2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
15 * The Original Code is the elliptic curve math library for binary polynomial field curves.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
23 * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24 * Stephen Fung <fungstep@hotmail.com>, and
25 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
27 * Alternatively, the contents of this file may be used under the terms of
28 * either the GNU General Public License Version 2 or later (the "GPL"), or
29 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
30 * in which case the provisions of the GPL or the LGPL are applicable instead
31 * of those above. If you wish to allow use of your version of this file only
32 * under the terms of either the GPL or the LGPL, and not to allow others to
33 * use your version of this file under the terms of the MPL, indicate your
34 * decision by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL or the LGPL. If you do not delete
36 * the provisions above, a recipient may use your version of this file under
37 * the terms of any one of the MPL, the GPL or the LGPL.
39 * ***** END LICENSE BLOCK ***** */
41 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
42 * Use is subject to license terms.
44 * Sun elects to use this software under the MPL license.
47 #pragma ident "%Z%%M% %I% %E% SMI"
51 #include "mp_gf2m-priv.h"
58 /* Fast reduction for polynomials over a 193-bit curve. Assumes reduction
59 * polynomial with terms {193, 15, 0}. */
61 ec_GF2m_193_mod(const mp_int
*a
, mp_int
*r
, const GFMethod
*meth
)
67 MP_CHECKOK(mp_copy(a
, r
));
69 #ifdef ECL_SIXTY_FOUR_BIT
71 MP_CHECKOK(s_mp_pad(r
, 7));
76 /* u[6] only has 2 significant bits */
78 u
[3] ^= (z
<< 14) ^ (z
>> 1);
82 u
[2] ^= (z
<< 14) ^ (z
>> 1);
86 u
[1] ^= (z
<< 14) ^ (z
>> 1);
88 z
= u
[3] >> 1; /* z only has 63 significant bits */
90 u
[0] ^= (z
<< 15) ^ z
;
91 /* clear bits above 193 */
92 u
[6] = u
[5] = u
[4] = 0;
95 if (MP_USED(r
) < 13) {
96 MP_CHECKOK(s_mp_pad(r
, 13));
101 /* u[12] only has 2 significant bits */
103 u
[6] ^= (z
<< 14) ^ (z
>> 1);
107 u
[5] ^= (z
<< 14) ^ (z
>> 1);
111 u
[4] ^= (z
<< 14) ^ (z
>> 1);
115 u
[3] ^= (z
<< 14) ^ (z
>> 1);
119 u
[2] ^= (z
<< 14) ^ (z
>> 1);
123 u
[1] ^= (z
<< 14) ^ (z
>> 1);
125 z
= u
[6] >> 1; /* z only has 31 significant bits */
127 u
[0] ^= (z
<< 15) ^ z
;
128 /* clear bits above 193 */
129 u
[12] = u
[11] = u
[10] = u
[9] = u
[8] = u
[7] = 0;
138 /* Fast squaring for polynomials over a 193-bit curve. Assumes reduction
139 * polynomial with terms {193, 15, 0}. */
141 ec_GF2m_193_sqr(const mp_int
*a
, mp_int
*r
, const GFMethod
*meth
)
143 mp_err res
