mul_comba4(r
,a
,b
);
412 /* Only call bn_mul_comba 8 if n2 == 8 and the
413 * two arrays are complete [steve]
415 if (n2
== 8 && dna
== 0 && dnb
== 0)
417 bn_mul_comba8(r
,a
,b
);
420 # endif /* BN_MUL_COMBA */
421 /* Else do normal multiply */
422 if (n2
< BN_MUL_RECURSIVE_SIZE_NORMAL
)
424 bn_mul_normal(r
,a
,n2
+dna
,b
,n2
+dnb
);
426 memset(&r
[2*n2
+ dna
+ dnb
], 0,
427 sizeof(BN_ULONG
) * -(dna
+ dnb
));
430 /* r=(a[0]-a[1])*(b[1]-b[0]) */
431 c1
=bn_cmp_part_words(a
,&(a
[n
]),tna
,n
-tna
);
432 c2
=bn_cmp_part_words(&(b
[n
]),b
,tnb
,tnb
-n
);
437 bn_sub_part_words(t
, &(a
[n
]),a
, tna
,tna
-n
); /* - */
438 bn_sub_part_words(&(t
[n
]),b
, &(b
[n
]),tnb
,n
-tnb
); /* - */
444 bn_sub_part_words(t
, &(a
[n
]),a
, tna
,tna
-n
); /* - */
445 bn_sub_part_words(&(t
[n
]),&(b
[n
]),b
, tnb
,tnb
-n
); /* + */
454 bn_sub_part_words(t
, a
, &(a
[n
]),tna
,n
-tna
); /* + */
455 bn_sub_part_words(&(t
[n
]),b
, &(b
[n
]),tnb
,n
-tnb
); /* - */
462 bn_sub_part_words(t
, a
, &(a
[n
]),tna
,n
-tna
);
463 bn_sub_part_words(&(t
[n
]),&(b
[n
]),b
, tnb
,tnb
-n
);
468 if (n
== 4 && dna
== 0 && dnb
== 0) /* XXX: bn_mul_comba4 could take
469 extra args to do this well */
472 bn_mul_comba4(&(t
[n2
]),t
,&(t
[n
]));
474 memset(&(t
[n2
]),0,8*sizeof(BN_ULONG
));
476 bn_mul_comba4(r
,a
,b
);
477 bn_mul_comba4(&(r
[n2
]),&(a
[n
]),&(b
[n
]));
479 else if (n
== 8 && dna
== 0 && dnb
== 0) /* XXX: bn_mul_comba8 could
480 take extra args to do this
484 bn_mul_comba8(&(t
[n2
]),t
,&(t
[n
]));
486 memset(&(t
[n2
]),0,16*sizeof(BN_ULONG
));
488 bn_mul_comba8(r
,a
,b
);
489 bn_mul_comba8(&(r
[n2
]),&(a
[n
]),&(b
[n
]));
492 # endif /* BN_MUL_COMBA */
496 bn_mul_recursive(&(t
[n2
]),t
,&(t
[n
]),n
,0,0,p
);
498 memset(&(t
[n2
]),0,n2
*sizeof(BN_ULONG
));
499 bn_mul_recursive(r
,a
,b
,n
,0,0,p
);
500 bn_mul_recursive(&(r
[n2
]),&(a
[n
]),&(b
[n
]),n
,dna
,dnb
,p
);
503 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
504 * r[10] holds (a[0]*b[0])
505 * r[32] holds (b[1]*b[1])
508 c1
=(int)(bn_add_words(t
,r
,&(r
[n2
]),n2
));
510 if (neg
) /* if t[32] is negative */
512 c1
-=(int)(bn_sub_words(&(t
[n2
]),t
,&(t
[n2
]),n2
));
516 /* Might have a carry */
517 c1
+=(int)(bn_add_words(&(t
[n2
]),&(t
[n2
]),t
,n2
));
520 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
521 * r[10] holds (a[0]*b[0])
522 * r[32] holds (b[1]*b[1])
523 * c1 holds the carry bits
525 c1
+=(int)(bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[n2
]),n2
));
533 /* The overflow will stop before we over write
534 * words we should not overwrite */