= MP_OKAY
;
148 #ifdef ECL_SIXTY_FOUR_BIT
149 if (MP_USED(a
) < 4) {
150 return mp_bsqrmod(a
, meth
->irr_arr
, r
);
152 if (MP_USED(r
) < 7) {
153 MP_CHECKOK(s_mp_pad(r
, 7));
157 if (MP_USED(a
) < 7) {
158 return mp_bsqrmod(a
, meth
->irr_arr
, r
);
160 if (MP_USED(r
) < 13) {
161 MP_CHECKOK(s_mp_pad(r
, 13));
167 #ifdef ECL_THIRTY_TWO_BIT
168 u
[12] = gf2m_SQR0(v
[6]);
169 u
[11] = gf2m_SQR1(v
[5]);
170 u
[10] = gf2m_SQR0(v
[5]);
171 u
[9] = gf2m_SQR1(v
[4]);
172 u
[8] = gf2m_SQR0(v
[4]);
173 u
[7] = gf2m_SQR1(v
[3]);
175 u
[6] = gf2m_SQR0(v
[3]);
176 u
[5] = gf2m_SQR1(v
[2]);
177 u
[4] = gf2m_SQR0(v
[2]);
178 u
[3] = gf2m_SQR1(v
[1]);
179 u
[2] = gf2m_SQR0(v
[1]);
180 u
[1] = gf2m_SQR1(v
[0]);
181 u
[0] = gf2m_SQR0(v
[0]);
182 return ec_GF2m_193_mod(r
, r
, meth
);
188 /* Fast multiplication for polynomials over a 193-bit curve. Assumes
189 * reduction polynomial with terms {193, 15, 0}. */
191 ec_GF2m_193_mul(const mp_int
*a
, const mp_int
*b
, mp_int
*r
,
192 const GFMethod
*meth
)
194 mp_err res
= MP_OKAY
;
195 mp_digit a3
= 0, a2
= 0, a1
= 0, a0
, b3
= 0, b2
= 0, b1
= 0, b0
;
197 #ifdef ECL_THIRTY_TWO_BIT
198 mp_digit a6
= 0, a5
= 0, a4
= 0, b6
= 0, b5
= 0, b4
= 0;
203 return ec_GF2m_193_sqr(a
, r
, meth
);
205 switch (MP_USED(a
)) {
206 #ifdef ECL_THIRTY_TWO_BIT
223 switch (MP_USED(b
)) {
224 #ifdef ECL_THIRTY_TWO_BIT
241 #ifdef ECL_SIXTY_FOUR_BIT
242 MP_CHECKOK(s_mp_pad(r
, 8));
243 s_bmul_4x4(MP_DIGITS(r
), a3
, a2
, a1
, a0
, b3
, b2
, b1
, b0
);
247 MP_CHECKOK(s_mp_pad(r
, 14));
248 s_bmul_3x3(MP_DIGITS(r
) + 8, a6
, a5
, a4
, b6
, b5
, b4
);
249 s_bmul_4x4(MP_DIGITS(r
), a3
, a2
, a1
, a0
, b3
, b2
, b1
, b0
);
250 s_bmul_4x4(rm
, a3
, a6
^ a2
, a5
^ a1
, a4
^ a0
, b3
, b6
^ b2
, b5
^ b1
,
252 rm
[7] ^= MP_DIGIT(r
, 7);
253 rm
[6] ^= MP_DIGIT(r
, 6);
254 rm
[5] ^= MP_DIGIT(r
, 5) ^ MP_DIGIT(r
, 13);
255 rm
[4] ^= MP_DIGIT(r
, 4) ^ MP_DIGIT(r
, 12);
256 rm
[3] ^= MP_DIGIT(r
, 3) ^ MP_DIGIT(r
, 11);
257 rm
[2] ^= MP_DIGIT(r
, 2) ^ MP_DIGIT(r
, 10);
258 rm
[1] ^= MP_DIGIT(r
, 1) ^ MP_DIGIT(r
, 9);
259 rm
[0] ^= MP_DIGIT(r
, 0) ^ MP_DIGIT(r
, 8);
260 MP_DIGIT(r
, 11) ^= rm
[7];
261 MP_DIGIT(r
, 10) ^= rm
[6];
262 MP_DIGIT(r
, 9) ^= rm
[5];
263 MP_DIGIT(r
, 8) ^= rm
[4];
264 MP_DIGIT(r
, 7) ^= rm
[3];
265 MP_DIGIT(r
, 6) ^= rm
[2];
266 MP_DIGIT(r
, 5) ^= rm
[1];
267 MP_DIGIT(r
, 4) ^= rm
[0];
271 return ec_GF2m_193_mod(r
, r
, meth
);
278 /* Wire in fast field arithmetic for 193-bit curves. */
280 ec_group_set_gf2m193(ECGroup
*group
, ECCurveName name
)
282 group
->meth
->field_mod
= &ec_GF2m_193_mod
;
283 group
->meth
->field_mul
= &ec_GF2m_193_mul
;
284 group
->meth
->field_sqr
= &ec_GF2m_193_sqr
;