535 if (ln
< (BN_ULONG
)c1
)
547 /* n+tn is the word length
548 * t needs to be n*4 is size, as does r */
549 /* tnX may not be negative but less than n */
550 void bn_mul_part_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n
,
551 int tna
, int tnb
, BN_ULONG
*t
)
558 fprintf(stderr
," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
563 bn_mul_normal(r
,a
,n
+tna
,b
,n
+tnb
);
567 /* r=(a[0]-a[1])*(b[1]-b[0]) */
568 c1
=bn_cmp_part_words(a
,&(a
[n
]),tna
,n
-tna
);
569 c2
=bn_cmp_part_words(&(b
[n
]),b
,tnb
,tnb
-n
);
574 bn_sub_part_words(t
, &(a
[n
]),a
, tna
,tna
-n
); /* - */
575 bn_sub_part_words(&(t
[n
]),b
, &(b
[n
]),tnb
,n
-tnb
); /* - */
580 bn_sub_part_words(t
, &(a
[n
]),a
, tna
,tna
-n
); /* - */
581 bn_sub_part_words(&(t
[n
]),&(b
[n
]),b
, tnb
,tnb
-n
); /* + */
589 bn_sub_part_words(t
, a
, &(a
[n
]),tna
,n
-tna
); /* + */
590 bn_sub_part_words(&(t
[n
]),b
, &(b
[n
]),tnb
,n
-tnb
); /* - */
596 bn_sub_part_words(t
, a
, &(a
[n
]),tna
,n
-tna
);
597 bn_sub_part_words(&(t
[n
]),&(b
[n
]),b
, tnb
,tnb
-n
);
600 /* The zero case isn't yet implemented here. The speedup
601 would probably be negligible. */
605 bn_mul_comba4(&(t
[n2
]),t
,&(t
[n
]));
606 bn_mul_comba4(r
,a
,b
);
607 bn_mul_normal(&(r
[n2
]),&(a
[n
]),tn
,&(b
[n
]),tn
);
608 memset(&(r
[n2
+tn
*2]),0,sizeof(BN_ULONG
)*(n2
-tn
*2));
614 bn_mul_comba8(&(t
[n2
]),t
,&(t
[n
]));
615 bn_mul_comba8(r
,a
,b
);
616 bn_mul_normal(&(r
[n2
]),&(a
[n
]),tna
,&(b
[n
]),tnb
);
617 memset(&(r
[n2
+tna
+tnb
]),0,sizeof(BN_ULONG
)*(n2
-tna
-tnb
));
622 bn_mul_recursive(&(t
[n2
]),t
,&(t
[n
]),n
,0,0,p
);
623 bn_mul_recursive(r
,a
,b
,n
,0,0,p
);
625 /* If there is only a bottom half to the number,
633 bn_mul_recursive(&(r
[n2
]),&(a
[n
]),&(b
[n
]),
635 memset(&(r
[n2
+i
*2]),0,sizeof(BN_ULONG
)*(n2
-i
*2));
637 else if (j
> 0) /* eg, n == 16, i == 8 and tn == 11 */
639 bn_mul_part_recursive(&(r
[n2
]),&(a
[n
]),&(b
[n
]),
641 memset(&(r
[n2
+tna
+tnb
]),0,
642 sizeof(BN_ULONG
)*(n2
-tna
-tnb
));
644 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
646 memset(&(r
[n2
]),0,sizeof(BN_ULONG
)*n2
);
647 if (tna
< BN_MUL_RECURSIVE_SIZE_NORMAL
648 && tnb
< BN_MUL_RECURSIVE_SIZE_NORMAL
)
650 bn_mul_normal(&(r
[n2
]),&(a
[n
]),tna
,&(b
[n
]),tnb
);
657 /* these simplified conditions work
658 * exclusively because difference
659 * between tna and tnb is 1 or 0 */
660 if (i
< tna
|| i
< tnb
)
662 bn_mul_part_recursive(&(r
[n2
]),
667 else if (i
== tna
|| i
== tnb
)
669 bn_mul_recursive(&(r
[n2
]),
679 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
680 * r[10] holds (a[0]*b[0])
681 * r[32] holds (b[1]*b[1])
684 c1
=(int)(bn_add_words(t
,r
,&(r
[n2
]),n2
));
686 if (neg
) /* if t[32] is negative */
688 c1
-=(int)(bn_sub_words(&(t
[n2
]),t
,&(t
[n2
]),n2
));
692 /* Might have a carry */
693 c1
+=(int)(bn_add_words(&(t
[n2
]),&(t
[n2
]),t
,n2
));
696 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
697 * r[10] holds (a[0]*b[0])
698 * r[32] holds (b[1]*b[1])
699 * c1 holds the carry bits
701 c1
+=(int)(bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[n2
]),n2
));
709 /* The overflow will stop before we over write
710 * words we should not overwrite */
711 if (ln
< (BN_ULONG
)c1
)
723 /* a and b must be the same size, which is n2.
724 * r needs to be n2 words and t needs to be n2*2
726 void bn_mul_low_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n2
,
732 fprintf(stderr
," bn_mul_low_recursive %d * %d\n",n2
,n2
);
735 bn_mul_recursive(r
,a
,b
,n
,0,0,&(t
[0]));
736 if (n
>= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL
)
738 bn_mul_low_recursive(&(t
[0]),&(a
[0]),&(b
[n
]),n
,&(t
[n2
]));
739 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[0]),n
);
740 bn_mul_low_recursive(&(t
[0]),&(a
[n
]),&(b
[0]),n
,&(t
[n2
]));
741 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[0]),n
);
745 bn_mul_low_normal(&(t
[0]),&(a
[0]),&(b
[n
]),n
);
746 bn_mul_low_normal(&(t
[n
]),&(a
[n
]),&(b
[0]),n
);
747 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[0]),n
);
748 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[n
]),n
);
752 /* a and b must be the same size, which is n2.
753 * r needs to be n2 words and t needs to be n2*2
754 * l is the low words of the output.
757 void bn_mul_high(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, BN_ULONG
*l
, int n2
,
763 BN_ULONG ll
,lc
,*lp
,*mp
;
766 fprintf(stderr
," bn_mul_high %d * %d\n",n2
,n2
);
770 /* Calculate (al-ah)*(bh-bl) */
772 c1
=bn_cmp_words(&(a
[0]),&(a
[n
]),n
);
773 c2
=bn_cmp_words(&(b
[n
]),&(b
[0]),n
);
777 bn_sub_words(&(r
[0]),&(a
[n
]),&(a
[0]),n
);
778 bn_sub_words(&(r
[n
]),&(b
[0]),&(b
[n
]),n
);
784 bn_sub_words(&(r
[0]),&(a
[n
]),&(a
[0]),n
);
785 bn_sub_words(&(r
[n
]),&(b
[n
]),&(b
[0]),n
);
794 bn_sub_words(&(r
[0]),&(a
[0]),&(a
[n
]),n
);
795 bn_sub_words(&(r
[n
]),&(b
[0]),&(b
[n
]),n
);
802 bn_sub_words(&(r
[0]),&(a
[0]),&(a
[n
]),n
);
803 bn_sub_words(&(r
[n
]),&(b
[n
]),&(b
[0]),n
);
808 /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
809 /* r[10] = (a[1]*b[1]) */
813 bn_mul_comba8(&(t
[0]),&(r
[0]),&(r
[n
]));
814 bn_mul_comba8(r
,&(a
[n
]),&(b
[n
]));
819 bn_mul_recursive(&(t
[0]),&(r
[0]),&(r
[n
]),n
,0,0,&(t
[n2
]));
820 bn_mul_recursive(r
,&(a
[n
]),&(b
[n
]),n
,0,0,&(t
[n2
]));
824 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
825 * We know s0 and s1 so the only unknown is high(al*bl)
826 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
827 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
832 c1
=(int)(bn_add_words(lp
,&(r
[0]),&(l
[0]),n
));
841 neg
=(int)(bn_sub_words(&(t
[n2
]),lp
,&(t
[0]),n
));
844 bn_add_words(&(t
[n2
]),lp
,&(t
[0]),n
);
850 bn_sub_words(&(t
[n2
+n
]),&(l
[n
]),&(t
[n2
]),n
);
857 lp
[i
]=((~mp
[i
])+1)&BN_MASK2
;
862 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
863 * r[10] = (a[1]*b[1])
866 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
869 /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
870 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
871 * R[3]=r[1]+(carry/borrow)
876 c1
= (int)(bn_add_words(lp
,&(t
[n2
+n
]),&(l
[0]),n
));
883 c1
+=(int)(bn_add_words(&(t
[n2
]),lp
, &(r
[0]),n
));
885 c1
-=(int)(bn_sub_words(&(t
[n2
]),&(t
[n2
]),&(t
[0]),n
));
887 c1
+=(int)(bn_add_words(&(t
[n2
]),&(t
[n2
]),&(t
[0]),n
));
889 c2
=(int)(bn_add_words(&(r
[0]),&(r
[0]),&(t
[n2
+n
]),n
));
890 c2
+=(int)(bn_add_words(&(r
[0]),&(r
[0]),&(r
[n
]),n
));
892 c2
-=(int)(bn_sub_words(&(r
[0]),&(r
[0]),&(t
[n
]),n
));
894 c2
+=(int)(bn_add_words(&(r
[0]),&(r
[0]),&(t
[n
]),n
));
896 if (c1
!= 0) /* Add starting at r[0], could be +ve or -ve */
903 ll
=(r
[i
]+lc
)&BN_MASK2
;
913 r
[i
++]=(ll
-lc
)&BN_MASK2
;
918 if (c2
!= 0) /* Add starting at r[1] */
925 ll
=(r
[i
]+lc
)&BN_MASK2
;
935 r
[i
++]=(ll
-lc
)&BN_MASK2
;
941 #endif /* BN_RECURSION */
943 int BN_mul(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*b
, BN_CTX
*ctx
)
948 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
957 fprintf(stderr
,"BN_mul %d * %d\n",a
->top
,b
->top
);
967 if ((al
== 0) || (bl
== 0))
975 if ((r
== a
) || (r
== b
))
977 if ((rr
= BN_CTX_get(ctx
)) == NULL
) goto err
;
981 rr
->neg
=a
->neg
^b
->neg
;
983 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
992 if (bn_wexpand(rr
,8) == NULL
) goto err
;
994 bn_mul_comba4(rr
->d
,a
->d
,b
->d
);
1000 if (bn_wexpand(rr
,16) == NULL
) goto err
;
1002 bn_mul_comba8(rr
->d
,a
->d
,b
->d
);
1006 #endif /* BN_MUL_COMBA */
1008 if ((al
>= BN_MULL_SIZE_NORMAL
) && (bl
>= BN_MULL_SIZE_NORMAL
))
1010 if (i
>= -1 && i
<= 1)
1012 /* Find out the power of two lower or equal
1013 to the longest of the two numbers */
1016 j
= BN_num_bits_word((BN_ULONG
)al
);
1020 j
= BN_num_bits_word((BN_ULONG
)bl
);
1023 assert(j
<= al
|| j
<= bl
);
1025 t
= BN_CTX_get(ctx
);
1028 if (al
> j
|| bl
> j
)
1030 if (bn_wexpand(t
,k
*4) == NULL
) goto err
;
1031 if (bn_wexpand(rr
,k
*4) == NULL
) goto err
;
1032 bn_mul_part_recursive(rr
->d
,a
->d
,b
->d
,
1035 else /* al <= j || bl <= j */
1037 if (bn_wexpand(t
,k
*2) == NULL
) goto err
;
1038 if (bn_wexpand(rr
,k
*2) == NULL
) goto err
;
1039 bn_mul_recursive(rr
->d
,a
->d
,b
->d
,
1046 if (i
== 1 && !BN_get_flags(b
,BN_FLG_STATIC_DATA
))
1048 BIGNUM
*tmp_bn
= (BIGNUM
*)b
;
1049 if (bn_wexpand(tmp_bn
,al
) == NULL
) goto err
;
1054 else if (i
== -1 && !BN_get_flags(a
,BN_FLG_STATIC_DATA
))
1056 BIGNUM
*tmp_bn
= (BIGNUM
*)a
;
1057 if (bn_wexpand(tmp_bn
,bl
) == NULL
) goto err
;
1064 /* symmetric and > 4 */
1066 j
=BN_num_bits_word((BN_ULONG
)al
);
1069 t
= BN_CTX_get(ctx
);
1070 if (al
== j
) /* exact multiple */
1072 if (bn_wexpand(t
,k
*2) == NULL
) goto err
;
1073 if (bn_wexpand(rr
,k
*2) == NULL
) goto err
;
1074 bn_mul_recursive(rr
->d
,a
->d
,b
->d
,al
,t
->d
);
1078 if (bn_wexpand(t
,k
*4) == NULL
) goto err
;
1079 if (bn_wexpand(rr
,k
*4) == NULL
) goto err
;
1080 bn_mul_part_recursive(rr
->d
,a
->d
,b
->d
,al
-j
,j
,t
->d
);
1087 #endif /* BN_RECURSION */
1088 if (bn_wexpand(rr
,top
) == NULL
) goto err
;
1090 bn_mul_normal(rr
->d
,a
->d
,al
,b
->d
,bl
);
1092 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1096 if (r
!= rr
) BN_copy(r
,rr
);
1104 void bn_mul_normal(BN_ULONG
*r
, BN_ULONG
*a
, int na
, BN_ULONG
*b
, int nb
)
1109 fprintf(stderr
," bn_mul_normal %d * %d\n",na
,nb
);
1117 itmp
=na
; na
=nb
; nb
=itmp
;
1118 ltmp
=a
; a
=b
; b
=ltmp
;
1124 (void)bn_mul_words(r
,a
,na
,0);
1128 rr
[0]=bn_mul_words(r
,a
,na
,b
[0]);
1132 if (--nb
<= 0) return;
1133 rr
[1]=bn_mul_add_words(&(r
[1]),a
,na
,b
[1]);
1134 if (--nb
<= 0) return;
1135 rr
[2]=bn_mul_add_words(&(r
[2]),a
,na
,b
[2]);
1136 if (--nb
<= 0) return;
1137 rr
[3]=bn_mul_add_words(&(r
[3]),a
,na
,b
[3]);
1138 if (--nb
<= 0) return;
1139 rr
[4]=bn_mul_add_words(&(r
[4]),a
,na
,b
[4]);
1146 void bn_mul_low_normal(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n
)
1149 fprintf(stderr
," bn_mul_low_normal %d * %d\n",n
,n
);
1151 bn_mul_words(r
,a
,n
,b
[0]);
1155 if (--n
<= 0) return;
1156 bn_mul_add_words(&(r
[1]),a
,n
,b
[1]);
1157 if (--n
<= 0) return;
1158 bn_mul_add_words(&(r
[2]),a
,n
,b
[2]);
1159 if (--n
<= 0) return;
1160 bn_mul_add_words(&(r
[3]),a
,n
,b
[3]);
1161 if (--n
<= 0) return;
1162 bn_mul_add_words(&(r
[4]),a
,n
,b
[4]);